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3 Branch&Bound approaches (B&B)

 A Branch&Bound algorithm explores the solution space by iteratively 
fixing variables with respective valid values

 This is conducted in parallel for numerous partial solutions that are 
stored in a specific data structure

 During the process, branching is conducted for a chosen partial 
solution by assigning alternative values to a selected variable

 If a complete solution is generated, we obtain an upper bound 
(minimization problem) by its objective function value

 Afterwards, the largest lower bound is calculated in order to 
examine the quality of the generated partial solution

 If there remains no gap between lower bound and upper bound, the 
currently considered partial solution is fathomed; otherwise it is 
stored in a priority list

 Hence, we can illustrate the enumeration process by an enumeration 
tree



Wirtschaftsinformatik und Operations Research 200

1

Scheme of the B&B enumeration process

2 3

4 5 1 16 7

1 18 9

Active nodes (i.e., a living leaf) that are currently stored in the priority 

lists
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Consequences of findings

Ridiculous! Branch&Bound only 
tests all possibilities…stupid 

testing!

Ridiculous! Branch&Bound only 
tests all possibilities…stupid 

testing!

However, it tries to do it in 
a smart and sophisticated 

way…for instance,
it can make a difference 

what solutions are 
considered first and what 
kind of bounds and rules 

are applied

However, it tries to do it in 
a smart and sophisticated 

way…for instance,
it can make a difference 

what solutions are 
considered first and what 
kind of bounds and rules 

are applied



Wirtschaftsinformatik und Operations Research 202

3.1 Basic principles of B&B

 Basically, Branch&Bound (B&B) enumerates the solution space 

by systematically testing all possible values for the decision 

variables

 Therefore, in each step of the enumeration process, a B&B 

procedure branches over one or more variables

 Hence, different partial solutions are stored in a priority list. 

This list…

 …sorts all generated partial solutions according to some criteria (depth, 

quality,…)

 …decides about the next partial solution to be chosen (always proceeds 

with the first entry of this list)

 …is usually organized as a priority heap (i.e., an efficient data structure 

that allows the identification of the element with highest priority in 

O(1))
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Branch&Bound elements

 Consequently, a B&B procedure has to unambiguously define 
rules or criteria by which

 the priority list is sorted (Enumeration scheme)

 a set of currently unfixed variables (in the chosen partial solution) is 
selected for being branched (Choice of branching variable/variables)

 bounding and dominance rules are applied (Bound and Dominating)

 Since all these elements have significant influence on the 
overall performance of the algorithm, researchers have spent 
substantial effort in deriving and designing best performing 
meta-strategies

 Clearly, since the majority of considered problems is NP-hard, 
performance is assessed for average but not for worst cases. 
Worst cases are annoying and would result in exponential 
effort



Wirtschaftsinformatik und Operations Research 204

Bounding

 In what follows, we assume a minimization problem

 Bounding allows us to fathom generated partial solutions 
early, i.e., before they have produced numerous 
predecessors

 Specifically, in each node, a lower bound is derived that 
informs us about the solution quality maximally attainable by 
starting from the currently considered partial solution

 Therefore, such a node can be fathomed if this lower bound 
is larger than or equal to an already known feasible solution

 Upper bounds are either generated by the additional 
application of heuristics or derived from generated lower 
bounds during the enumeration process



Wirtschaftsinformatik und Operations Research 205

Consequences of findings

Good lower bounds are small…or 
not?

Good lower bounds are small…or 
not?

NO, definitely not!
Good lower bounds are 

large. Then they allow us 
to attain insights and we 
can fathom solutions or 
reorder the priority list 

NO, definitely not!
Good lower bounds are 

large. Then they allow us 
to attain insights and we 
can fathom solutions or 
reorder the priority list 
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Lower bounds

 LBs have significant impact on the overall efficiency of the 
enumeration process

 Hence, significant effort should be spent to derive tight bounds 
(…efficiently computable tight bounds are worth the effort)

 For many applications, it could be shown that tighter bounds 
lead to 

 Better sorted priority lists (in particular in case of BFS-B&B approaches)

 Significant reductions of the number of explored solutions

 Clearly, the computational effort for deriving the bound in 
each node of the enumeration tree has to be kept limited

 Tradeoff between positive impact and computational effort has to be 
addressed

 Slight problem relaxations that lead to modified strong polynomial 
problems are frequently most promising
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Dominance rules

 Besides bounding, B&B procedures should apply sophisticated 

dominance rules to eliminate non-promising alternative solutions

 These rules are frequently logically derived from attributes of the 

given problem

 For instance, a quite simple rule is to avoid unnecessary repetitions 

that are caused by testing an identical set of assigned elements in a 

modified sequence (if this leads to identical side effects)

 In this case, we have to store already explored partial solutions (be 

careful: exponential number is possible)

 while we delete dominated repetitions

 As known from the generation of efficient LBs, the definition of 

powerful dominance rules requires substantial insights into the 

problem structure 
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Enumeration scheme

 Clearly, the decision about the partial solution and 

their variables that are chosen for the next branching 

step have considerable impact on the resulting 

computational effort of the enumeration process

 For instance, if the search is conducted in less 

efficient parts of the solution space first, the entire 

process suffers from… 

 …less tightened upper and lower bounds 

 …partial solutions that are too inefficient to fathom 

substantial parts of the remaining unexplored solution 

space
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Observation

 Therefore, in this case, substantial running time is 

spent on non-promising parts of the solution space

 Consequently, instances are not solved to optimality 

in reasonable time

 Hence, significant research effort is spent on deriving 

best enumeration schemes 
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Basic enumeration schemes

 Breadth-FS
 Partial solutions are prioritized that are positioned at lower levels, i.e., 

solution with a minimum number of fixed variables

 Consequently, the levels of the enumeration tree are iteratively 
generated 

 No preference for specific regions of the solution space

 Memory consumption may become exhaustive

 Depth-FS
 Partial solutions are prioritized that are positioned at deeper levels, i.e., 

solution with a maximum number of fixed variables

 Consequently, solutions are completed much earlier

 However, this scheme frequently does not guide the searching process 
to the most promising regions

 Only a single current partial solution and the best known feasible 
solution are stored
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Basic enumeration schemes

 Best-FS
 Enumerates the partial solutions with lowest lower bound values 

first (preference of most promising partial solutions)

 Memory consumption may become exhaustive

 Therefore, in order to reduce this consumption, sophisticated 
techniques have to be additionally applied

 Frequently, this method works quite efficiently (total average 
enumeration effort is minimized compared to the other listed 
methods)

 However, the efficiency depends mainly on the significance of the 
applied lower bounds

 First complete solution that is selected from the priority list for 
branching is proven to be optimal

 Without applying additional upper bound generation methods, this 
procedure can terminate without finding any solution
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Basic enumeration schemes

 IDA*
 BFS-adaption of DFS

 Basic idea is to apply DFS, but branching is allowed only for 
partial solutions with a lower bound not exceeding a global lower 
bound

 If no solution can be generated, the global bound is increased 
and the enumeration process restarted

 Therefore, as known from BFS, most promising parts of the 
solution space are enumerated first

 However, parts of the solution space have to be explored several 
times since the enumeration process has to be restarted several 
times with different global lower bounds

 Repetition can be avoided to a certain amount if discarded 
solutions are stored in a second list to be potentially reactivated 
after increasing the global lower bound
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Basic enumeration schemes

 LLB

 =“Local Lower Bound”

 Is “a mixture” of DFS and IDA*

 It expands partial solutions in non-decreasing sequence of 
their lower bound values; but if a partial solution is chosen, 
its subtree is enumerated completely (however, in sequence 
of the lower bounds)

 Therefore, the LLB works only locally and no repetition 
occurs during the enumeration process

 However, the enumeration efficiency of BFS is not attained 
if, for instance, the applied lower bounds do not provide 
useful information on the first levels of the enumeration tree
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Consequences of findings

Now, I understand and admit: 
Finding practically applicable B&B 

procedures is an art

Now, I understand and admit: 
Finding practically applicable B&B 

procedures is an art

Indeed. 
Therefore, it needs real 

OR-experts to design them

Indeed. 
Therefore, it needs real 

OR-experts to design them
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3.2 Solving the Knapsack Problem with B&B

 In what follows, we exemplarily consider again the 
Knapsack Problem (KP) in order to initially illustrate 
two very simple Branch&Bound algorithms 

 Attention:

 The KP is a maximization problem

 Therefore, the roles of lower and upper bounds are 
exchanged

 New solutions may provide an increased lower bound 
(guaranteed profit)

 Problem relaxations and/or logical conclusions may provide 
decreased upper bounds (maximum solution quality of a 
considered partial solution)
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The lower bound of the LP-relaxation

 First of all, we introduce a modified numbering of the goods 

according to their efficiencies

 Thus, we first determine the critical item s*

 After allocating the goods in increasing sequence, s* is the first 

job that does not fit into the knapsack

 Thus, we obtain a feasible solution by excluding s*

 This solution has the following total weight and price
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1 2

1 2

... n
n

n

p p p
e e e

w w w
     

* 1 * 1

1 1

* *
s s

i i

i i

p p w w
 

 

   



