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4 Column generation (CG) 

 There are a lot of problems in integer programming where even 
the problem definition cannot be efficiently bounded 

 Specifically, the number of columns becomes very large 

 Therefore, these problems are hard to tackle by general 
algorithms 

 Consider an optimal simplex tableau of such a problem:  
 Most variables are non-basic, so their value is 0 

 Only a tiny part of the matrix is of interest at all 

 Basic question: 

 How can we restrict unnecessary computational time that 
results from the consideration of unused variables? 
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4.1 Basics of column generation 

 Basic Idea of column generation 

 Select a small subset of (promising) variables 

 Solve the corresponding LP-relaxation 

 Derive and solve a subproblem in order to identify 
whether there exists an unused variable, which would 
improve the objective value 

 If such a variable exists: include it and resolve the 
problem 

 If there is none: the problem is already solved to 
optimality 
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4.2 Applying CG to the Cutting-Stock Problem 

 Certain materials (e.g., paper, metal) are manufactured in 
standard rolls of large width W  

 This width is identical for all rolls 

 These rolls are cut in smaller ones (called finals) i=1,…,m with 
widths wi such that the number of sliced rolls is minimized 

 Additionally, we have a demand of bi finals of width wi 

 A solution defines in detail in which finals each roll is cut in 
order to  

 satisfy all demands and to  

 minimize the number of consumed rolls 

 Clearly, a main problem arises by the fact that the entire 
solution space comprises a huge set of variables 
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Preparing the problem definition 

 In what follows, we introduce the problem definition proposed 
by Gilmore and Gomory 

 We define specific cutting patterns given by an integer vector 
a=(a1,…,am)  

 It defines a specific feasible selection of a roll  

 Altogether, we consider n feasible cutting patterns with 

 

 

 

 Such a cutting pattern defines the segmentation of a roll into a 
set of finals of predetermined widths 

 Consequently, we obtain the following linear integer program 
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The linear program and its dual 

 We obtain the continuous primal problem P 

 

 

 

 

 

 and the corresponding continuous dual D 
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Intractability of the primal problem 

 Clearly, the number of possible columns may become 
extremely large, even for small instances of the Cutting-Stock 
Problem 

 Therefore, Gilmore and Gomory (1961) proposed column 
generation for solving its LP-relaxation 

 First of all, an initial solution of the LP-relaxation is generated 
by defining a set of initializing columns 

 We denote B as the matrix of the current columns 
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After solving the problem… 

 We have a first row that tells us that the found solution in 
the simplex tableau is optimal 

 Specifically, in our case, it is non-negative, i.e., it holds: 

 

 

 We substitute the parameters accordingly and obtain 

 

 

 

 Note that this applies only to the columns of matrix B 

 Thus, there may be additional columns in A that lead to 
negative entries in the first row 
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Most attractive columns 

 Thus, the larger (ai).y is, the more attractive becomes the 
column ai to be integrated into the current tableau 

 This directly results from the definition of the reduced costs in 
the primal tableau 

 Therefore, in order to generate promising columns, we 
consider the following problem 

 

 

 

 

 

 Obviously, it is a special Knapsack Problem 
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Deriving a lower bound 

 The optimal column determined by solving the special 
knapsack problem provides us with a lower bound of the 
optimal objective function value 

 Clearly, for a current optimal dual solution y (optimal according 
to the current columns), it holds that 

 

 

 

 

 

 

 Apparently, z is a feasible dual solution to the LP-relaxation. 
Therefore, bTz provides us with a lower bound 
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Interpreting the lower bound 

 This lower bound coincides with the objective value of 
the current optimal solution (i.e., the optimal solution 
corresponding to the active set of columns) with the 
objective function value  

 

 

 divided by the optimal value of the derived 
specifically designed knapsack subproblem for all 
possible columns 
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Quality of the LP-relaxation bound 

