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2 Dynamic Programming

 In what follows, we introduce the technique Dynamic 
Programming

 It generalizes the basic principles of recursion
 Basic ideas of recursive algorithms

 The entire problem is separated into smaller predefined 
subproblems

 These predetermined smaller subproblems are solved separately 
 Subsequently, the resulting partial solutions are combined to a 

complete solution to the original problem 
 This generation of a complete solution is determined by a 

recursive formula
 Typical examples of recursive algorithms

 Quicksort
 Recursive version of binary search
 Recursive version of merge sort
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2.1 Basic attributes of Dynamic Programming

 Dynamic Programming generalizes the principles of recursive 
algorithms

 Here, the particular subproblems that are needed to construct a 
solution to the larger original problem are unknown

 Therefore, in order to solve the original problem, all smaller 
subproblems of a specific size have to be solved and all possible 
combinations (following a recursive formula) have to be 
assessed while the best one is implemented

 However, if a generated combination leads to an infeasible 
solution, this alternative is penalized by infinite costs

 Therefore, this alternative is excluded from further 
considerations
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Basic attributes of Dynamic Programming

 Thus, in various applications, the derived subproblems may 
overlap and, therefore, parts have to be solved multiple times 
during the optimization process

 This leads to wasted computing time
 A counterstrategy is to explicitly enumerate the distinct 

subproblems and solve them in the right order
 Moreover, the process can be accelerated by explicitly 

integrating domination rules and/or bounds fathoming existing 
partial solutions. These extensions are frequently denoted as 
bounded Dynamic Programming approaches
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2.2 A DP approach for the Knapsack Problem

 In what follows, we introduce a first example of a very 
simple but somehow interesting Dynamic 
Programming approach

 It solves the well-known Knapsack Problem (KP) to 
optimality

 However, since this problem is proven to be (binary) 
NP-hard, we cannot expect a strongly polynomial 
solution approach

 The Knapsack Problem has many applications as a 
problem model or deals as an important subproblem 
for other applications/optimization problems

 First of all, we briefly introduce the KP itself
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2.2.1 The Knapsack Problem
 Given is a set of n items and a fixed capacity limit C
 Each item j has a weight wj and a price pj
 Sought: a subset of items which maximizes the total price 

(objective) and whose sum of weights does not exceed the 
capacity limit C

 Each item may only be included once
 Consequently, a binary variable xj indicates whether an item j

belongs to the sought subset or not
 The problem is often illustrated by an example where a bag or a 

knapsack with a fixed maximum weight limit has to be packed 
with items of different prices and weights

 The 0-1 Knapsack Problem is defined as:
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n n
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2.2.2 A pseudo-polynomial DP for the KP
 It has been shown that the Knapsack Problem is (binary) NP-hard
 However, its structure allows quite efficient solution approaches 
 Among them, the most efficient algorithms for solving the Knapsack 

Problem are in particular DP approaches
 Applied to the Knapsack Problem, items may be considered 

iteratively one by one in order to decide about a potential 
assignment

 Consequently, by defining fi(C’) as the maximal price attainable for 
assigning the items 1,…,i, (i≤n, C’≤C), we calculate 
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Observations

 Clearly, the algorithm iteratively analyzes whether an 
assignment of an item is favorable or not

 Consequently, the recursive formula always compares the 
cases of assigning or not assigning an item
 Thus, if assigned, the weight of the item accordingly 

reduces the capacity of the knapsack and provides an 
additional benefit

 Otherwise, the element is left outside and the problem 
is reduced to the optimal assignment of the remaining 
items 1,…,n-1

 Thus, since we have to calculate n.C function values, the 
total complexity is restricted by O(n.C)
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Pseudo-polynomial running time

 A total running time of O(n.C) seems to be moderate and 
somehow polynomial. Or not?

 What about the factor C?
 It is the capacity of the knapsack and, therefore, not restricted 

at all
 Unfortunately, it can grow exponentially in the number of 

elements n
 Note that in the proof of NP-Completeness of the Knapsack 

Problem, we need an exponentially growing knapsack
 However, if the knapsack is of moderate size (this applies to 

most applications), the algorithm is quite efficient
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A simple example

 Let us consider a small example

 We sort the items according to their efficiency
 Thus, we obtain the following table

 
1 2 3

1 2 3

Maximize 4 7 5

s.t. 4 5 3 10 0,1 n

Z x x x

x x x x

     

       

Number of item Price Weight Efficiency

1 4 4 1

2 7 5 7/5

3 5 3 5/3

j
j

j

p
e

w
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Observations

 Clearly, the parameter C in the recursive formula gives some 
potential for optimization

 Since not all partial knapsack capacities are reasonable, i.e., it 
exists a smaller knapsack obtaining an identical total weight, 
we may improve the efficiency of the defined calculations by 
making use of the following scheme

 Specifically, we commence the investigation with an empty 
knapsack and define each possible assignment by a tuple (pi, 
wi) of total price and total weight

 Thus, we obtain
 Additionally, we have the following resulting sets

  0 0,0R 

       1 10: , | , ,t t t
t tt R p w p w R p p w w R w C         
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Further observations

 We may reduce the resulting sets by erasing the dominated 
tuples

 I.e., a tuple (p,w) is dominated by some tuple (p’,w’) if it holds 
that p≤p’ and w>w’ or if it holds that p<p’ and w≥w’
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Applied to our example

 We commence with the initial trivial set 

 Then, we resume with

  0 0,0R 

  0 0,0R 

    1 0,0 , 4,4R 

x1=1x1=0

        2 0,0 , 7,5 , 4,4 , 11,9R 

x2=1
x2=0 x2=1

x2=0
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Applied to our example

 Resume with the set

 Best path

        2 0,0 , 7,5 , 4,4 , 11,9R 

x3=1x3=0 x3=1
x3=0

              3 0,0 , 5,3 , 7,5 , 12,8 , 4,4 , 9,7 , 11,9R 
x3=0 x3=1

x3=0

       0,0 0,0 7,5 12,8  
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Possible improvements

 Improvements can be obtained by introducing additional 
bounds that restrict the number of considered states within 
the calculation process

