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5 Lagrangian Relaxation

 Basic idea:

 Integer problems have frequently a specific structure

 There is a subproblem within the entire program that can be 

solved quite efficiently

 However, there are certain restrictions that make the problem 

much more complicated

 Specifically, if we drop these restrictions, we may be able to 

provide optimal solutions efficiently

 Thus, the basic idea of the Lagrangian Relaxation is to drop the 

complex restrictions and penalize their violation by Lagrange 

multipliers in the objective function

 In order to tackle complex problems, the Lagrangian Relaxation 

has been proven as a very competitive solution technique 
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5.1 Basic structure

 We obtain the following problem structure

 The remaining problem (characterized by the restrictions 

determined in matrix A2) is easy to solve

 Thus, we transform the problem into a new structure that is 

depicted on the following slide
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Lagrangian Relaxation

 We obtain

 Attributes

 The solution space comprises all solutions to the 
original problem

 For positive vectors π, zLR(π) is obviously an upper 
bound on the objective function value of each feasible 
solution x of the original problem
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Upper Bound

 The latter is true since we know that 

 Thus, for feasible solutions and positive multipliers, 

we obtain

 Thus, an optimal solution to the Lagrange Problem 

provides an upper bound to the original problem

 1 1 0,  feasibleb A x x  

 1 1T T Tc x b A x c x       
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Transformation of objective function

 Thus, we obtain

 This modified function underlines

 That the objective function value depends on the chosen 

Lagrange multipliers π in a non-linear way 

 Moreover, these multipliers are multiplied with the variable 

vector x

 If π is kept constant, we just have a simpler problem 

working with modified c-entries

 Specifically, since the constant adder has no impact on 

optimality, we have the following modified c-entries 

   1 1T T T T Tc x b A x c A x b            

 1T T Tc c A   %
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Dual Lagrangian problem

 In what follows, we concentrate on an optimization of 
the multipliers π

 What values are promising?

 Obviously, since we are able to solve the simpler 
problem, it is reasonable to apply it to a problem that 
is the most equivalent to our original instance

 Thus, we obtain the problem

 In what follows, we tackle this problem by 
subgradient methods

  1min 0T T T

LDz c A x b         
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The Set Packing Problem

 Given is a finite set U with m elements

 Consider a list of n subsets of U

 The task is to chose as many subsets as possible …

 … under the condition that the chosen subsets have to be 
pairwise disjoint, i.e. in the final selection, no element is 
included in multiple subsets

 We use a binary vector x to denote our choice

 The subset list is expressed by a binary matrix A: 
It holds that ai,j=1, if element i is included in subset j

 In the general case, a weight wj is assigned for each subset j
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Example

 Let us consider the following instance of the Set 

Packing Problem
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Example – Lagrange Relaxation Problem

 Thus, we obtain

 If, for instance π1=π2=π3=π4=2, we obtain the 

following optimal solution
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Subgradient methods

Basic idea:

1. Generate an optimal solution xt for the Lagrange 

Relaxation with predetermined Lagrange multipliers 

πt

2. Update the Lagrange multipliers based on the found 

optimal solution xt and the found subgradients st
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Scheme

Solving the Lagrangian

Relaxation

Generation of new 

subgradients

Solving the Lagrangian

Relaxation

πt

xt

πt+1=πt-wt.st

xt+1
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Subgradient

 For its introduction, we commence with convex 

functions. Specifically, a function z is denoted as 

convex if it holds that

 With other words 
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Subgradient

 Note that s is denoted as a subgradient if it fulfills 

restriction (1)

 Note further that if z is not differentiable at position 

π, there exists an infinite set of subgradients

 To the contrary, if z is differentiable at position π, the 

subgradients are unambiguously defined
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Illustration
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5.2 A Lagrangian Relaxation for the KP

 In what follows, we consider the Knapsack Problem

 Its mathematical definition is given by
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The Lagrangian problem

 Thus, we obtain
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Conclusions

 Clearly, the Lagrangian Relaxation of the Knapsack 
Problem is characterized by the solution set S={0,1}n

 It comprises in total 2n elements

 Let us denote each element by an unambiguous index 
k, i.e., we obtain the elements xk out of {0,1}n

 Consequently, the kth element obtains the objective 
function value
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j j jx
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Further conclusions

 If π is constant, we are looking for the xk-vector that 

maximizes the objective function value

 Clearly, this function is convex since it is a maximum 

of a finite set of linear functions

 If, however, x is kept constant (set to ��), we obtain a 

linear function in π
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Example

