
Wirtschaftsinformatik und Operations Research 72

2 Dynamic Programming

 In what follows, we introduce the technique Dynamic
Programming

 It generalizes the basic principles of recursion
 Basic ideas of recursive algorithms

 The entire problem is separated into smaller predefined
subproblems

 These predetermined smaller subproblems are solved separately
 Subsequently, the resulting partial solutions are combined to a

complete solution to the original problem
 This generation of a complete solution is determined by a

recursive formula
 Typical examples of recursive algorithms

 Quicksort
 Recursive version of binary search
 Recursive version of merge sort

Wirtschaftsinformatik und Operations Research 73

2.1 Basic attributes of Dynamic Programming

 Dynamic Programming generalizes the principles of recursive
algorithms

 Here, the particular subproblems that are needed to construct a
solution to the larger original problem are unknown

 Therefore, in order to solve the original problem, all smaller
subproblems of a specific size have to be solved and all possible
combinations (following a recursive formula) have to be
assessed while the best one is implemented

 However, if a generated combination leads to an infeasible
solution, this alternative is penalized by infinite costs

 Therefore, this alternative is excluded from further
considerations

Wirtschaftsinformatik und Operations Research 74

Basic attributes of Dynamic Programming

 Thus, in various applications, the derived subproblems may
overlap and, therefore, parts have to be solved multiple times
during the optimization process

 This leads to wasted computing time
 A counterstrategy is to explicitly enumerate the distinct

subproblems and solve them in the right order
 Moreover, the process can be accelerated by explicitly

integrating domination rules and/or bounds fathoming existing
partial solutions. These extensions are frequently denoted as
bounded Dynamic Programming approaches

Wirtschaftsinformatik und Operations Research 75

2.2 A DP approach for the Knapsack Problem

 In what follows, we introduce a first example of a very
simple but somehow interesting Dynamic
Programming approach

 It solves the well-known Knapsack Problem (KP) to
optimality

 However, since this problem is proven to be (binary)
NP-hard, we cannot expect a strongly polynomial
solution approach

 The Knapsack Problem has many applications as a
problem model or deals as an important subproblem
for other applications/optimization problems

 First of all, we briefly introduce the KP itself

Wirtschaftsinformatik und Operations Research 76

2.2.1 The Knapsack Problem
 Given is a set of n items and a fixed capacity limit C
 Each item j has a weight wj and a price pj
 Sought: a subset of items which maximizes the total price

(objective) and whose sum of weights does not exceed the
capacity limit C

 Each item may only be included once
 Consequently, a binary variable xj indicates whether an item j

belongs to the sought subset or not
 The problem is often illustrated by an example where a bag or a

knapsack with a fixed maximum weight limit has to be packed
with items of different prices and weights

 The 0-1 Knapsack Problem is defined as:

1 1

max s.t. 0,1 1,...,
n n

j j j j j
j j

z p x w x C x j n

Wirtschaftsinformatik und Operations Research 77

2.2.2 A pseudo-polynomial DP for the KP
 It has been shown that the Knapsack Problem is (binary) NP-hard
 However, its structure allows quite efficient solution approaches
 Among them, the most efficient algorithms for solving the Knapsack

Problem are in particular DP approaches
 Applied to the Knapsack Problem, items may be considered

iteratively one by one in order to decide about a potential
assignment

 Consequently, by defining fi(C’) as the maximal price attainable for
assigning the items 1,…,i, (i≤n, C’≤C), we calculate

1 1
1

1

1 1

1

 if 0
0 if 0

max , if 0

 otherwise
i i i i i

i
i

p w C
f C

C w

f C f C w p C w
f C

f C

Wirtschaftsinformatik und Operations Research 78

Observations

 Clearly, the algorithm iteratively analyzes whether an
assignment of an item is favorable or not

 Consequently, the recursive formula always compares the
cases of assigning or not assigning an item
 Thus, if assigned, the weight of the item accordingly

reduces the capacity of the knapsack and provides an
additional benefit

 Otherwise, the element is left outside and the problem
is reduced to the optimal assignment of the remaining
items 1,…,n-1

 Thus, since we have to calculate n.C function values, the
total complexity is restricted by O(n.C)

Wirtschaftsinformatik und Operations Research 79

Pseudo-polynomial running time

 A total running time of O(n.C) seems to be moderate and
somehow polynomial. Or not?

 What about the factor C?
 It is the capacity of the knapsack and, therefore, not restricted

at all
 Unfortunately, it can grow exponentially in the number of

elements n
 Note that in the proof of NP-Completeness of the Knapsack

Problem, we need an exponentially growing knapsack
 However, if the knapsack is of moderate size (this applies to

most applications), the algorithm is quite efficient

Wirtschaftsinformatik und Operations Research 80

A simple example

 Let us consider a small example

 We sort the items according to their efficiency
 Thus, we obtain the following table

1 2 3

1 2 3

Maximize 4 7 5

s.t. 4 5 3 10 0,1 n

Z x x x

x x x x

Number of item Price Weight Efficiency

1 4 4 1

2 7 5 7/5

3 5 3 5/3

j
j

j

p
e

w

Wirtschaftsinformatik und Operations Research 81

Observations

 Clearly, the parameter C in the recursive formula gives some
potential for optimization

 Since not all partial knapsack capacities are reasonable, i.e., it
exists a smaller knapsack obtaining an identical total weight,
we may improve the efficiency of the defined calculations by
making use of the following scheme

 Specifically, we commence the investigation with an empty
knapsack and define each possible assignment by a tuple (pi,
wi) of total price and total weight

 Thus, we obtain
 Additionally, we have the following resulting sets

 0 0,0R

 1 10: , | , ,t t t
t tt R p w p w R p p w w R w C

Wirtschaftsinformatik und Operations Research 82

Further observations

 We may reduce the resulting sets by erasing the dominated
tuples

 I.e., a tuple (p,w) is dominated by some tuple (p’,w’) if it holds
that p≤p’ and w>w’ or if it holds that p<p’ and w≥w’

Wirtschaftsinformatik und Operations Research 83

Applied to our example

 We commence with the initial trivial set

 Then, we resume with

 0 0,0R

 0 0,0R

 1 0,0 , 4,4R

x1=1x1=0

 2 0,0 , 7,5 , 4,4 , 11,9R

x2=1
x2=0 x2=1

x2=0

Wirtschaftsinformatik und Operations Research 84

Applied to our example

 Resume with the set

 Best path

 2 0,0 , 7,5 , 4,4 , 11,9R

x3=1x3=0 x3=1
x3=0

 3 0,0 , 5,3 , 7,5 , 12,8 , 4,4 , 9,7 , 11,9R
x3=0 x3=1

x3=0

 0,0 0,0 7,5 12,8

Wirtschaftsinformatik und Operations Research 85

Possible improvements

 Improvements can be obtained by introducing additional
bounds that restrict the number of considered states within
the calculation process

 Additionally, dominance criteria may be applied
 Specifically, insights into the problem structure attained by

empirical studies reveal that in most cases only a small subset
of items around the critical one are necessary to consider

 Simulations with extremely large instances show that…
 much smaller numbered items are always part of the optimal solution