 Additionally, dominance criteria may be applied 
 Specifically, insights into the problem structure attained by 

empirical studies reveal that in most cases only a small subset 
of items around the critical one are necessary to consider

 Simulations with extremely large instances show that…
 much smaller numbered items are always part of the optimal solution 

(in these experiments)
 much larger items are never part of the optimal solution (in these 

experiments)
 Best bounded DP approaches make widely use of this 

significant phenomenon 
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2.3 A DP approach for the aTSP

 In what follows, we introduce a somewhat much 
more complex DP approach for the asymmetric 
Traveling Salesman Problem with time windows

 Therefore, we again briefly introduce the problem 
first
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2.3.1 The Traveling Salesman Problem (TSP)

 Most simple model for mapping pure distribution or 
pick up problems in local traffic

 Problem definition:
 Given 

 N as the number of customers to be visited
 Directed weighted graph G=(V,A,C) with 

– V={1,…,N}, 
– A set of arcs, and 
– C=[ci,j] the matrix of costs

 Sought
 Hamiltonian cycle in G of minimal total costs
 A Hamiltonian cycle is a cycle passing through each node of G

exactly once
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The Traveling Salesman Problem

 The TSP has been shown to be an NP-hard problem 
(Wegener (2005) pp.53-62)

 If costs are symmetric, e.g., the costs for traveling 
between two locations in the network do not depend 
on the direction of this travel, a symmetric TSP (sTSP) 
arises; otherwise an asymmetric TSP (aTSP) is 
considered 

 If the triangle inequality is always fulfilled or 
Euclidean distances are used, the problem is termed 
as the Euclidean TSP or the TSP with the triangle 
inequality



Wirtschaftsinformatik und Operations Research 89

Mathematical problem definition

 In the following, we give an exact mathematical 
definition of the TSP that corresponds directly to a 
possible solution mapping

 Subsequently, we give the definition for the 
asymmetric case

 Later on in this course, we will also consider the 
special case of a symmetric TSP. Due to its simplified 
structure, it allows for the application of specific 
methods
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Asymmetric case: Parameters and variables
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Asymmetric case: Restrictions
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Asymmetric case: Objective function
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Source
Destination

Depot Depot

local area

local area

long distance transport

Use of available vehicles, carriers 
or external partners

Application of the TSP – planning milk runs
milk run starting at the depot

milk run ending 
at the depot
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Source or destination

Depot

Depot−areas

Depot

Depot

Hub

Hub

Raster−structure: Hub&Spoke−
structure:

Depot

Depot

Depot

Source or destination

Depot−areas

Excursus: Transportation networks I
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Excursus: Transportation networks II

Depot

Depot

Hub

Depot

Hub

Hub

Depot

Depot Hub

Source or destination

Depot

Depot−areas
MultipleHub−
Structure:

Regionalhub−
Depot−areasStructure:

Source or destination
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Excursus: Transportation networks III

Depot

Hub

Hub

Depot

Depot HubDepot

Feederhub− Mixed

Depot

Hub

Hub

Hub

Depot

Depot−areas Depot−areasStructure: Structure:

Source or destination Source or destination



Wirtschaftsinformatik und Operations Research 97

Excursus: Transportation network IV

Extended mixed−structure:

Depot

Hub

Source or destination

Depot Hub

Depot−areas

Source

Destination
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2.3.2 A DP approach for the TSPTW

 In what follows, we introduce a sophisticated exact solution 
approach to the Traveling Salesman Problem

 This approach was originally proposed by Dumas et al. (1995)
 It considers the TSPTW, i.e., the Traveling Salesman Problem 

with time windows
 Here, each customer comes along with a time window that 

restricts delivery time
 The time windows [ai,bi] are hard, i.e., delivery time at customer i

is required to be in the continuous interval [ai,bi] 
 Additionally, there is a service time si at each customer i

 The following solution algorithm bases on a Dynamic 
Programming concept
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2.3.2.1 Notations

 Basic definitions
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1

1

, :  Network

1,2,..., :   Set of customers
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1,2,..., 2, 1
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Notations

 In what follows, we introduce a somewhat modified notation
 This notation is used in order to introduce the Dynamic 

Programming approach

 We define for a path going from customer i to customer j

 

,

Parameters
:  Travel time from customer  to 
:  Service time at customer 
, :  Time window at customer 

Variables
:  Point in time when service starts at customer  

i j

i

i i

i

t i j

s i
a b i

t i

 , ,m ax ,  if  

otherw ise
i i j i j i i i j j

j

t t s a t s t b
t
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Observation

 If a customer is visited too early, waiting time is 
incurred at this location

 This results from the lower bound aj in the calculation 
of tj

 Note that the considered problem is somewhat 
modified
 It seeks the finding of a tour from 1 to n, but not a 

cyclical tour
 However, the original problem can be mapped by 

doubling note 1, i.e., new node n+1 is equal to node 1
 Then, n is set to n+1
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2.3.2.2 Dynamic Programming formulation

 We introduce F(S,j,t)
 Least cost of a path starting at node 1, passing through 

every node of S exactly once, and ending at node j at 
time t or earlier

 We assume that node j belongs to set S
 Additionally, S is a subset of set N’
 Servicing node j is therefore possible at time t
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Recursive equation

 The function F(S,j,t) can be computed by making use 
of the following equation

 We initialize this calculation by

 
   

   
   

      

          , ,,

: : ,  with :

, , min , ,
j j

i j i i j i ii j A i S j

S N j S t a t b

F S j t F S j i t c t t s t a t b
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otherwise
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c j A a s t a t b
F j j t
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Determination of optimal solution

 The optimal solution to an instance of the TSPTW can 
be identified by

 
  , ,,

min min , ,
i i

i n n i n ii n A a t b
F N i t c t b t s
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Observations

 Clearly, the Dynamic Programming approach generates 
shortest paths in a forward manner

 Specifically, in step s=1,…,n-1, a path of length s is constructed
 In each step, a shortest path is sought on a state graph whose 

nodes are the states F(S,i,t)
 Note that the number of states F(S,i,t) (ai≤t≤bi) is countable if 

all travel times as well as ai and bi are integers
 Among the states, we only conserve the Pareto optimal states
 Note that for two given states F(S,i,t1) and F(S,i,t2), the second 

state can be eliminated if t1≤t2 and F(S,i,t1)≤F(S,i,t2)
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Cognition

