
Wirtschaftsinformatik und Operations Research 401

5 Lagrangian Relaxation

 Basic idea:

 Integer problems have frequently a specific structure

 There is a subproblem within the entire program that can be

solved quite efficiently

 However, there are certain restrictions that make the problem

much more complicated

 Specifically, if we drop these restrictions, we may be able to

provide optimal solutions efficiently

 Thus, the basic idea of the Lagrangian Relaxation is to drop the

complex restrictions and penalize their violation by Lagrange

multipliers in the objective function

 In order to tackle complex problems, the Lagrangian Relaxation

has been proven as a very competitive solution technique

Wirtschaftsinformatik und Operations Research 402

5.1 Basic structure

 We obtain the following problem structure

 The remaining problem (characterized by the restrictions

determined in matrix A2) is easy to solve

 Thus, we transform the problem into a new structure that is

depicted on the following slide

 

 

 

   1 2

1 1

1

2 2

2

1 2

Maximize

s.t.

 complex restrictions

 easy restrictions

 with

T

n n

Z c x

A x b m

A x b m

x IR n n nZ

Wirtschaftsinformatik und Operations Research 403

Lagrangian Relaxation

 We obtain

 Attributes

 The solution space comprises all solutions to the
original problem

 For positive vectors π, zLR(π) is obviously an upper
bound on the objective function value of each feasible
solution x of the original problem

       

 

   1 2

1 1

2 2

2

1 2

Maximize

s.t.

 easy restrictions

 with

T T

n n

Z c x b A x

A x b m

x IR n n nZ

Wirtschaftsinformatik und Operations Research 404

Upper Bound

 The latter is true since we know that

 Thus, for feasible solutions and positive multipliers,

we obtain

 Thus, an optimal solution to the Lagrange Problem

provides an upper bound to the original problem

 1 1 0, feasibleb A x x  

 1 1T T Tc x b A x c x       

Wirtschaftsinformatik und Operations Research 405

Transformation of objective function

 Thus, we obtain

 This modified function underlines

 That the objective function value depends on the chosen

Lagrange multipliers π in a non-linear way

 Moreover, these multipliers are multiplied with the variable

vector x

 If π is kept constant, we just have a simpler problem

working with modified c-entries

 Specifically, since the constant adder has no impact on

optimality, we have the following modified c-entries

   1 1T T T T Tc x b A x c A x b            

 1T T Tc c A   %

Wirtschaftsinformatik und Operations Research 406

Dual Lagrangian problem

 In what follows, we concentrate on an optimization of
the multipliers π

 What values are promising?

 Obviously, since we are able to solve the simpler
problem, it is reasonable to apply it to a problem that
is the most equivalent to our original instance

 Thus, we obtain the problem

 In what follows, we tackle this problem by
subgradient methods

  1min 0T T T

LDz c A x b         

Wirtschaftsinformatik und Operations Research 407

The Set Packing Problem

 Given is a finite set U with m elements

 Consider a list of n subsets of U

 The task is to chose as many subsets as possible …

 … under the condition that the chosen subsets have to be
pairwise disjoint, i.e. in the final selection, no element is
included in multiple subsets

 We use a binary vector x to denote our choice

 The subset list is expressed by a binary matrix A:
It holds that ai,j=1, if element i is included in subset j

 In the general case, a weight wj is assigned for each subset j

 

max

s.t. 1

0,1

T

n

z w x

A x

x

 

 



1,1 1,

,

,1 ,

...

... ...

...

n

i j

m m n

a a

A a

a a

 
 

  
 
 

Wirtschaftsinformatik und Operations Research 408

Example

 Let us consider the following instance of the Set

Packing Problem

 

1 2 3 4

1 2 1 3 1 4 2 4 1 2 3 4

Complex restrictions

1

Maximize 3 4 2 5

s.t.

1 1 1 1 , , , 0,1

1 1 0 0

1 0 1 0

1 0 0 1

0 1 0 1

Z x x x x

x x x x x x x x x x x x

A

       

            

 
 
  
 
 
 

144444444424444444443

Wirtschaftsinformatik und Operations Research 409

Example – Lagrange Relaxation Problem

 Thus, we obtain

 If, for instance π1=π2=π3=π4=2, we obtain the

following optimal solution

   
   

 

1 2 3 1 1 4 2

2 3 3 4 4 1 2 3 4

1 2 3 4

Maximize 3 4

2 5

s.t.

, , , 0,1

Z x x

x x

x x x x

             

                 



     
 

1 2 3

4

1 4

1 2 3 4

Maximize 3 2 2 2 4 2 2 2 2

5 2 2 2 2 2 2

3 8

Optimal solution: 0, 0, 0, and 1 9

Z x x x

x

x x

x x x x Z

           

       

    

     

Wirtschaftsinformatik und Operations Research 410

Subgradient methods

Basic idea:

1. Generate an optimal solution xt for the Lagrange

Relaxation with predetermined Lagrange multipliers

πt

2. Update the Lagrange multipliers based on the found

optimal solution xt and the found subgradients st

Wirtschaftsinformatik und Operations Research 411

Scheme

Solving the Lagrangian

Relaxation

Generation of new

subgradients

Solving the Lagrangian

Relaxation

πt

xt

πt+1=πt-wt.st

xt+1

Wirtschaftsinformatik und Operations Research 412

Subgradient

 For its introduction, we commence with convex

functions. Specifically, a function z is denoted as

convex if it holds that

 With other words

        


               

1

1 2 1 2 1 2

: , with

1 1 , , ,0 1

mz IR IR

z z z

       

          

1 1

,

: : 1

Thus, we may identify a hyperplane with

, 2

m m T

s T

s IR IR z s z

H z s z z z z

          

           

Wirtschaftsinformatik und Operations Research 413

Subgradient

 Note that s is denoted as a subgradient if it fulfills

restriction (1)

 Note further that if z is not differentiable at position

π, there exists an infinite set of subgradients

 To the contrary, if z is differentiable at position π, the

subgradients are unambiguously defined

Wirtschaftsinformatik und Operations Research 414

Illustration

 

 z 

 z 

     Tg s z       

Wirtschaftsinformatik und Operations Research 415

5.2 A Lagrangian Relaxation for the KP

 In what follows, we consider the Knapsack Problem

 Its mathematical definition is given by

 

 

1

1

1 2 3 1

Maximize

s.t. 0,1

...

n

j j

j

n
n

j j

j

n n

Z x p

x w C x

A w w w w w







 

   

 