(in these experiments)
 much larger items are never part of the optimal solution (in these

experiments)
 Best bounded DP approaches make widely use of this

significant phenomenon

Wirtschaftsinformatik und Operations Research 86

2.3 A DP approach for the aTSP

 In what follows, we introduce a somewhat much
more complex DP approach for the asymmetric
Traveling Salesman Problem with time windows

 Therefore, we again briefly introduce the problem
first

Wirtschaftsinformatik und Operations Research 87

2.3.1 The Traveling Salesman Problem (TSP)

 Most simple model for mapping pure distribution or
pick up problems in local traffic

 Problem definition:
 Given

 N as the number of customers to be visited
 Directed weighted graph G=(V,A,C) with

– V={1,…,N},
– A set of arcs, and
– C=[ci,j] the matrix of costs

 Sought
 Hamiltonian cycle in G of minimal total costs
 A Hamiltonian cycle is a cycle passing through each node of G

exactly once

Wirtschaftsinformatik und Operations Research 88

The Traveling Salesman Problem

 The TSP has been shown to be an NP-hard problem
(Wegener (2005) pp.53-62)

 If costs are symmetric, e.g., the costs for traveling
between two locations in the network do not depend
on the direction of this travel, a symmetric TSP (sTSP)
arises; otherwise an asymmetric TSP (aTSP) is
considered

 If the triangle inequality is always fulfilled or
Euclidean distances are used, the problem is termed
as the Euclidean TSP or the TSP with the triangle
inequality

Wirtschaftsinformatik und Operations Research 89

Mathematical problem definition

 In the following, we give an exact mathematical
definition of the TSP that corresponds directly to a
possible solution mapping

 Subsequently, we give the definition for the
asymmetric case

 Later on in this course, we will also consider the
special case of a symmetric TSP. Due to its simplified
structure, it allows for the application of specific
methods

Wirtschaftsinformatik und Operations Research 90

Asymmetric case: Parameters and variables

,

,

Parameters

: Number of nodes (customers), 1,...,

1 ; : Costs for using the arc

Variables

1 ;1 : Binary variable that is one if and only if

the Salesman Path uses the arc

i j

i j

N V N

c i j N i j i, j

x i N j N i j

i, j

Wirtschaftsinformatik und Operations Research 91

Asymmetric case: Restrictions

, ,

,

, ,

1. 1,..., : 1 1 Each node has two neighbors

2.For all proper subsets 1,..., with 2 S : 1
2

Subcycle prevention

3. , 1,..., : 0 1 4. , 1,..., : is an i

i j j ij i j i

i j
i S j V S

i j i j

i N x x

NS N x

i j N x i j N x

nteger

Wirtschaftsinformatik und Operations Research 92

Asymmetric case: Objective function

, , ,1 ,
1 1

Minimize
N N

i j i j i ji j N
i j j i

F x c x

Wirtschaftsinformatik und Operations Research 93

Source
Destination

Depot Depot

local area

local area

long distance transport

Use of available vehicles, carriers
or external partners

Application of the TSP – planning milk runs
milk run starting at the depot

milk run ending
at the depot

Wirtschaftsinformatik und Operations Research 94

Source or destination

Depot

Depot−areas

Depot

Depot

Hub

Hub

Raster−structure: Hub&Spoke−
structure:

Depot

Depot

Depot

Source or destination

Depot−areas

Excursus: Transportation networks I

Wirtschaftsinformatik und Operations Research 95

Excursus: Transportation networks II

Depot

Depot

Hub

Depot

Hub

Hub

Depot

Depot Hub

Source or destination

Depot

Depot−areas
MultipleHub−
Structure:

Regionalhub−
Depot−areasStructure:

Source or destination

Wirtschaftsinformatik und Operations Research 96

Excursus: Transportation networks III

Depot

Hub

Hub

Depot

Depot HubDepot

Feederhub− Mixed

Depot

Hub

Hub

Hub

Depot

Depot−areas Depot−areasStructure: Structure:

Source or destination Source or destination

Wirtschaftsinformatik und Operations Research 97

Excursus: Transportation network IV

Extended mixed−structure:

Depot

Hub

Source or destination

Depot Hub

Depot−areas

Source

Destination

Wirtschaftsinformatik und Operations Research 98

2.3.2 A DP approach for the TSPTW

 In what follows, we introduce a sophisticated exact solution
approach to the Traveling Salesman Problem

 This approach was originally proposed by Dumas et al. (1995)
 It considers the TSPTW, i.e., the Traveling Salesman Problem

with time windows
 Here, each customer comes along with a time window that

restricts delivery time
 The time windows [ai,bi] are hard, i.e., delivery time at customer i

is required to be in the continuous interval [ai,bi]
 Additionally, there is a service time si at each customer i

 The following solution algorithm bases on a Dynamic
Programming concept

Wirtschaftsinformatik und Operations Research 99

2.3.2.1 Notations

 Basic definitions

,

1

1

, : Network

1,2,..., : Set of customers
{(,) ()| }

1,2,..., 2, 1
A path in is defined as a node sequence ,..., such that

each arc ,

i i i j j

k

j j

G N A

N n
A i j N N a s t b

N N n n n
G i i

i i A

Wirtschaftsinformatik und Operations Research 100

Notations

 In what follows, we introduce a somewhat modified notation
 This notation is used in order to introduce the Dynamic

Programming approach

 We define for a path going from customer i to customer j

,

Parameters
: Travel time from customer to
: Service time at customer
, : Time window at customer

Variables
: Point in time when service starts at customer

i j

i

i i

i

t i j

s i
a b i

t i

 , ,m ax , if

otherw ise
i i j i j i i i j j

j

t t s a t s t b
t

Wirtschaftsinformatik und Operations Research 101

Observation

 If a customer is visited too early, waiting time is
incurred at this location

 This results from the lower bound aj in the calculation
of tj

 Note that the considered problem is somewhat
modified
 It seeks the finding of a tour from 1 to n, but not a

cyclical tour
 However, the original problem can be mapped by

doubling note 1, i.e., new node n+1 is equal to node 1
 Then, n is set to n+1

Wirtschaftsinformatik und Operations Research 102

2.3.2.2 Dynamic Programming formulation

 We introduce F(S,j,t)
 Least cost of a path starting at node 1, passing through

every node of S exactly once, and ending at node j at
time t or earlier

 We assume that node j belongs to set S
 Additionally, S is a subset of set N’
 Servicing node j is therefore possible at time t

Wirtschaftsinformatik und Operations Research 103

Recursive equation

 The function F(S,j,t) can be computed by making use
of the following equation

 We initialize this calculation by

 , ,,

: : , with :

, , min , ,
j j

i j i i j i ii j A i S j

S N j S t a t b

F S j t F S j i t c t t s t a t b

1, 1 1 1,

2,..., 1 :

if 1, and max ,
1, , ,

otherwise
j j j j

j n

c j A a s t a t b
F j j t

Wirtschaftsinformatik und Operations Research 104

Determination of optimal solution

 The optimal solution to an instance of the TSPTW can
be identified by

 , ,,

min min , ,
i i

i n n i n ii n A a t b
F N i t c t b t s

Wirtschaftsinformatik und Operations Research 105

Observations

 Clearly, the Dynamic Programming approach generates
shortest paths in a forward manner