 The function F(S,i,t) is stepwise decreasing as a function of t
over the interval [ai,bi]

 Clearly, after eliminating the dominated states, the remaining 
states can be ordered by increasing time and decreasing cost 
value

 Thus, we obtain the two-dimensional labels (t,F(S,i,t)) of (S,i)
 Therefore, we introduce FIRST(S,i) as the first, i.e., lowest, time 

value of that ordered list of non dominated states 
 Thus, FIRST(S,i) represents the fastest feasible arrival at node i

by visiting all other nodes of set S beforehand
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2.3.2.3 Post feasibility tests

 The complexity of the described approach is mainly driven by 
the determination of suitable sets S

 Thus, the number of states to be explored grows exponentially
 Consequently, it is very promising to introduce rules and tests 

in order to eliminate infeasible states, i.e., states that cannot 
be extended to a complete feasible state

 Hence, these rules are applied in order to eliminate partial 
paths that do not comply with necessary orderings resulting 
from existing time window restrictions

 In order to measure earliest arrival times and latest departure 
times, we introduce the abbreviations EAT and LDT
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EAT(i,j), LDT(i,j)

 EAT(i,j)
 Determines the earliest arrival time at node j if node i is visited 

before 
 Clearly, this value can be computed by solving a Shortest Path 

Problem from node i
 Specifically, the path starts at time ai and satisfies the time 

window restrictions at all nodes from node i to node j
 LDT(i,j)

 Determines the latest departure time from node i such that tj
is feasible

 This can be computed by solving a constrained Shortest Path 
Problem, where the path starts at node j at time bj and uses 
the reverse arc direction
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Additional remarks on EAT(i,j), LDT(i,j)

 Note that the values EAT(i,j) and LDT(i,j) can be 
overestimated or underestimated, respectively, by using an 
unconstrained time path. Since this is much faster to 
compute in practice, it is frequently applied

 Additionally, if travel times satisfy the triangle inequality, no 
shortest paths need to be computed. Hence, in this case,
EAT(i,j) can be replaced by ai + si + ti,j
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BEFORE(j)

 In what follows, we compute for a node j the set of 
nodes BEFORE(j)

 Within this set, there are all nodes that have to be 
executed before node j

 Specifically, it is checked whether the preceding visit of 
node j prohibits a timely service of node k

 Consequently, we can compute BEFORE(j) as follows

 Again, if the triangle inequality holds for travel times, 
EAT(j,k) > bk can be replaced by aj + sj + tj,k > bk

    , kBEFORE j k N EAT j k b  
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Feasible extensions

 In what follows, we say that a state (S,i,t) can be 
feasibly extended towards j if it holds:

 I.e., it holds that:

,i i j jt s t b  

    ,

,

State , ,max ,  can be created if it holds:j i i j

i i j j

S j j a t s t

t s t b
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Post feasibility test 1

 Given the states (S,i,t) for all ai≤t≤bi

 If the smallest time value to begin service at node i is 
greater than the latest feasible departure time toward 
j, i.e., for all j it holds that:

 Then the states (S,i,t) for all ai≤t≤bi can be fathomed 
(deleted) since they do not admit feasible extensions 
towards any node

   , min ,i j S
FIRST S i s LDT i j
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Test 1

 This global test eliminates the states (S,i,t) for all t by 
only examining the earliest time to begin service at 
node i

 If, for this time, a feasible arrival at any other node is 
impossible, then all the states (S,i,t) are eliminated

 In this case, the states to be treated next are those 
with a new ending node i’ S\{i} but an identical set S

 If, finally, all ending nodes in S are explored, a new set 
S is examined
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Post feasibility test 2

 Given the states (S,i,t) for all ai≤t≤bi and given node j (j
does not belong to S)

 Additionally, we have (i,j) out of A
 If 

 then no feasible extension exists towards j
 Consequently, node j cannot be a successor of i
 Thus, different successors have to be tested instead

 BEFORE j S
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Post feasibility test 3

 If the new label

is not created, a new node l is considered because no other 
labels can be feasible for time values greater than t

 
 

   
 

 

 

 

 

Given the state , ,  for a fixed ,  and given node 

, .  Additionally, , . 
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S i t t a t b
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k k S i k A
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2.3.2.4 Computational experiments

 The algorithm was coded in C
 Experiments were conducted on a Hewlett-Packard 

workstation HP9000/730
 By making use of specific preprocessing rules, the arc 

set A was reduced considerably (Langevin et al. 
(1990))

 Time windows were also reduced by applying the 
rules proposed by Desrochers et al. (1992)

 Specific set of problems was tested
It consists of symmetric Euclidean problems (cf. 
Langevin et al. (1990))
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Set of problems

 Customer coordinates are uniformly distributed between 0 and 
50 and travel times equal distances

 Time windows are generated around the times to begin service at 
each customer of a second nearest neighbor TSP tour

 Each side of a time window is generated as a uniform random 
variable in the interval [0,w/2], where w=20, 40, 60, 80, and 100

 Clearly, for a given problem size, problem difficulty increases with 
the time windows’ width
 Consequently, the number of overlapping time windows 

increases 
 Hence, the number of predetermined node sequences 

decreases significantly
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Complexity of problem instances

Ensuring tight time windows is a 
hard job. Therefore, tight time 
windows make the problem hard 

to solve to optimality

Ensuring tight time windows is a 
hard job. Therefore, tight time 
windows make the problem hard 

to solve to optimality

…?!
I believe it is just the 

opposite.
Tight time windows reduce 
the feasible solution space

…?!
I believe it is just the 

opposite.
Tight time windows reduce 
the feasible solution space



Wirtschaftsinformatik und Operations Research 119

Complexity of problem instances

 Complexity increases significantly with problem size because 
the geographical area remains constant

 Hence, as n increases, the density of the points in this area 
increases 

 In turn, this decreases the ability of the time windows to 
reduce the number of possible tours