Wirtschaftsinformatik und Operations Research 217

A first very simple upper bound

 Since items are sorted according to their efficiency in non-

increasing order, we know that each capacity unit of the 

knapsack cannot be used more efficiently than e1

 Consequently, if we have a partial solution with a current 

weight w and a current price p and let b be the item with 

lowest index whose status (in or out) has not been determined 

yet, we may obtain directly the following upper bound on the 

objective function value

 Thus, if no element is assigned, we obtain the following value

 0
b

b

p
U p C w

w

 
    

 

1
0
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p
U C

w

 
  
 
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Applied to the solution of the LP-relaxation

 If we generate the solution of the LP-relaxation and 

erase the critical good from the knapsack, we can 

apply the simple upper bound

 Hence, the objective function value of the optimal 

solution of the LP-relaxation coincides with the 

resulting bound since the critical good is partially 

assigned 

 This bound will be applied in the two simple B&B 

procedures that are introduced next
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A more sophisticated upper bound

 Martello and Toth proposed the following upper bound

 It is based on the decision whether the current critical good b*
(see definition above) is assigned to the knapsack or not

 If b* is not additionally assigned to the knapsack, the remaining 
capacity cannot be filled more efficiently than eb*+1 price units 
per capacity unit

 If b* is additionally assigned to the knapsack, the remaining 
negative capacity (i.e., knapsack is overfilled) “cannot be lost 
more efficiently” than eb*-1 price units per capacity unit

 Thus, we obtain

   * 1 * 1
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b b
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Two simple Branch&Bound versions

 In what follows, we exemplarily apply two different 
Branch&Bound algorithms

 First, a simple DFS procedure (Depth-first-search) that 
assigns the elements in an arbitrary sequence (i.e., just 
in sequence of the given element numbers)

 Moreover, a simple but much more efficient Best FS 
procedure (Best-first-search version) is illustrated that 
always branches the variable that decides about the 
assignment of the  current critical element 

 In both procedures, the simple upper bound 
(introduced before) is applied in each node
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A DFS Branch&Bound algorithm

 This approach tries to allocate the items in a predetermined 

sequence

 Whenever a partial solution cannot be completed to a new 

optimal one, it is fathomed, i.e., backtracking is conducted

 Generation of an upper bound of the maximal attainable weight 

by applying the LP-relaxation 

 Sum of current weight and this upper bound provides an upper 

bound

 Otherwise, if the solution is finally completed, a new 

temporary best solution improves the current lower bound

 A solution is denoted as completed whenever, due to capacity 

constraints, there is no assignable item available anymore



Wirtschaftsinformatik und Operations Research 222

Example

 Let us consider again our small example

 We sort the items according to their efficiency

 Thus, we obtain the following table

 
1 2 3

1 2 3

Maximize 4 7 5

s.t. 4 5 3 10 0,1
n

Z x x x

x x x x

     

       

Index of item Price Weight Efficiency Efficiency 

position

1 4 4 1 3

2 7 5 7/5 2

3 5 3 5/3 1
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Applying the DFS Branch&Bound procedure

Node 0

No assignment

UBRel=14 LB=?
x1=1 x1=0

Node 1 

x1=1 

UBRel=4+5+3.7/5

=66/5=13,2->13

Node 2

x1=x2=1 

UBRel=4+7+1.5/3

=12,6->12

Node 5

x1=1 x2=0, 

UBRel=4+5=9 

LB=11 Deleted

x2=1 x2=0

Node 3

x1=x2=x3=1

Infeasible

Node 4

x1=x2=1 x3=0 

UBRel=LB=11

x3=1 x3=0

Node 6 

x1=0, UBRel=5+7

=12 -> 12

LB=11

Node 7 

x1=0 x2=1 

UBRel=5+7

=12->12 LB=11

Node 10

x1=x2=0,UBRel=5

LB=12

Deleted

x2=1 x2=0

Node 8

x1=0 x2=x3=1 

UBRel=LB=12

Node 9

x1=0 x2=1 x3=0 

UBRel=7, LB=12

Deleted

x3=1 x3=0
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Observation

 Clearly, the computational effort can be significantly 

reduced by a smarter ordering of the job numbers

 Specifically, decisions of assigning or not assigning a 

critical job have much higher impact on derivable 

bounds

 This cognition is directly exploited in the following 

algorithm
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A Best FS Branch&Bound algorithm

 This kind of algorithm is characterized by the following attributes

 Always proceeds with the node with the largest upper bound value

 Again, a complete solution is kept throughout the calculations

 This solution is derived from the LP-relaxation 

 Therefore, the critical element b* of this solution is considered for the next 
branching step. Alternative, states in a branching step are 

 b* is assigned

 b* is not assigned

 In order to derive an upper bound, the LP-relaxation of the Knapsack 
Problem is used again

 Additionally, the solution of the relaxation without the assignment of the 
critical good is applied in order to provide a new solution, i.e., may be 
there is a new lower bound

 Usually, by applying this Best FS Branch&Bound algorithm, the 
resulting enumeration tree comprises a significantly lower number 
of generated nodes
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Critical set of items
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Enumeration process

No assignment

Critical item is 1

UBRel=14 LB=12

x1=1

Critical item is 2

UBRel=4+5+3.7/5

=66/5=13,2->13

x1=1

x1=0

No critical item

UBRel=7+5=12

Deleted

x1=0

x1=x2=1

Critical item is 3

UBRel=4+7+1.5/3

=38/3=12,6->12

Deleted

x1=1 x2=0

No critical item

UBRel=4+5=9

Deleted

x2=1 x2=0
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3.3 A B&B approach to the aTSP

 In what follows, we consider again the aTSP

 We introduce a very illustrative but simple 

Branch&Bound approach exactly solving this problem

 It was originally proposed by Little et al. (1963) while 

these authors introduce the notation “Branch&Bound” 

for the first time
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3.3.1 A problem relaxation to the aTSP

 In what follows, we introduce a somewhat helpful 

relaxation of the Traveling Salesman Problem

 Detailed analyses of the TSP provides us with the 

cognition that the subcycle restriction complicates the 

problem significantly

 To be more precise, if we drop these restrictions 

completely, we obtain a well-solvable problem, 

namely the Linear Assignment Problem (LAP)
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Excursion: The LAP

 In what follows, we introduce a new problem frequently 

applied to layout planning constellations, the so-called Linear 

Assignment Problem (LAP)

 Basically, this model can be interpreted as an allocation 

problem of N elements to be placed on altogether N positions

 If an element is assigned to a specific location, predefined costs 

occur

 Every element has to be allocated to one definitely defined 

location

 The objective of the model is to allocate the N elements in a 

way that minimizes the resulting total costs 
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Mathematical definition of the LAP

 Parameters

 Variables

    ,1,..., : 1,..., : i ji N j N C   

Costs that occur if the ith element is placed 

on the jth location;

    ,1,..., : 1,..., : i ji N j N x   

Binary decision variables indicating whether 

the respective element is placed to 

the defined location;
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Mathematical definition of the LAP

 Definition of xi,j:

,

1 if theelement i  is  located on  position  j

0      otherwise
i jx


 


 Restrictions:

  ,
1

1,..., : 1 (1)
N

i j
i

j N x


   Every location is occupied

by exactly one element

  ,
1

1,..., : 1 (2)
N

i j
j

i N x


  
Every element is placed on 

exactly one location
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Mathematical definition of the LAP

 Objective function

, ,

1 1

N N

i j i j

i j

MinimizeZ x c
 

  Minimize the total sum of 

allocation costs
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Observations

 The model is equivalent to the aTSP without respecting its 

subcycle restrictions

 Why?

 Note that each node i obtains an element j that is assigned to it

 Consequently, we have a mapping succ(i)

 Therefore, cyclical paths arise

 Unfortunately, subcycles are possible

 Therefore, we can conclude that each optimal solution to the 

LAP is a lower bound to the optimal solution of the aTSP

 Moreover, we can conclude that each lower bound to the LAP 

is also a lower bound to the aTSP
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Fortunately, the LAP is well-solvable

 Specifically, the LAP can be solved in polynomial time 

O(N3)

 This is done by the application of the so-called well-

known Hungarian method

 In order to understand this nice algorithm, we have to 

get some specific insights into the Linear Assignment 

Problem

 Therefore, in what follows, we take a closer look at 

some specific LAP attributes
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LAP as a Linear Problem

 In what follows, we consider the LAP as a Linear 

Program

2 2

1,1 1,1

1,2 1,2

1, 1,

2

2,1 2,1

2, 2,

, ,

... ...

1

with ; ... ;

... ...1

... ...

N N

N N N

N N

N N N N

x c

x c

x c

x cAx b x IR b IR c IR

x c

x c



   
   
   
   
   

    
                   

   
   
   
   
   
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LAP as a Linear Problem

1 0 ... 0 1 0 ... 0 1 0 ... 0 1 0 ... 0 ...1 0 ... 0

0 1 0... 0 0 1 0... 0 0 1 0... 0 0 1 0... 0 ...0 1 0... 0

... ... ... ... ... ...

...

... ...

0 0 ...0 1 0 ... ...0 1 0 ... ...0 1 0 ... ...0 1 0 ... ...0 1
andmatrix  

1 1 ... 1 0 ... 0 0 0 ... ... 0 0 ... ... 0

1 1 ... 1 0 ... ... 0 0 ...

A 

... 0

1 1 ... 1 0 ... ... 0

... ... ... ... ... ...

... ... 0 0 ... 0

... ... ... ... ... ...

... ... 0 0 ... 0

... ... 0 0 ... 0

... ... ... ... ... ...