 We resume with an instance of the Knapsack Problem

 Specifically, we have

 Clearly, since good 3 obviously outperforms good 1, 
we obtain an optimal solution by selecting the goods 
2 and 3

 This leads to an optimal objective function value of 12
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Example – Objective function value

 Let us consider the Lagrange Relaxation

 Obviously, there are 23=8 possible x-vectors
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… with the objective function values

k zLR(π)

0 10.π

1 6.π+4

2 5.π+7

3 π+11

4 7.π+5

5 3.π+9

6 2.π+12

7 -2.π+16
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Illustration
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Consequence

 Clearly, we obtain the best value 14 at π=1.0

 In order to derive the best multipliers, we may use insights into 

the structure of the Knapsack Problem

 Note that each good has a quality ratio of price divided by 

weight, i.e., qi=pi/wi

 Clearly, an optimal solution to the continuous relaxation of the 

original Knapsack Problem may be generated by selecting all 

goods in non-increasing order until the knapsack is entirely 

filled 

 Consequently, the last good, which we denote as critical, may 

be assigned only fractionally 

 Let us now consider the quality ratio qc=pc/wc of this critical 

good c
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We set π=qc=pc/wc

 Then, we obtain by

the capacity of the knapsack measured in price units 

of the critical good, i.e., what we can obtain if we 

would use its capacity entirely for carrying this critical 

good only

 But, what about the other goods with improved 

quality ratios? 

 Their contributions are determined by 

C 
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Resulting objective function value

 Clearly, this formula provides the cognition that we obtain just 

the price difference for taking a good outperforming c instead 

of c

 I.e., with other words, we obtain just the objective function 

value of the optimal solution of the LP-relaxation 

 This is obviously an upper bound of the original problem 

 The optimal solution x* to the LP-relaxation may be defined as 

follows
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Solving the Lagrangian problem

 By considering the objective function

 we may get the following optimal solution

 Obviously, this is also an optimal solution to the continuous 
relaxation of the Lagrangian problem

 We obtain the following objective function value for this 
problem
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Conclusion

 Thus, by setting 

 we obtain equal objective function values for the 

Lagrangian Relaxation and the LP-relaxation

 Consequently, we directly know that there is no 

strictly positive π-value available that leads to a 

smaller objective function value
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Convexity of the Lagrangian dual

 We obtain the objective function of the Lagrangian

dual 

 Clearly, if x is kept fixed, this function is linear in π

 Thus, by choosing the maximum of these linear 

functions, we obviously obtain a convex objective 

function of the Lagrangian dual 

 Note that this function becomes concave if we select 

the minimum of the linear functions

 In what follows, in case of a maximization problem, we 

introduce

          1 1Maximize , T TZ x c x b A x

    xz max Z x,  % %
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Subgradient method – Description

 Owing to the convexity of the objective function, we are able 
of applying a subgradient method

 This method commences with initial multipliers

 By selecting a subgradient, we try to improve this multiplier in 
order to minimize the resulting objective function value

 Specifically, we subtract this subgradient multiplied with an 
increment rate

 The increment rate is chosen in order to reduce the multipliers 
as much as possible, but without missing optimal constellations

 Unfortunately, this cannot be guaranteed

 In what follows, we give the formalized definition of the 
subgradient method
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In general: Subgradient method

1. Initialization
 Generate initial multipliers 

 t:=1

2. Determination of subgradients
 Generate new subgradient

3. Stopping criterion
 If s(t)=0 and 0 is feasible subgradient, then terminate 

4. Increment update
 Determine an increment rate

5. Update

 Set 

 For all i, do: 

 t:=t+1; Go to step 2

 1  

      t t t
s s 

 t
w

       1t t t t
w s

    

   1 1
0 :=0

t t

i i
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Additional information

 Step 3 (Stopping criterion)

 Clearly, if s=0 is a valid subgradient, we have found an 

optimal value for π

 This results directly from the definition of subgradients

 Clearly, if s=0 is a valid subgradient, we obtain
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Illustration

3 

 z 

1 2

subgradient s=0 

becomes valid. Thus, 

we have found 

optimal multipliers π
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Main problems

 Within the subgradient approach, several parameters are 
difficult to define 

 Termination criterion

 It is frequently impossible to decide whether 0 is a valid 
subgradient or not

 Consequently, many methods make use of a predetermined 
number of iterations 

 Finding an appropriate increment rate is a complex task that 
requires significant insights into the respective problem 
structure

 For a successful convergence of the calculation, the increment 
rate has the limiting value 0

 However, the sum of all rates used throughout the calculation is 
unlimited in order to cover the entire solution space
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Increment rate – Approach of Polyak

 Increment rate is determined according to the 

distance to a lower bound/best-known solution value

 Specifically, larger steps are always conducted as long 

as there is a significant distance to the bound

 Otherwise, as distances become smaller, the 

increment rate is significantly reduced

 Formula
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Generating subgradients

 How to generate subgradients?

