
Wirtschaftsinformatik und Operations Research 513

6 Heuristics & Metaheuristics

 Despite all optimization techniques, many problems are still
too hard to solve optimally

 We can abstain from optimality and use approximations to
determine “good” solutions in reasonable time

 In general: heuristic approaches do not guarantee optimality,
they trade solution quality vs. computational effort

 A common strategy is called “greedy”

 In each iteration, the most improving option is applied

 Note that this strategy often leads to local optima

 In the following, we consider some problem-specific heuristics
and problem-independent search strategies called
metaheuristics

Wirtschaftsinformatik und Operations Research 514

6.1 The Quadratic Assignment Problem

 The Quadratic Assignment Problem (QAP) is the
common model for layout planning problems.

 In this model, every machine or element that has to
be placed in the plant has a uniform size

 Every potential location for such an element also has
an uniform size

 The main task of the QAP is to find an assignment of
elements to potential places where every element is
assigned to one definite location while the objective
of this model is given by the minimization of the
transportation costs

Wirtschaftsinformatik und Operations Research 515

General characterization of the QAP

The QAP bases on the following assumptions:

1. Production and sales programs are given and cannot be

influenced by the chosen layout;
2. The sequence of tasks to be executed for every product is

known and cannot be changed by the chosen layout;
3. There are M elements to be placed in the layout;
4. There are S possible positions for the elements in the layout;
5. The transportation paths which connect the S possible positions

are given;
6. The means of transportation are given;
7. The transportation costs are proportional to the transportation

distance and to the transportation quantities.

Wirtschaftsinformatik und Operations Research 516

Observations

 Due to the assumptions 1,2 and 3, the transportation
quantities Xl,m between the elements l and m can be
computed. They cannot be changed by the chosen
layout.

 Due to the assumption five, the distance between
two potential locations r and s can be defined by yr,s.

 It is irrelevant which measurement is taken to define
the distance between two points. It can be an
Euclidean or a right angled one.

 Due to the assumption seven, there is a constant
transportation costs rate k per distance and quantity
unit.

Wirtschaftsinformatik und Operations Research 517

Mathematical definition of the QAP I

Parameters:

 M: Number of elements to be placed in the layout;

 S≥M: Number of locations where the elements must be
allocated to;

 yr,s: Distance between the locations r and s (r,s ∈ {1,2,....,S}).
Measured in distance units;

 Xl,m: Quantities to be transported from element l to element m.
Measured in transportation units per planning horizon (l, m ∈
{1,2,....,M});

 k: Unified transportation costs rate per distance and
transportation unit.

Wirtschaftsinformatik und Operations Research 518

Mathematical definition of the QAP II

Variables:

 wm,s: Assignment variable

 (m {1,2,...,M}; s {1,2,...,S})

 It is defined as follows

,

1 if the th element is placed on the

 th position in the layout

0 otherwise

m s

m

s
w





 



 

Wirtschaftsinformatik und Operations Research 519

The objective function of the QAP

 Only if element l is allocated to location r and element
m is allocated simultaneously to location s, the
distance yr,s, respectively ys,r, is relevant for the
decision

 Xl,m units have to be transported from element l to m
 This fact can be covered by the multiplication of the

binary variables wl,r and wm,s. In order to get the
resulting transportation costs, we have to multiply
costs rate k

 We get the following objective function of the QAP


   


M

1l

M

1m 1r 1s

Z
S S

sm,rl,sr,ml, wwyX k Minimize

Wirtschaftsinformatik und Operations Research 520

Restrictions of the QAP

1. Every element has to be placed on a definite location, e.g.,

2. Every location is occupied by at most one facility, e.g.,

  ,
1

1,..., : 1
M

m s

m

s S w


  

  ,
1

1,..., : 1
S

m s

s

m M w


  

3. Every decision variable is a binary one, e.g.,

     ,1,..., : 1,..., : 0,1m sm M s S w    

Wirtschaftsinformatik und Operations Research 521

An alternative definition…

 In the following, we assume S=M
 A solution of the model can be seen as a permutation of the

N facilities to be arranged
 Therefore, we have two predefined N×N-matrices A

(distance) and B (flow)

   

 

n

N

S ,,
i 1 j 1

 A permutation which minimizes the following

sum: Minimize

where is the of 1,2,3,...,

As you can see in the definition, the pe

N

N

i ji j

N

S

a b

S N

  
 







Sought :

set of possible permutations

   

rmutation has to define

for every element 1,2,..., the position in the arising layout.