1 1 ... 1

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
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LAP as a Linear Problem - example for N = 4

2

1.1 1.1

1.2 1.2

1.3 1.3

1.4 1.4

2.1 2.1

2.2 2.2

2.3

2.4 2

3.1

3.2

3.3

3.4

4.1

4.2

4.3

4.4

1

1

1

1
with ; ;

1

1

1

1

N N

x c

x c

x c

x c

x c

x c

x

x
Ax b x IR b IR c

x

x

x

x

x

x

x

x



 
 
 
 
 
 
   
   
   
   
   
           
   
   
   
        
 
 
 
 
 
 

2

2.3

2.4

3.1

3.2

3.3

3.4

4.1

4.2

4.3

4.4

N

c

c
IR

c

c

c

c

c

c

c

c

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 The first four lines of matrix A represent the first group 
of restrictions (1); the last four lines represent the 
second group of restrictions (2)

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0

0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0

0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

A

 
 
 
 
 
   
 
 
 
  
 
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The dual of the LPLAP

 In order to obtain some insights into the problem 

structure, we consider the dual of the LAP

2

1,1

1,2

1

1,

2 2
2,1

1

2,

,

...
...

1

: ; ... ; .

...1
...

...

N

NT N N N

N

N

N N

c

c
v

c
v

cA cwith IR b IR c IR
u

c
u

c

 

 
 
     
                             
        
 
 
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Matrix AT

1 0 ... ... 0 1 0 ... ... 0

1 1 ...

1 ... ...

... ... ...

1 1 0 0

1 0 0 1 0

1 0 ... 0 1 0

1 0... 0 ... ...

... 0 ... ...

1 1 0

... ... ... ... ... ... ... ... ... ...

1 0 ... ... 0 0 1

1 0 1

... ... ... ...

... 0 1 0 1

Tand A

 
 
 
 
 
 
 
 
 
 
 

  
 
 
 
 
 
 
 
 
 
  
 
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Observations – The dual of the LAP

 Obviously, owing to the simple structure of matrix A, 
the dual of the LAP has a nice structure

 By analyzing the dual program, we get:

 And we know that if x and π are optimal, it holds that:

, ,

1 1 1 1

T T

N N N N

i i i j i j

i i i j

b c x

u v c x



   



    

,i j i jc u v 
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Observations – The dual of the LAP

 Consider the following solution:

 Take a feasible solution of the LAP

 For every element xi,j=1 define ui+vj=ci,j

 Consider the resulting objective function value

       

 
    

 
 

, ,

,

,

, , , , , ,

1 1 1 | 1, 1,..., ( , ) ( , )| 1,( , ) 1,..., 1,...,

,

( , ) ( , )| 1,( , ) 1,..., 1,...,

( , ) ( , )| 1,( , ) 1,..., 1,...,

i k k l

k l

k l

N N N

i j i j i j i j i j i j

i j i j k x k N i j k l x k l N N

i j i j

i j k l x k l N N

i j

i j k l x k l N

c x c x c x

u v x

u v

         

   

   

 

  

 

   



   1 1

N N

i j
i jN

u v
 

   
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Observations – The dual of the LAP

 Therefore, we can conclude that if the constructed 
solution is feasible for the dual problem it would be 
optimal for our relaxed problem

 Question: Is it always feasible?

 Answer: Unfortunately, no! 

 Note that for all combinations (i,j): ui+vj≤ci,j has to be 
fulfilled

 We have to define an algorithm generating the 
respective ui and vj values without violating any 
restriction of the dual problem

 This solution is proven to be an optimal one
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Reduction of the matrix

Theorem:

If a constant is added to (or subtracted from) all entries 

in a row or column of an assignment matrix, the optimal 

assignment is kept unchanged

The correctness of the Theorem follows directly from 

the following facts

 In each row/column exactly one assignment is done

 Thus, the objective function value is modified by the 

constant for all solutions, but the relative ordering is 

kept
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The Hungarian method

1. Initialization

 Subtract the smallest entry in each row from every entry in this 
row

 Subtract the smallest entry in each column from every entry in this 
column

 Here we stop the execution of the algorithm and use the 
computed reduction of the matrix as a valid lower bound for the 
LAP 

2. Try to find a feasible assignment by only using zero entries. If 
a feasible assignment is already possible, stop the algorithm. 
Otherwise, proceed with the next step

3. Cover the zeros with a minimum number of (vertical and 
horizontal) lines

4. Subtract the minimum uncovered entry from every 
uncovered entry and add this selected value to every twice 
covered entry; Go to step 2
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Correctness of the procedure

 The correctness of the first three steps follows directly 
from the theorem itemized above

 However, what about step four?

 First of all, it can be stated that only uncovered 
elements in the matrix remain to be used as new 
positions for an element

 Additionally, if a twice covered element is zero, we have 
alternative zeros in the respective row and column

 This results from the fact that there is at least one 
additional element equal to zero either in the 
respective row or column

 Therefore, we keep a cost-equivalent alternative
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Correctness of the procedure

 In this step, we subtract the smallest value from all 
uncovered entries, i.e., we subtract this value from all 
rows (or alternatively all columns)

 Clearly, owing to the Theorem, this step results in an 
equivalent problem

 Subsequently, we add this value to all covered rows and 
columns. Thus, the twice covered ones are increased 
twice

 Again, by making use of the Theorem, we know that we 
obtain an equivalent problem

 Additionally, we know that in each step of the procedure, 
at least one new zero element is generated

 Thus, the procedure terminates with an optimal solution
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Complexity of the procedure

 Clearly, steps 1 up to 4 can be executed in time O(N2)

 Moreover, we have at most O(N) iterations of the 

steps 2-4

 Thus, we obtain an overall complexity of O(N3) steps
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Simple examples

 We consider the following two examples

1 2

1 4 6 3
9 12 16

9 7 10 9
12 8 10 ;

4 5 11 7
15 11 12

8 7 8 5

C C

 
   
           

 
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Example C1

 We commence with the following cost matrix

1

9 12 16

12 8 10

15 11 12

C

 
   
 
 
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Example 1

   
       
   
   

   
       
   
   

1

9 12 16 0 3 7

12 8 10 4 0 2

15 11 12 4 0 1

0 3 6 12 16

4 0 1 12 10  optimal assignment

4 0 0 15 11

C

9

8

12
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Example C2

 The second example is somewhat more complex

2

1 4 6 3

9 7 10 9

4 5 11 7

8 7 8 5

C

 
 
 
 
 
 
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Example 2

 We apply the first step of the algorithm

   
   
    
   
   
   

 
 
 
 
 
 



2

1 4 6 3 0 3 5 2

9 7 10 9 2 0 3 2

4 5 11 7 0 1 7 3

8 7 8 5 3 2 3 0

0 3 2 2

2 0 0 2

0 1 4 3

3 2 0 0

No solution since the rows 1 and 3 are blocking each other

C
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Example 2 – step 3

 Now, we have to cover the zeros with a minimal 

number of horizontal or vertical lines

 Minimal value of uncovered elements is 1

 Thus, we now obtain

0 3 2 2

2 0 0 2

0 1 4 3

3 2 0 0

 
 
 
 
 
 
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Thus, we obtain by conducting step 4

 … the following equivalent problem

 And obtain the optimal solution

0 2 1 1

3 0 0 2

0 0 3 2

4 2 0 0

 
 
 
 
 
 

2

4 6 3

9 7 9

4 11 7

8 7 8

C

 
 
 
 
 
 

1

10

5

5
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Consequences

 Clearly, the optimal solution to the LAP directly 

provides us with a lower bound to the considered TSP

 Additionally, each feasible dual solution (for instance 

the dual result for the first step) also determines a 

lower bound to the TSP
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3.3.2 The B&B procedure of Little et al.

 In what follows, we briefly introduce the well-known 
Branch&Bound procedure of Little et al. (1963)

 As already shown, we know that each optimal solution to the 
LAP is a lower bound of the optimal solution to the aTSP

 Moreover, we can conclude that each lower bound for the LAP 
is also a lower bound for the aTSP

 As proven above, the LAP can be solved in polynomial time 
O(n3) by the Hungarian method

 However, during the time-consuming enumeration process of a 
Branch&Bound procedure, even this efficient computation may 
be too costly since it is applied in each node

 Therefore, we need a fast computable lower bound for the LAP 
to be applied in each node of the resulting B&B tree
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Bounding

 Consequently, only the first step of the Hungarian 

method is applied in order to derive a first feasible 

dual solution

 Note that the objective function of the dual solution is 

a lower bound for the Linear Assignment Problem 

(LAP)

 This bound is applied in each node
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Branching scheme I

 By using the LAP bound, the algorithm works in a best-first 
manner which branches always the node with the lowest 
bound value

 In each branching step, a specific variable xi,j is taken, 
wherefore two subsequent nodes arise by the possible values 
xi,j=0 and xi,j=1

 For the 0-case, the respective costs ci,j are set to infinity

 For the 1-case, the respective costs ci,j are kept unchanged and all 
other alternative entries get the infinity value

 After reducing the matrix, the new nodes get the lower bound 
values

1 1

N N

v i j

i j

F u v
 

  
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Branching scheme II

 But, how can we select the respective xi,j variables to generate 
the branching step?