 Whenever time windows start overlapping, exponential 
complexity prevails and increases the number of tours to be 
explored significantly

 In what follows, we provide the generated results according to 
problem sizes (number of customers) and time window widths
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Direct cognitions

 The presented algorithm was able to solve problems with up to 
200 nodes and fairly wide time windows

 As assumed, the CPU time increases with time window width 
and with problem size

 For narrow window widths, the complexity does not increase 
exponentially. This allows for solving larger sized problems in 
reasonable time

 For instance, a 250 node problem with w=20 was solved in less 
than 10 seconds

 Using the logarithm in base 10 of the CPU time (see Table I), it 
becomes obvious for a given problem size that the behavior of 
the algorithm is exponential 
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Impact of the post feasibility tests



Wirtschaftsinformatik und Operations Research 123

Conclusions

 As illustrated by table II, the impact of the post feasibility tests 
was examined additionally

 Clearly, test 2 is the most beneficial one
 Its absence increases the number of examined states significantly
 Thus, for problem size n=60, instances with window width w=60 

cannot be solved in reasonable time
 Test 1 is the least powerful because much of its work was 

already performed by reducing the width of the time windows 
in the preprocessing phase

 For the generation of further problem instances, we fixed w at 
60 (fairly wide time windows are generated)

 The number of common arcs between the second nearest 
neighbor TSP tour and the optimal tour stayed at 
approximately 20% even for 800 nodes problems
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Constant point density problems
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Results

 Owing to the post feasibility rules, problems of size 
800 could be solved in approximately 650 seconds

 However, larger size problems face memory 
limitations



Wirtschaftsinformatik und Operations Research 126

2.3.2.5 A small example

 We consider the following simple example:

4 7
8 6
2 1

C
 
   
  

i si ai bi

1 0 0 100
2 2 3 5
3 4 10 15

1 6
3 8
6 5

T
 
   
  

Matrix C: ci,j := Cost for traveling 
from node i to node j

Matrix T: ti,j := Travel time for 
traveling from node i to node j

Nodes start at index 1



Wirtschaftsinformatik und Operations Research 127

Task and start of algorithm

 The TSPTW problem starts at customer/node 1
 Calculate the optimal tour and give the costs as well 

as the duration of the tour

 Problem starts and ends at node 1
 Customer 1 is doubled to customer 4 
 N = {1,2,3,4}, N‘={1,2,3},
   

 
,4 ,1 ,4 ,1{1,...,3} : , ,

( ,4) ( ,1), ( ,4) ( ,1)
i i i ii c c t t

EAT i EAT i LDT i LDT i
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Calculation of EAT(i,j), LDT(i,j), BEFORE(j)

EAT(i,j) 1 2 3
1 1 6
2 8 13
3 20 19

LDT(i,j) 1 2 3
1 4 9
2 97 7
3 94 0

Note: The LDT(i,1)-values are not 
required and, therefore, not computed.

1 2 3
BEFORE(j) {} {} {2}

i

j
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Iteration 1: s=1

 Generate the states (S,i) of all sets S with |S| = 2

 Keep only pareto-optimal states:

(S,i) 2 3

{1,2} (3,4)
{1,3} (10,7)

(S,i) 2 3

{1,2} (3,4)
{1,3} (10,7)

S

i

(t,F(S,i,t)), t=3=max{a2,a1+s1+t1,2}=max{3,1} 
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Post feasibility tests

 Test 1: Partial solution ({1,3}, 3, 10) is not extendable 
towards j=2  remove this state from the available 
states

 Test 2 and Test 3 do not eliminate any further states
 Resulting available partial solution:

(S,i) 2 3

{1,2} (3,4)
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Iteration 2: s=2

 Extend every available partial solution to states with 
|S|=3

 Available set of states only consists of the state ({1,2}, 
(3,4)). Extend this state by adding node 3:

 Keep only pareto-optimal states:

(S,i) 3
{1,2,3} (13,10), (14,10), (15,10)

(S,i) 3
{1,2,3} (13,10)

(t,F(S,i,t)), with t=13=max{a3,3+s2+t2,3}=max{10,3+2+8} 
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Example – Calculation of optimal solution

 All nodes of N‘ have been added to the available 
states

 Calculating the optimal solution by the formula

 Only one state available  Calculate costs of optimal 
solution by F({1,2,3},3,13) + c3,4
= 10 + 2 = 12

 Duration: 13 + s3 + t3,4 = 
13 + s3 + t3,1 = 13 + 4 + 6 = 23

 Optimal solution: 1-2-3-1, Costs: 12, Duration: 23

 
  , ,,

min min , ,
i i

i n n i n ii n A a t b
F N i t c t b t s
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2.4 Exactly solving the Line TSP by DP

 A specific case of the Traveling Salesman Problem occurs 
whenever all customers are located along a straight line and 
the starting position x* of the salesman is also on this line

 E.g., there is a single road that connects all these customers 
and along which supply is executed

 Therefore, each customer i is located at position xi and it holds: 
ci,j=|xj-xi|

 We additionally introduce time windows [ri,di] into the 
problem definition. Specifically, ri determines the release time 
and di a due date at the location of customer i

 Moreover, at each location i, a handling or service time hi is 
given

 Objective function is defined as the minimization of the 
maximum completion time (i.e., the makespan)
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Line TSP

TSP on a line…?
Who needs this???

TSP on a line…?
Who needs this???

Hey! There are various 
important applications

I’ll show you three of 
them!