 Specifically, in step s=1,…,n-1, a path of length s is constructed
 In each step, a shortest path is sought on a state graph whose

nodes are the states F(S,i,t)
 Note that the number of states F(S,i,t) (ai≤t≤bi) is countable if

all travel times as well as ai and bi are integers
 Among the states, we only conserve the Pareto optimal states
 Note that for two given states F(S,i,t1) and F(S,i,t2), the second

state can be eliminated if t1≤t2 and F(S,i,t1)≤F(S,i,t2)

Wirtschaftsinformatik und Operations Research 106

Cognition

 The function F(S,i,t) is stepwise decreasing as a function of t
over the interval [ai,bi]

 Clearly, after eliminating the dominated states, the remaining
states can be ordered by increasing time and decreasing cost
value

 Thus, we obtain the two-dimensional labels (t,F(S,i,t)) of (S,i)
 Therefore, we introduce FIRST(S,i) as the first, i.e., lowest, time

value of that ordered list of non dominated states
 Thus, FIRST(S,i) represents the fastest feasible arrival at node i

by visiting all other nodes of set S beforehand

Wirtschaftsinformatik und Operations Research 107

2.3.2.3 Post feasibility tests

 The complexity of the described approach is mainly driven by
the determination of suitable sets S

 Thus, the number of states to be explored grows exponentially
 Consequently, it is very promising to introduce rules and tests

in order to eliminate infeasible states, i.e., states that cannot
be extended to a complete feasible state

 Hence, these rules are applied in order to eliminate partial
paths that do not comply with necessary orderings resulting
from existing time window restrictions

 In order to measure earliest arrival times and latest departure
times, we introduce the abbreviations EAT and LDT

Wirtschaftsinformatik und Operations Research 108

EAT(i,j), LDT(i,j)

 EAT(i,j)
 Determines the earliest arrival time at node j if node i is visited

before
 Clearly, this value can be computed by solving a Shortest Path

Problem from node i
 Specifically, the path starts at time ai and satisfies the time

window restrictions at all nodes from node i to node j
 LDT(i,j)

 Determines the latest departure time from node i such that tj
is feasible

 This can be computed by solving a constrained Shortest Path
Problem, where the path starts at node j at time bj and uses
the reverse arc direction

Wirtschaftsinformatik und Operations Research 109

Additional remarks on EAT(i,j), LDT(i,j)

 Note that the values EAT(i,j) and LDT(i,j) can be
overestimated or underestimated, respectively, by using an
unconstrained time path. Since this is much faster to
compute in practice, it is frequently applied

 Additionally, if travel times satisfy the triangle inequality, no
shortest paths need to be computed. Hence, in this case,
EAT(i,j) can be replaced by ai + si + ti,j

Wirtschaftsinformatik und Operations Research 110

BEFORE(j)

 In what follows, we compute for a node j the set of
nodes BEFORE(j)

 Within this set, there are all nodes that have to be
executed before node j

 Specifically, it is checked whether the preceding visit of
node j prohibits a timely service of node k

 Consequently, we can compute BEFORE(j) as follows

 Again, if the triangle inequality holds for travel times,
EAT(j,k) > bk can be replaced by aj + sj + tj,k > bk

 , kBEFORE j k N EAT j k b

Wirtschaftsinformatik und Operations Research 111

Feasible extensions

 In what follows, we say that a state (S,i,t) can be
feasibly extended towards j if it holds:

 I.e., it holds that:

,i i j jt s t b

 ,

,

State , ,max , can be created if it holds:j i i j

i i j j

S j j a t s t

t s t b

Wirtschaftsinformatik und Operations Research 112

Post feasibility test 1

 Given the states (S,i,t) for all ai≤t≤bi

 If the smallest time value to begin service at node i is
greater than the latest feasible departure time toward
j, i.e., for all j it holds that:

 Then the states (S,i,t) for all ai≤t≤bi can be fathomed
(deleted) since they do not admit feasible extensions
towards any node

 , min ,i j S
FIRST S i s LDT i j

Wirtschaftsinformatik und Operations Research 113

Test 1

 This global test eliminates the states (S,i,t) for all t by
only examining the earliest time to begin service at
node i

 If, for this time, a feasible arrival at any other node is
impossible, then all the states (S,i,t) are eliminated

 In this case, the states to be treated next are those
with a new ending node i’ S\{i} but an identical set S

 If, finally, all ending nodes in S are explored, a new set
S is examined

Wirtschaftsinformatik und Operations Research 114

Post feasibility test 2

 Given the states (S,i,t) for all ai≤t≤bi and given node j (j
does not belong to S)

 Additionally, we have (i,j) out of A
 If

 then no feasible extension exists towards j
 Consequently, node j cannot be a successor of i
 Thus, different successors have to be tested instead

 BEFORE j S

Wirtschaftsinformatik und Operations Research 115

Post feasibility test 3

 If the new label

is not created, a new node l is considered because no other
labels can be feasible for time values greater than t

Given the state , , for a fixed , and given node

, . Additionally, , .

If , , can be extended toward , i.e., , , but

cannot be extended further to some , , , , i.e.,

i i

i

S i t t a t b

j j S i j A

S i t j t s LDT i j

k k S i k A

,

, , then cannot succeed for , , and

the states , , , are not extended towards .
i i j jt s t s LDT j k j i S i t

S i t t t j

 ,, ,max ,j i i jS j j a t s t

Wirtschaftsinformatik und Operations Research 116

2.3.2.4 Computational experiments

 The algorithm was coded in C
 Experiments were conducted on a Hewlett-Packard

workstation HP9000/730
 By making use of specific preprocessing rules, the arc

set A was reduced considerably (Langevin et al.
(1990))

 Time windows were also reduced by applying the
rules proposed by Desrochers et al. (1992)

 Specific set of problems was tested
It consists of symmetric Euclidean problems (cf.
Langevin et al. (1990))

Wirtschaftsinformatik und Operations Research 117

Set of problems

 Customer coordinates are uniformly distributed between 0 and
50 and travel times equal distances

 Time windows are generated around the times to begin service at
each customer of a second nearest neighbor TSP tour

 Each side of a time window is generated as a uniform random
variable in the interval [0,w/2], where w=20, 40, 60, 80, and 100

 Clearly, for a given problem size, problem difficulty increases with
the time windows’ width
 Consequently, the number of overlapping time windows

increases
 Hence, the number of predetermined node sequences

decreases significantly

Wirtschaftsinformatik und Operations Research 118

Complexity of problem instances

Ensuring tight time windows is a
hard job. Therefore, tight time
windows make the problem hard

to solve to optimality

Ensuring tight time windows is a
hard job. Therefore, tight time
windows make the problem hard

to solve to optimality

…?!
I believe it is just the

opposite.
Tight time windows reduce
the feasible solution space

…?!
I believe it is just the

opposite.
Tight time windows reduce
the feasible solution space

Wirtschaftsinformatik und Operations Research 119

Complexity of problem instances

 Complexity increases significantly with problem size because
the geographical area remains constant

 Hence, as n increases, the density of the points in this area
increases

 In turn, this decreases the ability of the time windows to
reduce the number of possible tours

 Whenever time windows start overlapping, exponential
complexity prevails and increases the number of tours to be
explored significantly

 In what follows, we provide the generated results according to
problem sizes (number of customers) and time window widths

Wirtschaftsinformatik und Operations Research 120

Wirtschaftsinformatik und Operations Research 121

Direct cognitions

 The presented algorithm was able to solve problems with up to
200 nodes and fairly wide time windows