 If x is a solution of the Lagrangian problem for 

 Then, s is a valid subgradient, with

 Why? Let us consider

 We substitute accordingly


1 1s b A x  

     1 1: :m m TIR s IR z s z          
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Interpretation of subgradients

 Clearly, if a restriction i is not fulfilled by the solution x 
generated for the current multiplier      ,        

we face the following constellation

 Consequently, the subgradient increases these penalties if 
there is a violation

 Otherwise, these penalties are reduced by the product of 
increment rate and resulting gap in the respective complex 
restriction (given by A1 and b1)

 Note that all calculations and conclusions are valid only if all 
multipliers are positive

 Thus, we correct all negative entries πi<0 to zero after being 
calculated

 Consequently, we obtain 

 1 1Maximize T TZ c x b A x      

        1
max ,0

t t t t

i i iw s
    





Wirtschaftsinformatik und Operations Research 437

Example

 Let us apply the approach of Polyak to our problem

 We set 

 Moreover, we have an initial solution xini=(0,1,1) with zini=12

 Thus, by using zbound=zini=12, we obtain the following results

   0

1 2 3 1 2 0
t

x x x          

Iteration

1 0 (1,1,1) 16 -2 2

2 4 (0,0,0) 40 10 14/25

3 0 (1,1,1) 16 -2 2

4 4 (0,0,0) 40 10 14/25

 x  z   ts
 tw
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Example – Continuation 

 We modify    0

1 2 3 1 0,25 0
t

x x x          

Iteration

1 0 (1,1,1) 16 -2 0,25

2 0,5 (1,1,1) 15 -2 0,188

3 0,88 (1,1,1) 14,25 -2 0,141

4 1,16 (0,1,1) 14,31 2 0,145

5 0,87 (1,1,1) 14,27 -2 0,142

6 1,15 (0,1,1) 14,3 2 0,144

7 0,86 (1,1,1) 14,27 -2 0,142

8 1,15 (0,1,1) 14,29 2 0,143

9 0,86 (1,1,1) 14,28 -2 0,142

10 1,15 (0,1,1) 14,29 2 0,143

11 0,86 (1,1,1) 14,28 -2 0,143

12 1,14 (0,1,1) 14,29 2 0,143

 x  z   t
s  t

w
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Example – Observations 

 Unfortunately, it turns out that a convergence of the 

subgradient method cannot be guaranteed

 However, for the example we may provide a 

converging calculation by setting 

 Note that – aside from subgradient methods – the 

literature provides a large variety of alternative 

procedures for finding optimal subgradients
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5.3 A LR approach for the sTSP

 In what follows, we introduce a second 
Branch&Bound approach to the symmetric TSP

 It bases on a much more sophisticated lower bound

 This bound is obtained by generating a 1-tree and 
bases on the following cognitions

 A Traveling Salesman tour defines a spanning tree after 
erasing one node s from the tour and its connecting 
edges

 A lower bound therefore can be determined by taking 
the length of the minimal spanning tree plus the 
weight of two minimally chosen edges that connect the 
spanning tree with s
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5.3.1 Deriving a new lower bound

 Bearing these cognitions in mind, we obtain a new lower 

bound as follows

 We isolate node s out of the set of nodes V and erase this node 

from V. We define V’=V-{s} and eliminate all edges that 

connect s with the rest of the graph

 Subsequently, we calculate the MST in the remaining graph

 Finally, we add the minimally weighted edges connecting 

node s with the MST

 Clearly, this bound LB(s) depends on the choice of node s

 Therefore, the node s is sought that maximizes this bound

 In literature, this bound is denoted as the max 1-tree bound
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Symmetric case: Parameters and variables

   

 
 

,

,
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Symmetric case: Restrictions
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1-tree tour representation

 A 1-tree is a connected undirected graph with n nodes and n edges 
comprising a single cycle

 Thus, by ensuring degree 2 for each node, depending on the starting point 
(and read direction), alternative tours of equal length may result

1
2

3 4

5

1 3 2 5 4

1 4 5 2 3
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Trees

 In order to connect locations with a minimal number 

of arcs, trees are used

 A tree comprises

 No isolated node, i.e., it is connected

 No cycle

 In a directed graph, each node in a tree has a single 

unambiguously defined predecessor (i.e., its father 

node)