Hey! There are various 
important applications

I’ll show you three of 
them!
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Applications: Inland ship along the Rhine

MainzCologneDüsseldorfDuisburg

In flow direction: faster transportation possible

Against flow direction: slower transportation

 Cargo ships have to supply inland ports along the Rhine 
 Individual time restrictions have to be obeyed at each port

 There may be ports that permit a delivery before the release date
 Latest date of supply (hard time window)

 Different direction-dependent travel speeds (in flow/against flow 
direction)

 Minimization of the tour length fulfilling all due dates

Leverkusen
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Applications: Delivery along a coast line

Customer location X with three delivery 
requests, 
1. request 1 (r1=9:00am, d1=11:00am)
2. request 2 (r2=2:00pm, d2=5:00pm)
3. request 3 (r3=3:00pm, d3=5:30pm)
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JiT supply of mixed-model assembly lines

Station 1 Station 2 Station 3 Station 4

Overlapping areas WorkerFloater 

Mixed-model assembly line

• Stations are supplied by specific tow trains
• Tight time window constraints to be obeyed at the 

stations arise from the launched variant sequence

Tow trains

Central Warehouse
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A polynomial special case

 In what follows, we consider the special case ri=hi=0 
(i.e., zero release dates and no service or handling 
time at the delivery locations)

 In that special constellation, we can provide a very 
efficient solution procedure working in quadratic time 
complexity, i.e., this problem is well-solvable
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Solving the special case of the Line TSP

2.4.1 Theorem 
The special case of Line TSPTW with n customers in 
which it holds ri=hi=0 for all i can be optimally solved 
in time O(n²)
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Proof of Theorem 2.4.1
 Clearly, since processing times and release dates are zero, it 

costs nothing to serve a customer when traveling by
 Therefore, it is assumed that each customer is immediately 

served the first time its location is visited by the vehicle
 Specifically, if the vehicle has visited locations a and b with 

ab, then all jobs whose locations belong to the interval [a,b] 
have been serviced

 In what follows, we assume that job numbers are sorted 
according to their locations, i.e., it holds x1 x2 x3…xn

 Moreover, we assume that the starting position x*=xi*
coincides with the location of some customer

 Note that such an artificial customer can be generated without 
causing additional costs
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Proof of Theorem 2.4.1
 Moreover, in order to ensure feasibility, we assume that |xi*-xi|di

for all i; otherwise the problem is not solvable at all
 We fix some pair of jobs (i and j) with 1ii*jn
 We consider all schedules where job i is timely visited for the first 

time (i.e., not after the due date) and, before that, all jobs that are 
located in the interval [xi, xj] were visited timely

 Based on these schedules, we introduce two additional 
abbreviations
 V-(i,j)

Earliest point in time where such a constellation is possible 
 V+(i,j)

Earliest point in time in a schedule where job j is timely visited for 
the first time and, before that, all jobs that are located in the interval 
[xi, xj] have been visited timely as well

 Note that if those time points do not exist, these abbreviations are 
set to infinity
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Proof of Theorem 2.4.1

 Observations
 Clearly, we know 

 Moreover, it holds:

 (1) results from the fact that we can directly use the 
direct path to xj

 (2) directly follows since we start at position i* and 
cannot serve customer i before

 Furthermore, we conclude V+(i*,i*)=0

   * * *: , 1ji j V i j x x   

   * *: , 2i i V i i   
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Proof of Theorem 2.4.1

 Analogously, we can conclude that
 It holds:

 Moreover, it holds:

 (3) again results from the fact that we can directly use 
the direct path to xi

 (4) directly follows since we start at position i* and 
cannot serve customer j before

 Furthermore, we obtain V-(i*,i*)=0

   * * *: , 3ii i V i i x x   

   * *: , 4j i V i j   
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Additional abbreviations

 We introduce U+(i,j) as the minimum point in time where we 
can reach customer j after serving all customers i, i+1, …, j-1 

 Thus, we apply the following recursive formula

 Clearly, (5) results from the following cognitions
 If we want to visit customer j for the first time, we either come 

from j-1 or 
 we come from customer i
 Otherwise, we would not have visited all customers i, i+1, …, j-1 

before

 
     

*

1

: ,

min , 1 , , 1 5j j j i

i i j U i j

V i j x x V i j x x
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Additional abbreviations

 Analogously, we introduce U-(i,j) as the minimum point in time 
when customer i is reached after we have served all customers 
i+1, i+2, …, j 

 Thus, we apply the following recursive formula

 Clearly, (6) again results from the following cognitions
 If we want to visit customer i for the first time, we either come 

from customer j or 
 we come from customer i+1
 Otherwise, we would not have visited all customers i+1, i+2, …, j-

1, j before

 
     

*

1

: ,

min 1, , 1, 6i i j i

i i j U i j

V i j x x V i j x x
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Consequence

 Based on these abbreviations, we can introduce the 
following useful recursions

 Specifically, it holds:

 and additionally:

       * ,       if ,: , 7
        otherwise

jU i j U i j di i j V i j
 

  
    



       * ,       if ,: , 8
        otherwise

iU i j U i j di i j V i j
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Proof of Theorem 2.4.1

 Consequently, by applying these formulas, we can generate 
V+(1,n) and V-(1,n)

 Clearly, the minimum of both is the completion time of the 
optimal tour table

 I.e., min{V+(1,n), V-(1,n)} provides the minimal completion time of 
the vehicle tour

 This provides us with a Dynamic Programming procedure
 Initially, we calculate the values

 V+(i*, j) for j>i*, and
 V-(i, i*) for i*>i

 Subsequently, we can apply the formulas (7) and (8) in order to 
get the following values

 Finally, V+(1,n) and V-(1,n) are computed
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Computational effort

 We have to calculate two arrays (V+ and V-) of customer 
pairs i, j, with i<j

 Thus, we have to generate iteratively O(n²) values
 The generation of each value requires constant time 
 Specifically, we just have to evaluate two different 

values whose generation again takes constant time
 All in all, we obtain a total running time of O(n²)
 The optimal tour can be obtained by storing a flag for 

each pair (i,j) that indicates whether the plus or the 
minus case was favorable 
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2.4.2 Further results 

Zero processing 
or handling 
(service) times

General processing or 
handling (service) times

No release times or 
deadlines

Trivial case Trivial case

Release times only O(n²) NP-complete
Pseudo-polynomial 
unknown 

Deadlines only O(n²) NP-complete
Pseudo-polynomial 
unknown 

General time 
windows

Strongly NP-
complete

Strongly NP-complete



Wirtschaftsinformatik und Operations Research 150

2.5 Dynamic Programming in Scheduling

 In what follows, we consider a very sophisticated 
example of a Dynamic Programming approach that 
once solved an open research question

 Is it possible to provide a pseudo-polynomial solution 
approach for finding  an optimal schedule for one 
stage scenarios while minimizing the total sum of 
tardiness?