 As assumed, the CPU time increases with time window width
and with problem size

 For narrow window widths, the complexity does not increase
exponentially. This allows for solving larger sized problems in
reasonable time

 For instance, a 250 node problem with w=20 was solved in less
than 10 seconds

 Using the logarithm in base 10 of the CPU time (see Table I), it
becomes obvious for a given problem size that the behavior of
the algorithm is exponential

Wirtschaftsinformatik und Operations Research 122

Impact of the post feasibility tests

Wirtschaftsinformatik und Operations Research 123

Conclusions

 As illustrated by table II, the impact of the post feasibility tests
was examined additionally

 Clearly, test 2 is the most beneficial one
 Its absence increases the number of examined states significantly
 Thus, for problem size n=60, instances with window width w=60

cannot be solved in reasonable time
 Test 1 is the least powerful because much of its work was

already performed by reducing the width of the time windows
in the preprocessing phase

 For the generation of further problem instances, we fixed w at
60 (fairly wide time windows are generated)

 The number of common arcs between the second nearest
neighbor TSP tour and the optimal tour stayed at
approximately 20% even for 800 nodes problems

Wirtschaftsinformatik und Operations Research 124

Constant point density problems

Wirtschaftsinformatik und Operations Research 125

Results

 Owing to the post feasibility rules, problems of size
800 could be solved in approximately 650 seconds

 However, larger size problems face memory
limitations

Wirtschaftsinformatik und Operations Research 126

2.3.2.5 A small example

 We consider the following simple example:

4 7
8 6
2 1

C

i si ai bi

1 0 0 100
2 2 3 5
3 4 10 15

1 6
3 8
6 5

T

Matrix C: ci,j := Cost for traveling
from node i to node j

Matrix T: ti,j := Travel time for
traveling from node i to node j

Nodes start at index 1

Wirtschaftsinformatik und Operations Research 127

Task and start of algorithm

 The TSPTW problem starts at customer/node 1
 Calculate the optimal tour and give the costs as well

as the duration of the tour

 Problem starts and ends at node 1
 Customer 1 is doubled to customer 4
 N = {1,2,3,4}, N‘={1,2,3},

,4 ,1 ,4 ,1{1,...,3} : , ,

(,4) (,1), (,4) (,1)
i i i ii c c t t

EAT i EAT i LDT i LDT i

Wirtschaftsinformatik und Operations Research 128

Calculation of EAT(i,j), LDT(i,j), BEFORE(j)

EAT(i,j) 1 2 3
1 1 6
2 8 13
3 20 19

LDT(i,j) 1 2 3
1 4 9
2 97 7
3 94 0

Note: The LDT(i,1)-values are not
required and, therefore, not computed.

1 2 3
BEFORE(j) {} {} {2}

i

j

Wirtschaftsinformatik und Operations Research 129

Iteration 1: s=1

 Generate the states (S,i) of all sets S with |S| = 2

 Keep only pareto-optimal states:

(S,i) 2 3

{1,2} (3,4)
{1,3} (10,7)

(S,i) 2 3

{1,2} (3,4)
{1,3} (10,7)

S

i

(t,F(S,i,t)), t=3=max{a2,a1+s1+t1,2}=max{3,1}

Wirtschaftsinformatik und Operations Research 130

Post feasibility tests

 Test 1: Partial solution ({1,3}, 3, 10) is not extendable
towards j=2 remove this state from the available
states

 Test 2 and Test 3 do not eliminate any further states
 Resulting available partial solution:

(S,i) 2 3

{1,2} (3,4)

Wirtschaftsinformatik und Operations Research 131

Iteration 2: s=2

 Extend every available partial solution to states with
|S|=3

 Available set of states only consists of the state ({1,2},
(3,4)). Extend this state by adding node 3:

 Keep only pareto-optimal states:

(S,i) 3
{1,2,3} (13,10), (14,10), (15,10)

(S,i) 3
{1,2,3} (13,10)

(t,F(S,i,t)), with t=13=max{a3,3+s2+t2,3}=max{10,3+2+8}

Wirtschaftsinformatik und Operations Research 132

Example – Calculation of optimal solution

 All nodes of N‘ have been added to the available
states

 Calculating the optimal solution by the formula

 Only one state available Calculate costs of optimal
solution by F({1,2,3},3,13) + c3,4
= 10 + 2 = 12

 Duration: 13 + s3 + t3,4 =
13 + s3 + t3,1 = 13 + 4 + 6 = 23

 Optimal solution: 1-2-3-1, Costs: 12, Duration: 23

 , ,,

min min , ,
i i

i n n i n ii n A a t b
F N i t c t b t s

Wirtschaftsinformatik und Operations Research 133

2.4 Exactly solving the Line TSP by DP

 A specific case of the Traveling Salesman Problem occurs
whenever all customers are located along a straight line and
the starting position x* of the salesman is also on this line

 E.g., there is a single road that connects all these customers
and along which supply is executed

 Therefore, each customer i is located at position xi and it holds:
ci,j=|xj-xi|

 We additionally introduce time windows [ri,di] into the
problem definition. Specifically, ri determines the release time
and di a due date at the location of customer i

 Moreover, at each location i, a handling or service time hi is
given

 Objective function is defined as the minimization of the
maximum completion time (i.e., the makespan)

Wirtschaftsinformatik und Operations Research 134

Line TSP

TSP on a line…?
Who needs this???

TSP on a line…?
Who needs this???

Hey! There are various
important applications

I’ll show you three of
them!

Hey! There are various
important applications

I’ll show you three of
them!

Wirtschaftsinformatik und Operations Research 135

Applications: Inland ship along the Rhine

MainzCologneDüsseldorfDuisburg

In flow direction: faster transportation possible

Against flow direction: slower transportation

 Cargo ships have to supply inland ports along the Rhine
 Individual time restrictions have to be obeyed at each port

 There may be ports that permit a delivery before the release date
 Latest date of supply (hard time window)

 Different direction-dependent travel speeds (in flow/against flow
direction)

 Minimization of the tour length fulfilling all due dates

Leverkusen

Wirtschaftsinformatik und Operations Research 136

Applications: Delivery along a coast line

Customer location X with three delivery
requests,
1. request 1 (r1=9:00am, d1=11:00am)
2. request 2 (r2=2:00pm, d2=5:00pm)
3. request 3 (r3=3:00pm, d3=5:30pm)

Wirtschaftsinformatik und Operations Research 137

JiT supply of mixed-model assembly lines

Station 1 Station 2 Station 3 Station 4

Overlapping areas WorkerFloater

Mixed-model assembly line

• Stations are supplied by specific tow trains
• Tight time window constraints to be obeyed at the

stations arise from the launched variant sequence

Tow trains

Central Warehouse

Wirtschaftsinformatik und Operations Research 138

A polynomial special case

 In what follows, we consider the special case ri=hi=0
(i.e., zero release dates and no service or handling
time at the delivery locations)

 In that special constellation, we can provide a very
efficient solution procedure working in quadratic time
complexity, i.e., this problem is well-solvable

Wirtschaftsinformatik und Operations Research 139

Solving the special case of the Line TSP

2.4.1 Theorem
The special case of Line TSPTW with n customers in
which it holds ri=hi=0 for all i can be optimally solved
in time O(n²)