 A set of unconnected trees is denoted as a forest
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Trees – Some attributes 

5.3.1.1 Lemma

We consider an undirected graph N=(V,E) with n 

nodes. The following attributes are equivalent

(1) N is connected and has no cycle

(2) Each pair of nodes is connected by an 

unambiguously defined path

(3) N is connected and has n-1 arcs

(4) N has no cycle and has n-1 arcs
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Proof of Lemma 5.3.1.1

 (1)  (2)

Since N is connected, for each pair of nodes there is a 
path connecting them. Since N is without a cycle, these 
paths are unambiguously defined.  Otherwise, a cycle 
can be constructed 

 (2)  (1)

Since each pair of nodes is connected, N is connected. 
In consequence of unambiguous paths, N has no cycle 
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Proof of Lemma 5.3.1.1

 (4)  (3)

This proof is given by induction for the number of 
nodes n

n=3: trivial

n>3: we consider the step from n to n+1:

Let N be a network with n+1 nodes and n arcs. Since N 
has no cycle, there are nodes with a node degree of 
less than 2. Otherwise, there would be a cycle.  

At first, we show that these nodes have degree 1.  Let 
us assume that these nodes have degree 0.  We 
identify one of these nodes, let us say node k. 
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Proof of Lemma 5.3.1.1

 We obtain a network N’ with n nodes and n arcs.  
Moreover, we erase arc (s,t) and obtain a network N’’ 
without cycle, but with n nodes and n-1 arcs. Thus, by 
induction, we conclude that N’’ is connected. By 
reinserting (s,t), we get a cycle.  Thus, we conclude 
degree(k)=1

 Now, we erase node k and the arc emerging from it

 By induction, we know that the remaining network is 
connected and has n nodes and n-1 arcs

 Consequently, we obtain the proposition by 
reinserting k and the connecting arc
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Proof of Lemma 5.3.1.1

 (3)  (4)

Trivial since each connected network with n nodes and n-1 arcs is 
without any cycle

 (1)  (4)

Again, we give this proof by induction for the number of nodes n

We commence with n=3. Trivial case.  

n+1>3: We assume by induction that the assumption holds for 
networks with n≥3 nodes. As shown before, since N is without 
any cycle, there is a node k in N with degree(k)=1.  By erasing 
node k and the arc starting from it, we generate N’ out of N. 
Clearly, N’ is still connected and by induction we know that N’ 
has n nodes and n-1 arcs. Consequently, by reinserting k and the 
arc starting there, the proposition follows immediately
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Proof of Lemma 5.3.1.1

 (4)  (1)

Since N has no cycle and has n-1 arcs connecting n 
nodes, N must be connected

Consequently, the propositions of Lemma 5.3.1.1 
follow
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Spanning trees

5.3.1.2 Definition

We consider a network N=(V,E) with n nodes. A 
spanning tree ST(N) of N is a tree that connects all 
nodes of N. We denote a spanning tree as a minimal 
spanning tree (ST*(N)) of N if the sum of weights of all 
used arcs is minimal, i.e., there is no other spanning 
tree ST(N) of N with a lower total weight. 

 In what follows, we denote L(ST*(N)) as the total 
weight of the minimal spanning tree of network N
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Example of a spanning tree
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Calculating its weight

 The total weight amounts to 16+20+10+12+14=72

 In what follows, we consider minimum spanning trees 

and crucial attributes of them

 In order to calculate minimum spanning trees, there is 

one particular attribute that allows us to generate 

very efficient construction procedures
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An attribute of minimum spanning trees

5.3.1.3 Lemma

Let X be a subset of the nodes of N=(V,E), and let edge 

e be the smallest edge connecting X to V-X. Then, 

edge e is part of a minimum spanning tree
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Proof of Lemma 5.3.1.3

 Let us suppose there is a minimum spanning tree T not 
containing edge e

 Furthermore, let e=(u,v), with u in X and v not in X

 Then, since T is a spanning tree, it contains a unique path from 
u to v, which, together with e, forms a cycle in N 

 This path comprises another edge f connecting X to V-X 

 T∪{e}-{f} is another spanning tree S

 It has the same number of edges and remains connected since 
you can replace any path containing f by one going the other 
way around the cycle

 Since T was optimally chosen, it has identical weight as S, and 
therefore it holds: w(f)=w(e)

 Consequently, the newly generated spanning tree is also 
minimal and contains edge e

 This completes the proof
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Consequences