Wirtschaftsinformatik und Operations Research 416

The Lagrangian problem

 Thus, we obtain

 

 

1 1

1

Maximize

s.t. 0,1

n n

j j j j

j j

n

j j j

j

n

Z x p C x w

p w x C

x

 



 
       

 

       



 



Wirtschaftsinformatik und Operations Research 417

Conclusions

 Clearly, the Lagrangian Relaxation of the Knapsack
Problem is characterized by the solution set S={0,1}n

 It comprises in total 2n elements

 Let us denote each element by an unambiguous index
k, i.e., we obtain the elements xk out of {0,1}n

 Consequently, the kth element obtains the objective
function value

   
1

k

n
k

j j jx
j

z p w x C


        

Wirtschaftsinformatik und Operations Research 418

Further conclusions

 If π is constant, we are looking for the xk-vector that

maximizes the objective function value

 Clearly, this function is convex since it is a maximum

of a finite set of linear functions

 If, however, x is kept constant (set to ��), we obtain a

linear function in π

     
1

k k k

n
k

LR j j jx x x
j

z max z max p w x C


 
         

 


     
  

               %
% % %

1442443 142431 1 1

Constant Constant

n n n

x j j j j j j j

j j j

z p w x C C w x p x

Wirtschaftsinformatik und Operations Research 419

Example

 We resume with an instance of the Knapsack Problem

 Specifically, we have

 Clearly, since good 3 obviously outperforms good 1,
we obtain an optimal solution by selecting the goods
2 and 3

 This leads to an optimal objective function value of 12

 
1 2 3

1 2 3

Maximize 4 7 5

s.t. 4 5 3 10 0,1
n

Z x x x

x x x x

     

       

Wirtschaftsinformatik und Operations Research 420

Example – Objective function value

 Let us consider the Lagrange Relaxation

 Obviously, there are 23=8 possible x-vectors

 
     

 

1 2 3 1 2 3

1 2 3

Maximize 4 7 5 10 4 5 3

4 4 7 5 5 3 10

s.t. 0,1
n

Z x x x x x x

x x x

x

              

                 



0 1 2 3 4 5 6 7

0 1 0 1 0 1 0 1

0 ; 0 ; 1 ; 1 ; 0 ; 0 ; 1 ; 1

0 0 0 0 1 1 1 1

x x x x x x x x

               
                                     
               
               

Wirtschaftsinformatik und Operations Research 421

… with the objective function values

k zLR(π)

0 10.π

1 6.π+4

2 5.π+7

3 π+11

4 7.π+5

5 3.π+9

6 2.π+12

7 -2.π+16

Wirtschaftsinformatik und Operations Research 422

Illustration

0

5

10

15

20

25

1 3 5 7 9 11 13 15 17 19 21 23

0

1

2

3

4

5

6

7

10  

 , i

LR
z x

Wirtschaftsinformatik und Operations Research 423

Consequence

 Clearly, we obtain the best value 14 at π=1.0

 In order to derive the best multipliers, we may use insights into

the structure of the Knapsack Problem

 Note that each good has a quality ratio of price divided by

weight, i.e., qi=pi/wi

 Clearly, an optimal solution to the continuous relaxation of the

original Knapsack Problem may be generated by selecting all

goods in non-increasing order until the knapsack is entirely

filled

 Consequently, the last good, which we denote as critical, may

be assigned only fractionally

 Let us now consider the quality ratio qc=pc/wc of this critical

good c

Wirtschaftsinformatik und Operations Research 424

We set π=qc=pc/wc

 Then, we obtain by

the capacity of the knapsack measured in price units

of the critical good, i.e., what we can obtain if we

would use its capacity entirely for carrying this critical

good only

 But, what about the other goods with improved

quality ratios?

 Their contributions are determined by

C 

 
1 1

n n
k kc

j j j j j j

j j c

p
p w x p w x

w 

  
            

 

Wirtschaftsinformatik und Operations Research 425

Resulting objective function value

 Clearly, this formula provides the cognition that we obtain just

the price difference for taking a good outperforming c instead

of c

 I.e., with other words, we obtain just the objective function

value of the optimal solution of the LP-relaxation

 This is obviously an upper bound of the original problem

 The optimal solution x* to the LP-relaxation may be defined as

follows

1

1

1 if

0 if

 if

j

c

i

i

c

j c

x j c

C w

j c
w














 

 
 



Wirtschaftsinformatik und Operations Research 426

Solving the Lagrangian problem

 By considering the objective function

 we may get the following optimal solution

 Obviously, this is also an optimal solution to the continuous
relaxation of the Lagrangian problem

 We obtain the following objective function value for this
problem

 
1

n
k

j j j

j

p w x C


      

1 if

0 otherwise

j

j j

jj

p
p w

wx


     

 



1 1 1

,

with optimal solution to the LP-relaxation

n n n

j j j j j j
j j j

j

p x C w x p x

x

  

  



 
        

 
  

Wirtschaftsinformatik und Operations Research 427

Conclusion

 Thus, by setting

 we obtain equal objective function values for the

Lagrangian Relaxation and the LP-relaxation

 Consequently, we directly know that there is no

strictly positive π-value available that leads to a

smaller objective function value

1 if

0 otherwise

j

j jc
jj

c

p
p wp

wx
w




    

    



 
1

n
k

j j j

j

p w x C


      

Wirtschaftsinformatik und Operations Research 428

Convexity of the Lagrangian dual

 We obtain the objective function of the Lagrangian

dual

 Clearly, if x is kept fixed, this function is linear in π

 Thus, by choosing the maximum of these linear

functions, we obviously obtain a convex objective

function of the Lagrangian dual

 Note that this function becomes concave if we select

the minimum of the linear functions

 In what follows, in case of a maximization problem, we

introduce

          1 1Maximize , T TZ x c x b A x

    xz max Z x,  % %

Wirtschaftsinformatik und Operations Research 429

Subgradient method – Description

 Owing to the convexity of the objective function, we are able
of applying a subgradient method

 This method commences with initial multipliers

 By selecting a subgradient, we try to improve this multiplier in
order to minimize the resulting objective function value

 Specifically, we subtract this subgradient multiplied with an
increment rate

 The increment rate is chosen in order to reduce the multipliers
as much as possible, but without missing optimal constellations