Wirtschaftsinformatik und Operations Research 140

Proof of Theorem 2.4.1
 Clearly, since processing times and release dates are zero, it

costs nothing to serve a customer when traveling by
 Therefore, it is assumed that each customer is immediately

served the first time its location is visited by the vehicle
 Specifically, if the vehicle has visited locations a and b with

ab, then all jobs whose locations belong to the interval [a,b]
have been serviced

 In what follows, we assume that job numbers are sorted
according to their locations, i.e., it holds x1 x2 x3…xn

 Moreover, we assume that the starting position x*=xi*
coincides with the location of some customer

 Note that such an artificial customer can be generated without
causing additional costs

Wirtschaftsinformatik und Operations Research 141

Proof of Theorem 2.4.1
 Moreover, in order to ensure feasibility, we assume that |xi*-xi|di

for all i; otherwise the problem is not solvable at all
 We fix some pair of jobs (i and j) with 1ii*jn
 We consider all schedules where job i is timely visited for the first

time (i.e., not after the due date) and, before that, all jobs that are
located in the interval [xi, xj] were visited timely

 Based on these schedules, we introduce two additional
abbreviations
 V-(i,j)

Earliest point in time where such a constellation is possible
 V+(i,j)

Earliest point in time in a schedule where job j is timely visited for
the first time and, before that, all jobs that are located in the interval
[xi, xj] have been visited timely as well

 Note that if those time points do not exist, these abbreviations are
set to infinity

Wirtschaftsinformatik und Operations Research 142

Proof of Theorem 2.4.1

 Observations
 Clearly, we know

 Moreover, it holds:

 (1) results from the fact that we can directly use the
direct path to xj

 (2) directly follows since we start at position i* and
cannot serve customer i before

 Furthermore, we conclude V+(i*,i*)=0

 * * *: , 1ji j V i j x x

 * *: , 2i i V i i

Wirtschaftsinformatik und Operations Research 143

Proof of Theorem 2.4.1

 Analogously, we can conclude that
 It holds:

 Moreover, it holds:

 (3) again results from the fact that we can directly use
the direct path to xi

 (4) directly follows since we start at position i* and
cannot serve customer j before

 Furthermore, we obtain V-(i*,i*)=0

 * * *: , 3ii i V i i x x

 * *: , 4j i V i j

Wirtschaftsinformatik und Operations Research 144

Additional abbreviations

 We introduce U+(i,j) as the minimum point in time where we
can reach customer j after serving all customers i, i+1, …, j-1

 Thus, we apply the following recursive formula

 Clearly, (5) results from the following cognitions
 If we want to visit customer j for the first time, we either come

from j-1 or
 we come from customer i
 Otherwise, we would not have visited all customers i, i+1, …, j-1

before

*

1

: ,

min , 1 , , 1 5j j j i

i i j U i j

V i j x x V i j x x

Wirtschaftsinformatik und Operations Research 145

Additional abbreviations

 Analogously, we introduce U-(i,j) as the minimum point in time
when customer i is reached after we have served all customers
i+1, i+2, …, j

 Thus, we apply the following recursive formula

 Clearly, (6) again results from the following cognitions
 If we want to visit customer i for the first time, we either come

from customer j or
 we come from customer i+1
 Otherwise, we would not have visited all customers i+1, i+2, …, j-

1, j before

*

1

: ,

min 1, , 1, 6i i j i

i i j U i j

V i j x x V i j x x

Wirtschaftsinformatik und Operations Research 146

Consequence

 Based on these abbreviations, we can introduce the
following useful recursions

 Specifically, it holds:

 and additionally:

 * , if ,: , 7
 otherwise

jU i j U i j di i j V i j

 * , if ,: , 8
 otherwise

iU i j U i j di i j V i j

Wirtschaftsinformatik und Operations Research 147

Proof of Theorem 2.4.1

 Consequently, by applying these formulas, we can generate
V+(1,n) and V-(1,n)

 Clearly, the minimum of both is the completion time of the
optimal tour table

 I.e., min{V+(1,n), V-(1,n)} provides the minimal completion time of
the vehicle tour

 This provides us with a Dynamic Programming procedure
 Initially, we calculate the values

 V+(i*, j) for j>i*, and
 V-(i, i*) for i*>i

 Subsequently, we can apply the formulas (7) and (8) in order to
get the following values

 Finally, V+(1,n) and V-(1,n) are computed

Wirtschaftsinformatik und Operations Research 148

Computational effort

 We have to calculate two arrays (V+ and V-) of customer
pairs i, j, with i<j

 Thus, we have to generate iteratively O(n²) values
 The generation of each value requires constant time
 Specifically, we just have to evaluate two different

values whose generation again takes constant time
 All in all, we obtain a total running time of O(n²)
 The optimal tour can be obtained by storing a flag for

each pair (i,j) that indicates whether the plus or the
minus case was favorable

Wirtschaftsinformatik und Operations Research 149

2.4.2 Further results

Zero processing
or handling
(service) times

General processing or
handling (service) times

No release times or
deadlines

Trivial case Trivial case

Release times only O(n²) NP-complete
Pseudo-polynomial
unknown

Deadlines only O(n²) NP-complete
Pseudo-polynomial
unknown

General time
windows

Strongly NP-
complete

Strongly NP-complete

Wirtschaftsinformatik und Operations Research 150

2.5 Dynamic Programming in Scheduling

 In what follows, we consider a very sophisticated
example of a Dynamic Programming approach that
once solved an open research question

 Is it possible to provide a pseudo-polynomial solution
approach for finding an optimal schedule for one
stage scenarios while minimizing the total sum of
tardiness?

 Fortunately, the answer was yes, but required the
understanding of a specifically designed solution
approach

 It is based on Dynamic Programming

Wirtschaftsinformatik und Operations Research 151

2.5.1 Job Shop Scheduling – Basics

 In what follows, we consider scheduling problems
 I.e., we state the following problem

Given
 M machines or resources, N jobs to be produced
 Each job comprises a predetermined set of operations to be

executed on the resources
Sought
 A production sequence of all N jobs for each machine
 Determination of the timetables

 Consequently, we have to decide about
 The sequence of the competing jobs on the machines
 and the resulting timetable

Wirtschaftsinformatik und Operations Research 152

2.5.1.1 Assumptions

 Production program is given
 Lot sizes are given
 Process sequence of each job is given
 Operating times are given
 No operation of the jobs can be processed simultaneously on

more than one machine
 Every machine can process at most one job at each point of

time
 All N jobs and its data are available (static problem) at the

beginning of the planning horizon
 There are never bottlenecks concerning transports and storage
 No maintenance and reparatory activities
 On each machine, setup times are independent of the realized

operation sequence

Wirtschaftsinformatik und Operations Research 153

Given and sought

 Given
 MS: Machine sequence matrix
 PT: Matrix of the processing times

 Sought
 JS: Job sequence matrix
 TT: Timetable planning matrix with

, 1 ;1 Point of time in which the processing

of job starts at machine TU

a
m nt m M n N

n m

Wirtschaftsinformatik und Operations Research 154

2.5.1.2 Mathematical model

,

, ,

, ,

1 ;1 : see above

1 ;1 ;1 : Binary variable defining the
sequence of jobs, i.e.,

1 if job is processed on machine before job

0

a
m n

m n k

m n k

t n N m M

y m M n N k N

n m k
y

Variables

 otherwise

Wirtschaftsinformatik und Operations Research 155

Mathematical model – Restrictions

 , , 1 ,

Machine sequence restrictions
derived from the matrix MS :