 Lemma 5.3.1.3 provides us with important knowledge 

for generating minimum spanning trees

 Based on these cognitions, scientific literature 

introduces two different procedures for calculating 

minimum spanning trees

 The procedure of Prim

 The procedure of Kruskal
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The procedure of Prim

 Input: Network N=(V,E)

 This procedure generates a tree T step by step

 For this purpose, all edges are initially sorted according to their 
weight in non-increasing order

 The algorithm commences with the edge that has least costs 
and inserts it into the tree T. Break ties arbitrarily

 Subsequently, a least costs edge is inserted that is connected 
to a node of the already generated tree. Note that the other 
node of this edge does not belong to the tree before insertion. 
Again, break ties arbitrarily

 As soon as all nodes have become members of the generated 
tree, the algorithm terminates

 Output: Minimal spanning tree ST*(N)
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The procedure of Prim – Example
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The procedure of Prim – Example
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The procedure of Prim – Example
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ST*(N) – Calculating its weight

 The total weight amounts to 2+8+6+10+4=30

 This spanning tree is optimal
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The procedure of Prim: Correctness

 Clearly, the correctness of this procedure follows 

immediately by applying Lemma 5.3.1.3
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The procedure of Prim: Complexity

 In order to execute the procedure of Prim efficiently, it can be 
implemented by making use of min-heaps

 This leads to the following program

 Prim with heaps: 
 Make a heap of values (vertex, edge, weight(edge)) 

Initially (v,-,infinity) /* Current distance to tree */

 Insert least cost edge into T (i.e., the connected nodes) and 
update all weights accordingly

 While tree T has fewer than n vertices 
 Let (v,e,weight(e)) being the smallest weight in the heap 

 Remove (v,e,weight(e)) from the heap 

 Add v and e to tree T 

 For each edge f=(u,v) 
– If u is not already in T, find value (u,g,weight(g)) in heap 

– If weight(f)<weight(g), replace (u,g,weight(g)) with (u,f,weight(f)) 
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The procedure of Prim: Complexity

 Since update operations on heaps can be applied in 
time O(log n), we have O(m log n) steps for building 
the heap

 However, by using Fibonacci heaps, this is possible 
even in asymptotic time O(1), and therefore we 
obtain O(m) as the total running time for performing 
all updating operations

 Moreover, direct access for each node to its 
corresponding heap element that represents the 
closest connection to the tree is maintained

 Therefore, all in all, we have a running time of order 
O(m+n log n)



Wirtschaftsinformatik und Operations Research 466

The procedure of Kruskal

 Input: Network N=(V,E)

 This procedure generates a sequence of sets of trees originally 

unconnected (i.e., forests)

 As soon as the forest becomes a tree, ST*(N) is generated

 Sort the edges in set E in increasing order

 Keep a subgraph S of N, initially empty

 For each edge e in sorted order

 if the endpoints of e are disconnected in S

 add e to S

 Output: S=ST*(N)
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The procedure of Kruskal – Example
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The procedure of Kruskal – Example
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The procedure of Kruskal – Example
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ST*(N) – Calculating its weight

 The total weight amounts to 2+8+6+10+4=30

 This spanning tree is optimal
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The procedure of Kruskal: Correctness

 Clearly, the correctness of this procedure also follows 

immediately by applying Lemma 5.3.1.3
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The procedure of Kruskal: Complexity

 Since all edges are sorted at the beginning, we obtain 

the running time for this step of order O(m log(m))

 Subsequently, we erase n-1 times the edge with 

lowest weight bridging two separated sets of nodes. 

Thus, all in all, we have a running time of order O(m)

 All in all, we have complexity O(m + m log m)

 Since m is of order O(n²), we obtain O(m log n) as the 

asymptotic running time
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Observation

5.3.1.4 Lemma

Let N be a network with n nodes and symmetric 

distance matrix. Moreover, T* is an optimal tour of 

the TSP. Additionally, T0 is an optimal open tour in N 

between source s and destination t. Then, it holds 

that:

      

      

* *

*

0

1
1 1

2

L ST N L T
n

L ST N L T
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Proof of Lemma 5.3.1.4

 Since we can generate a spanning tree by erasing a 
single edge from an optimal cyclical TSP tour in a 
network N, ST*(N) is a lower bound for an open TSP 
tour

 Therefore, we erase the edge with maximal weight 
dmax from the cyclical TSP tour

 Therefore, it holds:

 Moreover, since the corresponding open tour is a 
spanning tree, the second proposition follows 
immediately

      * * *

max

1
1L ST N L T d L T
n
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Generating a minimum 1-tree

5.3.1.5 Definition

A minimum 1-tree of an undirected graph N=(V,E) is a 1-tree with 

minimum total weight. 