 The variable is chosen which maximizes the resulting lower 
bound 

 By fixing xi,j to 0, we forbid this transport, and therefore we 
get at least the additional costs ki,j=min{ci,p | p=1,…,N } + 
min{cp,j | p=1,…,N } (detailed computation is given on the 
next slide) while the c-values are from the cost matrix of 
the considered node and ci,j is set to infinity

 Therefore, in each node, we chose xa,b with ka,b=max{ki,j | 
i,j=1,…,N } to maximize the resulting lower bounds of the 
subsequent nodes

 After adding a tour element by using the 1-value, we can 
eliminate all edges that would lead to a subcycle
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Computation of matrix K

Let � = ��,� ���,��	
=

min

∈ �,…,	

�
,� + min
�∈ �,…,	

��,�    �� ��,�  ��� ��� �����ℎ ! � ��� 

                                           ��! ��,� ��� ���  ��"#! !

 

−∞                                                   ��ℎ ����                                   

and �&,' = max ��,�  ��,�  ����*� �����ℎ ! ��! ��,�  ����*�  ��"#! !}.

We chose �&,'  as the branching variable.  
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Example

 , 1 ,

7 4 2 1 3

3 3 2 4 6

2 3 4 5 3

7 1 5 4 4

4 4 3 5 3

4 3 3 6 2

i j i j N
C c

 

 
  
 

   
 

 
   
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Reducing the matrix root node 0

 , 1 ,

6 3 1 0 2 1

1 1 0 2 4 2

0 1 2 3 1 2

6 0 4 3 3 1

1 1 0 2 0 3

2 1 1 4 0 2

 0 0 0 0 0 0

Lower bound is 1 2 2 1 3 2 11

i j i j N
C c

 

 
  
 

   
 

 
   

     
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Search for the branching variable

 , 1 ,

4 2

0 0 0 1 0

0 0 2 0 0

2 0 0 0 0

0 0 0 0

0 0 1 0 1

0 0 0 0 1

We chose  as the branching variable

i j i j N

,

K k

x

 

 
  
 

   
 

 
   

4
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x4,2=1 (node 2)

 , 1 ,

3 1 0 2

1 1 2 4

0 2 3 1

1 0 2 0

2 1 4 0

i j i j N
C c

 

  
   
  

   
     
  
    

0
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x4,2=1 and reducing

 , 1 ,

3 0 0 2 0

0 0 1 3 1

0 1 3 1 0

0

1 0 1 0 0

2 1 3 0 0

 0 0 0 1 0 0

Lower bound is 11 1 1 13

i j i j N
C c

 

  
   
  

   
     
  
    

  

0
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x4,2=0 (node 1)

 , 1 ,

6 3 1 0 2

1 1 0 2 4

0 1 2 3 1

6 4 3 3

1 1 0 2 0

 2 1 1 4 0

i j i j N
C c

 

 
  
 

   
  

 
   
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x4,2=0 and reducing

 , 1 ,

5 3 1 0 2 0

1 1 0 2 4 0

0 0 2 3 1 0

3 1 0 0 3

1 0 0 2 0 0

2 0 1 4 0 0

 0 1 0 0 0 0

Lower bound 11 3 1 15

i j i j N
C c

 

 
  
 

   
  

 
   

  
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The process is continued with node 2

 
 

  
   
  

   
     
  
    

, 1 ,

3,1

0 1 0 0

0 0 0 0

0 0 0

0

0 0 0 1

0 0 0 1

 is chosen

i j i j N
K k

x

1
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x3,1=0

 , 1 ,

3 0 0 2

0 0 1 3

1 3 1

0

1 0 1 0

 2 1 3 0

i j i j N
C c

 

  
   
   

   
     

  
    
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x3,1=0 and reducing

 , 1 ,

3 0 0 2 0

0 0 1 3 0

0 2 0 1

0 0

1 0 1 0 0

2 1 3 0 0

 0 0 0 0 0 0

Lower bound 13 1 14

i j i j N
C c

 

  
   
   

   
     
  
    

 
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x3,1=1

 , 1 ,

0 0 2

0 1 3

0

0

0 1 0

1 3 0

i j i j N
K k

 

   
    
     

   
     
   
     
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x3,1=1 and reducing

 , 1 ,

0 0 2 0

0 1 3 0

0 0

0 0

0 1 0 0

1 3 0 0

 0 0 0 0 0 0

Lower bound 13

i j i j N
C c

 

   
    
     

   
     
   
     
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to be continued …
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0

LB=11

1

LB=15

x4,2=0

2

LB=13

x4,2=1

3

LB=14

4

LB=13

x3,1=0

x3,1=1

5

LB=15

6

LB=14

x5,6=0

x5,6=1

7

LB=16

x1,4=0

8

LB=15=UB

x1,4=1

x2,5=x6,3=1

9

LB=15

10

LB=14

11

LB=16

x1,5=0

12

LB=15=UB

x1,5=1

x2,1=0

x2,1=1

Complete enumeration tree of the B&B process
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Computational results

 Tests were conducted on an IBM 7090

 Two types of problems were studied

 Asymmetric distance matrices with elements consisting 

of uniformly distributed 3-digit random numbers

 Various published problems and subproblems

constructed therefrom by deleting cities. Most of these 

problems have been made up from road atlases or 

maps, and are symmetric

 The following slide provides us with the measured 

results
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Conclusions

 Clearly, the average computational time grows 

exponentially with increasing problem size

 As a rule of thumb, adding 10 cities to the problem 

multiplies the necessary computational time by a 

factor of 10
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3.4 SALOME 1 – A B&B approach for SALBP-I

 In what follows, we introduce a considerably more 
sophisticated Branch&Bound procedure: the B&B procedure 
SALOME-1

 It solves SALBP-1 instances of moderate size to optimality in 
reasonable time

 SALBP-1 means “Simple Assembly Line Balancing Problem of 
Type 1”

 Therefore, it considers the balancing process of assembly lines

 Consequently, in what follows, we briefly introduce 

 the layout of assembly lines,

 existing basic types of assembly lines, and finally, 

 the two basic planning levels that have to be considered in order to 
efficiently use assembly lines.
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3.4.1 Attributes of assembly lines

 Assembly lines arrange facilities solely according to the flow 
principle, i.e., the production process determines the layout

 Assembly lines are production systems without buffers, i.e., no 
intermediate storage systems between the different stages

 There is a predetermined global cycle or takt time c, i.e., in each 
takt time interval, a new product item is launched at the line

 Originally, assembly lines were designed for the mass production 
of absolutely homogeneous products

 Here, these systems attain smallest variable costs for the 
following reasons

 Minimization of the number of conducted transports

 Maximum training of employed workers

 Executing identical tasks in an extremely high frequency

 Workers become highly skilled for the respective tasks
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Types of assembly lines

a. single-model line

b. mixed-model line

c. multi-model line

different models / products

setup setup
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Single-model assembly line

 Originally, assembly lines were designed for a single variant or 
product only

 If only a single variant has to be produced on an assembly line, 
the production process (aside from potentially occurring 
disturbances) acts quite stationary in each station along the 
elapse of the different takts

 Specifically, the work load in each station stays constant from 
product unit to product unit

 At each station, the same set of tasks is performed for each 
product unit

Execution of tasks 

assigned to station 1

Production sequence (frequently executed by a conveyor belt)

Station 1Station 1 Station 2Station 2 Station 3Station 3 Station 4Station 4 Station 5Station 5

Execution of tasks 

assigned to station 2

Execution of tasks 

assigned to station 3

Execution of tasks 

assigned to station 4

Execution of tasks 

assigned to station 5
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Balancing process

 The assignment of the tasks to the stations (balancing 
of the line) has substantial impact on the overall 
performance of the line

 The maximum workload of all stations determines the 
minimum feasible takt time of the single-model 
assembly line

 The takt time defines the production speed of the 
assembly line 

 Moreover, the number of stations at the line 
corresponds to the resulting investment costs that 
have to be spent for erecting the assembly line
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Mixed-model assembly lines

 In times of Mass Customization, customers demand to order an 
individual variant (of a mass product)

 However, if there are various variants to be produced at the same 
assembly line, the production process becomes more complex

 When we produce various variants, the work load in each station 
may change from takt to takt

 Therefore, in order to allow an efficient use of capacities, stations 
have to become more adaptable in size and structure

 For this purpose, the layout of mixed-model assembly lines 
integrates (among others) for instance

 overlapping areas between stations

 different kinds of workers (floaters and operators)

 offline areas for not feasibly completed product units
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Mixed-model assembly line

Station 1 Station 2 Station 3 Station 4 Station 5

Launching interval

Station 2

Front and rear cross region
Variant 1

Variant 2

Variant 3

Operator 

(unemployed,

busy, 

in movement)

Pool of floaters 

(Engaged in an offline area, 

Employed at the line in case 

of work overload)
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Basic terms

 Assembly

 Process of collecting and fitting together various parts

 A finished product is created

 Relationship of parts and the flow of material can be visualized 
by assembly charts (Gozinto charts)

 Workpieces are unfinished units of the product

 Operation or task

 Is a portion of the total work content in an assembly process

 A task time is predetermined for each operation

 Indivisible operations, i.e., task cannot be divided

 Station

 In a station, a certain amount of work (some tasks) is performed 

 Workers and floater are assigned firmly or loosely, respectively
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Basic terms

 Cycle time or Takt time

 Maximal amount of time a workpiece is allowed to consume 

during its processing in a station

 Equals the launching time in the production process

 Consequently, cycle time cannot be smaller than the maximal 

duration of a task to be executed at the line

 Precedence constraints

 Owing to technological restrictions, the ordering in which 

operations are performed at the line may be partially 

predetermined 

 Illustration may be given by so-called precedence graphs
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Layout of assembly lines

