
Wirtschaftsinformatik und Operations Research 199

3 Branch&Bound approaches (B&B)

 A Branch&Bound algorithm explores the solution space by iteratively
fixing variables with respective valid values

 This is conducted in parallel for numerous partial solutions that are
stored in a specific data structure

 During the process, branching is conducted for a chosen partial
solution by assigning alternative values to a selected variable

 If a complete solution is generated, we obtain an upper bound
(minimization problem) by its objective function value

 Afterwards, the largest lower bound is calculated in order to
examine the quality of the generated partial solution

 If there remains no gap between lower bound and upper bound, the
currently considered partial solution is fathomed; otherwise it is
stored in a priority list

 Hence, we can illustrate the enumeration process by an enumeration
tree

Wirtschaftsinformatik und Operations Research 200

1

Scheme of the B&B enumeration process

2 3

4 5 1 16 7

1 18 9

Active nodes (i.e., a living leaf) that are currently stored in the priority

lists

Wirtschaftsinformatik und Operations Research 201

Consequences of findings

Ridiculous! Branch&Bound only
tests all possibilities…stupid

testing!

Ridiculous! Branch&Bound only
tests all possibilities…stupid

testing!

However, it tries to do it in
a smart and sophisticated

way…for instance,
it can make a difference

what solutions are
considered first and what
kind of bounds and rules

are applied

However, it tries to do it in
a smart and sophisticated

way…for instance,
it can make a difference

what solutions are
considered first and what
kind of bounds and rules

are applied

Wirtschaftsinformatik und Operations Research 202

3.1 Basic principles of B&B

 Basically, Branch&Bound (B&B) enumerates the solution space

by systematically testing all possible values for the decision

variables

 Therefore, in each step of the enumeration process, a B&B

procedure branches over one or more variables

 Hence, different partial solutions are stored in a priority list.

This list…

 …sorts all generated partial solutions according to some criteria (depth,

quality,…)

 …decides about the next partial solution to be chosen (always proceeds

with the first entry of this list)

 …is usually organized as a priority heap (i.e., an efficient data structure

that allows the identification of the element with highest priority in

O(1))

Wirtschaftsinformatik und Operations Research 203

Branch&Bound elements

 Consequently, a B&B procedure has to unambiguously define
rules or criteria by which

 the priority list is sorted (Enumeration scheme)

 a set of currently unfixed variables (in the chosen partial solution) is
selected for being branched (Choice of branching variable/variables)

 bounding and dominance rules are applied (Bound and Dominating)

 Since all these elements have significant influence on the
overall performance of the algorithm, researchers have spent
substantial effort in deriving and designing best performing
meta-strategies

 Clearly, since the majority of considered problems is NP-hard,
performance is assessed for average but not for worst cases.
Worst cases are annoying and would result in exponential
effort

Wirtschaftsinformatik und Operations Research 204

Bounding

 In what follows, we assume a minimization problem

 Bounding allows us to fathom generated partial solutions
early, i.e., before they have produced numerous
predecessors

 Specifically, in each node, a lower bound is derived that
informs us about the solution quality maximally attainable by
starting from the currently considered partial solution

 Therefore, such a node can be fathomed if this lower bound
is larger than or equal to an already known feasible solution

 Upper bounds are either generated by the additional
application of heuristics or derived from generated lower
bounds during the enumeration process

Wirtschaftsinformatik und Operations Research 205

Consequences of findings

Good lower bounds are small…or
not?

Good lower bounds are small…or
not?

NO, definitely not!
Good lower bounds are

large. Then they allow us
to attain insights and we
can fathom solutions or
reorder the priority list

NO, definitely not!
Good lower bounds are

large. Then they allow us
to attain insights and we
can fathom solutions or
reorder the priority list

Wirtschaftsinformatik und Operations Research 206

Lower bounds

 LBs have significant impact on the overall efficiency of the
enumeration process

 Hence, significant effort should be spent to derive tight bounds
(…efficiently computable tight bounds are worth the effort)

 For many applications, it could be shown that tighter bounds
lead to

 Better sorted priority lists (in particular in case of BFS-B&B approaches)

 Significant reductions of the number of explored solutions

 Clearly, the computational effort for deriving the bound in
each node of the enumeration tree has to be kept limited

 Tradeoff between positive impact and computational effort has to be
addressed

 Slight problem relaxations that lead to modified strong polynomial
problems are frequently most promising

Wirtschaftsinformatik und Operations Research 207

Dominance rules

 Besides bounding, B&B procedures should apply sophisticated

dominance rules to eliminate non-promising alternative solutions

 These rules are frequently logically derived from attributes of the

given problem

 For instance, a quite simple rule is to avoid unnecessary repetitions

that are caused by testing an identical set of assigned elements in a

modified sequence (if this leads to identical side effects)

 In this case, we have to store already explored partial solutions (be

careful: exponential number is possible)

 while we delete dominated repetitions

 As known from the generation of efficient LBs, the definition of

powerful dominance rules requires substantial insights into the

problem structure

Wirtschaftsinformatik und Operations Research 208

Enumeration scheme

 Clearly, the decision about the partial solution and

their variables that are chosen for the next branching

step have considerable impact on the resulting

computational effort of the enumeration process

 For instance, if the search is conducted in less

efficient parts of the solution space first, the entire

process suffers from…

 …less tightened upper and lower bounds

 …partial solutions that are too inefficient to fathom

substantial parts of the remaining unexplored solution

space

Wirtschaftsinformatik und Operations Research 209

Observation

 Therefore, in this case, substantial running time is

spent on non-promising parts of the solution space

 Consequently, instances are not solved to optimality

in reasonable time

 Hence, significant research effort is spent on deriving

best enumeration schemes

Wirtschaftsinformatik und Operations Research 210

Basic enumeration schemes

 Breadth-FS
 Partial solutions are prioritized that are positioned at lower levels, i.e.,

solution with a minimum number of fixed variables

 Consequently, the levels of the enumeration tree are iteratively
generated

 No preference for specific regions of the solution space

 Memory consumption may become exhaustive

 Depth-FS
 Partial solutions are prioritized that are positioned at deeper levels, i.e.,

solution with a maximum number of fixed variables

 Consequently, solutions are completed much earlier

 However, this scheme frequently does not guide the searching process
to the most promising regions

 Only a single current partial solution and the best known feasible
solution are stored

Wirtschaftsinformatik und Operations Research 211

Basic enumeration schemes

 Best-FS
 Enumerates the partial solutions with lowest lower bound values

first (preference of most promising partial solutions)

 Memory consumption may become exhaustive

 Therefore, in order to reduce this consumption, sophisticated
techniques have to be additionally applied

 Frequently, this method works quite efficiently (total average
enumeration effort is minimized compared to the other listed
methods)

 However, the efficiency depends mainly on the significance of the
applied lower bounds

 First complete solution that is selected from the priority list for
branching is proven to be optimal

 Without applying additional upper bound generation methods, this
procedure can terminate without finding any solution

Wirtschaftsinformatik und Operations Research 212

Basic enumeration schemes

 IDA*
 BFS-adaption of DFS

 Basic idea is to apply DFS, but branching is allowed only for
partial solutions with a lower bound not exceeding a global lower
bound

 If no solution can be generated, the global bound is increased
and the enumeration process restarted

 Therefore, as known from BFS, most promising parts of the
solution space are enumerated first

 However, parts of the solution space have to be explored several
times since the enumeration process has to be restarted several
times with different global lower bounds

 Repetition can be avoided to a certain amount if discarded
solutions are stored in a second list to be potentially reactivated
after increasing the global lower bound

Wirtschaftsinformatik und Operations Research 213

Basic enumeration schemes

 LLB

 =“Local Lower Bound”

 Is “a mixture” of DFS and IDA*

 It expands partial solutions in non-decreasing sequence of
their lower bound values; but if a partial solution is chosen,
its subtree is enumerated completely (however, in sequence
of the lower bounds)

 Therefore, the LLB works only locally and no repetition
occurs during the enumeration process

 However, the enumeration efficiency of BFS is not attained
if, for instance, the applied lower bounds do not provide
useful information on the first levels of the enumeration tree

Wirtschaftsinformatik und Operations Research 214

Consequences of findings

Now, I understand and admit:
Finding practically applicable B&B

procedures is an art

Now, I understand and admit:
Finding practically applicable B&B

procedures is an art

Indeed.
Therefore, it needs real

OR-experts to design them

Indeed.
Therefore, it needs real

OR-experts to design them

Wirtschaftsinformatik und Operations Research 215

3.2 Solving the Knapsack Problem with B&B

 In what follows, we exemplarily consider again the
Knapsack Problem (KP) in order to initially illustrate
two very simple Branch&Bound algorithms

 Attention:

 The KP is a maximization problem

 Therefore, the roles of lower and upper bounds are
exchanged

 New solutions may provide an increased lower bound
(guaranteed profit)

 Problem relaxations and/or logical conclusions may provide
decreased upper bounds (maximum solution quality of a
considered partial solution)

Wirtschaftsinformatik und Operations Research 216

The lower bound of the LP-relaxation

 First of all, we introduce a modified numbering of the goods

according to their efficiencies

 Thus, we first determine the critical item s*

 After allocating the goods in increasing sequence, s* is the first

job that does not fit into the knapsack

 Thus, we obtain a feasible solution by excluding s*

 This solution has the following total weight and price

1 2
1 2

1 2

... n
n

n

p p p
e e e

w w w
     

* 1 * 1

1 1

* *
s s

i i

i i

p p w w
 

 

   

Wirtschaftsinformatik und Operations Research 217

A first very simple upper bound

 Since items are sorted according to their efficiency in non-

increasing order, we know that each capacity unit of the

knapsack cannot be used more efficiently than e1

 Consequently, if we have a partial solution with a current

weight w and a current price p and let b be the item with

lowest index whose status (in or out) has not been determined

yet, we may obtain directly the following upper bound on the

objective function value

 Thus, if no element is assigned, we obtain the following value

 0
b

b

p
U p C w

w

 
    

 

1
0

1

p
U C

w

 
  
 