 Fortunately, the answer was yes, but required the 
understanding of a specifically designed solution 
approach

 It is based on Dynamic Programming
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2.5.1 Job Shop Scheduling – Basics

 In what follows, we consider scheduling problems
 I.e., we state the following problem

Given
 M machines or resources, N jobs to be produced
 Each job comprises a predetermined set of operations to be 

executed on the resources
Sought
 A production sequence of all N jobs for each machine 
 Determination of the timetables

 Consequently, we have to decide about
 The sequence of the competing jobs on the machines
 and the resulting timetable
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2.5.1.1 Assumptions

 Production program is given
 Lot sizes are given
 Process sequence of each job is given
 Operating times are given
 No operation of the jobs can be processed simultaneously on 

more than one machine
 Every machine can process at most one job at each point of 

time
 All N jobs and its data are available (static problem) at the 

beginning of the planning horizon 
 There are never bottlenecks concerning transports and storage
 No maintenance and reparatory activities 
 On each machine, setup times are independent of the realized 

operation sequence
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Given and sought

 Given
 MS: Machine sequence matrix
 PT: Matrix of the processing times

 Sought
 JS: Job sequence matrix
 TT: Timetable planning matrix with

 
 

, 1 ;1  Point of time in which the processing 

of job  starts at machine TU

a
m nt m M n N

n m
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2.5.1.2 Mathematical model

 
 

,

, ,

, ,

1 ;1 : see above

1 ;1 ;1 : Binary variable defining the 
sequence of jobs, i.e.,

1  if job  is processed on machine  before job 
 
0                              

a
m n

m n k

m n k

t n N m M

y m M n N k N

n m k
y

   

     



Variables

                               otherwise
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Mathematical model – Restrictions 

 

         

 

      , , 1 ,

Machine sequence restrictions 
derived from the matrix MS :

1,..., 1 : 1,..., :

 defines here the index of the machine 
that executes the th operation of job 

n n n

a a
m n m n m n

n

m M n N t p t

m

m n



Wirtschaftsinformatik und Operations Research 156

Mathematical model – Restrictions 

 In case of the job sequence restrictions, the formulation 
depends on the structure of the found solution

 But we have to ensure that two jobs are never processed 
simultaneously on one machine and, therefore, an arbitrary 
sequence of those jobs has to be realized

 
 

 
 

, , ,

, , ,

Therefore, there are the following two possible cases:
First case      before :

1    

Second case   before :

2    
Both possibilities have to be considered in the model!

a a
m n m n m k

a a
m k m k m n

n k

t p t

k n

t p t
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Mathematical model – Restrictions 

 

     
   

, ,

, ,

Job sequence restrictions depends on the chosen solution :

1,..., 1 : , 1,..., : 1

1,..., 1 : , 1,..., :

 defines a number that is larger than 

a a
m,n m,n m,k m n k

a a
m,k m,k m,n m n k

m M n k N t p t y C

m M n k N t p t y C

C

         

        

,
1 1

each definition of 

the timetable variables , e.g., 
M N

a
m,n m n

m n
t C p
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Mathematical model – Domains 

      

   

, ,

,

1,..., : , 1,..., : 0,1

1,..., : 1,..., : 0

m n k

a
m n

m M n k N n k y

m M n N t
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2.5.1.3 Objective functions

 The model defined above can be seen as a general 
starting point for so-called Job Shop Scheduling 
problems

 It abstains from the definition of a particular objective 
function but can be extended by a specific 
application-dependent definition

 In literature, a huge set of different objective 
functions is proposed. These functions mainly 
influence the efficiency of applied solution 
procedures

 In what follows, we will give some examples of well-
known objectives
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Minimization of total makespan

 This objective function minimizes the duration for 
producing the total production quantities, i.e., it 
pursues the minimization of the maximum 
completion time over all processed jobs

    

   

  

 

1 max ,

,

Minimize  max | 1,...,

with:
1,..., : : Point of time in which the last

processing of job  is completed

n

n

M n

M n

Z t t n N

n N t

n
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Minimization of machine waiting times

 Sum of all machine waiting times for all used resources

2 max ,
1 1

Unused capacity of machine 

max ,
1 1

, 1 2
1 1

Minimize 

Note:

Since  and  are constants,  and  are equivalent

M N

m n
m n

m

M N

m n
m n

M N

m n
m n

Z t p

M t p

p M Z Z
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Minimization of total completion time

 This objective tries to minimize the total sum of all individual 
completion times

 Therefore, we compute the sum of completion times over all 
processed jobs

 


 









3 ,
1

4 ,
1 1

Minimize 

This objective is equivalent to the minimization of the sum of 
waiting times of all jobs

Minimize 

n

N

M n
n

N M

m n
n m

Z t

Z w
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Minimization of total lateness

 Here, we want to minimize the total lateness over all N 
jobs to be produced in the considered production 
system

 Consequently, a compensation between early and late 
deliveries is no longer possible

  


 6 ,
1

Minimize max ,0

with:
: Due date of job 

n

N

nM n
n

n

Z t d

d n
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Minimization of maximum lateness

 By using this objective, we somehow try to balance the 
lateness in the found solution among the different jobs

 Thus, we try to minimize the maximum lateness of a 
job in the found solution

       7Minimize Z max max 0 | 1,...,

with:
: Due date of job 

n
nM ,n

n

t d , n N

d n
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Min. of sum of weighted completion times

 Here, each job obtains an individual weight rating its 
completion time in the production system

 Thus, we receive a combined weighted sum of job 
completion times

 


 8 ,
1

Minimize  

with:  : Weight of product 

n

N

n M n
n

n

Z w t

w n
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2.5.1.4 Schedule classes

 In the following, we introduce some basic terms 
according to specific types of schedules

 In the scheduling theory, a distinction is frequently 
made between 
 Sequence,
 Schedule, and finally
 Scheduling policy
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Basic terms

 Sequence
Corresponds to a specific permutation of jobs to be 
processed on a given machine

 Schedule
Usually corresponds to an allocation of jobs within a more 
complicated setting of machines that could allow for 
preemption of jobs by other jobs that are released at later 
points in time. Comprises timetables