 Serial lines

 Traditional layout of assembly lines

 I.e., single stations are arranged in a straight line along the line 

 U-shaped lines

 The layout of U-lines is defined according to this letter

 I.e., stations contain tasks coming from different points of the 
production process 

 Parallel lines 

 Here, lines are arranged parallel to each other

 Thus, items may be produced on each line alternatively

 Consequently, a more flexible production system is established

 Specifically, product items, whose successive production may cause 
substantial work overload, may be produced on different lines
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Illustration – U-shaped assembly line

S1

S2

S4

S3

S5

S6

S7
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Paced and unpaced assembly lines

 Paced assembly lines

 Either the workpieces are steadily moved from station to station by a 

conveyor belt at constant speed, or

 Workpieces are intermittently transferred to the subsequent station after 

being processed

 Stations are coupled in an inflexible way

 I.e., there are no intermediate buffers between stations

 Inflexible structure, but accelerates the production

 Unpaced assembly lines

 Here, stations are decoupled by intermediate buffers

 I.e., workpieces are hold if the subsequent station is still busy

 Blocking occurs if intermediate buffers are filled to capacity

 More flexible structure

 Allows setup activities
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Types of stations

 Parallel stations

 Resources are installed several times at the same station

 I.e., different work pieces are processed simultaneously

 Consequently, by making use of parallel stations, better or 
feasible constellations may become possible 

 For instance, if there are tasks with extremely large 
processing times (>takt time), parallel stations become 
necessary

 However, the installation of parallel stations is costly

 Specific arrangements at the conveyor belt are necessary

 Multiple investments in resources
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Open and closed stations

 Closed stations

 The extent of closed stations is predetermined, i.e., fixed 
throughout the production process

 Consequently, there are strict boundaries not crossable 
by the deployed workers or floaters

 Open stations

 Here, boundaries may be crossed by personnel in order 
to complete a currently processed workpiece

 But, workers crossing the boundaries do usually not 
interfere with each other

 Specifically, it has to be distinguished between

 Open-to-the-right stations

 Open-to-the-left stations
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Observations

 Open-to-the-right stations

 Positive effect: Items can be completed in time

 Negative effect: Less time available for the subsequent 

item in this station

 I.e., Timely completion versus worker drift

 Open-to-the-left stations

 No tradeoff

 Only positive effects

 Necessary consideration of technical restrictions (e.g., 

wire length)
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3.4.2 Assembly Line Balancing

 Determination of the line layout and capacities

 Structure of the lines

 Assignment of tasks, machines and personnel resources

 Balancing problems: 

 Assembly lines are inflexible 

 Small adaptation range for the production control 

 Consequence: 

Line layout must be robust enough in order to smooth the 

varying capacity demand

 Anticipation of possible scenarios and constellations in order 

to evaluate a generated assembly line layout
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Classification of balancing problems

assembly line balancing problems

mixed-model

stochastic

single-model multi-model

deterministic dynamic

paced / unbuffered unpaced / buffered
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3.4.3 Simple Assembly Line Balancing

Assumptions of the model:

 There are N predetermined tasks (set V) to be performed in 

order to produce the single product

 Each task jϵV has a predetermined processing time tj

 There are precedence constraints between the different tasks 

resulting from technological reasons and defined by the 

precedence graph G=(V,E)

 All stations are uniformly equipped, may be able to perform all 

tasks (if assigned), and possess the uniform time capacity C 

 No buffers between stations exist. Therefore, products are 

directly or continuously transported from station to station 

(potentially by a conveyor belt)
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SALBP-F model – Mathematical definition

    ,

1

1 Feasible task assignment: 1,..., : 1
M

i s

s

i N x


  

Feasibility variant of SALBP:

 N: Number of tasks to be executed at the assembly line

 C: Takt time of the assembly line

 M: Number of stations 

 ti: Processing time of task i

 Binary variable xi,s=1 if and only if task i is assigned to station s, 
otherwise =0

Restrictions:
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SALBP-F model – Mathematical definition

   

   

       

,

1

, ,

1 1

,

2 Takt time restriction: 1,..., :

3 Precendence constraints: , : 0

4 Domain constraint: 1,..., : 1,..., : 0,1

N

i s i

i

M M

i s j s

s s

i s

s M x t C

i j E x s x s

i N s M x



 

   

     

    



 

 Unfortunately, already the feasibility variant of SALBP is NP-hard

 Therefore, all optimization variants, which are considered in 

what follows, are also NP-hard
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3.4.3 SALBP – Optimization models

 In what follows, we distinguish between three 

different optimization variants altogether

 Depending on the objective function, we obtain the 

models

 SALBP-1: Minimizing the number of necessary stations 

M, i.e., minimizing the necessary investments

 SALBP-2: Minimizing the takt time C, i.e., maximizing the 

output rate 1/C

 SALBP-E: Maximizing the efficiency, i.e., minimizing the 

product C.M
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SALBP 1 example – precedence graph

2 7
6 6 4

1

8 9 10
2 9 2

6543

5455

See Scholl (1999), p.118
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Basic terms

 Line Balance

 Found feasible task assignment, i.e., an assignment of 
the given tasks to the stations of the line

 It is feasible if all precedence constraints are fulfilled

 In our example, we obtain determining cycle time 11 
the following line balance

 Station 1: 1,3; i.e., resulting idle time amounts to 0

 Station 2: 2,4; i.e., resulting idle time amounts to 0

 Station 3: 5,6; i.e., resulting idle time amounts to 2

 Station 4: 7,8; i.e., resulting idle time amounts to 5

 Station 5: 9,10; i.e., resulting idle time amounts to 0
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Exact solution approaches for SALBP-1

 Besides some heuristics, the literature provides 

various exact solution approaches that guarantee an 

optimal solution

 The most famous ones are 

 FABLE (Johnson(1988))

 OPTPACK (Nourie and Venta (1991))

 EUREKA (Hoffmann(1992))

 SALOME (Scholl and Klein(1997))

 SPEZSAL (sequential and, in particular, parallel version) 

(Bock (2000))
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FABLE

 Proposed by Johnson in 1988

 It is a depth-first-search Branch&Bound approach

 It works task-oriented, i.e., in each node, a single task is appended 
to a current partial solution with a last opened station k

 If an assignable task exists, it is appended, otherwise, the station is closed 
and station k+1 is opened

 Before starting, tasks are renumbered such that

 no task has a larger numbered predecessor

 if two tasks are not successors or predecessors to each other, the task with the 
larger processing time gets a smaller number

 After assigning a task to a station, only larger numbered tasks can be 
assigned to this station as well (avoiding the repeated enumeration of 
identical sets of tasks in one station)

 After completing a solution or fathoming a solution the procedure 
tracks back, i.e., it tests an alternative task
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FABLE

 FABLE applies various bounding rules. Specifically, it 
applies LB1, LB2, LB3, and LB4 (all these rules are 
introduced later)

 Furthermore, FABLE applies the following logical tests

 Maximum load rule

 Jackson dominance rule

 Labeling dominance rule (due to memory limitations, it 
becomes dynamically inactive when a larger unlabeled 
task is assigned)

 First station dominance rule

 Task time incrementing rule
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EUREKA

 Works station-oriented, i.e., a node represents always a 
completed station load that is appended to a partial solution

 Forward and backward enumeration

 First, for a specific time, a layout is searched in forward direction

 Second, the same process is conducted in backward direction

 If no solution is found within a given time limit, the heuristic originally 
proposed by Hoffmann (1963) is applied

 IDA*-Branch&Bound procedure that works with the simple idle 
time rule only (LB1, see below)

 This rule derives the smallest number of stations M that would 
have a total idle time larger or equal to the idle time of the 
currently considered partial layout

 Total idle time of a solution with M station is M.C-ttotal, while ttotal

gives the total processing time of all tasks
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EUREKA

 No further logical rule or dominance criterion is 
applied during the enumeration process of this 
procedure
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OPTPACK

 Proposed by Nourie and Venta in 1991

 Uses the branching scheme of FABLE

 Applies heuristics in order to find feasible upper 

bounds before starting the enumeration process

 Applies only the first LB (idle-time argument)

 Furthermore, OPTPACK applies the following two 

logical tests

 Maximum load rule

 Tree dominance rule
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The Branch&Bound algorithm SALOME

 In what follows, we consider a Branch&Bound procedure that is 
specifically designed to tackle SALBP-1 instances

 A modified version of this approach, however, is proposed in 
order to solve SALBP-2 (this is denoted as SALOME-2)

 This approach is a combination of two previously known 
Branch&Bound algorithms (EUREKA and FABLE)

 SALOME is station-oriented, i.e., each node represents a 
complete load of a station that has been opened either in 
forward or in backward direction

 This results from the fact that after closing a station, the lower 
bound of a current solution is affected more substantially

 SALOME uses a Local Lower Bound Technique

 This will be depicted next
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Local Lower Bound Technique (LLB)

 LLB is a mixture of IDA* and DFS (mixture of FABLE and 
EUREKA)

 I.e., there is only a local clustering of loads, but in order to 
avoid multiple explorations, LLB is allowed to be increased 
without starting from scratch again

 The bound is applied to each node, i.e., the root obtains the 
Global Lower Bound as the initial “Local Lower Bound” (LLB)