 Unfortunately, this cannot be guaranteed

 In what follows, we give the formalized definition of the
subgradient method

Wirtschaftsinformatik und Operations Research 430

In general: Subgradient method

1. Initialization
 Generate initial multipliers

 t:=1

2. Determination of subgradients
 Generate new subgradient

3. Stopping criterion
 If s(t)=0 and 0 is feasible subgradient, then terminate

4. Increment update
 Determine an increment rate

5. Update

 Set

 For all i, do:

 t:=t+1; Go to step 2

 1  

      t t t
s s 

 t
w

       1t t t t
w s

    

   1 1
0 :=0

t t

i i

    

Wirtschaftsinformatik und Operations Research 431

Additional information

 Step 3 (Stopping criterion)

 Clearly, if s=0 is a valid subgradient, we have found an

optimal value for π

 This results directly from the definition of subgradients

 Clearly, if s=0 is a valid subgradient, we obtain

       

          

1 1

,

: : 1

Thus, we may identify a hyperplane with

, 2

m m T

s T

s IR IR z s z

H z s z z z z

          

           

       1 : 0

 is an optimal multiplier

m TIR z z z          





Wirtschaftsinformatik und Operations Research 432

Illustration

3 

 z 

1 2

subgradient s=0

becomes valid. Thus,

we have found

optimal multipliers π

Wirtschaftsinformatik und Operations Research 433

Main problems

 Within the subgradient approach, several parameters are
difficult to define

 Termination criterion

 It is frequently impossible to decide whether 0 is a valid
subgradient or not

 Consequently, many methods make use of a predetermined
number of iterations

 Finding an appropriate increment rate is a complex task that
requires significant insights into the respective problem
structure

 For a successful convergence of the calculation, the increment
rate has the limiting value 0

 However, the sum of all rates used throughout the calculation is
unlimited in order to cover the entire solution space

Wirtschaftsinformatik und Operations Research 434

Increment rate – Approach of Polyak

 Increment rate is determined according to the

distance to a lower bound/best-known solution value

 Specifically, larger steps are always conducted as long

as there is a significant distance to the bound

 Otherwise, as distances become smaller, the

increment rate is significantly reduced

 Formula

 
     

 

   
 

1 1 1

2
, 2

2

t t
t

LR
t t

t
t T

z z
w

s

 

 
 

    
     

Wirtschaftsinformatik und Operations Research 435

Generating subgradients

 How to generate subgradients?

 If x is a solution of the Lagrangian problem for

 Then, s is a valid subgradient, with

 Why? Let us consider

 We substitute accordingly


1 1s b A x  

     1 1: :m m TIR s IR z s z          

     

     

 

   

        

             

      



        

%

1 1 1

1 1 1 1

1 1

1 1

:

Due to the definition of , there may be an improved solution x for .

Therefore, we conclude

T
m

T
T T

T T

T T

IR z b A x

c x b A x b A x

c x b A x

z

c x b A x z

Wirtschaftsinformatik und Operations Research 436

Interpretation of subgradients

 Clearly, if a restriction i is not fulfilled by the solution x
generated for the current multiplier ,

we face the following constellation

 Consequently, the subgradient increases these penalties if
there is a violation

 Otherwise, these penalties are reduced by the product of
increment rate and resulting gap in the respective complex
restriction (given by A1 and b1)

 Note that all calculations and conclusions are valid only if all
multipliers are positive

 Thus, we correct all negative entries πi<0 to zero after being
calculated

 Consequently, we obtain

 1 1Maximize T TZ c x b A x      

        1
max ,0

t t t t

i i iw s
    



Wirtschaftsinformatik und Operations Research 437

Example

 Let us apply the approach of Polyak to our problem

 We set

 Moreover, we have an initial solution xini=(0,1,1) with zini=12

 Thus, by using zbound=zini=12, we obtain the following results

   0

1 2 3 1 2 0
t

x x x          

Iteration

1 0 (1,1,1) 16 -2 2

2 4 (0,0,0) 40 10 14/25

3 0 (1,1,1) 16 -2 2

4 4 (0,0,0) 40 10 14/25

 x  z   ts
 tw

Wirtschaftsinformatik und Operations Research 438

Example – Continuation

 We modify    0

1 2 3 1 0,25 0
t

x x x          

Iteration

1 0 (1,1,1) 16 -2 0,25

2 0,5 (1,1,1) 15 -2 0,188

3 0,88 (1,1,1) 14,25 -2 0,141

4 1,16 (0,1,1) 14,31 2 0,145

5 0,87 (1,1,1) 14,27 -2 0,142

6 1,15 (0,1,1) 14,3 2 0,144

7 0,86 (1,1,1) 14,27 -2 0,142

8 1,15 (0,1,1) 14,29 2 0,143

9 0,86 (1,1,1) 14,28 -2 0,142

10 1,15 (0,1,1) 14,29 2 0,143

11 0,86 (1,1,1) 14,28 -2 0,143

12 1,14 (0,1,1) 14,29 2 0,143

 x  z   t
s  t

w

Wirtschaftsinformatik und Operations Research 439

Example – Observations

 Unfortunately, it turns out that a convergence of the

subgradient method cannot be guaranteed

 However, for the example we may provide a

converging calculation by setting

 Note that – aside from subgradient methods – the

literature provides a large variety of alternative

procedures for finding optimal subgradients

 
     

 

   
 

1 0 1

2
10

, 0,5

2

t t
t

LR
t t

t
t

z z
w

s

 

 
 

    
     

Wirtschaftsinformatik und Operations Research 440

5.3 A LR approach for the sTSP

 In what follows, we introduce a second
Branch&Bound approach to the symmetric TSP

 It bases on a much more sophisticated lower bound

 This bound is obtained by generating a 1-tree and
bases on the following cognitions

 A Traveling Salesman tour defines a spanning tree after
erasing one node s from the tour and its connecting
edges

 A lower bound therefore can be determined by taking
the length of the minimal spanning tree plus the
weight of two minimally chosen edges that connect the
spanning tree with s

Wirtschaftsinformatik und Operations Research 441

5.3.1 Deriving a new lower bound

 Bearing these cognitions in mind, we obtain a new lower

bound as follows

 We isolate node s out of the set of nodes V and erase this node

from V. We define V’=V-{s} and eliminate all edges that

connect s with the rest of the graph

 Subsequently, we calculate the MST in the remaining graph

 Finally, we add the minimally weighted edges connecting

node s with the MST

 Clearly, this bound LB(s) depends on the choice of node s

 Therefore, the node s is sought that maximizes this bound

 In literature, this bound is denoted as the max 1-tree bound

Wirtschaftsinformatik und Operations Research 442

Symmetric case: Parameters and variables

   