 The bound provided by the optimal solution of the LP- 
relaxation of Gilmore and Gomory’s model is usually very tight 
(see Amor and Carvalho in Desaulniers, G.; Desrosiers, J.; 
Solomon, M.M.: Column Generation. p.137) 

 “Specifically, most of the one dimensional cutting stock 
instances have gaps smaller than one, and we say that the 
instance has the integer round-up property, but there are 
instances with gaps equal to 1 (Marcotte, 1985, 1986), and as 
large as 7/6 (Rietz and Scheithauer, 2002). It has been 
conjectured that all instances have gaps smaller than 2, a 
property denoted as the modified integer round-up property 
(Scheithauer and Terno, 1995)” 
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Solution technique – Column generation 

Hence, a pragmatic approach would be  

 to solve the corresponding continuous problem by applying 
the Simplex Algorithm 

 and round the resulting non-integer results accordingly 

 Consequently, since we have m restrictions in the primal 
problem, we obtain an optimal solution with at most m 
non-zero variables  

 Each rounding can cost us at most one additional roll 

 Thus, the resulting cost difference between optimal 
continuous solution and found integer solution is upper 
bounded by m 

 Note that this difference is extremely unlikely 
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General approach I 

 We generate specific cutting patterns which are used as columns of a 
matrix B 

 This matrix defines the following linear program 

 

 

 If B is not directly available, we may use the diagonal matrix with the 
diagonal values di defined as follows 
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General approach II 

 Then, we solve the defined problem optimally by 
applying the revised Simplex Algorithm 

 This provides us with an optimal solution x* 

 However, its optimality according to the original 
matrix A depends on the definition of B 

 Clearly, if the choice of cutting patterns was not 
appropriate, we may have generated a solution that 
will be outperformed by alternative constellations 
basing on modified columns 

 But, in order to check this, we conduct the following 
steps 
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General approach III 

 Subsequently, we calculate a dual optimal vector y with 

 

 

 Next, we try to find an integer vector a=(a1,…,am), with ai≥0 
satisfying 

 

 

 

 

 If such a vector exists, we replace one column in B by it 
(proposition) 

 Otherwise, x defines an optimal solution to the continuous 
problem (proposition) 

1

B By B c y c B    

1 1

1
 

     and 
m m

i i i i

i i

w a W y a



Wirtschaftsinformatik und Operations Research 383 

Proof of the proposition 

 If we have no integer vector a=(a1,…,am)T, with ai≥0 
satisfying 

 

 

 we obviously know that for all 

 

 

 Thus, we may conclude that y is a feasible dual 
solution and the complete simplex tableau has a 
positive first row 
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Proof of the proposition 

 This first row is defined as 

 

 

 

 and therefore the found solution is optimal 

 We cannot improve the found optimal solution of the 
reduced problem (*) by integrating any additional cutting 
pattern, i.e., by integrating any additional column 

 Additionally, the objective value of x* provides a lower 
bound on the objective function value of the best integer 
solution 
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Conclusion 

 We apply the revised Simplex Algorithm to a linear 
program 

 Then, it is not necessary that the whole matrix AN of 
non-basic columns is available  

 Moreover, it is sufficient to store the current base 
matrix B and to have a procedure at hand which 
calculates an entering column aj (i.e., a column aj of 
AN satisfying y.aj>cj (MinProb)), or proves that no such 
column exists 

 This problem is denoted as the pricing problem and 
is solved by a pricing procedure 
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Pricing procedure 

 Usually, a pricing procedure does not calculate only a 
single column but a set of columns which possibly 
may enter the basis in the following iterations 

 Thus, we have always a so-called working set of 
active columns  

 If, finally, the pricing procedure states that no 
entering column exists, the current basic solution is 
optimal and the algorithm terminates 
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Column generation algorithm 

1. Initialize 

2. WHILE Calculate Columns produces new columns  

 DO 

 Insert and Delete Columns 

 Optimize 

3. END 

 

 Note that only Initialize and Calculate Columns have 
to be implemented problem-specifically 
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Example 