 Scheduling policy
Often used in stochastic settings; a policy prescribes an 
appropriate action for any of the states the system may be 
in. In deterministic cases, usually only sequences or 
schedules are of importance but can be extended by rule 
definitions
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Non-delay schedules

2.5.1.4.1 Definition:

A feasible schedule is called non-delay if no machine is 
kept idle when there is an operation available for 
processing 
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Non-delay schedules

 These schedules are not allowed to comprise 
unforced idleness of machines in the production 
process

 Here, in most cases, we consider non-delay 
schedules since otherwise an improvement 
possibility seems to be straightforward

 HOWEVER: There may be some special constellations 
for non-preemptive models where it pays to have 
periods of unforced idleness. This results from some 
specific effects of non-delay schedules (c.f. Pinedo, 
M. (2012) pp.22)



Wirtschaftsinformatik und Operations Research 170

Active schedules

2.5.1.4.2 Definition:

A feasible schedule is called active if no operation can 
be completed earlier by starting earlier or by changing 
the process sequence on machines without delaying 
any other operation
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Attributes of active schedules

2.5.1.4.3 Lemma:

A non-delay schedule is always active
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Proof of the Lemma

 Let us assume there is a non-delay schedule that is 
not active

 Then, we know there is a machine m where shifting 
an operation of job i to an earlier position at point of 
time t results in an earlier completion without 
delaying the other operations

 But, if this is true, we know that during the 
processing of the schedule on machine m, there is a 
constellation at point of time t where the considered 
machine m is idle but can process job i instead

 This contradicts the assumption that the schedule is 
non-delay
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Attributes of active schedules

 Note that the reverse is not necessarily true
 I.e., there are some active schedules that are not non-

delay
 Example: Schedule is active but not non-delay

Machine 1

Machine 2

Machine 3

1

2

2 1
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Semi-active schedules

2.5.1.4.4 Definition:

A feasible schedule is called semi-active if no 
operation can be completed earlier without altering 
the processing sequence on any of the machines
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Consequences

2.5.1.4.5 Lemma:

An active schedule is always semi-active

The proof is trivial and follows immediately from the 
definition
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Attributes of semi-active schedules

 Note that the reverse is not necessarily true
 I.e., there are some semi-active schedules that are 

not active
 Example: Schedule is semi-active but not active

Machine 1

Machine 2

Machine 3

1

2

2 1
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What is the best schedule class?

I hate waiting. Therefore, I 
always would go for non-delay!
I hate waiting. Therefore, I 

always would go for non-delay!

Be careful! Even for 
monotonous objective 

functions, waiting can make 
sense….if it is – for 

instance - a job with high 
weight that would be 

delayed otherwise

Be careful! Even for 
monotonous objective 

functions, waiting can make 
sense….if it is – for 

instance - a job with high 
weight that would be 

delayed otherwise
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Class of semi-active 
schedules

Class of active 
schedules

Schedule class hierarchy

Class of non-delay 
schedules

Optimal schedules
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2.5.2 The considered single-stage problem

 In what follows, we consider a problem that was very challenging 
and received an enormous amount of attention until its status has 
been completely clarified in 1990

 It is the single-stage scheduling problem pursuing the minimization 
of total tardiness 
 N jobs have to be scheduled at a single stage
 Each job possesses an individual soft due date
 Objective is the minimization of total tardiness (without weights)

 It has been proven in 1990 by Du and Leung that this problem is 
already binary NP-hard

 Hence, due to the theory of NP-Completeness, it is conjectured 
that this rules out the existence of strongly polynomial algorithms

 However, there is a very efficient DP algorithm that works in 
pseudo-polynomial time (introduced by Lawler (1977))
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2.5.3 The DP for the considered problem

 Clearly, by analyzing the problem in detail, it becomes 
obvious that there is the following general simple 
dominance criterion applicable (Emmons (1969))

2.5.3.1 Lemma: 
If pi≤pj and di≤dj, then there exists an optimal                              
schedule that sequences job i before job j

Proof:
 The proof is trivial since it follows directly from the 

cognition that preferring i against j does not have negative 
side effects
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Proof of dominance criterion

 Specifically, if we have a schedule with the two jobs in 
opposite sequence, we exchange them

 Consequently, the intermediate completion times of 
jobs scheduled between the two jobs are not 
increased 

 The completion times of jobs scheduled before 
behind both jobs are not affected at all

 Due to the fact that job i is more urgent than job j, we 
conclude that the exchange cannot increase the total 
objective value

 This completes the proof
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Due date sensitivity of the optimal schedule

 We consider optimal schedules and ask how far we can 
postpone the due date of a job without affecting the 
optimality of a solution to the original problem

 For this purpose, we define
 First instance P’ with n jobs
 and processing times p1,…,pn as well as due dates d1,…,dn ,
 Optimal solution S’ with maximum completion time C’(k) of 

job k
 Second instance P’’ with n jobs
 and processing times p1,…,pn as well as due dates 

d1,…,max{dk,C’(k)},…,dn ,
 Optimal solution S’’ with completion time C’’(k) of job k
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Due date sensitivity of the optimal schedule

2.5.3.2 Lemma: 
Every sequence that is optimal for the second instance is also 
optimal for the first one

Proof:
 We define V’(S) and V’’(S) as the total tardiness of a 

schedule S for the due date structure of the instances P’
and P’’.

 Let V’(S’)=V’’(S’)+Ak and V’(S’’)=V’’(S’’)+Bk be the total 
tardiness under the respective instances. 