1,..., 1 : 1,..., :

 defines here the index of the machine
that executes the th operation of job

n n n

a a
m n m n m n

n

m M n N t p t

m

m n

Wirtschaftsinformatik und Operations Research 156

Mathematical model – Restrictions

 In case of the job sequence restrictions, the formulation
depends on the structure of the found solution

 But we have to ensure that two jobs are never processed
simultaneously on one machine and, therefore, an arbitrary
sequence of those jobs has to be realized

, , ,

, , ,

Therefore, there are the following two possible cases:
First case before :

1

Second case before :

2
Both possibilities have to be considered in the model!

a a
m n m n m k

a a
m k m k m n

n k

t p t

k n

t p t

Wirtschaftsinformatik und Operations Research 157

Mathematical model – Restrictions

, ,

, ,

Job sequence restrictions depends on the chosen solution :

1,..., 1 : , 1,..., : 1

1,..., 1 : , 1,..., :

 defines a number that is larger than

a a
m,n m,n m,k m n k

a a
m,k m,k m,n m n k

m M n k N t p t y C

m M n k N t p t y C

C

,
1 1

each definition of

the timetable variables , e.g.,
M N

a
m,n m n

m n
t C p

Wirtschaftsinformatik und Operations Research 158

Mathematical model – Domains

, ,

,

1,..., : , 1,..., : 0,1

1,..., : 1,..., : 0

m n k

a
m n

m M n k N n k y

m M n N t

Wirtschaftsinformatik und Operations Research 159

2.5.1.3 Objective functions

 The model defined above can be seen as a general
starting point for so-called Job Shop Scheduling
problems

 It abstains from the definition of a particular objective
function but can be extended by a specific
application-dependent definition

 In literature, a huge set of different objective
functions is proposed. These functions mainly
influence the efficiency of applied solution
procedures

 In what follows, we will give some examples of well-
known objectives

Wirtschaftsinformatik und Operations Research 160

Minimization of total makespan

 This objective function minimizes the duration for
producing the total production quantities, i.e., it
pursues the minimization of the maximum
completion time over all processed jobs

1 max ,

,

Minimize max | 1,...,

with:
1,..., : : Point of time in which the last

processing of job is completed

n

n

M n

M n

Z t t n N

n N t

n

Wirtschaftsinformatik und Operations Research 161

Minimization of machine waiting times

 Sum of all machine waiting times for all used resources

2 max ,
1 1

Unused capacity of machine

max ,
1 1

, 1 2
1 1

Minimize

Note:

Since and are constants, and are equivalent

M N

m n
m n

m

M N

m n
m n

M N

m n
m n

Z t p

M t p

p M Z Z

Wirtschaftsinformatik und Operations Research 162

Minimization of total completion time

 This objective tries to minimize the total sum of all individual
completion times

 Therefore, we compute the sum of completion times over all
processed jobs

3 ,
1

4 ,
1 1

Minimize

This objective is equivalent to the minimization of the sum of
waiting times of all jobs

Minimize

n

N

M n
n

N M

m n
n m

Z t

Z w

Wirtschaftsinformatik und Operations Research 163

Minimization of total lateness

 Here, we want to minimize the total lateness over all N
jobs to be produced in the considered production
system

 Consequently, a compensation between early and late
deliveries is no longer possible

 6 ,
1

Minimize max ,0

with:
: Due date of job

n

N

nM n
n

n

Z t d

d n

Wirtschaftsinformatik und Operations Research 164

Minimization of maximum lateness

 By using this objective, we somehow try to balance the
lateness in the found solution among the different jobs

 Thus, we try to minimize the maximum lateness of a
job in the found solution

 7Minimize Z max max 0 | 1,...,

with:
: Due date of job

n
nM ,n

n

t d , n N

d n

Wirtschaftsinformatik und Operations Research 165

Min. of sum of weighted completion times

 Here, each job obtains an individual weight rating its
completion time in the production system

 Thus, we receive a combined weighted sum of job
completion times

 8 ,
1

Minimize

with: : Weight of product

n

N

n M n
n

n

Z w t

w n

Wirtschaftsinformatik und Operations Research 166

2.5.1.4 Schedule classes

 In the following, we introduce some basic terms
according to specific types of schedules

 In the scheduling theory, a distinction is frequently
made between
 Sequence,
 Schedule, and finally
 Scheduling policy

Wirtschaftsinformatik und Operations Research 167

Basic terms

 Sequence
Corresponds to a specific permutation of jobs to be
processed on a given machine

 Schedule
Usually corresponds to an allocation of jobs within a more
complicated setting of machines that could allow for
preemption of jobs by other jobs that are released at later
points in time. Comprises timetables

 Scheduling policy
Often used in stochastic settings; a policy prescribes an
appropriate action for any of the states the system may be
in. In deterministic cases, usually only sequences or
schedules are of importance but can be extended by rule
definitions

Wirtschaftsinformatik und Operations Research 168

Non-delay schedules

2.5.1.4.1 Definition:

A feasible schedule is called non-delay if no machine is
kept idle when there is an operation available for
processing

Wirtschaftsinformatik und Operations Research 169

Non-delay schedules

 These schedules are not allowed to comprise
unforced idleness of machines in the production
process

 Here, in most cases, we consider non-delay
schedules since otherwise an improvement
possibility seems to be straightforward

 HOWEVER: There may be some special constellations
for non-preemptive models where it pays to have
periods of unforced idleness. This results from some
specific effects of non-delay schedules (c.f. Pinedo,
M. (2012) pp.22)

Wirtschaftsinformatik und Operations Research 170

Active schedules

2.5.1.4.2 Definition:

A feasible schedule is called active if no operation can
be completed earlier by starting earlier or by changing
the process sequence on machines without delaying
any other operation

Wirtschaftsinformatik und Operations Research 171

Attributes of active schedules

2.5.1.4.3 Lemma:

A non-delay schedule is always active

Wirtschaftsinformatik und Operations Research 172

Proof of the Lemma

 Let us assume there is a non-delay schedule that is
not active

 Then, we know there is a machine m where shifting
an operation of job i to an earlier position at point of
time t results in an earlier completion without
delaying the other operations

 But, if this is true, we know that during the
processing of the schedule on machine m, there is a
constellation at point of time t where the considered
machine m is idle but can process job i instead

 This contradicts the assumption that the schedule is
non-delay

Wirtschaftsinformatik und Operations Research 173

Attributes of active schedules

 Note that the reverse is not necessarily true
 I.e., there are some active schedules that are not non-

delay
 Example: Schedule is active but not non-delay

Machine 1

Machine 2

Machine 3

1

2

2 1

Wirtschaftsinformatik und Operations Research 174

Semi-active schedules

2.5.1.4.4 Definition:

A feasible schedule is called semi-active if no
operation can be completed earlier without altering
the processing sequence on any of the machines

Wirtschaftsinformatik und Operations Research 175

Consequences

2.5.1.4.5 Lemma:

An active schedule is always semi-active

The proof is trivial and follows immediately from the
definition

Wirtschaftsinformatik und Operations Research 176

Attributes of semi-active schedules

 Note that the reverse is not necessarily true
 I.e., there are some semi-active schedules that are

not active
 Example: Schedule is semi-active but not active

Machine 1

Machine 2

Machine 3

1

2

2 1

Wirtschaftsinformatik und Operations Research 177

What is the best schedule class?