 
 

,

,

Parameterss

: Number of nodes (customers)

1 : Costs for using the edge

Variables

1 : Binary variable that is one if and only if the

path of the salesman uses the edge

i j

i j

N

c i j N i, j

x i j N

i, j

  

  

Wirtschaftsinformatik und Operations Research 443

Symmetric case: Restrictions

   

   
   

, ,

,

,

1. 1,..., : 2 Each node has two neighbors

2. represents a 1-tree (connected undirected graph with exactly one cycle)

3. , 1,..., : 0 1

4. , 1,..., : is an integer

i j j ij i j i

i j

i j

i N x x

x

i j i j N x

i j i j N x

 
   

    

  

 

Wirtschaftsinformatik und Operations Research 444

1-tree tour representation

 A 1-tree is a connected undirected graph with n nodes and n edges
comprising a single cycle

 Thus, by ensuring degree 2 for each node, depending on the starting point
(and read direction), alternative tours of equal length may result

1
2

3 4

5

1 3 2 5 4

1 4 5 2 3

Wirtschaftsinformatik und Operations Research 445

Trees

 In order to connect locations with a minimal number

of arcs, trees are used

 A tree comprises

 No isolated node, i.e., it is connected

 No cycle

 In a directed graph, each node in a tree has a single

unambiguously defined predecessor (i.e., its father

node)

 A set of unconnected trees is denoted as a forest

Wirtschaftsinformatik und Operations Research 446

Trees – Some attributes

5.3.1.1 Lemma

We consider an undirected graph N=(V,E) with n

nodes. The following attributes are equivalent

(1) N is connected and has no cycle

(2) Each pair of nodes is connected by an

unambiguously defined path

(3) N is connected and has n-1 arcs

(4) N has no cycle and has n-1 arcs

Wirtschaftsinformatik und Operations Research 447

Proof of Lemma 5.3.1.1

 (1)  (2)

Since N is connected, for each pair of nodes there is a
path connecting them. Since N is without a cycle, these
paths are unambiguously defined. Otherwise, a cycle
can be constructed

 (2)  (1)

Since each pair of nodes is connected, N is connected.
In consequence of unambiguous paths, N has no cycle

Wirtschaftsinformatik und Operations Research 448

Proof of Lemma 5.3.1.1

 (4)  (3)

This proof is given by induction for the number of
nodes n

n=3: trivial

n>3: we consider the step from n to n+1:

Let N be a network with n+1 nodes and n arcs. Since N
has no cycle, there are nodes with a node degree of
less than 2. Otherwise, there would be a cycle.

At first, we show that these nodes have degree 1. Let
us assume that these nodes have degree 0. We
identify one of these nodes, let us say node k.

Wirtschaftsinformatik und Operations Research 449

Proof of Lemma 5.3.1.1

 We obtain a network N’ with n nodes and n arcs.
Moreover, we erase arc (s,t) and obtain a network N’’
without cycle, but with n nodes and n-1 arcs. Thus, by
induction, we conclude that N’’ is connected. By
reinserting (s,t), we get a cycle. Thus, we conclude
degree(k)=1

 Now, we erase node k and the arc emerging from it

 By induction, we know that the remaining network is
connected and has n nodes and n-1 arcs

 Consequently, we obtain the proposition by
reinserting k and the connecting arc

Wirtschaftsinformatik und Operations Research 450

Proof of Lemma 5.3.1.1

 (3)  (4)

Trivial since each connected network with n nodes and n-1 arcs is
without any cycle

 (1)  (4)

Again, we give this proof by induction for the number of nodes n

We commence with n=3. Trivial case.

n+1>3: We assume by induction that the assumption holds for
networks with n≥3 nodes. As shown before, since N is without
any cycle, there is a node k in N with degree(k)=1. By erasing
node k and the arc starting from it, we generate N’ out of N.
Clearly, N’ is still connected and by induction we know that N’
has n nodes and n-1 arcs. Consequently, by reinserting k and the
arc starting there, the proposition follows immediately

Wirtschaftsinformatik und Operations Research 451

Proof of Lemma 5.3.1.1

 (4)  (1)

Since N has no cycle and has n-1 arcs connecting n
nodes, N must be connected

Consequently, the propositions of Lemma 5.3.1.1
follow

Wirtschaftsinformatik und Operations Research 452

Spanning trees

5.3.1.2 Definition

We consider a network N=(V,E) with n nodes. A
spanning tree ST(N) of N is a tree that connects all
nodes of N. We denote a spanning tree as a minimal
spanning tree (ST*(N)) of N if the sum of weights of all
used arcs is minimal, i.e., there is no other spanning
tree ST(N) of N with a lower total weight.

 In what follows, we denote L(ST*(N)) as the total
weight of the minimal spanning tree of network N

Wirtschaftsinformatik und Operations Research 453

Example of a spanning tree

1

2 5

6

3

4

2

18

16

20
4

12

10

6
8

14

1

5

6

3

4

2

16

20

12

10

14

Wirtschaftsinformatik und Operations Research 454

Calculating its weight

 The total weight amounts to 16+20+10+12+14=72

 In what follows, we consider minimum spanning trees

and crucial attributes of them

 In order to calculate minimum spanning trees, there is

one particular attribute that allows us to generate

very efficient construction procedures

Wirtschaftsinformatik und Operations Research 455

An attribute of minimum spanning trees

5.3.1.3 Lemma

Let X be a subset of the nodes of N=(V,E), and let edge

e be the smallest edge connecting X to V-X. Then,

edge e is part of a minimum spanning tree

Wirtschaftsinformatik und Operations Research 456

Proof of Lemma 5.3.1.3

 Let us suppose there is a minimum spanning tree T not
containing edge e

 Furthermore, let e=(u,v), with u in X and v not in X

 Then, since T is a spanning tree, it contains a unique path from
u to v, which, together with e, forms a cycle in N

 This path comprises another edge f connecting X to V-X

 T∪{e}-{f} is another spanning tree S

 It has the same number of edges and remains connected since
you can replace any path containing f by one going the other
way around the cycle

 Since T was optimally chosen, it has identical weight as S, and
therefore it holds: w(f)=w(e)

 Consequently, the newly generated spanning tree is also
minimal and contains edge e

 This completes the proof

Wirtschaftsinformatik und Operations Research 457

Consequences

 Lemma 5.3.1.3 provides us with important knowledge

for generating minimum spanning trees

 Based on these cognitions, scientific literature

introduces two different procedures for calculating

minimum spanning trees

 The procedure of Prim

 The procedure of Kruskal

Wirtschaftsinformatik und Operations Research 458

The procedure of Prim

 Input: Network N=(V,E)