 Clearly, if it holds that C’(k)≤dk, both sets of due dates are 
the same and we have identical optimal solutions. 
Therefore, the proposition follows. 
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Proof of Lemma 2.5.3.2 

 Thus, we assume that it holds C’(k)>dk
 V’(S’)=V’’(S’)+Ak and V’(S’’)=V’’(S’’)+Bk
 In this case, we have: Ak=C’(k)-dk
 Moreover, it holds that Bk=max{0, min{C’’(k),C’(k)}-dk}
 Clearly, we conclude the following:
 min{C’’(k),C’(k)}≤C’(k) → Bk≤Ak
 Since S’’ is optimal for P’’, we obtain V’’(S’’)≤V’’(S’)
 Consequently, we obtain V’(S’’)≤V’(S’)

 Therefore, since S’ is optimal for P’, we obtain 
V’’(S’’)=V’’(S’) and S’’ is optimal for P’

 This completes the proof
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Assumptions

 In what follows, we assume (without loss of generality)
 All job processing times are different from each other
 Jobs are renumbered in sequence of non-decreasing 

due dates, i.e., it holds that d1≤d2≤…≤dn
 Moreover, we define pk=max{p1,p2,…,pn}
 Consequently, the kth urgent job has the largest 

processing time
 Clearly, due to Lemma 2.5.3.1, we know that there is 

an optimal schedule where all jobs of set {1,…,k-1} will 
be scheduled before job k

 However, what about the remaining jobs?
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Consequence

2.5.3.3 Lemma:
There exists an integer δ with 0≤δ≤n-k such that                  
there exists an optimal schedule S in which job k   
is preceded by all jobs j with j≤k+δ and followed    
by all jobs j with j>k+δ

Proof:
 Let C’(k) denote the latest completion time of job k in 

an optimal schedule of the original problem (due 
dates d1,…,dn)

 S’’ is optimal for the modified problem (with due 
dates d1,…,max{dk,C’(k)},…,dn) and satisfies the 
restriction of Lemma 2.5.3.1
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Proof of Lemma 2.5.3.3

 Let C’’(k) be the completion time of job k under 
schedule S’’

 Clearly, by applying Lemma 2.5.3.2, schedule S’’ is also 
optimal for the original problem instance P’

 We therefore conclude that C’’(k)≤max{C’(k),dk}
 This is true since C’(k) is assumed to be the latest 

completion time of job k in all optimal schedules for P’
 Moreover, we know that all jobs with a due date later 

than max{C’(k),dk} are processed after job k (if this 
would not be the case, we can reassign this job after 
job k without deteriorating the objective function 
value)
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Proof of Lemma 2.5.3.3

 Clearly, additionally, job k is preceded by all jobs with 
a due date earlier than max{C’(k),dk} (this results from 
a direct application of Lemma 2.5.3.1)

 Consequently, we set δ to the maximum integer such 
that dk+δ≤max{C’(k),dk} 

 This completes the proof
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Consequences of findings

And what is won? 
No one knows the optimal 

solutions beforehand. Therefore, 
the δ value is unknown

And what is won? 
No one knows the optimal 

solutions beforehand. Therefore, 
the δ value is unknown

This is just the reason why 
we apply 

Dynamic Programming. 
We enumerate all possible 

values

This is just the reason why 
we apply 

Dynamic Programming. 
We enumerate all possible 

values
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Consequences of findings

 The Dynamic Programming approach utilizes a procedure that 
generates an optimal schedule for the set of jobs 1,…,l with a 
job k that has the largest processing time 

 Due to the results derived above, we know that we have to 
enumerate possible positions of job k while this job, 
fortunately, splits the other jobs into two independent sets, 
namely the following job sets with their positions in the 
corresponding schedule
 jobs 1,…,k-1,k+1,…,k+δ are processed (in some order) firstly
 job k processed after them and, finally, the
 jobs k+δ+1,…,l that are processed in some order lastly

 This leads to the following recursive computation
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The recursive formula of the DP
   

    

      

    

    

, ,

, , , :  Minimal total tardiness for processing the jobs of set , ,  in 

                        an optimal sequence starting at time 
It holds that:
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2.5.4 A simple example

Jobs 1 2 3 4 5
pj 121 79 147 83 130
dj 260 266 266 336 337

 We consider an example with 5 jobs that are already sorted 
according to urgency

 Clearly, we have to solve V({1,2,3,4,5},0)
 For this purpose, we ask for the job with largest processing 

time
 It is job 3. Hence, jobs 1 and 2 are scheduled before job 3
 We test the positions 3,4,5 for job 3 (i.e., we set δ to 0,1, 

and 2)
 This leads to the following result
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Solving the example

  
       

       
      
     
     
 

     
      
        

 

  

1,2,3,4,5 ,0

1,3,3 ,0 max 121 79 147 266,0 4,5,3 ,347

min 1,4,3 ,0 max 121 79 83 147 266,0 5,5,3 ,430

1,5,3 ,0 max 121 79 83 130 147 266,0 ,560

1,2 ,0 81 4,5 ,347

min 1,2,4 ,0 164 5 ,430

1,2,4,5

V

V J V J

V J V J

V J V

V V

V V

V    




    ,0 294 ,560V

 The remaining smaller problems can be solved directly
 Clearly, V({1,2},0)=0 with both sequences (1,2) and (2,1)
 Moreover, V({1,2,4},0)=0 with (1,2,4) or with (2,1,4)
 V({4,5},347)=347+83-336+560-337=317 with the optimal 

sequence (4,5) 
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Solving the example

  
     
     
    

1,2,3,4,5 ,0

1,2 ,0 81 4,5 ,347 0 81 317 398
min 1,2,4 ,0 164 5 ,430 min 0 164 223 min 387

76 294 0 3701,2,4,5 ,0 294 ,560

V

V V

V V

V V

               
       

 Therefore, we obtain the optimal schedules (1,2,4,5,3) and 
(2,1,4,5,3) with total tardiness 370 

 Moreover, we obtain V({5},430)=430+130-337=223
 Finally, we have V({1,2,4,5},0)=121+79+83+130-337=413-

337=76 with the optimal schedules (1,2,4,5) or (2,1,4,5)
 By inserting these values, we obtain
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Complexity of the DP

 The worst case complexity of the approach can be derived 
directly by estimating the number of occurring problems to be 
solved

 Each problem is solved in time O(n) (Testing all possible δ-
values)

 Moreover, we have O(n³) sets V(j,l,k) and Σpj time assignments 
in the problems to be considered

 Consequently, the number of problems is upper bounded by 
O(n³. Σpj)

 The overall running time is therefore bounded by O(n4. Σpj)
 Hence, we have an algorithm with a pseudo-polynomial 

running time 
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