Wirtschaftsinformatik und Operations Research 218

Applied to the solution of the LP-relaxation

 If we generate the solution of the LP-relaxation and

erase the critical good from the knapsack, we can

apply the simple upper bound

 Hence, the objective function value of the optimal

solution of the LP-relaxation coincides with the

resulting bound since the critical good is partially

assigned

 This bound will be applied in the two simple B&B

procedures that are introduced next

Wirtschaftsinformatik und Operations Research 219

A more sophisticated upper bound

 Martello and Toth proposed the following upper bound

 It is based on the decision whether the current critical good b*
(see definition above) is assigned to the knapsack or not

 If b* is not additionally assigned to the knapsack, the remaining
capacity cannot be filled more efficiently than eb*+1 price units
per capacity unit

 If b* is additionally assigned to the knapsack, the remaining
negative capacity (i.e., knapsack is overfilled) “cannot be lost
more efficiently” than eb*-1 price units per capacity unit

 Thus, we obtain

   * 1 * 1
* *

* 1 * 1

max ,b b
b b

b b

p p
U p C w p p C w w

w w
 

 

     
            

     

Wirtschaftsinformatik und Operations Research 220

Two simple Branch&Bound versions

 In what follows, we exemplarily apply two different
Branch&Bound algorithms

 First, a simple DFS procedure (Depth-first-search) that
assigns the elements in an arbitrary sequence (i.e., just
in sequence of the given element numbers)

 Moreover, a simple but much more efficient Best FS
procedure (Best-first-search version) is illustrated that
always branches the variable that decides about the
assignment of the current critical element

 In both procedures, the simple upper bound
(introduced before) is applied in each node

Wirtschaftsinformatik und Operations Research 221

A DFS Branch&Bound algorithm

 This approach tries to allocate the items in a predetermined

sequence

 Whenever a partial solution cannot be completed to a new

optimal one, it is fathomed, i.e., backtracking is conducted

 Generation of an upper bound of the maximal attainable weight

by applying the LP-relaxation

 Sum of current weight and this upper bound provides an upper

bound

 Otherwise, if the solution is finally completed, a new

temporary best solution improves the current lower bound

 A solution is denoted as completed whenever, due to capacity

constraints, there is no assignable item available anymore

Wirtschaftsinformatik und Operations Research 222

Example

 Let us consider again our small example

 We sort the items according to their efficiency

 Thus, we obtain the following table

 
1 2 3

1 2 3

Maximize 4 7 5

s.t. 4 5 3 10 0,1
n

Z x x x

x x x x

     

       

Index of item Price Weight Efficiency Efficiency

position

1 4 4 1 3

2 7 5 7/5 2

3 5 3 5/3 1

Wirtschaftsinformatik und Operations Research 223

Applying the DFS Branch&Bound procedure

Node 0

No assignment

UBRel=14 LB=?
x1=1 x1=0

Node 1

x1=1

UBRel=4+5+3.7/5

=66/5=13,2->13

Node 2

x1=x2=1

UBRel=4+7+1.5/3

=12,6->12

Node 5

x1=1 x2=0,

UBRel=4+5=9

LB=11 Deleted

x2=1 x2=0

Node 3

x1=x2=x3=1

Infeasible

Node 4

x1=x2=1 x3=0

UBRel=LB=11

x3=1 x3=0

Node 6

x1=0, UBRel=5+7

=12 -> 12

LB=11

Node 7

x1=0 x2=1

UBRel=5+7

=12->12 LB=11

Node 10

x1=x2=0,UBRel=5

LB=12

Deleted

x2=1 x2=0

Node 8

x1=0 x2=x3=1

UBRel=LB=12

Node 9

x1=0 x2=1 x3=0

UBRel=7, LB=12

Deleted

x3=1 x3=0

Wirtschaftsinformatik und Operations Research 224

Observation

 Clearly, the computational effort can be significantly

reduced by a smarter ordering of the job numbers

 Specifically, decisions of assigning or not assigning a

critical job have much higher impact on derivable

bounds

 This cognition is directly exploited in the following

algorithm

Wirtschaftsinformatik und Operations Research 225

A Best FS Branch&Bound algorithm

 This kind of algorithm is characterized by the following attributes

 Always proceeds with the node with the largest upper bound value

 Again, a complete solution is kept throughout the calculations

 This solution is derived from the LP-relaxation

 Therefore, the critical element b* of this solution is considered for the next
branching step. Alternative, states in a branching step are

 b* is assigned

 b* is not assigned

 In order to derive an upper bound, the LP-relaxation of the Knapsack
Problem is used again

 Additionally, the solution of the relaxation without the assignment of the
critical good is applied in order to provide a new solution, i.e., may be
there is a new lower bound

 Usually, by applying this Best FS Branch&Bound algorithm, the
resulting enumeration tree comprises a significantly lower number
of generated nodes

Wirtschaftsinformatik und Operations Research 226

Critical set of items

Wirtschaftsinformatik und Operations Research 227

Enumeration process

No assignment

Critical item is 1

UBRel=14 LB=12

x1=1

Critical item is 2

UBRel=4+5+3.7/5

=66/5=13,2->13

x1=1

x1=0

No critical item

UBRel=7+5=12

Deleted

x1=0

x1=x2=1

Critical item is 3

UBRel=4+7+1.5/3

=38/3=12,6->12

Deleted

x1=1 x2=0

No critical item

UBRel=4+5=9

Deleted

x2=1 x2=0

Wirtschaftsinformatik und Operations Research 228

3.3 A B&B approach to the aTSP

 In what follows, we consider again the aTSP

 We introduce a very illustrative but simple

Branch&Bound approach exactly solving this problem

 It was originally proposed by Little et al. (1963) while

these authors introduce the notation “Branch&Bound”

for the first time

Wirtschaftsinformatik und Operations Research 229

3.3.1 A problem relaxation to the aTSP

 In what follows, we introduce a somewhat helpful

relaxation of the Traveling Salesman Problem

 Detailed analyses of the TSP provides us with the

cognition that the subcycle restriction complicates the

problem significantly

 To be more precise, if we drop these restrictions

completely, we obtain a well-solvable problem,

namely the Linear Assignment Problem (LAP)

Wirtschaftsinformatik und Operations Research 230

Excursion: The LAP

 In what follows, we introduce a new problem frequently

applied to layout planning constellations, the so-called Linear

Assignment Problem (LAP)

 Basically, this model can be interpreted as an allocation

problem of N elements to be placed on altogether N positions

 If an element is assigned to a specific location, predefined costs

occur

 Every element has to be allocated to one definitely defined

location

 The objective of the model is to allocate the N elements in a

way that minimizes the resulting total costs

Wirtschaftsinformatik und Operations Research 231

Mathematical definition of the LAP

 Parameters

 Variables

    ,1,..., : 1,..., : i ji N j N C   

Costs that occur if the ith element is placed

on the jth location;

    ,1,..., : 1,..., : i ji N j N x   

Binary decision variables indicating whether

the respective element is placed to

the defined location;

Wirtschaftsinformatik und Operations Research 232

Mathematical definition of the LAP

 Definition of xi,j:

,

1 if theelement i is located on position j

0 otherwise
i jx


 


 Restrictions:

  ,
1

1,..., : 1 (1)
N

i j
i

j N x


   Every location is occupied

by exactly one element

  ,
1

1,..., : 1 (2)
N

i j
j

i N x


  
Every element is placed on

exactly one location

Wirtschaftsinformatik und Operations Research 233

Mathematical definition of the LAP

 Objective function

, ,

1 1

N N

i j i j

i j

MinimizeZ x c
 

  Minimize the total sum of

allocation costs

Wirtschaftsinformatik und Operations Research 234

Observations

 The model is equivalent to the aTSP without respecting its

subcycle restrictions

 Why?

 Note that each node i obtains an element j that is assigned to it

 Consequently, we have a mapping succ(i)

 Therefore, cyclical paths arise

 Unfortunately, subcycles are possible

 Therefore, we can conclude that each optimal solution to the

LAP is a lower bound to the optimal solution of the aTSP

 Moreover, we can conclude that each lower bound to the LAP

is also a lower bound to the aTSP

Wirtschaftsinformatik und Operations Research 235

Fortunately, the LAP is well-solvable

 Specifically, the LAP can be solved in polynomial time

O(N3)

 This is done by the application of the so-called well-

known Hungarian method

 In order to understand this nice algorithm, we have to

get some specific insights into the Linear Assignment

Problem

 Therefore, in what follows, we take a closer look at

some specific LAP attributes

Wirtschaftsinformatik und Operations Research 236

LAP as a Linear Problem

 In what follows, we consider the LAP as a Linear

Program

2 2

1,1 1,1

1,2 1,2

1, 1,

2

2,1 2,1

2, 2,

, ,

... ...

1

with ; ... ;

... ...1

... ...

N N

N N N

N N

N N N N

x c

x c

x c

x cAx b x IR b IR c IR

x c

x c



   
   
   
   
   

    
                   

   
   
   
   
   

Wirtschaftsinformatik und Operations Research 237

LAP as a Linear Problem

1 0 ... 0 1 0 ... 0 1 0 ... 0 1 0 ... 0 ...1 0 ... 0

0 1 0... 0 0 1 0... 0 0 1 0... 0 0 1 0... 0 ...0 1 0... 0

...

...

... ...

0 0 ...0 1 00 1 00 1 00 1 00 1
andmatrix

1 1 ... 1 0 ... 0 0 0 0 0 0

1 1 ... 1 0 0 0 ...

A 

... 0

1 1 ... 1 0 0

...

... ... 0 0 ... 0

...

... ... 0 0 ... 0

... ... 0 0 ... 0

...