I hate waiting. Therefore, I
always would go for non-delay!
I hate waiting. Therefore, I

always would go for non-delay!

Be careful! Even for
monotonous objective

functions, waiting can make
sense….if it is – for

instance - a job with high
weight that would be

delayed otherwise

Be careful! Even for
monotonous objective

functions, waiting can make
sense….if it is – for

instance - a job with high
weight that would be

delayed otherwise

Wirtschaftsinformatik und Operations Research 178

Class of semi-active
schedules

Class of active
schedules

Schedule class hierarchy

Class of non-delay
schedules

Optimal schedules

Wirtschaftsinformatik und Operations Research 179

2.5.2 The considered single-stage problem

 In what follows, we consider a problem that was very challenging
and received an enormous amount of attention until its status has
been completely clarified in 1990

 It is the single-stage scheduling problem pursuing the minimization
of total tardiness
 N jobs have to be scheduled at a single stage
 Each job possesses an individual soft due date
 Objective is the minimization of total tardiness (without weights)

 It has been proven in 1990 by Du and Leung that this problem is
already binary NP-hard

 Hence, due to the theory of NP-Completeness, it is conjectured
that this rules out the existence of strongly polynomial algorithms

 However, there is a very efficient DP algorithm that works in
pseudo-polynomial time (introduced by Lawler (1977))

Wirtschaftsinformatik und Operations Research 180

2.5.3 The DP for the considered problem

 Clearly, by analyzing the problem in detail, it becomes
obvious that there is the following general simple
dominance criterion applicable (Emmons (1969))

2.5.3.1 Lemma:
If pi≤pj and di≤dj, then there exists an optimal
schedule that sequences job i before job j

Proof:
 The proof is trivial since it follows directly from the

cognition that preferring i against j does not have negative
side effects

Wirtschaftsinformatik und Operations Research 181

Proof of dominance criterion

 Specifically, if we have a schedule with the two jobs in
opposite sequence, we exchange them

 Consequently, the intermediate completion times of
jobs scheduled between the two jobs are not
increased

 The completion times of jobs scheduled before
behind both jobs are not affected at all

 Due to the fact that job i is more urgent than job j, we
conclude that the exchange cannot increase the total
objective value

 This completes the proof

Wirtschaftsinformatik und Operations Research 182

Due date sensitivity of the optimal schedule

 We consider optimal schedules and ask how far we can
postpone the due date of a job without affecting the
optimality of a solution to the original problem

 For this purpose, we define
 First instance P’ with n jobs
 and processing times p1,…,pn as well as due dates d1,…,dn ,
 Optimal solution S’ with maximum completion time C’(k) of

job k
 Second instance P’’ with n jobs
 and processing times p1,…,pn as well as due dates

d1,…,max{dk,C’(k)},…,dn ,
 Optimal solution S’’ with completion time C’’(k) of job k

Wirtschaftsinformatik und Operations Research 183

Due date sensitivity of the optimal schedule

2.5.3.2 Lemma:
Every sequence that is optimal for the second instance is also
optimal for the first one

Proof:
 We define V’(S) and V’’(S) as the total tardiness of a

schedule S for the due date structure of the instances P’
and P’’.

 Let V’(S’)=V’’(S’)+Ak and V’(S’’)=V’’(S’’)+Bk be the total
tardiness under the respective instances.

 Clearly, if it holds that C’(k)≤dk, both sets of due dates are
the same and we have identical optimal solutions.
Therefore, the proposition follows.

Wirtschaftsinformatik und Operations Research 184

Proof of Lemma 2.5.3.2

 Thus, we assume that it holds C’(k)>dk
 V’(S’)=V’’(S’)+Ak and V’(S’’)=V’’(S’’)+Bk
 In this case, we have: Ak=C’(k)-dk
 Moreover, it holds that Bk=max{0, min{C’’(k),C’(k)}-dk}
 Clearly, we conclude the following:
 min{C’’(k),C’(k)}≤C’(k) → Bk≤Ak
 Since S’’ is optimal for P’’, we obtain V’’(S’’)≤V’’(S’)
 Consequently, we obtain V’(S’’)≤V’(S’)

 Therefore, since S’ is optimal for P’, we obtain
V’’(S’’)=V’’(S’) and S’’ is optimal for P’

 This completes the proof

Wirtschaftsinformatik und Operations Research 185

Assumptions

 In what follows, we assume (without loss of generality)
 All job processing times are different from each other
 Jobs are renumbered in sequence of non-decreasing

due dates, i.e., it holds that d1≤d2≤…≤dn
 Moreover, we define pk=max{p1,p2,…,pn}
 Consequently, the kth urgent job has the largest

processing time
 Clearly, due to Lemma 2.5.3.1, we know that there is

an optimal schedule where all jobs of set {1,…,k-1} will
be scheduled before job k

 However, what about the remaining jobs?

Wirtschaftsinformatik und Operations Research 186

Consequence

2.5.3.3 Lemma:
There exists an integer δ with 0≤δ≤n-k such that
there exists an optimal schedule S in which job k
is preceded by all jobs j with j≤k+δ and followed
by all jobs j with j>k+δ

Proof:
 Let C’(k) denote the latest completion time of job k in

an optimal schedule of the original problem (due
dates d1,…,dn)

 S’’ is optimal for the modified problem (with due
dates d1,…,max{dk,C’(k)},…,dn) and satisfies the
restriction of Lemma 2.5.3.1

Wirtschaftsinformatik und Operations Research 187

Proof of Lemma 2.5.3.3

 Let C’’(k) be the completion time of job k under
schedule S’’

 Clearly, by applying Lemma 2.5.3.2, schedule S’’ is also
optimal for the original problem instance P’

 We therefore conclude that C’’(k)≤max{C’(k),dk}
 This is true since C’(k) is assumed to be the latest

completion time of job k in all optimal schedules for P’
 Moreover, we know that all jobs with a due date later

than max{C’(k),dk} are processed after job k (if this
would not be the case, we can reassign this job after
job k without deteriorating the objective function
value)

Wirtschaftsinformatik und Operations Research 188

Proof of Lemma 2.5.3.3

 Clearly, additionally, job k is preceded by all jobs with
a due date earlier than max{C’(k),dk} (this results from
a direct application of Lemma 2.5.3.1)

 Consequently, we set δ to the maximum integer such
that dk+δ≤max{C’(k),dk}

 This completes the proof

Wirtschaftsinformatik und Operations Research 189

Consequences of findings

And what is won?
No one knows the optimal

solutions beforehand. Therefore,
the δ value is unknown

And what is won?
No one knows the optimal

solutions beforehand. Therefore,
the δ value is unknown

This is just the reason why
we apply

Dynamic Programming.
We enumerate all possible

values

This is just the reason why
we apply

Dynamic Programming.
We enumerate all possible

values

Wirtschaftsinformatik und Operations Research 190

Consequences of findings

 The Dynamic Programming approach utilizes a procedure that
generates an optimal schedule for the set of jobs 1,…,l with a
job k that has the largest processing time