 This procedure generates a tree T step by step

 For this purpose, all edges are initially sorted according to their
weight in non-increasing order

 The algorithm commences with the edge that has least costs
and inserts it into the tree T. Break ties arbitrarily

 Subsequently, a least costs edge is inserted that is connected
to a node of the already generated tree. Note that the other
node of this edge does not belong to the tree before insertion.
Again, break ties arbitrarily

 As soon as all nodes have become members of the generated
tree, the algorithm terminates

 Output: Minimal spanning tree ST*(N)

Wirtschaftsinformatik und Operations Research 459

The procedure of Prim – Example

1

2 5

6

3

4

2

18

16

20
4

12

10

6
8

14

1

2 5

6

3

4

2

18

16

20
4

12

10

6
8

14

Wirtschaftsinformatik und Operations Research 460

The procedure of Prim – Example

1

2 5

6

3

4

2

18

16

20
4

12

10

6
8

14

1

2 5

6

3

4

2

18

16

20
4

12

10

6
8

14

Wirtschaftsinformatik und Operations Research 461

The procedure of Prim – Example

1

2 5

6

3

4

2

18

16

20
4

12

10

6
8

14

1

2 5

6

3

4

2

18

16

20
4

12

10

6
8

14

Wirtschaftsinformatik und Operations Research 462

ST*(N) – Calculating its weight

 The total weight amounts to 2+8+6+10+4=30

 This spanning tree is optimal

Wirtschaftsinformatik und Operations Research 463

The procedure of Prim: Correctness

 Clearly, the correctness of this procedure follows

immediately by applying Lemma 5.3.1.3

Wirtschaftsinformatik und Operations Research 464

The procedure of Prim: Complexity

 In order to execute the procedure of Prim efficiently, it can be
implemented by making use of min-heaps

 This leads to the following program

 Prim with heaps:
 Make a heap of values (vertex, edge, weight(edge))

Initially (v,-,infinity) /* Current distance to tree */

 Insert least cost edge into T (i.e., the connected nodes) and
update all weights accordingly

 While tree T has fewer than n vertices
 Let (v,e,weight(e)) being the smallest weight in the heap

 Remove (v,e,weight(e)) from the heap

 Add v and e to tree T

 For each edge f=(u,v)
– If u is not already in T, find value (u,g,weight(g)) in heap

– If weight(f)<weight(g), replace (u,g,weight(g)) with (u,f,weight(f))

Wirtschaftsinformatik und Operations Research 465

The procedure of Prim: Complexity

 Since update operations on heaps can be applied in
time O(log n), we have O(m log n) steps for building
the heap

 However, by using Fibonacci heaps, this is possible
even in asymptotic time O(1), and therefore we
obtain O(m) as the total running time for performing
all updating operations

 Moreover, direct access for each node to its
corresponding heap element that represents the
closest connection to the tree is maintained

 Therefore, all in all, we have a running time of order
O(m+n log n)

Wirtschaftsinformatik und Operations Research 466

The procedure of Kruskal

 Input: Network N=(V,E)

 This procedure generates a sequence of sets of trees originally

unconnected (i.e., forests)

 As soon as the forest becomes a tree, ST*(N) is generated

 Sort the edges in set E in increasing order

 Keep a subgraph S of N, initially empty

 For each edge e in sorted order

 if the endpoints of e are disconnected in S

 add e to S

 Output: S=ST*(N)

Wirtschaftsinformatik und Operations Research 467

The procedure of Kruskal – Example

1

2 5

6

3

4

2

18

16

20
4

12

10

6
8

14

1

2 5

6

3

4

2

18

16

20
4

12

10

6
8

14

Wirtschaftsinformatik und Operations Research 468

The procedure of Kruskal – Example

1

2 5

6

3

4

2

18

16

20
4

12

10

6
8

14

1

2 5

6

3

4

2

18

16

20
4

12

10

6
8

14

Wirtschaftsinformatik und Operations Research 469

The procedure of Kruskal – Example

1

2 5

6

3

4

2

18

16

20
4

12

10

6
8

14

1

2 5

6

3

4

2

18

16

20
4

12

10

6
8

14

Wirtschaftsinformatik und Operations Research 470

ST*(N) – Calculating its weight

 The total weight amounts to 2+8+6+10+4=30

 This spanning tree is optimal

Wirtschaftsinformatik und Operations Research 471

The procedure of Kruskal: Correctness

 Clearly, the correctness of this procedure also follows

immediately by applying Lemma 5.3.1.3

Wirtschaftsinformatik und Operations Research 472

The procedure of Kruskal: Complexity

 Since all edges are sorted at the beginning, we obtain

the running time for this step of order O(m log(m))

 Subsequently, we erase n-1 times the edge with

lowest weight bridging two separated sets of nodes.

Thus, all in all, we have a running time of order O(m)

 All in all, we have complexity O(m + m log m)

 Since m is of order O(n²), we obtain O(m log n) as the

asymptotic running time

Wirtschaftsinformatik und Operations Research 473

Observation

5.3.1.4 Lemma

Let N be a network with n nodes and symmetric

distance matrix. Moreover, T* is an optimal tour of

the TSP. Additionally, T0 is an optimal open tour in N

between source s and destination t. Then, it holds

that:

      

      

* *

*

0

1
1 1

2

L ST N L T
n

L ST N L T

 
   
 



Wirtschaftsinformatik und Operations Research 474

Proof of Lemma 5.3.1.4

 Since we can generate a spanning tree by erasing a
single edge from an optimal cyclical TSP tour in a
network N, ST*(N) is a lower bound for an open TSP
tour

 Therefore, we erase the edge with maximal weight
dmax from the cyclical TSP tour

 Therefore, it holds:

 Moreover, since the corresponding open tour is a
spanning tree, the second proposition follows
immediately

      * * *

max

1
1L ST N L T d L T
n

      
 

Wirtschaftsinformatik und Operations Research 475

Generating a minimum 1-tree

5.3.1.5 Definition

A minimum 1-tree of an undirected graph N=(V,E) is a 1-tree with

minimum total weight.