5.3.1.6 Algorithm

A minimum 1-tree of an undirected graph N=(V,E) is generated by 

the following two steps:

1. Compute the minimum spanning tree S=ST*(N) of network N

2. Insert into S an edge with minimum weight of network N that 

does not belong to ST*(N) 

Output: 1-tree S
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Correctness of Algorithm 5.3.1.6

 Clearly, the algorithm generates a 1-tree since ST*(N) is a tree 

while a single edge is added

 Hence, it remains to show that S (the outputted 1-tree) is a 

minimum 1-tree

 We prove this claim by contradiction

 Suppose 1-tree T is a minimum 1-tree that is different from S. 

 Since S was built from a minimum spanning tree, we know that 

the tree directly proceeding adding the last edge f (the cycle-

inducing edge) was minimal. 

 Hence, the total weight of any spanning subtree of T is larger 

or equal to the total weight of S minus the weight of f
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Correctness of Algorithm 5.3.1.6

 Moreover, we know that both 1-trees (S and T) comprise a single 

cycle

 Case 1: There is no edge in the cycle of T that does not belong to 

S. Hence, both cycles are identical. Then, we can erase edge f (the 

edge lastly added by Algorithm 5.3.1.6 (it completed the cycle)) 

from both 1-trees (results are the trees S’ and T’) and know that 

the resulting graphs are spanning trees. Hence, it holds that 

L(S’)≤L(T’) and L(S)=L(S’)+L(f)≤L(T’)+L(f)=L(T)

 Case 2: There is, at least, one edge, let say the edge e, in the cycle 

of T that does not belong to S. We erase e from T and get the 

spanning tree T’. It holds that ST*(N)≤L(T’). Moreover, since 

ST*(N) is a tree, adding e builds a 1-tree. So, the weight of the 

final edge added by Algorithm 5.3.1.6 is not larger since it was 

minimally chosen. Hence, S is a minimum 1-tree. 
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5.3.2 Held-Karp bound

 In what follows, we introduce a much tighter bound

 It bases on the cognitions just obtained, but extends this 
idea considerably

 Specifically, it improves this basic bound (that was 
depicted above) iteratively by applying a specific 
Lagrangian Relaxation combined with a subgradient
method

 Therefore, in several iterations, obtained bounds are 
getting tighter

 Besides its technical specifics, focus is set to the basic 
ideas of the approach

 Basically, it may provide tight bounds to the TSP
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Transforming the symmetric TSP

 Again, we commence with the following problem
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Symmetric TSP – Restrictions

 Minimize

 Subject to
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Modifying the problem

By identifying node s, we now obtain

 Minimize

 Subject to
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Relaxing the problem

By relaxing hard restriction 1, we obtain

 Minimize

 Subject to

 
1 1
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…and transforming

 Thus, we obtain
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1 1 1
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Concave objective function

� � = ��	
�� � =   
���

���
 (��,� + �� + ��)

�

�����
⋅ ��,� − 2 ⋅  ��

�

���
 .

 In contrast to the objective function of the Lagrangian

Problem of the Knapsack problem (a convex function),

in this case we obtain the following concave objective

function

 By multiplying this objective function with „-1“ we 

obtain a convex function.

 This implies that the subgradient method works 

analogously on concave functions.   
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Observations

 By relaxing the hard restriction (1), we have obtained a 1-
tree problem which can be easily solved by our known 
minimum spanning tree problems

 Moreover, node degrees unequal to 2 modify the 
objective function value

 Consequently, feasible TSP tours are not affected by the 
relaxed restriction

 Thus, by carefully modifying the multipliers, we pursue 
moving towards a cyclical tour, i.e., a TSP solution

 Therefore, our intention is to iteratively change the 
multipliers in order to force the spanning tree generation 
procedure to result in a TSP solution
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Cognitions

 Basically, we obtain Lg(y)  Z(x) for optimal solutions 

to the relaxed problem

 This can be easily explained by the fact that each 

feasible TSP tour t is also a feasible solution to the 

relaxed problem and – due to the two neighbor 

restrictions – leads to identical costs, i.e., Lg(t)=Z(t), 

for all t

 Hence, we have to generate suitable multipliers

 This can be done by adequate subgradient methods
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Example

 We consider the network depicted above

 Basically, we can choose eight nodes as the 

distinguished node s

 Clearly, this choice has significant impact on the 

obtainable 1-tree bound
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Example – Min 1-tree

 If we choose node 1 as node s, we obtain a minimum 
1-tree with total weight 20 (bold edges)