1 1 ... 1

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Wirtschaftsinformatik und Operations Research 238

LAP as a Linear Problem - example for N = 4

2

1.1 1.1

1.2 1.2

1.3 1.3

1.4 1.4

2.1 2.1

2.2 2.2

2.3

2.4 2

3.1

3.2

3.3

3.4

4.1

4.2

4.3

4.4

1

1

1

1
with ; ;

1

1

1

1

N N

x c

x c

x c

x c

x c

x c

x

x
Ax b x IR b IR c

x

x

x

x

x

x

x

x



 
 
 
 
 
 
   
   
   
   
   
           
   
   
   
        
 
 
 
 
 
 

2

2.3

2.4

3.1

3.2

3.3

3.4

4.1

4.2

4.3

4.4

N

c

c
IR

c

c

c

c

c

c

c

c

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 The first four lines of matrix A represent the first group
of restrictions (1); the last four lines represent the
second group of restrictions (2)

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0

0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0

0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

A

 
 
 
 
 
   
 
 
 
  
 

Wirtschaftsinformatik und Operations Research 239

The dual of the LPLAP

 In order to obtain some insights into the problem

structure, we consider the dual of the LAP

2

1,1

1,2

1

1,

2 2
2,1

1

2,

,

...
...

1

: ; ... ; .

...1
...

...

N

NT N N N

N

N

N N

c

c
v

c
v

cA cwith IR b IR c IR
u

c
u

c

 

 
 
     
                             
        
 
 

Wirtschaftsinformatik und Operations Research 240

Matrix AT

1 0 0 1 0 0

1 1 ...

1

...

1 1 0 0

1 0 0 1 0

1 0 ... 0 1 0

1 0... 0

... 0

1 1 0

...

1 0 0 0 1

1 0 1

...

... 0 1 0 1

Tand A

 
 
 
 
 
 
 
 
 
 
 

  
 
 
 
 
 
 
 
 
 
  
 

Wirtschaftsinformatik und Operations Research 241

Observations – The dual of the LAP

 Obviously, owing to the simple structure of matrix A,
the dual of the LAP has a nice structure

 By analyzing the dual program, we get:

 And we know that if x and π are optimal, it holds that:

, ,

1 1 1 1

T T

N N N N

i i i j i j

i i i j

b c x

u v c x



   



    

,i j i jc u v 

Wirtschaftsinformatik und Operations Research 242

Observations – The dual of the LAP

 Consider the following solution:

 Take a feasible solution of the LAP

 For every element xi,j=1 define ui+vj=ci,j

 Consider the resulting objective function value

       

 
    

 
 

, ,

,

,

, , , , , ,

1 1 1 | 1, 1,..., (,) (,)| 1,(,) 1,..., 1,...,

,

(,) (,)| 1,(,) 1,..., 1,...,

(,) (,)| 1,(,) 1,..., 1,...,

i k k l

k l

k l

N N N

i j i j i j i j i j i j

i j i j k x k N i j k l x k l N N

i j i j

i j k l x k l N N

i j

i j k l x k l N

c x c x c x

u v x

u v

         

   

   

 

  

 

   



   1 1

N N

i j
i jN

u v
 

   

Wirtschaftsinformatik und Operations Research 243

Observations – The dual of the LAP

 Therefore, we can conclude that if the constructed
solution is feasible for the dual problem it would be
optimal for our relaxed problem

 Question: Is it always feasible?

 Answer: Unfortunately, no!

 Note that for all combinations (i,j): ui+vj≤ci,j has to be
fulfilled

 We have to define an algorithm generating the
respective ui and vj values without violating any
restriction of the dual problem

 This solution is proven to be an optimal one

Wirtschaftsinformatik und Operations Research 244

Reduction of the matrix

Theorem:

If a constant is added to (or subtracted from) all entries

in a row or column of an assignment matrix, the optimal

assignment is kept unchanged

The correctness of the Theorem follows directly from

the following facts

 In each row/column exactly one assignment is done

 Thus, the objective function value is modified by the

constant for all solutions, but the relative ordering is

kept

Wirtschaftsinformatik und Operations Research 245

The Hungarian method

1. Initialization

 Subtract the smallest entry in each row from every entry in this
row

 Subtract the smallest entry in each column from every entry in this
column

 Here we stop the execution of the algorithm and use the
computed reduction of the matrix as a valid lower bound for the
LAP

2. Try to find a feasible assignment by only using zero entries. If
a feasible assignment is already possible, stop the algorithm.
Otherwise, proceed with the next step

3. Cover the zeros with a minimum number of (vertical and
horizontal) lines

4. Subtract the minimum uncovered entry from every
uncovered entry and add this selected value to every twice
covered entry; Go to step 2

Wirtschaftsinformatik und Operations Research 246

Correctness of the procedure

 The correctness of the first three steps follows directly
from the theorem itemized above

 However, what about step four?

 First of all, it can be stated that only uncovered
elements in the matrix remain to be used as new
positions for an element

 Additionally, if a twice covered element is zero, we have
alternative zeros in the respective row and column

 This results from the fact that there is at least one
additional element equal to zero either in the
respective row or column

 Therefore, we keep a cost-equivalent alternative

Wirtschaftsinformatik und Operations Research 247

Correctness of the procedure

 In this step, we subtract the smallest value from all
uncovered entries, i.e., we subtract this value from all
rows (or alternatively all columns)

 Clearly, owing to the Theorem, this step results in an
equivalent problem

 Subsequently, we add this value to all covered rows and
columns. Thus, the twice covered ones are increased
twice

 Again, by making use of the Theorem, we know that we
obtain an equivalent problem

 Additionally, we know that in each step of the procedure,
at least one new zero element is generated

 Thus, the procedure terminates with an optimal solution

Wirtschaftsinformatik und Operations Research 248

Complexity of the procedure

 Clearly, steps 1 up to 4 can be executed in time O(N2)

 Moreover, we have at most O(N) iterations of the

steps 2-4

 Thus, we obtain an overall complexity of O(N3) steps

Wirtschaftsinformatik und Operations Research 249

Simple examples

 We consider the following two examples

1 2

1 4 6 3
9 12 16

9 7 10 9
12 8 10 ;

4 5 11 7
15 11 12

8 7 8 5

C C

 
   
           

 

Wirtschaftsinformatik und Operations Research 250

Example C1

 We commence with the following cost matrix

1

9 12 16

12 8 10

15 11 12

C

 
   
 
 

Wirtschaftsinformatik und Operations Research 251

Example 1

   
       
   
   

   
       
   
   

1

9 12 16 0 3 7

12 8 10 4 0 2

15 11 12 4 0 1

0 3 6 12 16

4 0 1 12 10 optimal assignment

4 0 0 15 11

C

9

8

12

Wirtschaftsinformatik und Operations Research 252

Example C2

 The second example is somewhat more complex

2

1 4 6 3

9 7 10 9

4 5 11 7

8 7 8 5

C

 
 
 
 
 
 

Wirtschaftsinformatik und Operations Research 253

Example 2

 We apply the first step of the algorithm

   
   
    
   
   
   

 
 
 
 
 
 



2

1 4 6 3 0 3 5 2

9 7 10 9 2 0 3 2

4 5 11 7 0 1 7 3

8 7 8 5 3 2 3 0

0 3 2 2

2 0 0 2

0 1 4 3

3 2 0 0

No solution since the rows 1 and 3 are blocking each other

C

Wirtschaftsinformatik und Operations Research 254

Example 2 – step 3

 Now, we have to cover the zeros with a minimal

number of horizontal or vertical lines

 Minimal value of uncovered elements is 1

 Thus, we now obtain

0 3 2 2

2 0 0 2

0 1 4 3

3 2 0 0

 
 
 
 
 
 

Wirtschaftsinformatik und Operations Research 255

Thus, we obtain by conducting step 4

 … the following equivalent problem

 And obtain the optimal solution

0 2 1 1

3 0 0 2

0 0 3 2

4 2 0 0

 
 
 
 
 
 

2

4 6 3

9 7 9

4 11 7

8 7 8

C

 
 
 
 
 
 

1

10

5

5

Wirtschaftsinformatik und Operations Research 256

Consequences

 Clearly, the optimal solution to the LAP directly

provides us with a lower bound to the considered TSP

 Additionally, each feasible dual solution (for instance

the dual result for the first step) also determines a

lower bound to the TSP

Wirtschaftsinformatik und Operations Research 257

3.3.2 The B&B procedure of Little et al.

 In what follows, we briefly introduce the well-known
Branch&Bound procedure of Little et al. (1963)

 As already shown, we know that each optimal solution to the
LAP is a lower bound of the optimal solution to the aTSP

 Moreover, we can conclude that each lower bound for the LAP
is also a lower bound for the aTSP

 As proven above, the LAP can be solved in polynomial time
O(n3) by the Hungarian method

 However, during the time-consuming enumeration process of a
Branch&Bound procedure, even this efficient computation may
be too costly since it is applied in each node

 Therefore, we need a fast computable lower bound for the LAP
to be applied in each node of the resulting B&B tree

Wirtschaftsinformatik und Operations Research 258

Bounding

 Consequently, only the first step of the Hungarian

method is applied in order to derive a first feasible

dual solution

 Note that the objective function of the dual solution is

a lower bound for the Linear Assignment Problem

(LAP)

 This bound is applied in each node

Wirtschaftsinformatik und Operations Research 259

Branching scheme I

 By using the LAP bound, the algorithm works in a best-first
manner which branches always the node with the lowest
bound value

 In each branching step, a specific variable xi,j is taken,
wherefore two subsequent nodes arise by the possible values
xi,j=0 and xi,j=1

 For the 0-case, the respective costs ci,j are set to infinity

 For the 1-case, the respective costs ci,j are kept unchanged and all
other alternative entries get the infinity value

 After reducing the matrix, the new nodes get the lower bound
values

1 1

N N

v i j

i j

F u v
 

  

Wirtschaftsinformatik und Operations Research 260

Branching scheme II

 But, how can we select the respective xi,j variables to generate
the branching step?

 The variable is chosen which maximizes the resulting lower
bound

 By fixing xi,j to 0, we forbid this transport, and therefore we
get at least the additional costs ki,j=min{ci,p | p=1,…,N } +
min{cp,j | p=1,…,N } (detailed computation is given on the
next slide) while the c-values are from the cost matrix of
the considered node and ci,j is set to infinity

 Therefore, in each node, we chose xa,b with ka,b=max{ki,j |
i,j=1,…,N } to maximize the resulting lower bounds of the
subsequent nodes

 After adding a tour element by using the 1-value, we can
eliminate all edges that would lead to a subcycle

Wirtschaftsinformatik und Operations Research 261

Computation of matrix K

Let � = ��,� ���,��	
=

min

∈ �,…,	

�
,� + min
�∈ �,…,	

��,� �� ��,� ��� ��� �����ℎ ! � ���

 ��! ��,� ��� ��� ��"#! !