5.3.1.6 Algorithm

A minimum 1-tree of an undirected graph N=(V,E) is generated by

the following two steps:

1. Compute the minimum spanning tree S=ST*(N) of network N

2. Insert into S an edge with minimum weight of network N that

does not belong to ST*(N)

Output: 1-tree S

Wirtschaftsinformatik und Operations Research 476

Correctness of Algorithm 5.3.1.6

 Clearly, the algorithm generates a 1-tree since ST*(N) is a tree

while a single edge is added

 Hence, it remains to show that S (the outputted 1-tree) is a

minimum 1-tree

 We prove this claim by contradiction

 Suppose 1-tree T is a minimum 1-tree that is different from S.

 Since S was built from a minimum spanning tree, we know that

the tree directly proceeding adding the last edge f (the cycle-

inducing edge) was minimal.

 Hence, the total weight of any spanning subtree of T is larger

or equal to the total weight of S minus the weight of f

Wirtschaftsinformatik und Operations Research 477

Correctness of Algorithm 5.3.1.6

 Moreover, we know that both 1-trees (S and T) comprise a single

cycle

 Case 1: There is no edge in the cycle of T that does not belong to

S. Hence, both cycles are identical. Then, we can erase edge f (the

edge lastly added by Algorithm 5.3.1.6 (it completed the cycle))

from both 1-trees (results are the trees S’ and T’) and know that

the resulting graphs are spanning trees. Hence, it holds that

L(S’)≤L(T’) and L(S)=L(S’)+L(f)≤L(T’)+L(f)=L(T)

 Case 2: There is, at least, one edge, let say the edge e, in the cycle

of T that does not belong to S. We erase e from T and get the

spanning tree T’. It holds that ST*(N)≤L(T’). Moreover, since

ST*(N) is a tree, adding e builds a 1-tree. So, the weight of the

final edge added by Algorithm 5.3.1.6 is not larger since it was

minimally chosen. Hence, S is a minimum 1-tree.

Wirtschaftsinformatik und Operations Research 478

5.3.2 Held-Karp bound

 In what follows, we introduce a much tighter bound

 It bases on the cognitions just obtained, but extends this
idea considerably

 Specifically, it improves this basic bound (that was
depicted above) iteratively by applying a specific
Lagrangian Relaxation combined with a subgradient
method

 Therefore, in several iterations, obtained bounds are
getting tighter

 Besides its technical specifics, focus is set to the basic
ideas of the approach

 Basically, it may provide tight bounds to the TSP

Wirtschaftsinformatik und Operations Research 479

Transforming the symmetric TSP

 Again, we commence with the following problem

   
 

 

 

,

,

Parameters

: Number of nodes (customers)

1 : Costs for using the edge

1,..., : Distinguished node in the network

0 : Positive cost multiplier for node 1,...,

Variables

1 : Bin

i j

i

i j

N

c i j N i, j

s N

g i N

x i j N

  



 

  

 
ary variable that is one if and only if the

edge is used i, j

Wirtschaftsinformatik und Operations Research 480

Symmetric TSP – Restrictions

 Minimize

 Subject to

 

 

   

 

 

   



    

 


, ,

,, 1,..., with

,

,

(1) 1,..., : 2

(2)

(3) The variable set defines a 1-tree

(4) , 1,..., : 0,1

i j j ki j k j

i ji j N i j

i j

i j

j N x x

x n

x

i j N i j x

1

, ,

1 1

N N

i j i j

i j i

Z x c


  

 

Wirtschaftsinformatik und Operations Research 481

Modifying the problem

By identifying node s, we now obtain

 Minimize

 Subject to

 

 

   

 

 

 

    

 



    

 
 


, ,

, ,

,, 1,..., with

,

,

(1) 1,..., with : 2

(2) 2

(3)

(4) The variable set defines a 1-tree

(5) , 1,..., : 0,1

i j j ki j k j

i s s ki s k s

i ji j N i j

i j

i j

j N j s x x

x x

x n

x

i j N i j x

1

, ,
1 1

N N

i j i j

i j i

Z x c


  

 

Wirtschaftsinformatik und Operations Research 482

Relaxing the problem

By relaxing hard restriction 1, we obtain

 Minimize

 Subject to

 
1 1

, , , ,

1 1 1 1 1

2
N N N i N

g i j i j i h i i j

i j i i h j i

L x x c g x x
 

      

 
      

 
   

 

   

 

 

 



    

 


, ,

,, 1,..., with

,

,

(1) 2

(2)

(3) The variable set defines a 1-tree

(4) , 1,..., : 0,1

i s s ki s k s

i ji j N i j

i j

i j

x x

x n

x

i j N i j x

Wirtschaftsinformatik und Operations Research 483

…and transforming

 Thus, we obtain

   
1

, ,

1 1 1

2
N N N

g i j i j i j i

i j i i

L x c g g x g


   

      

 

   

 

 

 



    

 


, ,

,, 1,..., with

,

,

(1) 2

(2)

(3) The variable set defines a 1-tree

(4) , 1,..., : 0,1

i s s ki s k s

i ji j N i j

i j

i j

x x

x n

x

i j N i j x

Wirtschaftsinformatik und Operations Research 484

Concave objective function

� � = ��	
�� � =

���

���

 (��,� + �� + ��)

�

�����
⋅ ��,� − 2 ⋅
 ��

�

���
 .

 In contrast to the objective function of the Lagrangian

Problem of the Knapsack problem (a convex function),

in this case we obtain the following concave objective

function

 By multiplying this objective function with „-1“ we

obtain a convex function.

 This implies that the subgradient method works

analogously on concave functions.

Wirtschaftsinformatik und Operations Research 485

Observations

 By relaxing the hard restriction (1), we have obtained a 1-
tree problem which can be easily solved by our known
minimum spanning tree problems

 Moreover, node degrees unequal to 2 modify the
objective function value

 Consequently, feasible TSP tours are not affected by the
relaxed restriction

 Thus, by carefully modifying the multipliers, we pursue
moving towards a cyclical tour, i.e., a TSP solution

 Therefore, our intention is to iteratively change the
multipliers in order to force the spanning tree generation
procedure to result in a TSP solution

Wirtschaftsinformatik und Operations Research 486

Cognitions

 Basically, we obtain Lg(y)  Z(x) for optimal solutions

to the relaxed problem

 This can be easily explained by the fact that each

feasible TSP tour t is also a feasible solution to the

relaxed problem and – due to the two neighbor

restrictions – leads to identical costs, i.e., Lg(t)=Z(t),

for all t

 Hence, we have to generate suitable multipliers

 This can be done by adequate subgradient methods

Wirtschaftsinformatik und Operations Research 487

Example

 We consider the network depicted above

 Basically, we can choose eight nodes as the

distinguished node s

 Clearly, this choice has significant impact on the

obtainable 1-tree bound

3

4

8|0

2|0

3|0

4|0

5|0

6|0

7|0

1|0

4 4

2

3
1

3

4

4

2

4

4

1
3

Wirtschaftsinformatik und Operations Research 488

Example – Min 1-tree

 If we choose node 1 as node s, we obtain a minimum
1-tree with total weight 20 (bold edges)