 Identical bounds are obtained by selecting nodes 3, 4, 
5, or 6

 However, by selecting node 2, 7, or 8, we only obtain 
the total weight 19

3

4

8|0

2|0

3|0

4|0

5|0

6|0

7|0

1|0

4 4

2

3
1

3

4

4

2

4

4

1
3



Wirtschaftsinformatik und Operations Research 489

Influence of multipliers

3,5

3

8|-1

2|-1

3|0,5

4|-1

5|1

6|0

7|-1

1|0

3
3,5

1,5

3
2,5

4

4,5

4

1

2

3

-1
2

 By applying the multipliers (summation value is -2,5) that are 
defined above, we obtain a minimum 1-tree with total weight 
15,5 (bold edges)

 Thus, by correcting the values, we obtain 15,5+5=20,5

 Hence, a new lower bound of 21 is obtained

 Please note that this does not necessarily work that smoothly

 The next slide shows a negative example



Wirtschaftsinformatik und Operations Research 490

Multipliers – Negative result

 Here we obtain a minimal 1-tree with total weight 20

 Thus, since the total sum of multipliers sums up to 2, we 

obtain 20-4=16

 This is not promising since it decreases the bound
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A subgradient method (or ascent method)

 Consequently, we have to learn how to modify the 
g-vector efficiently in order to tighten the lower bound, 
i.e., we want to find a g*-vector that fulfills

 Clearly, when we obtain a TSP tour for the first time, we 
have generated an optimal solution of our problem

 Such a feasible TSP tour can be identified by the fact that 
all nodes have a degree of 2

 Consequently, in this special case, multipliers have no 
impact on the objective function value

   
1

, ,

1 1 1

2
N N N

g x g i j i j i j i

i j i i

Max Min L x c g g x g
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Notations

 In what follows, we make use of the following 

parameters

 
 

 
 

1

*

1

:  minimal 1-tree of the Lagrangian problem defined by the 

multipliers ,...,

:  objective function value of the optimal solution to the 

Langrangian problem defined by the multipliers ,...,

n

g

n

T g

g g

L x

g g

d  
 

 

:  node degree vector of the  nodes. Specifically, we obtain 

the degree of node  by 

2 :  node degree vector of the  nodes reduced by 2 for all values

:  Step size in iteration 
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T n

i d T

d T n

j
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Update of multipliers

 During the iterative calculation of the lower bound, 

the following update formula is applied in order to 

generate new multipliers 

 Specifically, gj+1 is generated out of gj

 Clearly, nodes with larger degrees are penalized by 

higher increases of the multipliers 

 Node degrees of 2 are not affected at all

 Bonus is given to visit nodes with degree 1

   1 2j j

jg g d T g    
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Observation

 Clearly, this update handling keeps an identical sum of 

multipliers, i.e., g1+…+gn=constant

 This can be easily explained by
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Update of step size δj

 In order to obtain the maximum lower bound, i.e., in 

order to find the optimal multipliers, Held et al. 

propose a step size update that complies with the 

rules defined by Polyak

 These rules are basically

0

lim 0   and   j j j

j
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Update of step size

 Held et al. (1974) propose the following update 

formula

 Starting value is γ=2 

 This value is kept for 2n iterations

 Subsequently, γ is reduced after n, n/2, n/4,… 

iterations by applying a reduction factor λ
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Extended versions of the bound

 Empirical experiments underline that the bound can become 

very tight (i.e., close to an optimal solution), and therefore 

should be integrated into enumeration processes

 However, several authors propose specific extensions

 Particularly, parameter settings are modified 

 Specifically, it has been observed that specific nodes cycle 

between a node degree of 1 and >2

 Therefore, better results have been obtained by including the 

node degree difference of the 1-tree considered before, i.e., by 

considering the last two 1-trees

 For instance, different approaches are introduced by Smith and 

Thompson (1977) and Reinelt (1994)
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5.3.3 The approach of Reinelt (1994)

 Extends the Held-Karp bound

 It iteratively solves 1-tree problems and terminates 

 if a TSP tour is obtained

 the generated bound is large enough (depends on the 
application)

 a maximum number of iterations T has been executed

 In the approach, the following update formulas are used
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A Branch&Bound approach with LR

 Based on the bound calculation, we introduce a second 

Branch&Bound approach

 It considers B&B nodes in FIFO manner, i.e., leafs of the 

B&B tree are considered in sequence of their occurrence

 It directly uses the generated 1-tree in order to select a 

branching variable

 Basically, we know that a 1-tree has some nodes with higher 

node degree than 2 

 Hence, in the current B&B node, we are looking for a node in 

the generated 1-tree with minimal node degree larger than 2

 Note that at least one of the incoming edges has to be 

forbidden in order to result in an optimal TSP tour
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Structure of the approach