−∞ ��ℎ ����

and �&,' = max ��,� ��,� ����*� �����ℎ ! ��! ��,� ����*� ��"#! !}.

We chose �&,' as the branching variable.

Wirtschaftsinformatik und Operations Research 262

Example

 , 1 ,

7 4 2 1 3

3 3 2 4 6

2 3 4 5 3

7 1 5 4 4

4 4 3 5 3

4 3 3 6 2

i j i j N
C c

 

 
  
 

   
 

 
   

Wirtschaftsinformatik und Operations Research 263

Reducing the matrix root node 0

 , 1 ,

6 3 1 0 2 1

1 1 0 2 4 2

0 1 2 3 1 2

6 0 4 3 3 1

1 1 0 2 0 3

2 1 1 4 0 2

 0 0 0 0 0 0

Lower bound is 1 2 2 1 3 2 11

i j i j N
C c

 

 
  
 

   
 

 
   

     

Wirtschaftsinformatik und Operations Research 264

Search for the branching variable

 , 1 ,

4 2

0 0 0 1 0

0 0 2 0 0

2 0 0 0 0

0 0 0 0

0 0 1 0 1

0 0 0 0 1

We chose as the branching variable

i j i j N

,

K k

x

 

 
  
 

   
 

 
   

4

Wirtschaftsinformatik und Operations Research 265

x4,2=1 (node 2)

 , 1 ,

3 1 0 2

1 1 2 4

0 2 3 1

1 0 2 0

2 1 4 0

i j i j N
C c

 

  
   
  

   
     
  
    

0

Wirtschaftsinformatik und Operations Research 266

x4,2=1 and reducing

 , 1 ,

3 0 0 2 0

0 0 1 3 1

0 1 3 1 0

0

1 0 1 0 0

2 1 3 0 0

 0 0 0 1 0 0

Lower bound is 11 1 1 13

i j i j N
C c

 

  
   
  

   
     
  
    

  

0

Wirtschaftsinformatik und Operations Research 267

x4,2=0 (node 1)

 , 1 ,

6 3 1 0 2

1 1 0 2 4

0 1 2 3 1

6 4 3 3

1 1 0 2 0

 2 1 1 4 0

i j i j N
C c

 

 
  
 

   
  

 
   

Wirtschaftsinformatik und Operations Research 268

x4,2=0 and reducing

 , 1 ,

5 3 1 0 2 0

1 1 0 2 4 0

0 0 2 3 1 0

3 1 0 0 3

1 0 0 2 0 0

2 0 1 4 0 0

 0 1 0 0 0 0

Lower bound 11 3 1 15

i j i j N
C c

 

 
  
 

   
  

 
   

  

Wirtschaftsinformatik und Operations Research 269

The process is continued with node 2

 
 

  
   
  

   
     
  
    

, 1 ,

3,1

0 1 0 0

0 0 0 0

0 0 0

0

0 0 0 1

0 0 0 1

 is chosen

i j i j N
K k

x

1

Wirtschaftsinformatik und Operations Research 270

x3,1=0

 , 1 ,

3 0 0 2

0 0 1 3

1 3 1

0

1 0 1 0

 2 1 3 0

i j i j N
C c

 

  
   
   

   
     

  
    

Wirtschaftsinformatik und Operations Research 271

x3,1=0 and reducing

 , 1 ,

3 0 0 2 0

0 0 1 3 0

0 2 0 1

0 0

1 0 1 0 0

2 1 3 0 0

 0 0 0 0 0 0

Lower bound 13 1 14

i j i j N
C c

 

  
   
   

   
     
  
    

 

Wirtschaftsinformatik und Operations Research 272

x3,1=1

 , 1 ,

0 0 2

0 1 3

0

0

0 1 0

1 3 0

i j i j N
K k

 

   
    
     

   
     
   
     

Wirtschaftsinformatik und Operations Research 273

x3,1=1 and reducing

 , 1 ,

0 0 2 0

0 1 3 0

0 0

0 0

0 1 0 0

1 3 0 0

 0 0 0 0 0 0

Lower bound 13

i j i j N
C c

 

   
    
     

   
     
   
     

Wirtschaftsinformatik und Operations Research

to be continued …

Wirtschaftsinformatik und Operations Research 275

0

LB=11

1

LB=15

x4,2=0

2

LB=13

x4,2=1

3

LB=14

4

LB=13

x3,1=0

x3,1=1

5

LB=15

6

LB=14

x5,6=0

x5,6=1

7

LB=16

x1,4=0

8

LB=15=UB

x1,4=1

x2,5=x6,3=1

9

LB=15

10

LB=14

11

LB=16

x1,5=0

12

LB=15=UB

x1,5=1

x2,1=0

x2,1=1

Complete enumeration tree of the B&B process

Wirtschaftsinformatik und Operations Research 276

Computational results

 Tests were conducted on an IBM 7090

 Two types of problems were studied

 Asymmetric distance matrices with elements consisting

of uniformly distributed 3-digit random numbers

 Various published problems and subproblems

constructed therefrom by deleting cities. Most of these

problems have been made up from road atlases or

maps, and are symmetric

 The following slide provides us with the measured

results

Wirtschaftsinformatik und Operations Research 277

Wirtschaftsinformatik und Operations Research 278

Conclusions

 Clearly, the average computational time grows

exponentially with increasing problem size

 As a rule of thumb, adding 10 cities to the problem

multiplies the necessary computational time by a

factor of 10

Wirtschaftsinformatik und Operations Research 279

3.4 SALOME 1 – A B&B approach for SALBP-I

 In what follows, we introduce a considerably more
sophisticated Branch&Bound procedure: the B&B procedure
SALOME-1

 It solves SALBP-1 instances of moderate size to optimality in
reasonable time

 SALBP-1 means “Simple Assembly Line Balancing Problem of
Type 1”

 Therefore, it considers the balancing process of assembly lines

 Consequently, in what follows, we briefly introduce

 the layout of assembly lines,

 existing basic types of assembly lines, and finally,

 the two basic planning levels that have to be considered in order to
efficiently use assembly lines.

Wirtschaftsinformatik und Operations Research 280

3.4.1 Attributes of assembly lines

 Assembly lines arrange facilities solely according to the flow
principle, i.e., the production process determines the layout

 Assembly lines are production systems without buffers, i.e., no
intermediate storage systems between the different stages

 There is a predetermined global cycle or takt time c, i.e., in each
takt time interval, a new product item is launched at the line

 Originally, assembly lines were designed for the mass production
of absolutely homogeneous products

 Here, these systems attain smallest variable costs for the
following reasons

 Minimization of the number of conducted transports

 Maximum training of employed workers

 Executing identical tasks in an extremely high frequency

 Workers become highly skilled for the respective tasks

Wirtschaftsinformatik und Operations Research 281

Types of assembly lines

a. single-model line

b. mixed-model line

c. multi-model line

different models / products

setup setup

Wirtschaftsinformatik und Operations Research 282

Single-model assembly line

 Originally, assembly lines were designed for a single variant or
product only

 If only a single variant has to be produced on an assembly line,
the production process (aside from potentially occurring
disturbances) acts quite stationary in each station along the
elapse of the different takts

 Specifically, the work load in each station stays constant from
product unit to product unit

 At each station, the same set of tasks is performed for each
product unit

Execution of tasks

assigned to station 1

Production sequence (frequently executed by a conveyor belt)

Station 1Station 1 Station 2Station 2 Station 3Station 3 Station 4Station 4 Station 5Station 5

Execution of tasks

assigned to station 2

Execution of tasks

assigned to station 3

Execution of tasks

assigned to station 4

Execution of tasks

assigned to station 5

Wirtschaftsinformatik und Operations Research 283

Balancing process

 The assignment of the tasks to the stations (balancing
of the line) has substantial impact on the overall
performance of the line

 The maximum workload of all stations determines the
minimum feasible takt time of the single-model
assembly line

 The takt time defines the production speed of the
assembly line

 Moreover, the number of stations at the line
corresponds to the resulting investment costs that
have to be spent for erecting the assembly line

Wirtschaftsinformatik und Operations Research 284

Mixed-model assembly lines

 In times of Mass Customization, customers demand to order an
individual variant (of a mass product)

 However, if there are various variants to be produced at the same
assembly line, the production process becomes more complex

 When we produce various variants, the work load in each station
may change from takt to takt

 Therefore, in order to allow an efficient use of capacities, stations
have to become more adaptable in size and structure

 For this purpose, the layout of mixed-model assembly lines
integrates (among others) for instance

 overlapping areas between stations

 different kinds of workers (floaters and operators)

 offline areas for not feasibly completed product units

Wirtschaftsinformatik und Operations Research 285

Mixed-model assembly line

Station 1 Station 2 Station 3 Station 4 Station 5

Launching interval

Station 2

Front and rear cross region
Variant 1

Variant 2

Variant 3

Operator

(unemployed,

busy,

in movement)

Pool of floaters

(Engaged in an offline area,

Employed at the line in case

of work overload)

Wirtschaftsinformatik und Operations Research 286

Basic terms

 Assembly

 Process of collecting and fitting together various parts

 A finished product is created

 Relationship of parts and the flow of material can be visualized
by assembly charts (Gozinto charts)