 Identical bounds are obtained by selecting nodes 3, 4,
5, or 6

 However, by selecting node 2, 7, or 8, we only obtain
the total weight 19

3

4

8|0

2|0

3|0

4|0

5|0

6|0

7|0

1|0

4 4

2

3
1

3

4

4

2

4

4

1
3

Wirtschaftsinformatik und Operations Research 489

Influence of multipliers

3,5

3

8|-1

2|-1

3|0,5

4|-1

5|1

6|0

7|-1

1|0

3
3,5

1,5

3
2,5

4

4,5

4

1

2

3

-1
2

 By applying the multipliers (summation value is -2,5) that are
defined above, we obtain a minimum 1-tree with total weight
15,5 (bold edges)

 Thus, by correcting the values, we obtain 15,5+5=20,5

 Hence, a new lower bound of 21 is obtained

 Please note that this does not necessarily work that smoothly

 The next slide shows a negative example

Wirtschaftsinformatik und Operations Research 490

Multipliers – Negative result

 Here we obtain a minimal 1-tree with total weight 20

 Thus, since the total sum of multipliers sums up to 2, we

obtain 20-4=16

 This is not promising since it decreases the bound

6

4

8|0

2|0

3|3

4|3

5|2

6|-3

7|-3

1|0

7
10

5

5
6

2

4

6

-1

4

4

-2
-3

Wirtschaftsinformatik und Operations Research 491

A subgradient method (or ascent method)

 Consequently, we have to learn how to modify the
g-vector efficiently in order to tighten the lower bound,
i.e., we want to find a g*-vector that fulfills

 Clearly, when we obtain a TSP tour for the first time, we
have generated an optimal solution of our problem

 Such a feasible TSP tour can be identified by the fact that
all nodes have a degree of 2

 Consequently, in this special case, multipliers have no
impact on the objective function value

   
1

, ,

1 1 1

2
N N N

g x g i j i j i j i

i j i i

Max Min L x c g g x g


   

      

Wirtschaftsinformatik und Operations Research 492

Notations

 In what follows, we make use of the following

parameters

 
 

 
 

1

*

1

: minimal 1-tree of the Lagrangian problem defined by the

multipliers ,...,

: objective function value of the optimal solution to the

Langrangian problem defined by the multipliers ,...,

n

g

n

T g

g g

L x

g g

d  
 

 

: node degree vector of the nodes. Specifically, we obtain

the degree of node by

2 : node degree vector of the nodes reduced by 2 for all values

: Step size in iteration

i

j

T n

i d T

d T n

j





Wirtschaftsinformatik und Operations Research 493

Update of multipliers

 During the iterative calculation of the lower bound,

the following update formula is applied in order to

generate new multipliers

 Specifically, gj+1 is generated out of gj

 Clearly, nodes with larger degrees are penalized by

higher increases of the multipliers

 Node degrees of 2 are not affected at all

 Bonus is given to visit nodes with degree 1

   1 2j j

jg g d T g    

Wirtschaftsinformatik und Operations Research 494

Observation

 Clearly, this update handling keeps an identical sum of

multipliers, i.e., g1+…+gn=constant

 This can be easily explained by

    

  

  

1

1 1

1 1 1

1 1

1 1

2

2

Since a 1-tree comprises just edges, we obtain

a total node degree of 2

2

2 2

n n
j j

i i j i

i i

n n n
j

i j i j

i i i

n n
j

i j i j

i i

n n
j j

i j j i

i i

g g d T g

g d T g

n

n

g d T g n

g n n g



 

  

 

 

   

    



     

       

 

  

 

 



 

 

 

Wirtschaftsinformatik und Operations Research 495

Update of step size δj

 In order to obtain the maximum lower bound, i.e., in

order to find the optimal multipliers, Held et al.

propose a step size update that complies with the

rules defined by Polyak

 These rules are basically

0

lim 0 and j j j

j






   

Wirtschaftsinformatik und Operations Research 496

Update of step size

 Held et al. (1974) propose the following update

formula

 Starting value is γ=2

 This value is kept for 2n iterations

 Subsequently, γ is reduced after n, n/2, n/4,…

iterations by applying a reduction factor λ

 

   2

1

2

up

g

j n

i

i

Z L x

d T g



 


 

Wirtschaftsinformatik und Operations Research 497

Extended versions of the bound

 Empirical experiments underline that the bound can become

very tight (i.e., close to an optimal solution), and therefore

should be integrated into enumeration processes

 However, several authors propose specific extensions

 Particularly, parameter settings are modified

 Specifically, it has been observed that specific nodes cycle

between a node degree of 1 and >2

 Therefore, better results have been obtained by including the

node degree difference of the 1-tree considered before, i.e., by

considering the last two 1-trees

 For instance, different approaches are introduced by Smith and

Thompson (1977) and Reinelt (1994)

Wirtschaftsinformatik und Operations Research 498

5.3.3 The approach of Reinelt (1994)

 Extends the Held-Karp bound

 It iteratively solves 1-tree problems and terminates

 if a TSP tour is obtained

 the generated bound is large enough (depends on the
application)

 a maximum number of iterations T has been executed

 In the approach, the following update formulas are used

        
    

     
 

1

1

1

1

1

1

0.7 2 0.3 2 if 1

1 otherwise

with 0, 1,..., , 100,1000 , 0.99,...,0.999 , and

0.5,...,1.0 if

j j j

i j i i
j

i

i

i

j

g d T g d T g j
g

d T g

g i n T







        
 
  


    











j=0

 otherwisej




 