 At first, we generate an initial solution by applying a simple 

heuristic

 We make use of the nearest neighbor heuristic

 Then, after generating a first bound in the root node, we 

consider the oldest leaf

 Here, we consider the generated 1-tree with maximal bound

 We take a node with minimal degree larger than 2 and branch 

accordingly

 I.e., we forbid all edges one by one in order to reduce the 

degree of this node

 In what follows, we consider a simple 10-node example
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10 Nodes Euclidean Problem

Node 1 2 3 4 5

X-Coordinate 18 62 71 28 77

Y-Coordinate 84 71 77 72 14

Node 6 7 8 9 10

X-Coordinate 79 78 4 62 68

Y-Coordinate 6 11 100 63 48
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Distance matrix

1 2 3 4 5 6 7 8 9 10

1 45.88 53.46 15.62 91.55 99.02 94.49 21.26 48.75 61.61

2 10.82 34.01 58.94 67.19 62.1 64.85 8 23.77

3 43.29 63.29 71.45 66.37 70.84 16.64 29.15

4 75.93 83.41 78.87 36.88 35.17 46.65

5 8.25 3.16 112.81 51.24 35.17

6 5.1 120.25 59.48 43.42

7 115.75 54.41 38.33

8 68.8 82.46

9 16.16

10
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Nearest neighbor application

 An initial solution is generated by applying the 

nearest neighbor heuristic

 We commence this process with node 6

 We obtain a first TSP tour with length UB=278.83
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Starting bound: First 1-tree generation

 Depending on λ, we obtain different initial lower bound 
values

 Moreover, we set δ1=1.0 and T=300

 In what follows, we apply λ=0.99

 After 300 iterations, we obtain a 1-tree with cost 269.16, 
i.e., LB=269.16. In this 1-tree, node 2 has degree 3. The 
used edges connecting node 2 are (2,3), (2,9), and (2,4).

λ= 0.95 0.96 0.97 0.98 0.99 0.998

LB= 221.34 225.5 232.45 245.18 269.16 269.54
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First branching step

 Unfortunately, we cannot fathom any node since 

current UB = 278.83 > LB applies for all nodes

 Thus, we proceed with node 2

(2,3)  x23 = 0 (2,9)
 x23 = 1

 x29 = 1

 x24 = 0

 x23 = 1

 x29 = 0

3

LB=270.48

1

LB=269.16

4

LB=269.53

(2,4)

2

LB=278.32
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The next branching step with node 2

3

LB=270.48

5

LB=284

6

LB=281

7

LB=280

(2,3)

1

LB=269.16

4

LB=269.53

(2,4)(2,9)

2

LB=278.32

 Now, we can fathom all new nodes since current 

UB = 278.83 < LB applies

(4,1) (4,2) (4,8)
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Branching node 3

 Node 9 is NOT generated since we have set x23 = 1 at the father 
node and therefore in this subtree

3

LB=270.48

5

LB=284

6

LB=281

7

LB=280
8

LB=270.02

9 10

LB=271

1

LB=269.16

4

LB=269.53

2

LB=278.32

(4,1) (4,2) (4,8) (2,1) (2,3) (2,8)

(2,3) (2,4)(2,9)
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Branching node 4

3

LB=270.48

5

LB=284

6

LB=281

7

LB=280
8

LB=270.02
9

10

LB=271

1

LB=269.16

4

LB=269.53

2

LB=278.32

(4,1) (4,2) (4,8) (2,1) (2,8)

11

LB=273.42

12

LB=269.54

13

LB=269.54=UB

(4,1) (4,6) (4,8)

(2,3) (2,4)(2,9)
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Branching node 4

 Fortunately, node 13 provides us with a new TSP tour

 Thus, we can improve UB to 269.54

 Consequently, we can fathom the nodes 8, 9, 10, 11, 

and 12

 Thus, there is no active leaf available anymore

 Node 13 determines an optimal solution

 Optimal TSP tour is 1-4-6-7-5-10-9-2-3-8-1

 Tour length is 269.54
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Observations

 Switching to best-first enumeration rule can 

substantially reduce the computational effort

 For instance, in the example, the nodes 5, 6, 7, 8, 9, 

and 10 would not have been generated

 Furthermore, due to the subgradient method, nodes 

in lower levels do not necessarily provide improved 

bounds (they may be even lower (clearly, in this case 

they inherit the LB value from their father))
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