 Workpieces are unfinished units of the product

 Operation or task

 Is a portion of the total work content in an assembly process

 A task time is predetermined for each operation

 Indivisible operations, i.e., task cannot be divided

 Station

 In a station, a certain amount of work (some tasks) is performed

 Workers and floater are assigned firmly or loosely, respectively

Wirtschaftsinformatik und Operations Research 287

Basic terms

 Cycle time or Takt time

 Maximal amount of time a workpiece is allowed to consume

during its processing in a station

 Equals the launching time in the production process

 Consequently, cycle time cannot be smaller than the maximal

duration of a task to be executed at the line

 Precedence constraints

 Owing to technological restrictions, the ordering in which

operations are performed at the line may be partially

predetermined

 Illustration may be given by so-called precedence graphs

Wirtschaftsinformatik und Operations Research 288

Layout of assembly lines

 Serial lines

 Traditional layout of assembly lines

 I.e., single stations are arranged in a straight line along the line

 U-shaped lines

 The layout of U-lines is defined according to this letter

 I.e., stations contain tasks coming from different points of the
production process

 Parallel lines

 Here, lines are arranged parallel to each other

 Thus, items may be produced on each line alternatively

 Consequently, a more flexible production system is established

 Specifically, product items, whose successive production may cause
substantial work overload, may be produced on different lines

Wirtschaftsinformatik und Operations Research 289

Illustration – U-shaped assembly line

S1

S2

S4

S3

S5

S6

S7

Wirtschaftsinformatik und Operations Research 290

Paced and unpaced assembly lines

 Paced assembly lines

 Either the workpieces are steadily moved from station to station by a

conveyor belt at constant speed, or

 Workpieces are intermittently transferred to the subsequent station after

being processed

 Stations are coupled in an inflexible way

 I.e., there are no intermediate buffers between stations

 Inflexible structure, but accelerates the production

 Unpaced assembly lines

 Here, stations are decoupled by intermediate buffers

 I.e., workpieces are hold if the subsequent station is still busy

 Blocking occurs if intermediate buffers are filled to capacity

 More flexible structure

 Allows setup activities

Wirtschaftsinformatik und Operations Research 291

Types of stations

 Parallel stations

 Resources are installed several times at the same station

 I.e., different work pieces are processed simultaneously

 Consequently, by making use of parallel stations, better or
feasible constellations may become possible

 For instance, if there are tasks with extremely large
processing times (>takt time), parallel stations become
necessary

 However, the installation of parallel stations is costly

 Specific arrangements at the conveyor belt are necessary

 Multiple investments in resources

Wirtschaftsinformatik und Operations Research 292

Open and closed stations

 Closed stations

 The extent of closed stations is predetermined, i.e., fixed
throughout the production process

 Consequently, there are strict boundaries not crossable
by the deployed workers or floaters

 Open stations

 Here, boundaries may be crossed by personnel in order
to complete a currently processed workpiece

 But, workers crossing the boundaries do usually not
interfere with each other

 Specifically, it has to be distinguished between

 Open-to-the-right stations

 Open-to-the-left stations

Wirtschaftsinformatik und Operations Research 293

Observations

 Open-to-the-right stations

 Positive effect: Items can be completed in time

 Negative effect: Less time available for the subsequent

item in this station

 I.e., Timely completion versus worker drift

 Open-to-the-left stations

 No tradeoff

 Only positive effects

 Necessary consideration of technical restrictions (e.g.,

wire length)

Wirtschaftsinformatik und Operations Research 294

3.4.2 Assembly Line Balancing

 Determination of the line layout and capacities

 Structure of the lines

 Assignment of tasks, machines and personnel resources

 Balancing problems:

 Assembly lines are inflexible

 Small adaptation range for the production control

 Consequence:

Line layout must be robust enough in order to smooth the

varying capacity demand

 Anticipation of possible scenarios and constellations in order

to evaluate a generated assembly line layout

Wirtschaftsinformatik und Operations Research 295

Classification of balancing problems

assembly line balancing problems

mixed-model

stochastic

single-model multi-model

deterministic dynamic

paced / unbuffered unpaced / buffered

Wirtschaftsinformatik und Operations Research 296

3.4.3 Simple Assembly Line Balancing

Assumptions of the model:

 There are N predetermined tasks (set V) to be performed in

order to produce the single product

 Each task jϵV has a predetermined processing time tj

 There are precedence constraints between the different tasks

resulting from technological reasons and defined by the

precedence graph G=(V,E)

 All stations are uniformly equipped, may be able to perform all

tasks (if assigned), and possess the uniform time capacity C

 No buffers between stations exist. Therefore, products are

directly or continuously transported from station to station

(potentially by a conveyor belt)

Wirtschaftsinformatik und Operations Research 297

SALBP-F model – Mathematical definition

    ,

1

1 Feasible task assignment: 1,..., : 1
M

i s

s

i N x


  

Feasibility variant of SALBP:

 N: Number of tasks to be executed at the assembly line

 C: Takt time of the assembly line

 M: Number of stations

 ti: Processing time of task i

 Binary variable xi,s=1 if and only if task i is assigned to station s,
otherwise =0

Restrictions:

Wirtschaftsinformatik und Operations Research 298

SALBP-F model – Mathematical definition

   

   

       

,

1

, ,

1 1

,

2 Takt time restriction: 1,..., :

3 Precendence constraints: , : 0

4 Domain constraint: 1,..., : 1,..., : 0,1

N

i s i

i

M M

i s j s

s s

i s

s M x t C

i j E x s x s

i N s M x



 

   

     

    



 

 Unfortunately, already the feasibility variant of SALBP is NP-hard

 Therefore, all optimization variants, which are considered in

what follows, are also NP-hard

Wirtschaftsinformatik und Operations Research 299

3.4.3 SALBP – Optimization models

 In what follows, we distinguish between three

different optimization variants altogether

 Depending on the objective function, we obtain the

models

 SALBP-1: Minimizing the number of necessary stations

M, i.e., minimizing the necessary investments

 SALBP-2: Minimizing the takt time C, i.e., maximizing the

output rate 1/C

 SALBP-E: Maximizing the efficiency, i.e., minimizing the

product C.M

Wirtschaftsinformatik und Operations Research 300

SALBP 1 example – precedence graph

2 7
6 6 4

1

8 9 10
2 9 2

6543

5455

See Scholl (1999), p.118

Wirtschaftsinformatik und Operations Research 301

Basic terms

 Line Balance

 Found feasible task assignment, i.e., an assignment of
the given tasks to the stations of the line

 It is feasible if all precedence constraints are fulfilled

 In our example, we obtain determining cycle time 11
the following line balance

 Station 1: 1,3; i.e., resulting idle time amounts to 0

 Station 2: 2,4; i.e., resulting idle time amounts to 0

 Station 3: 5,6; i.e., resulting idle time amounts to 2

 Station 4: 7,8; i.e., resulting idle time amounts to 5

 Station 5: 9,10; i.e., resulting idle time amounts to 0

Wirtschaftsinformatik und Operations Research 302

Exact solution approaches for SALBP-1

 Besides some heuristics, the literature provides

various exact solution approaches that guarantee an

optimal solution

 The most famous ones are

 FABLE (Johnson(1988))

 OPTPACK (Nourie and Venta (1991))

 EUREKA (Hoffmann(1992))

 SALOME (Scholl and Klein(1997))

 SPEZSAL (sequential and, in particular, parallel version)

(Bock (2000))

Wirtschaftsinformatik und Operations Research 303

FABLE

 Proposed by Johnson in 1988

 It is a depth-first-search Branch&Bound approach

 It works task-oriented, i.e., in each node, a single task is appended
to a current partial solution with a last opened station k

 If an assignable task exists, it is appended, otherwise, the station is closed
and station k+1 is opened

 Before starting, tasks are renumbered such that

 no task has a larger numbered predecessor

 if two tasks are not successors or predecessors to each other, the task with the
larger processing time gets a smaller number

 After assigning a task to a station, only larger numbered tasks can be
assigned to this station as well (avoiding the repeated enumeration of
identical sets of tasks in one station)

 After completing a solution or fathoming a solution the procedure
tracks back, i.e., it tests an alternative task

Wirtschaftsinformatik und Operations Research 304

FABLE

 FABLE applies various bounding rules. Specifically, it
applies LB1, LB2, LB3, and LB4 (all these rules are
introduced later)

 Furthermore, FABLE applies the following logical tests

 Maximum load rule

 Jackson dominance rule

 Labeling dominance rule (due to memory limitations, it
becomes dynamically inactive when a larger unlabeled
task is assigned)

 First station dominance rule

 Task time incrementing rule

Wirtschaftsinformatik und Operations Research 305

EUREKA

 Works station-oriented, i.e., a node represents always a
completed station load that is appended to a partial solution

 Forward and backward enumeration

 First, for a specific time, a layout is searched in forward direction

 Second, the same process is conducted in backward direction

 If no solution is found within a given time limit, the heuristic originally
proposed by Hoffmann (1963) is applied

 IDA*-Branch&Bound procedure that works with the simple idle
time rule only (LB1, see below)

 This rule derives the smallest number of stations M that would
have a total idle time larger or equal to the idle time of the
currently considered partial layout

 Total idle time of a solution with M station is M.C-ttotal, while ttotal

gives the total processing time of all tasks

Wirtschaftsinformatik und Operations Research 306

EUREKA

 No further logical rule or dominance criterion is
applied during the enumeration process of this
procedure

Wirtschaftsinformatik und Operations Research 307

OPTPACK

 Proposed by Nourie and Venta in 1991

 Uses the branching scheme of FABLE

 Applies heuristics in order to find feasible upper

bounds before starting the enumeration process

 Applies only the first LB (idle-time argument)

 Furthermore, OPTPACK applies the following two

logical tests

 Maximum load rule

 Tree dominance rule

Wirtschaftsinformatik und Operations Research 308

The Branch&Bound algorithm SALOME

 In what follows, we consider a Branch&Bound procedure that is
specifically designed to tackle SALBP-1 instances

 A modified version of this approach, however, is proposed in
order to solve SALBP-2 (this is denoted as SALOME-2)

 This approach is a combination of two previously known
Branch&Bound algorithms (EUREKA and FABLE)

 SALOME is station-oriented, i.e., each node represents a
complete load of a station that has been opened either in
forward or in backward direction

 This results from the fact that after closing a station, the lower
bound of a current solution is affected more substantially

 SALOME uses a Local Lower Bound Technique

 This will be depicted next

Wirtschaftsinformatik und Operations Research 309

Local Lower Bound Technique (LLB)