 It is increased after exploring all station loads that meet this 
bound

 LLB means that the examination process considers only station 
loads whose current lower bound is equal to LLB

 In subsequence of exploring all these loads, the LLB is 
increased to the minimum larger value of a load explored 
before
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LLB – simple example

 We again consider our simple example

2 7
6 6 4

1

8 9 10
2 9 2

6543

5455

Predetermined takt time of the assembly line is C=10

See Scholl (1999), p.118
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LLB – simple example

 We obtain a simple lower bound by adding all task processing 
times 6+6+5+5+4+5+4+2+9+2=48

 Thus, by dividing through C=10, we obtain at least 5 stations

 Hence, in order to attain a feasible solution, the total allowed 
delay time or idle time is 2 

 Therefore, we start with LB=5

LLB=

5

3, 4 1, 5
LLB=

5

LLB=

5

No additional idle time (station loads are 10)

2, 7
LLB=

5

No station load possible with idle time 

smaller than or equal to 2. EUREKA 

restarts! SALOME increases the LLB
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LLB – simple example

 Hence, SALOME resumes as follows:

LLB=

5

3, 4 1, 5
LLB=

5

LLB=

5

Idle time is 3

2, 7
LLB=

6

6, 8
LLB=

6

Idle time is 1

9
LLB=

6

10 LLB=

UB=

6

Idle time is 8
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LLB

 Acts still locally in a depth-first manner

 Best FS still acts much more globally

 However, best loads in a locality are enumerated first

 Avoidance of repeated enumerations of identical 
parts of the solution space
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Generating a current station load

 In what follows, tasks are numbered according to the 
precedence graph, i.e., each task may posses lower 
numbered predecessors only

 I.e., in order to determine a station load, SALOME 
assigns tasks in ascending order only

 After assigning a task x in a previous step, only larger 
numbered tasks y>x may follow for a given currently 
considered partial station load

 Consequently, SALOME considers sets of tasks as 
station loads, but no sequences of tasks in these 
stations



Wirtschaftsinformatik und Operations Research 315

Maximum Station Load Rule

 Clearly, if a station load is completed (and therefore 
the station under consideration is closed), it has to be 
checked whether it exists an available task i that is 
feasibly assignable, i.e.,

 All predecessors of this task are already assigned and 

 the remaining processing time in the station is not 
smaller than the processing time of the task i

 If such a task exists, the rule allows to fathom the 
currently considered partial station load

 This rule is always applied in each node of the 
enumeration tree of SALOME
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Dynamically selecting enumeration direction

 SALOME dynamically decides whether the subsequent 

station is opened either in forward or in backward 

direction

 This decision is based on the following rule

Open the next station in forward direction

 if T(kf)>T(kb) applies, or 

 if it holds T(kf)=T(kb) and not |B(kf)|>|B(kb)|

 The following abbreviations are used

  , 1k

j

j B
j LLB j

k

t

L E
T k

B



 
    


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Additional abbreviations

 kf: Index of subsequent station to be opened in forward 

direction

 kb: Index of subsequent station to be opened in backward 

direction

 Lj,LLB: Index of station that is the latest where task j can be 

assigned to if LLB stations are maximally available

 Ej: Index of station that is the earliest where task j can be 

assigned to

 Note that L and E are calculated by heads and tails of the 

respective tasks (c.f., Lower Bound 4)

 Bk: Set of available tasks that can be theoretically assigned to 

station k (i.e., set of assignable tasks)



Wirtschaftsinformatik und Operations Research 318

Ej and Lj

 Simple bounds for the earliest and latest stations a 

task can be assigned to are obtainable by

*

*

,

:                       1,...,  

: 1                       1,...,  

j

j

j h

h P

j

j h

h F

j M

t t

E for j N
C

t t

L M for j N
C





  
       
 
 
 

  
         
 
 
 




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The idea behind the rule

 In order to minimize the computational effort in the 
examination process, we branch complex nodes as 
late as possible

 A node, i.e., a station, causes high computational 
effort if 

 a large number of tasks are assignable (i.e., large B 
values)

 a smaller portion of task execution time is firmly 
assigned to the station in question (i.e., we have an 
increased computational effort due to a larger number 
of assignable tasks)

 Thus, stations are preferred if the expected 
computational effort is smaller
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Preprocessing – Task incrementing rule

 Prior to the exploration process, the minimum 
processing time tmin of all tasks is generated

 All tasks i with C-ti<tmin obtain the maximum 
execution time C in order to avoid unnecessary 
computations
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Logical rules

 After completing a load in the currently considered 

station, the following rules are applied

 Maximum station load

 A load is fathomed if an available task is still assignable, i.e., the 

remaining processing time in the station is large enough to assign this 

task

 Consequently, the current load is dominated

 Jackson dominance rule

 In a preprocessing step, all tasks are considered according to a possible 

dominance

 Task i potentially dominated task j if 

– all successors of j are also successors of i and 

– processing time of i is not smaller than the processing time of j or

– if successors and processing times are identical, but it holds that i<j
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Jackson dominance rule

 Let us consider a pair of tasks i and j that can be alternatively 

assigned to a current (partial) station load

 Assuming i potentially dominates j, while there is a current 

station load comprising task j but not i

 That means, task i is available and can be assigned to the 

current station instead of j, i.e., the remaining available time 

capacity of the station is sufficient to assign task i

 Then, this load can be fathomed since it is dominated by the 

station load arising by replacing j with i

 Note that this is true due to the fact that the set of tasks that 

become assignable after this assignment is not reduced since 

all successors of task j are also successors of task i
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Modified task numbering

 All tasks are renumbered in order to obtain complete 
solutions earlier

 This is done according to the following rules

 if a task potentially dominates another task, it gets a 
smaller number

 if both tasks are not comparable, the one with more 
successors is preferred in the new numbering

 Finally, ties are broken by lower initial task numbers

 Consequently, all tasks are renumbered according to 
the rules listed above. Subsequently, the exploration 
process starts
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Dynamic Prefixing

 Reduction rule that makes directly use of the concept 
of earliest and latest stations

 Specifically, if a station k is considered with current 
Local Lower Bound LLB, all tasks i with Li(LLB)=k are 
directly assigned to it 

 Since the given LLB should be reached, these tasks 
have to be directly assigned to station k 

 This reduces the complexity of the subsequent 
enumeration
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Tree dominance rule

 Extension of the well-known labeling dominance rule
originally proposed by Johnson in his algorithm FABLE

 The idea behind labeling dominance rule

 Each partial solution is an assignment of tasks to 
stations

 Such a constellation can be unambiguously identified 
by the labeling scheme of Schrage and Baker (1978)

 Task labels L(j) are calculated as follows

   
 *

: 1,

jk h h j h P

L j L k
   

 
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Labeling dominance rule

 Uniqueness of addresses follows directly from the following 
observations

 Consider a task h without predecessor

 Its label l(h) is larger than all label combinations (i.e., the sum 
of these labels) of lower numbered tasks

 Therefore, this value is unambiguously defined

 Note that predecessors of a task are out of interest since – due 
to the precedence constraints – this assignment sequence is 
predetermined

 In a worst case scenario, there are no precedence constraints

 Here, the task n=1,…,N obtains the value 2
n-1
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Labeling dominance rule

 Hence, each generated partial solution obtains a sum of labels 
that unambiguously defines the set of tasks already assigned to 
some station

 This sum of labels unambiguously identifies a partial solution 
and gets a minimum number of stations (not necessarily 
integral) that was reached up to this point of time

 If the same partial solution is generated later without 
improving this value, the current constellation is fathomed

 This leads to considerable complexity reductions but requires 
extreme memory consumptions in worst case scenarios 

 However, this considerable memory consumption can be 
significantly reduced by integrating this rule into a specifically 
designed hash-list based data structure
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Tree dominance rule

 Partial solutions are stored as binary out trees 

 Nodes are tasks being currently assigned or not

 Arcs represent assignments of sets of tasks 

 Nodes are inserted in ascending order

 Outgoing arcs represent the state of the respective task and all 
larger numbered ones up to the next task, i.e., there is an interval 
of tasks whose current state is determined by the arc

 E.g., if we have 

we actually got the assignment of tasks 1,2,3,4,6,7,8

 Each path starting at the root node, represents a partial 
solution

 I.e., the minimum number of stations used is stored in each 
terminal node of the complete tree

1 5 6 9
1 0 1
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Observations

 As empirically shown by Nourie and Venta (1991), the 
tree labeling technique consumes significantly less 
storage than the labeling scheme proposed by 
Schrage and Baker (1978)

 Its application considerably reduces the size of the 
enumeration tree
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SALBP-notations
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       index for the tasks 1,...,

      Cycle time (=Takt time)

1
      production rate 

     Number of stations

      index for the sta

N

V N

j j N

C

p
C

M

k



  
 

 tions 1,...,

      operation time (task time) of task 

     station requirement of task 

j

j

j j

k M

t j

t
p j t p

C



 
   
 

In what follows, we make use of the following abbreviations
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SALBP-notations II

  
  

 

max

min

j

   maximal task time max | 1,...,

    minimal task time  =min | 1,...,

   sum of task times    =

    set of immediate predecessors of task 

    set of immediate successors (fol

j

j

sum j

t t j N

t t j N

t t

P j
j

F
j

 





  
lowers) of task 

     set of direct precedence relations , |  and 

   set of immediate and transitive predecessors of task 

   set of immediate and transitive successors (followers

j

A i j i V j F
j

P j
j

F
j

    
 