 We introduce the following simple example 

 We have rolls of size W=100 and need 

 97 finals of width 45 

 610 finals of width 36 

 395 finals of width 31 

 211 finals of width 14 

 Additionally, we may apply the following cutting 
patterns 
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Example 

 Thus, we get the system 

 

 

 

 

 This system has the optimal continuous solution 
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Dual solution y 

 We consider all dual solutions y 

 It is defined by 
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Thus, we obtain… 

 for the corresponding optimal dual solution 

 

 Let us now consider 

 

 We have to show that it holds: 

 

 Thus, we obtain 

 

 In what follows, we analyze feasible cutting patterns 
for a 
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Restrictions 

 A feasible cutting pattern a must fulfill the following 
restrictions 

 First, it must not consume more widths than the roll 
contains, i.e.,  

 

 In addition, our found subset of cutting patterns is 
optimal if it holds for all cutting patterns that 

 

 Thus, we assume to the contrary that it holds: 

1 2 350 50 25 100a a a     
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 1 2 350 50 25 100 2a a a     
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Consequences 

 If a exists, then we know at first that a3=0 

 Why? 
 If a3>3, we have a direct contradiction to (1) 

 If a3=3, we have a1=a2=0 due to (1), but this contradicts 
(2) since 75>100 is obviously not correct 

 If a3=2, we have a1=0 and a2≤1 due to (1), but this 
contradicts (2) since 100>100 is obviously not correct 

 If a3=1, we have a1+a2≤1 due to (1), but this contradicts 
(2) since 75>100 is obviously not correct 

 Consequently, we obtain a3=0 as claimed 
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Consequences 

 Thus, we have a3=0 and thus we may write now a modified 
system 

 

 and 

 

 

 Consequently, since (1) we may conclude that a1+a2≤2, and 
therefore we again have a contradiction to (2) 

 Consequently, a does not exist at all 

 Thus, x*T=(48,5;105,5;100,75; 197.5) is an optimal solution for 
the continuous relaxation of our problem P and has the 
objective function value 452,25 
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 1 250 50 100 2a a   
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An optimal integer solution 

 We transform the continuous solution x*T=(48,5; 
105,5; 100,75; 197,5) to x1T=(48, 105, 100, 197)  

 Thus, we apply the following constellation  
 48 times cutting pattern (2,0,0,0), 

 105 times cutting pattern (0,2,0,2), 

 100 times cutting pattern (0,2,0,0), and  

 197 times cutting pattern (0,1,2,0) 

 Result 
 96 finals of width 45  (Demand 97) 

 607 finals of width 36  (Demand 610) 

 394 finals of width 31  (Demand 395) 

 210 finals of width 14  (Demand 211) 
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An optimal integer solution 

 Hence, we have altogether 450 rolls of width W  

 This, however, is an infeasible constellation, but we 
may add three additional patterns of the forms 
(0,2,0,0), (1,0,1,1), and (0,1,0,0) 

 Consequently, we obtain a feasible solution that 
consumes altogether 453 rolls 

 Since the optimal continuous solution has an 
objective function value of 452,25, the integer 
solution x1 is optimal 
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Finding integer solution in general… 

 Column generation is a technique that enables us to efficiently solve 
problems with a large number of columns 

 If we have optimally solved the corresponding continuous problem without 
finding an integer solution but a fractional one, we may  

 branch by fix a non-integer variable and repeat the solution process 
(Branch&Price) 

 round variables accordingly  

 apply a specifically designed metaheuristic 

 combine some of the methods depicted above in a sophisticated way 

 Clearly, it depends on the application how useful a found optimal solution 
of the LP-relaxation is 

 In case of the Cutting-Stock Problem, these solutions directly provide us 
with tight bounds 

 Basically, the subproblem is the Knapsack Problem that, despite its NP-
Completeness, can be solved quite efficiently 

 Therefore, in this case, the subproblem step works quite smoothly 
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