 LLB is a mixture of IDA* and DFS (mixture of FABLE and
EUREKA)

 I.e., there is only a local clustering of loads, but in order to
avoid multiple explorations, LLB is allowed to be increased
without starting from scratch again

 The bound is applied to each node, i.e., the root obtains the
Global Lower Bound as the initial “Local Lower Bound” (LLB)

 It is increased after exploring all station loads that meet this
bound

 LLB means that the examination process considers only station
loads whose current lower bound is equal to LLB

 In subsequence of exploring all these loads, the LLB is
increased to the minimum larger value of a load explored
before

Wirtschaftsinformatik und Operations Research 310

LLB – simple example

 We again consider our simple example

2 7
6 6 4

1

8 9 10
2 9 2

6543

5455

Predetermined takt time of the assembly line is C=10

See Scholl (1999), p.118

Wirtschaftsinformatik und Operations Research 311

LLB – simple example

 We obtain a simple lower bound by adding all task processing
times 6+6+5+5+4+5+4+2+9+2=48

 Thus, by dividing through C=10, we obtain at least 5 stations

 Hence, in order to attain a feasible solution, the total allowed
delay time or idle time is 2

 Therefore, we start with LB=5

LLB=

5

3, 4 1, 5
LLB=

5

LLB=

5

No additional idle time (station loads are 10)

2, 7
LLB=

5

No station load possible with idle time

smaller than or equal to 2. EUREKA

restarts! SALOME increases the LLB

Wirtschaftsinformatik und Operations Research 312

LLB – simple example

 Hence, SALOME resumes as follows:

LLB=

5

3, 4 1, 5
LLB=

5

LLB=

5

Idle time is 3

2, 7
LLB=

6

6, 8
LLB=

6

Idle time is 1

9
LLB=

6

10 LLB=

UB=

6

Idle time is 8

Wirtschaftsinformatik und Operations Research 313

LLB

 Acts still locally in a depth-first manner

 Best FS still acts much more globally

 However, best loads in a locality are enumerated first

 Avoidance of repeated enumerations of identical
parts of the solution space

Wirtschaftsinformatik und Operations Research 314

Generating a current station load

 In what follows, tasks are numbered according to the
precedence graph, i.e., each task may posses lower
numbered predecessors only

 I.e., in order to determine a station load, SALOME
assigns tasks in ascending order only

 After assigning a task x in a previous step, only larger
numbered tasks y>x may follow for a given currently
considered partial station load

 Consequently, SALOME considers sets of tasks as
station loads, but no sequences of tasks in these
stations

Wirtschaftsinformatik und Operations Research 315

Maximum Station Load Rule

 Clearly, if a station load is completed (and therefore
the station under consideration is closed), it has to be
checked whether it exists an available task i that is
feasibly assignable, i.e.,

 All predecessors of this task are already assigned and

 the remaining processing time in the station is not
smaller than the processing time of the task i

 If such a task exists, the rule allows to fathom the
currently considered partial station load

 This rule is always applied in each node of the
enumeration tree of SALOME

Wirtschaftsinformatik und Operations Research 316

Dynamically selecting enumeration direction

 SALOME dynamically decides whether the subsequent

station is opened either in forward or in backward

direction

 This decision is based on the following rule

Open the next station in forward direction

 if T(kf)>T(kb) applies, or

 if it holds T(kf)=T(kb) and not |B(kf)|>|B(kb)|

 The following abbreviations are used

  , 1k

j

j B
j LLB j

k

t

L E
T k

B



 
    



Wirtschaftsinformatik und Operations Research 317

Additional abbreviations

 kf: Index of subsequent station to be opened in forward

direction

 kb: Index of subsequent station to be opened in backward

direction

 Lj,LLB: Index of station that is the latest where task j can be

assigned to if LLB stations are maximally available

 Ej: Index of station that is the earliest where task j can be

assigned to

 Note that L and E are calculated by heads and tails of the

respective tasks (c.f., Lower Bound 4)

 Bk: Set of available tasks that can be theoretically assigned to

station k (i.e., set of assignable tasks)

Wirtschaftsinformatik und Operations Research 318

Ej and Lj

 Simple bounds for the earliest and latest stations a

task can be assigned to are obtainable by

*

*

,

: 1,...,

: 1 1,...,

j

j

j h

h P

j

j h

h F

j M

t t

E for j N
C

t t

L M for j N
C





  
       
 
 
 

  
         
 
 
 





Wirtschaftsinformatik und Operations Research 319

The idea behind the rule

 In order to minimize the computational effort in the
examination process, we branch complex nodes as
late as possible

 A node, i.e., a station, causes high computational
effort if

 a large number of tasks are assignable (i.e., large B
values)

 a smaller portion of task execution time is firmly
assigned to the station in question (i.e., we have an
increased computational effort due to a larger number
of assignable tasks)

 Thus, stations are preferred if the expected
computational effort is smaller

Wirtschaftsinformatik und Operations Research 320

Preprocessing – Task incrementing rule

 Prior to the exploration process, the minimum
processing time tmin of all tasks is generated

 All tasks i with C-ti<tmin obtain the maximum
execution time C in order to avoid unnecessary
computations

Wirtschaftsinformatik und Operations Research 321

Logical rules

 After completing a load in the currently considered

station, the following rules are applied

 Maximum station load

 A load is fathomed if an available task is still assignable, i.e., the

remaining processing time in the station is large enough to assign this

task

 Consequently, the current load is dominated

 Jackson dominance rule

 In a preprocessing step, all tasks are considered according to a possible

dominance

 Task i potentially dominated task j if

– all successors of j are also successors of i and

– processing time of i is not smaller than the processing time of j or

– if successors and processing times are identical, but it holds that i<j

Wirtschaftsinformatik und Operations Research 322

Jackson dominance rule

 Let us consider a pair of tasks i and j that can be alternatively

assigned to a current (partial) station load

 Assuming i potentially dominates j, while there is a current

station load comprising task j but not i

 That means, task i is available and can be assigned to the

current station instead of j, i.e., the remaining available time

capacity of the station is sufficient to assign task i

 Then, this load can be fathomed since it is dominated by the

station load arising by replacing j with i

 Note that this is true due to the fact that the set of tasks that

become assignable after this assignment is not reduced since

all successors of task j are also successors of task i

Wirtschaftsinformatik und Operations Research 323

Modified task numbering

 All tasks are renumbered in order to obtain complete
solutions earlier

 This is done according to the following rules

 if a task potentially dominates another task, it gets a
smaller number

 if both tasks are not comparable, the one with more
successors is preferred in the new numbering

 Finally, ties are broken by lower initial task numbers

 Consequently, all tasks are renumbered according to
the rules listed above. Subsequently, the exploration
process starts

Wirtschaftsinformatik und Operations Research 324

Dynamic Prefixing

 Reduction rule that makes directly use of the concept
of earliest and latest stations

 Specifically, if a station k is considered with current
Local Lower Bound LLB, all tasks i with Li(LLB)=k are
directly assigned to it

 Since the given LLB should be reached, these tasks
have to be directly assigned to station k

 This reduces the complexity of the subsequent
enumeration

Wirtschaftsinformatik und Operations Research 325

Tree dominance rule

 Extension of the well-known labeling dominance rule
originally proposed by Johnson in his algorithm FABLE

 The idea behind labeling dominance rule

 Each partial solution is an assignment of tasks to
stations

 Such a constellation can be unambiguously identified
by the labeling scheme of Schrage and Baker (1978)

 Task labels L(j) are calculated as follows

   
 *

: 1,

jk h h j h P

L j L k
   

 

Wirtschaftsinformatik und Operations Research 326

Labeling dominance rule

 Uniqueness of addresses follows directly from the following
observations

 Consider a task h without predecessor

 Its label l(h) is larger than all label combinations (i.e., the sum
of these labels) of lower numbered tasks

 Therefore, this value is unambiguously defined

 Note that predecessors of a task are out of interest since – due
to the precedence constraints – this assignment sequence is
predetermined

 In a worst case scenario, there are no precedence constraints

 Here, the task n=1,…,N obtains the value 2
n-1

Wirtschaftsinformatik und Operations Research 327

Labeling dominance rule

 Hence, each generated partial solution obtains a sum of labels
that unambiguously defines the set of tasks already assigned to
some station

 This sum of labels unambiguously identifies a partial solution
and gets a minimum number of stations (not necessarily
integral) that was reached up to this point of time

 If the same partial solution is generated later without
improving this value, the current constellation is fathomed

 This leads to considerable complexity reductions but requires
extreme memory consumptions in worst case scenarios

 However, this considerable memory consumption can be
significantly reduced by integrating this rule into a specifically
designed hash-list based data structure

Wirtschaftsinformatik und Operations Research 328

Tree dominance rule

 Partial solutions are stored as binary out trees

 Nodes are tasks being currently assigned or not

 Arcs represent assignments of sets of tasks

 Nodes are inserted in ascending order

 Outgoing arcs represent the state of the respective task and all
larger numbered ones up to the next task, i.e., there is an interval
of tasks whose current state is determined by the arc

 E.g., if we have

we actually got the assignment of tasks 1,2,3,4,6,7,8

 Each path starting at the root node, represents a partial
solution

 I.e., the minimum number of stations used is stored in each
terminal node of the complete tree

1 5 6 9
1 0 1

Wirtschaftsinformatik und Operations Research 329

Observations

 As empirically shown by Nourie and Venta (1991), the
tree labeling technique consumes significantly less
storage than the labeling scheme proposed by
Schrage and Baker (1978)

 Its application considerably reduces the size of the
enumeration tree

Wirtschaftsinformatik und Operations Research 330

SALBP-notations

  
 

 Number of tasks

 set of all tasks = 1,...,

 index for the tasks 1,...,

 Cycle time (=Takt time)

1
 production rate

 Number of stations

 index for the sta

N

V N

j j N

C

p
C

M

k



  
 

 tions 1,...,

 operation time (task time) of task

 station requirement of task

j

j

j j

k M

t j

t
p j t p

C



 
   
 