  
) of task 

   set of all precedence relations , |  and 

j

A i j i V j F
j

     
 
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SALBP-notations III

 

   

      station load, set of tasks assigned to station 

 station time of station 

       Implemented (operating) cycle time max | 1, ,

      earliest station of task 

      

k

k

k j

j S

r k

j

j

S k

t S k t

c t S k M

E j

L



 
 
 

 



K

 latest station of task j
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Applied lower bounds

 In order to obtain lower bounds during the exploration 
process, altogether seven different bounds are applied

 In what follows, we introduce all these bounds 
separately 

 In SALOME, all these bounds are applied

 In the root node all seven bounds are calculated and 
applied

 During the computations, however, owing to its 
complexity, bound 4 is not adjusted

 In each node, the maximum value potentially corrects 
the current LLB
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Bound LB1

1

1

: /                      (1)
N

sum j

j

LB t C p


 
     

 


 Most simple bound 

 It bases solely on the cognition that the total 
workload has to be divided into pieces of size C

 Sum of operating times has to be shared between 
stations

 Consequently, we need at least the following number 
of stations
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Bound LB2

2

1 1 1 1
:  ,1   ,            (2)

2 2 2 2
LB J J

              

 Basic idea results from the cognition that there are 
tasks that cannot be combined in a single station

 Much more, they have to be assigned to different 
stations

 Bound 2 commences this examination by identifying 
tasks whose processing time is larger than half of the 
takt time C

 These tasks belong to the set J(1/2,1]

 Since all these tasks need a station of their own, we 
can derive the following lower bound



Wirtschaftsinformatik und Operations Research 336

Bound LB3

3

2 2 2 2 1 1 2 1 1 1
:    ,1   +   ,   +   ,   +   ,     (3)

3 3 3 3 2 3 3 3 3 3
LB J J J J

        
                  

 The basic principle of Lower Bound 2 is extended in 
the third lower bound

 Here, task time is clustered into three groups instead 
of only two

 This is done by building the sets 

 J(1/3,2/3] 

 J(2/3,1]

 We can define the Lower Bound 3 by 
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Bound LB4

 
1 1 1 2 2 1

max  ,   ,...,   ...     (4)
N Nh h h h h h h hp n p p n p p n     

 The Assembly Line Balancing Problem can be interpreted as a 
single-stage scheduling problem

 Assigning a task k to a station is interpreted as to schedule the 
job k with processing time tk on a considered single machine

 After being executed, there are several tasks coming behind 
the job

 Therefore, these tasks (or jobs) define a job-dependent tail nx

for a considered job x that has to be processed subsequently 

 By deciding for a sequence h1, h2,…, hN, we obtain the following 
total makespan
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Bound LB4

 

 

 

1

2

3

:      (5)

1 1 1 1
: ,1   ,   (6)

2 2 2 2

2 2 2 2 1 1 2 1 1 1
: ,1   ,   ,   ,   (7)

3 3 3 3 2 3 3 3 3 3

h

h J

LB J p

LB J J J

LB J J J J J





           

       
                   



 The respective tails are calculated by making use of the bounds 
1, 2, and 3

 In each new iteration, we adjust the tails of a considered task j 
according to the results achieved by the previous iteration

 In what follows, the set J denotes the set of tasks that are 
successors of the currently considered task
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Bound LB4

 Specifically, we have to adjust the generated bounds 
slightly

 I.e., if the processing time of the task j to be assigned is 
too small, the tail has to be reduced accordingly

 This has to be ascribed to the fact that it may be possible 
that the task j can be additionally assigned to the last 
station that is closed during the computation of the 
respective tail

 Clearly, this is not the case for the first LB

 For the second LB, the mistake is at most 1/2 if tj is 
smaller than C/2 or the bound is not an integer

 For the third LB, the mistake is at most 1/3 if tj is smaller 
than 2/3.C
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Adjusting the second LB by 1/2

 We consider the formula

 In the first part of the formula we have a maximum slack 

time strictly less than ½ 

 However, task i as a predecessor does not fit in this gap if 

it holds that pi≥½, otherwise we have to check whether 

LB2(J) is integer

 If so, we have to subtract ½ 

 If not, no problem occurs since, in this case it holds that

 I.e., the assignment of task i would not open a new station

 2

1 1 1 1
: ,1   ,

2 2 2 2
LB J J J

           

                 2 2 2 2
1 1, due to  and 
2 2i ip LB J LB J p LB J LB J
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Adjusting the second LB by 1/2

 Therefore, if the LB2(J) is integer and it holds that pi<½ 

the “closing” of all opened stations of the bound 

(weighting them with 1) may overestimate the station 

requirement by at most ½  

 This results from

 Subtracting ½ eliminates the possible overestimation

   

   

    

     

2 2

2 2

,  due to

10  and 
2

i

i

p LB J LB J

p LB J LB J
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Adjusting the third LB by 1/3

 We consider the formula

 In all parts of the formula the maximum slack is bounded 

by 1/3

 However, if pi≥2/3 it cannot be combined with the 

elements of the sets J(2/3,1] and J(1/3,2/3)

 If it holds pi=2/3-ϵ we have 

 3

2 2 2 2 1 1 2 1 1 1
: ,1   ,   ,   ,  

3 3 3 3 2 3 3 3 3 3
LB J J J J J

                          

   

   

   

3 3

3

3 3

2, if it holds that 0 -  and 
3

1 1, with , but we have 
3 2

1. BUT: i and j fit in one station!

i i

j

i

p LB J LB J p

J j p LB J

p LB J LB J

     

    

    




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Bound LB4

 
   
 
 
 

1 1

2  2

2

2

3  

3

3

:                                                                (8)

             if  1 2  or 
:     (9)

1 2     otherwise

            if  2 3
 := 

j j

j j j

j

j

j j

j

j

n LB F

LB F p LB F IN
n

LB F

LB F p
n

LB F



 









  
 




                            (10) 

1 3     otherwise

In this computations,  defines the set of (direct and indirect) 

successors of task  in the precedence graph

jF

j








Consequently, due to the cognitions derived above, we 
obtain the following formulas
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Bound LB4

 

 

1 1 1 2 2 1 24

1 4

1 2 3 4

: max , ,..., ...  (11)

Since  through  provide lower bounds on the

station requirement of ,the tail of task  can be determined by

: max , , ,        

r rj h h h h h h h h h

j j

j

j j j j j

n p n p p n p p p n

n n

F j

n n n n n



       

 (12)

 In an optimal solution (that minimizes the total makespan of 
the schedule), we schedule all jobs in sequence of non-
increasing tails

 I.e., this minimal makespan, and therefore a valid lower bound 
for SALBP-1, is generated by
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Bound LB4

 1 2

Procedure tails of tasks

for :  downto 0 do

     if  then : 0

     else begin

          sort tasks of  according to non-increasing tails to obtain

          the list , ,...,  with :  ele

j j

j

r j

j N

F n

F

h h h r F








 



 
1 2 3 4

1 2 3 4

4 0

ments;

          compute , , ,  and  by applying (8) through (11);

          : max , , , ;

          if  and  then :

     end;

:  ;

j j j j

j j j j j

j j j j j j j

n n n n

n n n n n

n n p n n n n

LB n



   



          

  
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Example

 We consider again the following simple example

 The takt time is C=10

2 7
6 6 4

1

8 9 10
2 9 2

6543

5455

See Scholl (1999), p.118
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Bound LB4

j 10 9 8 7 6 5 4 3 2 1 0

pj 0.2 0.9 0.2 0.4 0.5 0.4 0.5 0.5 0.6 0.6 0

nj1 0 0.2 1.1 1.3 1.3 1.8 2.2 2.7 1.7 3.2 4.8

nj2 0 0 0.5 0.5 1 1.5 1.5 2 1 2.5 4.5

nj3 0 0 0.67 0.67 0.67 1.17 1.67 2.17 1.17 2.67 4.17

nj4 0 0.2 1.9 2.2 2.2 2.7 3.4 3.9 2.6 4.1 5.7

nj 0 0.2 1.9 2.2 2.2 2.7 3.4 3.9 2.6 4.1 5.7

Rounded 0 1 2 2.2 2.2 3 3.4 4 3 4.1 (6)
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Bound LB4

 

 

14 04

14

We explain the computation of  and . Since the successors 

of task 1 build the ordered list 2,5,6,7,8,9,10 , we obtain

:=max 0.6+3,1+3,1.5+2.2,1.9+2.2,2.1+2,3+1,3.2+0 =4.1.

Owing to the ordered lis

n n

n

 




04

0

t 1,3,4,2,5,6,7,8,9,10  of all following tasks, 

the tail of task 0 is

:=max 0.6+4.1,1.1+4,1.6+3.4,2.2+3,2.6+3,3.1+2.2,3.5+2.2,3.7+2,

                 4.6+1,4.8+0 5.7.

By rounding up , we obtain the lo

n

n



4wer bound =6 for the entire problem LB
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Bound LB4

 

 

1

4 1 0

1

*

: max , ,      (13),

with 

max 1

In order to derive , we consider all predecessors of a considered task .