Wirtschaftsinformatik und Operations Research 499

A Branch&Bound approach with LR

 Based on the bound calculation, we introduce a second

Branch&Bound approach

 It considers B&B nodes in FIFO manner, i.e., leafs of the

B&B tree are considered in sequence of their occurrence

 It directly uses the generated 1-tree in order to select a

branching variable

 Basically, we know that a 1-tree has some nodes with higher

node degree than 2

 Hence, in the current B&B node, we are looking for a node in

the generated 1-tree with minimal node degree larger than 2

 Note that at least one of the incoming edges has to be

forbidden in order to result in an optimal TSP tour

Wirtschaftsinformatik und Operations Research 500

Structure of the approach

 At first, we generate an initial solution by applying a simple

heuristic

 We make use of the nearest neighbor heuristic

 Then, after generating a first bound in the root node, we

consider the oldest leaf

 Here, we consider the generated 1-tree with maximal bound

 We take a node with minimal degree larger than 2 and branch

accordingly

 I.e., we forbid all edges one by one in order to reduce the

degree of this node

 In what follows, we consider a simple 10-node example

Wirtschaftsinformatik und Operations Research 501

10 Nodes Euclidean Problem

Node 1 2 3 4 5

X-Coordinate 18 62 71 28 77

Y-Coordinate 84 71 77 72 14

Node 6 7 8 9 10

X-Coordinate 79 78 4 62 68

Y-Coordinate 6 11 100 63 48

Wirtschaftsinformatik und Operations Research 502

Distance matrix

1 2 3 4 5 6 7 8 9 10

1 45.88 53.46 15.62 91.55 99.02 94.49 21.26 48.75 61.61

2 10.82 34.01 58.94 67.19 62.1 64.85 8 23.77

3 43.29 63.29 71.45 66.37 70.84 16.64 29.15

4 75.93 83.41 78.87 36.88 35.17 46.65

5 8.25 3.16 112.81 51.24 35.17

6 5.1 120.25 59.48 43.42

7 115.75 54.41 38.33

8 68.8 82.46

9 16.16

10

Wirtschaftsinformatik und Operations Research 503

Nearest neighbor application

 An initial solution is generated by applying the

nearest neighbor heuristic

 We commence this process with node 6

 We obtain a first TSP tour with length UB=278.83

Wirtschaftsinformatik und Operations Research 504

Starting bound: First 1-tree generation

 Depending on λ, we obtain different initial lower bound
values

 Moreover, we set δ1=1.0 and T=300

 In what follows, we apply λ=0.99

 After 300 iterations, we obtain a 1-tree with cost 269.16,
i.e., LB=269.16. In this 1-tree, node 2 has degree 3. The
used edges connecting node 2 are (2,3), (2,9), and (2,4).

λ= 0.95 0.96 0.97 0.98 0.99 0.998

LB= 221.34 225.5 232.45 245.18 269.16 269.54

Wirtschaftsinformatik und Operations Research 505

First branching step

 Unfortunately, we cannot fathom any node since

current UB = 278.83 > LB applies for all nodes

 Thus, we proceed with node 2

(2,3)  x23 = 0 (2,9)
 x23 = 1

 x29 = 1

 x24 = 0

 x23 = 1

 x29 = 0

3

LB=270.48

1

LB=269.16

4

LB=269.53

(2,4)

2

LB=278.32

Wirtschaftsinformatik und Operations Research 506

The next branching step with node 2

3

LB=270.48

5

LB=284

6

LB=281

7

LB=280

(2,3)

1

LB=269.16

4

LB=269.53

(2,4)(2,9)

2

LB=278.32

 Now, we can fathom all new nodes since current

UB = 278.83 < LB applies

(4,1) (4,2) (4,8)

Wirtschaftsinformatik und Operations Research 507

Branching node 3

 Node 9 is NOT generated since we have set x23 = 1 at the father
node and therefore in this subtree

3

LB=270.48

5

LB=284

6

LB=281

7

LB=280
8

LB=270.02

9 10

LB=271

1

LB=269.16

4

LB=269.53

2

LB=278.32

(4,1) (4,2) (4,8) (2,1) (2,3) (2,8)

(2,3) (2,4)(2,9)

Wirtschaftsinformatik und Operations Research 508

Branching node 4

3

LB=270.48

5

LB=284

6

LB=281

7

LB=280
8

LB=270.02
9

10

LB=271

1

LB=269.16

4

LB=269.53

2

LB=278.32

(4,1) (4,2) (4,8) (2,1) (2,8)

11

LB=273.42

12

LB=269.54

13

LB=269.54=UB

(4,1) (4,6) (4,8)

(2,3) (2,4)(2,9)

Wirtschaftsinformatik und Operations Research 509

Branching node 4

 Fortunately, node 13 provides us with a new TSP tour

 Thus, we can improve UB to 269.54

 Consequently, we can fathom the nodes 8, 9, 10, 11,

and 12

 Thus, there is no active leaf available anymore

 Node 13 determines an optimal solution

 Optimal TSP tour is 1-4-6-7-5-10-9-2-3-8-1

 Tour length is 269.54

Wirtschaftsinformatik und Operations Research 510

Observations

 Switching to best-first enumeration rule can

substantially reduce the computational effort

 For instance, in the example, the nodes 5, 6, 7, 8, 9,

and 10 would not have been generated

 Furthermore, due to the subgradient method, nodes

in lower levels do not necessarily provide improved

bounds (they may be even lower (clearly, in this case

they inherit the LB value from their father))

Wirtschaftsinformatik und Operations Research 511

References of Section 5

 Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory,

Algorithms and Applications. Prentice Hall. ISBN 0-13-617549-X,

1993.

 Held, M., Karp, R.: The Traveling Salesman Problem and

Minimum Spanning Trees. Operations Research 18:1138-1162,

1970.

 Klose, A.: Standortplanung in distributiven Systemen. Modelle,

Methoden, Anwendungen. Physica-Verlag, Heidelberg, 2001.

ISBN 3-7908-1410-5.

 Leiserson, C., Demaine, E.: Introduction to Algorithms. The Mit

Press; Auflage: 3rd edition. Student. ISBN-0262533057, ISBN-13:

978-0262533058, 2009.

Wirtschaftsinformatik und Operations Research 512

References of Section 5

 Polyak, B. T.: A general method of solving extremal problems,

Soviet Mathematics Doklady 8:593-597, 1967.

 Polyak, B. T.: Minimization of unsmooth functionals, U.S.S.R.

Computational Mathematics and Mathematical Physics 14-29,

1969.

 Reinelt, Gerhard: The Traveling Salesman: Computational

Solutions for TSP Applications. Lecture Notes in Computer

Science 840, Springer-Verlag, Berlin, 1994.

 Vahrenkamp, R.; Mattfeld, D.C.: Logistiknetzwerke - Modelle für

Standortwahl und Tourenplanung. 2nd edition. Springer Gabler,

Wiesbaden, 2014.