In what follows, we make use of the following abbreviations

Wirtschaftsinformatik und Operations Research 331

SALBP-notations II

  
  

 

max

min

j

 maximal task time max | 1,...,

 minimal task time =min | 1,...,

 sum of task times =

 set of immediate predecessors of task

 set of immediate successors (fol

j

j

sum j

t t j N

t t j N

t t

P j
j

F
j

 





  
lowers) of task

 set of direct precedence relations , | and

 set of immediate and transitive predecessors of task

 set of immediate and transitive successors (followers

j

A i j i V j F
j

P j
j

F
j

    
 





  
) of task

 set of all precedence relations , | and

j

A i j i V j F
j

     
 

Wirtschaftsinformatik und Operations Research 332

SALBP-notations III

 

   

 station load, set of tasks assigned to station

 station time of station

 Implemented (operating) cycle time max | 1, ,

 earliest station of task

k

k

k j

j S

r k

j

j

S k

t S k t

c t S k M

E j

L



 
 
 

 



K

 latest station of task j

Wirtschaftsinformatik und Operations Research 333

Applied lower bounds

 In order to obtain lower bounds during the exploration
process, altogether seven different bounds are applied

 In what follows, we introduce all these bounds
separately

 In SALOME, all these bounds are applied

 In the root node all seven bounds are calculated and
applied

 During the computations, however, owing to its
complexity, bound 4 is not adjusted

 In each node, the maximum value potentially corrects
the current LLB

Wirtschaftsinformatik und Operations Research 334

Bound LB1

1

1

: / (1)
N

sum j

j

LB t C p


 
     

 


 Most simple bound

 It bases solely on the cognition that the total
workload has to be divided into pieces of size C

 Sum of operating times has to be shared between
stations

 Consequently, we need at least the following number
of stations

Wirtschaftsinformatik und Operations Research 335

Bound LB2

2

1 1 1 1
: ,1 , (2)

2 2 2 2
LB J J

              

 Basic idea results from the cognition that there are
tasks that cannot be combined in a single station

 Much more, they have to be assigned to different
stations

 Bound 2 commences this examination by identifying
tasks whose processing time is larger than half of the
takt time C

 These tasks belong to the set J(1/2,1]

 Since all these tasks need a station of their own, we
can derive the following lower bound

Wirtschaftsinformatik und Operations Research 336

Bound LB3

3

2 2 2 2 1 1 2 1 1 1
: ,1 + , + , + , (3)

3 3 3 3 2 3 3 3 3 3
LB J J J J

        
                  

 The basic principle of Lower Bound 2 is extended in
the third lower bound

 Here, task time is clustered into three groups instead
of only two

 This is done by building the sets

 J(1/3,2/3]

 J(2/3,1]

 We can define the Lower Bound 3 by

Wirtschaftsinformatik und Operations Research 337

Bound LB4

 
1 1 1 2 2 1

max , ,..., ... (4)
N Nh h h h h h h hp n p p n p p n     

 The Assembly Line Balancing Problem can be interpreted as a
single-stage scheduling problem

 Assigning a task k to a station is interpreted as to schedule the
job k with processing time tk on a considered single machine

 After being executed, there are several tasks coming behind
the job

 Therefore, these tasks (or jobs) define a job-dependent tail nx

for a considered job x that has to be processed subsequently

 By deciding for a sequence h1, h2,…, hN, we obtain the following
total makespan

Wirtschaftsinformatik und Operations Research 338

Bound LB4

 

 

 

1

2

3

: (5)

1 1 1 1
: ,1 , (6)

2 2 2 2

2 2 2 2 1 1 2 1 1 1
: ,1 , , , (7)

3 3 3 3 2 3 3 3 3 3

h

h J

LB J p

LB J J J

LB J J J J J





           

       
                   



 The respective tails are calculated by making use of the bounds
1, 2, and 3

 In each new iteration, we adjust the tails of a considered task j
according to the results achieved by the previous iteration

 In what follows, the set J denotes the set of tasks that are
successors of the currently considered task

Wirtschaftsinformatik und Operations Research 339

Bound LB4

 Specifically, we have to adjust the generated bounds
slightly

 I.e., if the processing time of the task j to be assigned is
too small, the tail has to be reduced accordingly

 This has to be ascribed to the fact that it may be possible
that the task j can be additionally assigned to the last
station that is closed during the computation of the
respective tail

 Clearly, this is not the case for the first LB

 For the second LB, the mistake is at most 1/2 if tj is
smaller than C/2 or the bound is not an integer

 For the third LB, the mistake is at most 1/3 if tj is smaller
than 2/3.C

Wirtschaftsinformatik und Operations Research 340

Adjusting the second LB by 1/2

 We consider the formula

 In the first part of the formula we have a maximum slack

time strictly less than ½

 However, task i as a predecessor does not fit in this gap if

it holds that pi≥½, otherwise we have to check whether

LB2(J) is integer

 If so, we have to subtract ½

 If not, no problem occurs since, in this case it holds that

 I.e., the assignment of task i would not open a new station

 2

1 1 1 1
: ,1 ,

2 2 2 2
LB J J J

           

                 2 2 2 2
1 1, due to and
2 2i ip LB J LB J p LB J LB J

Wirtschaftsinformatik und Operations Research 341

Adjusting the second LB by 1/2

 Therefore, if the LB2(J) is integer and it holds that pi<½

the “closing” of all opened stations of the bound

(weighting them with 1) may overestimate the station

requirement by at most ½

 This results from

 Subtracting ½ eliminates the possible overestimation

   

   

    

     

2 2

2 2

, due to

10 and
2

i

i

p LB J LB J

p LB J LB J

Wirtschaftsinformatik und Operations Research 342

Adjusting the third LB by 1/3

 We consider the formula

 In all parts of the formula the maximum slack is bounded

by 1/3

 However, if pi≥2/3 it cannot be combined with the

elements of the sets J(2/3,1] and J(1/3,2/3)

 If it holds pi=2/3-ϵ we have

 3

2 2 2 2 1 1 2 1 1 1
: ,1 , , ,

3 3 3 3 2 3 3 3 3 3
LB J J J J J

                          

   

   

   

3 3

3

3 3

2, if it holds that 0 - and
3

1 1, with , but we have
3 2

1. BUT: i and j fit in one station!

i i

j

i

p LB J LB J p

J j p LB J

p LB J LB J

     

    

    





Wirtschaftsinformatik und Operations Research 343

Bound LB4

 
   
 
 
 

1 1

2 2

2

2

3

3

3

: (8)

 if 1 2 or
: (9)

1 2 otherwise

 if 2 3
 :=

j j

j j j

j

j

j j

j

j

n LB F

LB F p LB F IN
n

LB F

LB F p
n

LB F



 









  
 




 (10)

1 3 otherwise

In this computations, defines the set of (direct and indirect)

successors of task in the precedence graph

jF

j








Consequently, due to the cognitions derived above, we
obtain the following formulas

Wirtschaftsinformatik und Operations Research 344

Bound LB4

 

 

1 1 1 2 2 1 24

1 4

1 2 3 4

: max , ,..., ... (11)

Since through provide lower bounds on the

station requirement of ,the tail of task can be determined by

: max , , ,

r rj h h h h h h h h h

j j

j

j j j j j

n p n p p n p p p n

n n

F j

n n n n n



       

 (12)

 In an optimal solution (that minimizes the total makespan of
the schedule), we schedule all jobs in sequence of non-
increasing tails

 I.e., this minimal makespan, and therefore a valid lower bound
for SALBP-1, is generated by

Wirtschaftsinformatik und Operations Research 345

Bound LB4

 1 2

Procedure tails of tasks

for : downto 0 do

 if then : 0

 else begin

 sort tasks of according to non-increasing tails to obtain

 the list , ,..., with : ele

j j

j

r j

j N

F n

F

h h h r F








 



 
1 2 3 4

1 2 3 4

4 0

ments;

 compute , , , and by applying (8) through (11);

 : max , , , ;

 if and then :

 end;

: ;

j j j j

j j j j j

j j j j j j j

n n n n

n n n n n

n n p n n n n

LB n



   



          

  

Wirtschaftsinformatik und Operations Research 346

Example

 We consider again the following simple example

 The takt time is C=10

2 7
6 6 4

1

8 9 10
2 9 2

6543

5455

See Scholl (1999), p.118

Wirtschaftsinformatik und Operations Research 347

Bound LB4

j 10 9 8 7 6 5 4 3 2 1 0

pj 0.2 0.9 0.2 0.4 0.5 0.4 0.5 0.5 0.6 0.6 0

nj1 0 0.2 1.1 1.3 1.3 1.8 2.2 2.7 1.7 3.2 4.8

nj2 0 0 0.5 0.5 1 1.5 1.5 2 1 2.5 4.5

nj3 0 0 0.67 0.67 0.67 1.17 1.67 2.17 1.17 2.67 4.17

nj4 0 0.2 1.9 2.2 2.2 2.7 3.4 3.9 2.6 4.1 5.7

nj 0 0.2 1.9 2.2 2.2 2.7 3.4 3.9 2.6 4.1 5.7

Rounded 0 1 2 2.2 2.2 3 3.4 4 3 4.1 (6)

Wirtschaftsinformatik und Operations Research 348

Bound LB4

 

 

14 04

14

We explain the computation of and . Since the successors

of task 1 build the ordered list 2,5,6,7,8,9,10 , we obtain

:=max 0.6+3,1+3,1.5+2.2,1.9+2.2,2.1+2,3+1,3.2+0 =4.1.

Owing to the ordered lis

n n

n

 




04

0

t 1,3,4,2,5,6,7,8,9,10 of all following tasks,

the tail of task 0 is

:=max 0.6+4.1,1.1+4,1.6+3.4,2.2+3,2.6+3,3.1+2.2,3.5+2.2,3.7+2,

 4.6+1,4.8+0 5.7.

By rounding up , we obtain the lo

n

n



4wer bound =6 for the entire problem LB

Wirtschaftsinformatik und Operations Research 349

Bound LB4

 

 

1

4 1 0

1

*

: max , , (13),

with

max 1

In order to derive , we consider all predecessors of a considered task .