These tasks are in the set 

n

j j j

n

j

LB a n Z

Z a p n j N

a j

P





           

    

 Besides the computed tails, we obtain also heads, i.e., 
station required by preceding tasks

 Consequently, we can derive heads analogously by 
applying the above computation in reverse sequence

 Eventually, we obtain the bound
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Bound LB4 – Calculating the heads

j 0 1 2 3 4 5 6 7 8 9 10 11

pj 0 0.6 0.6 0.5 0.5 0.4 0.5 0.4 0.2 0.9 0.2 0

aj - 0 1 0 0.5 1.6 2 1.6 3.5 4 5 5.2

nj 5.7 4.1 3 4 3.4 3 2.2 2.2 2 1 0 -

 Heads are generated analogously in reverse order, i.e., 
starting at the beginning and interpreting each arc in 
opposite direction

 Doing so, we obtain 
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Considering heads and tails simultaneously 

 Unfortunately, this improved bound leads to a new 
scheduling problem known to be NP-hard in the 
strong sense

 The algorithm of Carlier (1982) solves it to optimality

 However, this worst case complexity may be 
exponential, and therefore may be too time 
consuming



Wirtschaftsinformatik und Operations Research 352

Bound LB5

    5 : min     1,...,        14j jLB M L M E j N   

 The idea behind this bound deals with head and tails 
again

 Specifically, a minimum number of stations can be 
derived by the fact that the earliest station where a 
task is assignable to must be lower or equal to the 
latest station

 Therefore, we obtain
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Bound LB5 – applied to the example 

j 1 2 3 4 5 6 7 8 9 10

tj 6 6 5 5 4 5 4 2 9 2

Ej 1 2 1 1 2 3 2 4 5 5

Lj(5) 2 3 2 3 3 4 4 4 4 5

Lj(6) 3 4 3 4 4 5 5 5 5 6

 Complexity of the bounds depends on the applied method to 
generate heads and tails

 In order to obtain the results listed above, we have applied the 
following computation:

 
* *

: : 1
j j

j h j h

h P h F

j j

t t t t

E L M M
C C

 

      
                       
   
   
   

 
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Using improved bounds for LB5

'

'

:                           for 1,...,    (15)

( ) : 1           for 1,...,    (16)

j j j

j j j

E a p j N

L M M p n j N

    

      

 Clearly, the fifth bound can be significantly tightened 
by making use of improved head and tail 
computations 

 This is done by using the fourth bound instead of LB1

 Generally, we obtain the modified computations for 
head and tail, respectively
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Bound LB5

j 1 2 3 4 5 6 7 8 9 10

Ej 1 2 1 1 2 3 2 4 5 6

Lj(6) 2 3 2 3 3 4 4 4 5 6

 Consequently, we obtain (improved) values for 
earliest and latest stations

 In our example, we obtain (see Scholl (1999) p.49):
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Procedure for computing LB6

1

1 1
Step 1. Assign the tasks in ,1  to the stations 1,..., : ,1  

2 2

           in the order of non-increasing operation times.

1 1
Step 2. Consider the tasks in ,  in the order of non-d

3 2

J d J

J

   
     

 
  

1

ecreasing 

            operation times.  Successively, assign these tasks to the earliest 

            of the first  stations which shows enough idle time until all 

            tasks are assigned or n

d

1one of the  stations remains.  d
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Procedure LB6

2

3

Step 3. Let  be the number of tasks not assigned in Step 2. Then, at least 

            :  stations are additionally needed for these tasks.
2

Step 4. Compute a bound  on the station requirem

d

d
d

d

 
   

 3 3

6 1 2 3

ent for the tasks in

1
          0,  :

3

1
        : max 0,max 0,

3

Result. :

j

J

d d q q p j J

LB d d d

 
  

                  

    
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Bound LB6

 
 

3 2

,1

1 1Step 4 considers all tasks with . For each value 0,  
3 3

given by some , a bound on the (additional) station requirement 

1of ,  arises by:
3

1
: ,1  ,            

2

j

j

j

j J q q

p q

p

J q

d q p J q d
 

    

 
 

      


 

 

                          (17)

1 1 11due to the equation , ,1 ,1 ,
3 2 3 2

1 1 11Therefore, we can conclude: ,1 , ,1 , .
3 2 3 2

J q J q q J q J

J q q J q J q J

                

               
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Bound LB6 – additional observations

 Step 3 computes a lower bound on the station 
requirement of those tasks that are not assigned in 
step 2. 

 Clearly, at most two of them may share a station

 Step 4 finally considers the smaller tasks of set 
J[0,1/3]. Since the station requirement of these 
smaller tasks is finally added, a repeated adding is 
avoided by subtracting the results of previous steps
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Bound LB7

 This bound exploits the strong relationship between SALBP-1 and 
SALBP-2

 Clearly, if we reduce the number of allowed stations M, the 
possible minimum takt time C may be increased

 Therefore, the idea is to lower bound the number of stations by 
applying the predetermined takt time as an upper bound that has 
to be guaranteed by the number of implemented stations

 For this purpose, the following lower bound of the takt time is 
applied:

 If we have M stations and at least M+1 tasks, at least the total 
processing time of the two smallest ones provides us with a lower 
bound of the resulting takt time

 Therefore, all M+1 tasks are sorted and renumbered in sequence of 
non-increasing processing times
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Bound LB7

   

  

  


 
     

 

 

 1

0

7

7

: max 1,..., 1 /                       (18)

By means of (18), the bound LB  for SALBP-1 can be formulated as

: min                                                       

k

k M i

i

C M t k N M

LB M C M C (19)

 This idea is generalized by the following lower bound

 Specifically, the total processing time of the k smallest 
tasks is calculated if (k-1).M+1 tasks have to be assigned
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Selected computational results

 In order to empirically prove the efficiency of the 
proposed Branch&Bound algorithm SALOME, Scholl 
(1999) presents and analyzes several test results

 For this purpose, already known as well as newly 
generated test instances are solved

 Maximum computation time is set to 500 seconds per 
experiment, i.e., calculations are instantly stopped by 
this time and best found solution is taken

 All in all, a combined data set of 269 instances is 
solved. Note that optimal solutions of altogether 263 
instances are known
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Tested approaches

 FABLE – for details see above

 EUREKA – for details see above

 OPTPACK – for details see above

 SALOME

 Altogether four different versions are implemented 

 SL1 (not using prefixing, simple permutation rule, LB5, 

LB6, and LB7)

 SL2

 BiSL (SL2 with bidirectional branching), and 

 BiSLt (BiSL with tree labeling)
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Some results for the most complex data set

Combined Data Set

OPT-

PACK

FABLE EUREKA SL1 SL2 BiSL BiSLt

# opt 172 179 165 191 199 224 245

Av. rel.

deviation

0.6 0.95 1.1 0.75 0.67 0.46 0.22

Max. rel. 

deviation

7.69 7.69 14.29 7.89 7.69 7.69 7.69

Av. CPU 

time

188.8 175.9 226.4 153.9 138.1 98.6 56.1
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Observations

 SALOME clearly outperforms the former approaches 
FABLE and EUREKA

 Bidirectional branching as well as using tree labeling is 
of significant importance

 Obviously, the more instruments SALOME uses, the 
better the results become



Wirtschaftsinformatik und Operations Research 366

References of Section 3

 Bock, S.: Modelle und verteilte Algorithmen zur Planung getakteter 
Fließlinien. Gabler DUV, Wiesbaden, 2000.

 Bock, S.: Using Distributed Search Methods for Balancing Mixed-Model 
Assembly Lines in the Automotive Industry. OR Spectrum 30: 551-578, 
2008.

 Hoffmann, T.R.: Assembly Line Balancing with a Precedence Matrix. 
Management Science 9: 551-562, 1963. 

 Hoffmann, T.R.: EUREKA. A Hybrid System for Assembly Line Balancing. 
Management Science 38: 39-47, 1992.

 Hoffmann, T.R.: Response to Note on Microcomputer Performance of 
“FABLE” on Hoffmann’s Data Sets. Management Science 39: 1192-1193, 
1993. 

 Johnson, R.V.: Optimally Balancing Large Assembly Lines with “FABLE”. 
Management Science 34: 240-253, 1988. 

 Land, A.H.; Doig, A.G.: An automatic method of solving discrete 
programming problems. In: Econometrica, 28 (3): 497–520, 1960. 
(doi:10.2307/1910129)

 Little, J.D.C; Murty, K.D.; Sweeney, D.W.; Karel, C.: An algorithm for 
traveling salesman problem. Operations Research, 11: 972-989, 1963.



Wirtschaftsinformatik und Operations Research 367

References of Section 3

 Martello, S.; Toth, P.: Knapsack Problems: Algorithms and Computer 
Implementations. Wiley Series in Discrete Mathematics and Optimization, 
1990. (ISBN-10: 0-4719-2420-2), (ISBN-13: 978-0471924203)

 Nourie, F.J.; Venta, E.R.: Finding optimal line balances with OptPack. 
Operations Research Letters 10:165-171, 1991. 

 Scholl, A.: Balancing and Sequencing of Assembly Lines. 2nd edition. Physica, 
1999. (ISBN-10: 3-7908-1180-7) , (ISBN-13: 978-3790811803)

 Scholl, A.; Klein, R.: SALOME: a bidirectional branch and bound procedure 
for assembly line balancing. INFORMS: Journal on Computing 9:319-334, 
1997. 

 Vahrenkamp, R.; Mattfeld, D.C.: Logistiknetzwerke - Modelle für
Standortwahl und Tourenplanung. 2nd edition. Springer Gabler, Wiesbaden, 
2014. 