 Due to the results derived above, we know that we have to
enumerate possible positions of job k while this job,
fortunately, splits the other jobs into two independent sets,
namely the following job sets with their positions in the
corresponding schedule
 jobs 1,…,k-1,k+1,…,k+δ are processed (in some order) firstly
 job k processed after them and, finally, the
 jobs k+δ+1,…,l that are processed in some order lastly

 This leads to the following recursive computation

Wirtschaftsinformatik und Operations Research 191

The recursive formula of the DP

, ,

, , , : Minimal total tardiness for processing the jobs of set , , in

 an optimal sequence starting at time
It holds that:

, 0 and , max 0,

i k

j j

J j l k i j i l p p

V J j l k t J j l k

t

V t V j t t p d

V

, ,

Completion time of job

, ,

Completion time of job

, , , max 0,

, , , min

1, , ,

k j k
j J j k k

k

k j
j J j k k

k

V J j k k t t p p d

J j l k t

V J k l k t p p

,

with , , such that max , ,

Optimal solution is obtained by solving: 1,..., ,0
k ik J j l k p p i J j l k

V n

Wirtschaftsinformatik und Operations Research 192

2.5.4 A simple example

Jobs 1 2 3 4 5
pj 121 79 147 83 130
dj 260 266 266 336 337

 We consider an example with 5 jobs that are already sorted
according to urgency

 Clearly, we have to solve V({1,2,3,4,5},0)
 For this purpose, we ask for the job with largest processing

time
 It is job 3. Hence, jobs 1 and 2 are scheduled before job 3
 We test the positions 3,4,5 for job 3 (i.e., we set δ to 0,1,

and 2)
 This leads to the following result

Wirtschaftsinformatik und Operations Research 193

Solving the example

1,2,3,4,5 ,0

1,3,3 ,0 max 121 79 147 266,0 4,5,3 ,347

min 1,4,3 ,0 max 121 79 83 147 266,0 5,5,3 ,430

1,5,3 ,0 max 121 79 83 130 147 266,0 ,560

1,2 ,0 81 4,5 ,347

min 1,2,4 ,0 164 5 ,430

1,2,4,5

V

V J V J

V J V J

V J V

V V

V V

V

 ,0 294 ,560V

 The remaining smaller problems can be solved directly
 Clearly, V({1,2},0)=0 with both sequences (1,2) and (2,1)
 Moreover, V({1,2,4},0)=0 with (1,2,4) or with (2,1,4)
 V({4,5},347)=347+83-336+560-337=317 with the optimal

sequence (4,5)

Wirtschaftsinformatik und Operations Research 194

Solving the example

1,2,3,4,5 ,0

1,2 ,0 81 4,5 ,347 0 81 317 398
min 1,2,4 ,0 164 5 ,430 min 0 164 223 min 387

76 294 0 3701,2,4,5 ,0 294 ,560

V

V V

V V

V V

 Therefore, we obtain the optimal schedules (1,2,4,5,3) and
(2,1,4,5,3) with total tardiness 370

 Moreover, we obtain V({5},430)=430+130-337=223
 Finally, we have V({1,2,4,5},0)=121+79+83+130-337=413-

337=76 with the optimal schedules (1,2,4,5) or (2,1,4,5)
 By inserting these values, we obtain

Wirtschaftsinformatik und Operations Research 195

Complexity of the DP

 The worst case complexity of the approach can be derived
directly by estimating the number of occurring problems to be
solved

 Each problem is solved in time O(n) (Testing all possible δ-
values)

 Moreover, we have O(n³) sets V(j,l,k) and Σpj time assignments
in the problems to be considered

 Consequently, the number of problems is upper bounded by
O(n³. Σpj)

 The overall running time is therefore bounded by O(n4. Σpj)
 Hence, we have an algorithm with a pseudo-polynomial

running time

Wirtschaftsinformatik und Operations Research 196

References of Section 2
 Bock, S.; Klamroth, K.: Minimizing sequence-dependent setup costs in feeding

batch processes under due date restrictions. Journal of Scheduling 16: 479-494,
2013.

 Bock, S.: Solving the Traveling Repairman Problem on a line with general
processing times and deadlines. European Journal of Operational Research, Vol.
244(3), S.690-703, 2015.

 Desrochers, M.; Desrosiers, J.; Solomon, M.: A New Optimization Algorithm for
the Vehicle Routing Problem with Time Windows. Operations Research 40: 342-
354, 1992.

 Du, J.; Leung, J.: Minimizing Total Tardiness on One Machine is NP-Hard.
Mathematics of Operations Research 15(3): 483-495, 1990.

 Dumas, Y.; Desrosiers, J.; Gelinas, E.; Solomon, M.M.: An optimal Algorithm for
the Traveling Salesman Problem with Time Windows. Operations Research
43(2): 367-371, 1995.

 Carey, M.R.; Johnson, D.S.: Two-processor scheduling with start times and
deadlines. SIAM Journal on Computing 6: 416-426, 1977.

 Emmons, H. (1969) “One-Machine Sequencing to Minimize Certain Functions of
Job Tardiness”. Operations Research, Vol. 17, pp. 701–715.

Wirtschaftsinformatik und Operations Research 197

References of Section 2

 Langevin, A.; Desrochers, M.; Desrosiers, J.; Soumis, F.: A Two-Commodity Flow
Formulation for the Traveling Salesman and the Makespan Problems with Time
Windows. Working Paper CRT-732, Centre de Recherche sur les Transports,
Montreal, Canada, 1990.

 Lawler, E.L. (1977) “A ’Pseudopolynomial’ Time Algorithm for Sequencing Jobs to
Minimize Total Tardiness”. Annals of Discrete Mathematics, Vol. 1, pp. 331-342.

 Potts, C.N.; van Wassenhove, L.N. (1982) “A Decomposition Algorithm for the
Single Machine Total Tardiness Problem”, Operations Research Letters, Vol. 1,
pp. 177–181.

 Potts, C.N.; van Wassenhove, L.N. (1983) “An Algorithm for Single Machine
Sequencing with Deadlines to Minimize Total Weighted Completion Time”.
European Journal of Operational Research, Vol. 12, pp. 379–387.

Wirtschaftsinformatik und Operations Research 198

References of Section 2

 Potts, C.N.; van Wassenhove, L.N. (1987) “Dynamic Programming and
Decomposition Approaches for the Single Machine Total Tardiness Problem”,
European Journal of Operational Research, Vol. 32, pp. 405–414.

 Pinedo, M.L.: Scheduling: Theory, Algorithms and Systems. 4th edition, Prentice
Hall, New Jersey, 2012. (ISBN-10: 1-4614-1986-0)

 Psaraftis, H.N.; Solomon, M.M.; Magnanti, T.L.; Kim, T.-U.: Routing and
scheduling on a shoreline with release times. Management Science 36(2): 212-
223, 1990.

 Tsitsiklis, J.N.: Special Cases of Traveling Salesman and Repairman Problems with
Time Windows. Networks 22: 263-282, 1992.

 Vahrenkamp, R.; Mattfeld, D.C.: Logistiknetzwerke - Modelle für Standortwahl
und Tourenplanung. Gabler, Wiesbaden, 2007. (ISBN 978-3-8349-0541-3)

 Wegener, I.: Theoretische Informatik. Eine algorithmenorientierte Einführung. In
German. 3rd edition, Teubner, Wiesbaden, 2005. (ISBN 3.8351-0033-5)