These tasks are in the set

n

j j j

n

j

LB a n Z

Z a p n j N

a j

P





           

    

 Besides the computed tails, we obtain also heads, i.e.,
station required by preceding tasks

 Consequently, we can derive heads analogously by
applying the above computation in reverse sequence

 Eventually, we obtain the bound

Wirtschaftsinformatik und Operations Research 350

Bound LB4 – Calculating the heads

j 0 1 2 3 4 5 6 7 8 9 10 11

pj 0 0.6 0.6 0.5 0.5 0.4 0.5 0.4 0.2 0.9 0.2 0

aj - 0 1 0 0.5 1.6 2 1.6 3.5 4 5 5.2

nj 5.7 4.1 3 4 3.4 3 2.2 2.2 2 1 0 -

 Heads are generated analogously in reverse order, i.e.,
starting at the beginning and interpreting each arc in
opposite direction

 Doing so, we obtain

Wirtschaftsinformatik und Operations Research 351

Considering heads and tails simultaneously

 Unfortunately, this improved bound leads to a new
scheduling problem known to be NP-hard in the
strong sense

 The algorithm of Carlier (1982) solves it to optimality

 However, this worst case complexity may be
exponential, and therefore may be too time
consuming

Wirtschaftsinformatik und Operations Research 352

Bound LB5

    5 : min 1,..., 14j jLB M L M E j N   

 The idea behind this bound deals with head and tails
again

 Specifically, a minimum number of stations can be
derived by the fact that the earliest station where a
task is assignable to must be lower or equal to the
latest station

 Therefore, we obtain

Wirtschaftsinformatik und Operations Research 353

Bound LB5 – applied to the example

j 1 2 3 4 5 6 7 8 9 10

tj 6 6 5 5 4 5 4 2 9 2

Ej 1 2 1 1 2 3 2 4 5 5

Lj(5) 2 3 2 3 3 4 4 4 4 5

Lj(6) 3 4 3 4 4 5 5 5 5 6

 Complexity of the bounds depends on the applied method to
generate heads and tails

 In order to obtain the results listed above, we have applied the
following computation:

 
* *

: : 1
j j

j h j h

h P h F

j j

t t t t

E L M M
C C

 

      
                       
   
   
   

 

Wirtschaftsinformatik und Operations Research 354

Using improved bounds for LB5

'

'

: for 1,..., (15)

() : 1 for 1,..., (16)

j j j

j j j

E a p j N

L M M p n j N

    

      

 Clearly, the fifth bound can be significantly tightened
by making use of improved head and tail
computations

 This is done by using the fourth bound instead of LB1

 Generally, we obtain the modified computations for
head and tail, respectively

Wirtschaftsinformatik und Operations Research 355

Bound LB5

j 1 2 3 4 5 6 7 8 9 10

Ej 1 2 1 1 2 3 2 4 5 6

Lj(6) 2 3 2 3 3 4 4 4 5 6

 Consequently, we obtain (improved) values for
earliest and latest stations

 In our example, we obtain (see Scholl (1999) p.49):

Wirtschaftsinformatik und Operations Research 356

Procedure for computing LB6

1

1 1
Step 1. Assign the tasks in ,1 to the stations 1,..., : ,1

2 2

 in the order of non-increasing operation times.

1 1
Step 2. Consider the tasks in , in the order of non-d

3 2

J d J

J

   
     

 
  

1

ecreasing

 operation times. Successively, assign these tasks to the earliest

 of the first stations which shows enough idle time until all

 tasks are assigned or n

d

1one of the stations remains. d

Wirtschaftsinformatik und Operations Research 357

Procedure LB6

2

3

Step 3. Let be the number of tasks not assigned in Step 2. Then, at least

 : stations are additionally needed for these tasks.
2

Step 4. Compute a bound on the station requirem

d

d
d

d

 
   

 3 3

6 1 2 3

ent for the tasks in

1
 0, :

3

1
 : max 0,max 0,

3

Result. :

j

J

d d q q p j J

LB d d d

 
  

                  

    

Wirtschaftsinformatik und Operations Research 358

Bound LB6

 
 

3 2

,1

1 1Step 4 considers all tasks with . For each value 0,
3 3

given by some , a bound on the (additional) station requirement

1of , arises by:
3

1
: ,1 ,

2

j

j

j

j J q q

p q

p

J q

d q p J q d
 

    

 
 

      


 

 

 (17)

1 1 11due to the equation , ,1 ,1 ,
3 2 3 2

1 1 11Therefore, we can conclude: ,1 , ,1 , .
3 2 3 2

J q J q q J q J

J q q J q J q J

                

               

Wirtschaftsinformatik und Operations Research 359

Bound LB6 – additional observations

 Step 3 computes a lower bound on the station
requirement of those tasks that are not assigned in
step 2.

 Clearly, at most two of them may share a station

 Step 4 finally considers the smaller tasks of set
J[0,1/3]. Since the station requirement of these
smaller tasks is finally added, a repeated adding is
avoided by subtracting the results of previous steps

Wirtschaftsinformatik und Operations Research 360

Bound LB7

 This bound exploits the strong relationship between SALBP-1 and
SALBP-2

 Clearly, if we reduce the number of allowed stations M, the
possible minimum takt time C may be increased

 Therefore, the idea is to lower bound the number of stations by
applying the predetermined takt time as an upper bound that has
to be guaranteed by the number of implemented stations

 For this purpose, the following lower bound of the takt time is
applied:

 If we have M stations and at least M+1 tasks, at least the total
processing time of the two smallest ones provides us with a lower
bound of the resulting takt time

 Therefore, all M+1 tasks are sorted and renumbered in sequence of
non-increasing processing times

Wirtschaftsinformatik und Operations Research 361

Bound LB7

   

  

  


 
     

 

 

 1

0

7

7

: max 1,..., 1 / (18)

By means of (18), the bound LB for SALBP-1 can be formulated as

: min

k

k M i

i

C M t k N M

LB M C M C (19)

 This idea is generalized by the following lower bound

 Specifically, the total processing time of the k smallest
tasks is calculated if (k-1).M+1 tasks have to be assigned

Wirtschaftsinformatik und Operations Research 362

Selected computational results

 In order to empirically prove the efficiency of the
proposed Branch&Bound algorithm SALOME, Scholl
(1999) presents and analyzes several test results

 For this purpose, already known as well as newly
generated test instances are solved

 Maximum computation time is set to 500 seconds per
experiment, i.e., calculations are instantly stopped by
this time and best found solution is taken

 All in all, a combined data set of 269 instances is
solved. Note that optimal solutions of altogether 263
instances are known

Wirtschaftsinformatik und Operations Research 363

Tested approaches

 FABLE – for details see above

 EUREKA – for details see above

 OPTPACK – for details see above

 SALOME

 Altogether four different versions are implemented

 SL1 (not using prefixing, simple permutation rule, LB5,

LB6, and LB7)

 SL2

 BiSL (SL2 with bidirectional branching), and

 BiSLt (BiSL with tree labeling)

Wirtschaftsinformatik und Operations Research 364

Some results for the most complex data set

Combined Data Set

OPT-

PACK

FABLE EUREKA SL1 SL2 BiSL BiSLt

opt 172 179 165 191 199 224 245

Av. rel.

deviation

0.6 0.95 1.1 0.75 0.67 0.46 0.22

Max. rel.

deviation

7.69 7.69 14.29 7.89 7.69 7.69 7.69

Av. CPU

time

188.8 175.9 226.4 153.9 138.1 98.6 56.1

Wirtschaftsinformatik und Operations Research 365

Observations

 SALOME clearly outperforms the former approaches
FABLE and EUREKA

 Bidirectional branching as well as using tree labeling is
of significant importance

 Obviously, the more instruments SALOME uses, the
better the results become

Wirtschaftsinformatik und Operations Research 366

References of Section 3

 Bock, S.: Modelle und verteilte Algorithmen zur Planung getakteter
Fließlinien. Gabler DUV, Wiesbaden, 2000.

 Bock, S.: Using Distributed Search Methods for Balancing Mixed-Model
Assembly Lines in the Automotive Industry. OR Spectrum 30: 551-578,
2008.

 Hoffmann, T.R.: Assembly Line Balancing with a Precedence Matrix.
Management Science 9: 551-562, 1963.

 Hoffmann, T.R.: EUREKA. A Hybrid System for Assembly Line Balancing.
Management Science 38: 39-47, 1992.

 Hoffmann, T.R.: Response to Note on Microcomputer Performance of
“FABLE” on Hoffmann’s Data Sets. Management Science 39: 1192-1193,
1993.

 Johnson, R.V.: Optimally Balancing Large Assembly Lines with “FABLE”.
Management Science 34: 240-253, 1988.

 Land, A.H.; Doig, A.G.: An automatic method of solving discrete
programming problems. In: Econometrica, 28 (3): 497–520, 1960.
(doi:10.2307/1910129)

 Little, J.D.C; Murty, K.D.; Sweeney, D.W.; Karel, C.: An algorithm for
traveling salesman problem. Operations Research, 11: 972-989, 1963.

Wirtschaftsinformatik und Operations Research 367

References of Section 3

 Martello, S.; Toth, P.: Knapsack Problems: Algorithms and Computer
Implementations. Wiley Series in Discrete Mathematics and Optimization,
1990. (ISBN-10: 0-4719-2420-2), (ISBN-13: 978-0471924203)

 Nourie, F.J.; Venta, E.R.: Finding optimal line balances with OptPack.
Operations Research Letters 10:165-171, 1991.

 Scholl, A.: Balancing and Sequencing of Assembly Lines. 2nd edition. Physica,
1999. (ISBN-10: 3-7908-1180-7) , (ISBN-13: 978-3790811803)

 Scholl, A.; Klein, R.: SALOME: a bidirectional branch and bound procedure
for assembly line balancing. INFORMS: Journal on Computing 9:319-334,
1997.

 Vahrenkamp, R.; Mattfeld, D.C.: Logistiknetzwerke - Modelle für
Standortwahl und Tourenplanung. 2nd edition. Springer Gabler, Wiesbaden,
2014.