π

i N i 

Wirtschaftsinformatik und Operations Research 522

Observations

 The QAP is also a very restrictive model for the mapping of
layout planning problems;

 In the QAP, only uniform machines can be allocated while the
possible locations are also of uniform size;

 The model has a very compact definition
 However, owing to its high complexity, it is used for many

algorithmic techniques as a challenging application.
 The QAP can be reduced to the simple LAP by modifying the

objective function as follows:

, , , , , ,
1 1 1 1

, , , , ,
1 1 1 1 1 1

Minimize with

Z

N N N N

i j k l i j k l i, j,k,l i j

i j k l

N N N N N N

i j i j k l i j i j

i j k l i j

Z d x x d c

c x x c x

   

     

   



    



 

Wirtschaftsinformatik und Operations Research 523

Complexity

 The QAP is NP-hard in the strong sense. Experiments have
shown that only moderate instances with up to 20 elements
can be solved optimally;

 Therefore, many heuristic approaches can be found in
literature

 Additionally, a huge set of specific Branch&Bound procedures
is proposed

 Main problem of an efficient application of Branch&Bound
algorithms results from the absence of tight and
computational efficient lower bounds;

 The efficiency of an applied Branch&Bound algorithm mainly
depends on the quality of lower bounds applied during the
examination of the solution space;

Wirtschaftsinformatik und Operations Research 524

Heuristics for the QAP

 Construction methods
 Generate a layout from scratch by the iterative assignment

of the different facilities
 Frequently used for generating an initial solution
 Frequently an iterative application of simple rules
 One main drawback is that the resulting solution quality of

these techniques is often quite poor

 Improvement methods

 Try to improve an already existing solution by the application
of a predefined set of operations

 Local and global search procedures
 Specific meta-strategies can be distinguished
 Significantly higher solution quality becomes yieldable

Wirtschaftsinformatik und Operations Research 525

A construction method

 Most simple approaches

 Start with an empty layout and recursively assign locations to
facilities according to certain criteria until all facilities have been
assigned

 Acceptable results (for a first solution) are yielded by the
construction method of Müller-Merbach

 Reference:

 Müller-Merbach, H.: Optimale Reihenfolgen. Springer Verlag,
pp.158-171, Berlin, Heidelberg, New York, 1970.

Wirtschaftsinformatik und Operations Research 526

The algorithm of Müller-Merbach

 Method of the increasing degree of freedom:

 It works with an iteratively updated partial permutation
and completes it into a permutation of {1,...,N}.

 A partial permutation of {1,...,N} in this connection is an
injective mapping of a subset X ⊆ {1,2,...,N} into
{1,2,...,N}, π: X → {1,2,...,N} with X ≠ {1,2,...,N}.

 The approach of Müller-Merbach starts with an empty
permutation, i.e., X is the empty set and with a fixed order
of the indices 1,2,...,N, namely, r1,r2,...,rN.

 For some M⊆ {1,2,...,N} and kϵIN, let π(M)={π(i) | iϵM}. Let
πk: Mπ,k → {1,...,N} be the current partial permutation,
where it holds Mπ,k={r1,r2,...,rk-1}.

Wirtschaftsinformatik und Operations Research 527

The algorithm of Müller-Merbach

 Then, in every step, a new extended permutation
π1:Mπ1→{1,2,...,N} is constructed with Mπ1= MπU{rk} where rk is the
first currently unassigned index in {1,...,rN}.

 In order to define the new permutation π1, rk is assigned to
some j not belonging to π(Mπ).

 By doing so, the resulting additional costs ΔZj are computed.

 Consider additionally the assignment of rk to an index jϵπ(Mπ).

 Let ri ϵ {r1,r2,...,rk-1} such that π(ri)=j. Define ΔZj,l as the change
of the objective function which results from assigning rk to j
and ri to l, for some l not belonging to π(Mπ).

 In every step of the algorithm, the constellation is chosen that
leads to the smallest objective value.

Wirtschaftsinformatik und Operations Research 528

In every step of the algorithm

 

   

   

        



  





  





 

 

    

, , 1 1

1

1 1

, , ,

In the -th step:

: 1,2,3,4,..., while 1,...,

: 1,2,3,4,..., while

Generation of a new permutation

: 1,2,3,4,..., with 1

After constructin

k π k k

k k k k k

k k

X N X N

M N M r ,...,r

 π

M r N M r M





1g the new permutation , the additional

costs are computed.jZ

Wirtschaftsinformatik und Operations Research 529

First set of possibilities

r1

r5

r2

r4 r3

rk-1
r6 …

Mπ

rk

π(Mπ)

j

{1,2,3,…,N}

ΔZj

Wirtschaftsinformatik und Operations Research 530

Second set of possibilities

r1

r5

r2

r4 r3

rk-1
r6 …

Mπ

rk

π(Mπ)

p

{1,2,3,…,N}

ΔZj

ri l

Change of the objective function value: ΔZp,l

Wirtschaftsinformatik und Operations Research 531

Complexity

 Choosing j in the first set:
There are altogether N-k+1 possibilities

 Choosing l in the second set:

 There are altogether k-1 possibilities

 Choosing p in the second set

 There are altogether N-k+1 possibilities

Total sum of constellations to be considered:

 (N-k+1).(k-1)+(N-k+1)=k.(N-k+1)

     

   
           

 

2 2 2

1 1 1 1 1 1

3 2 3

Total computational effort:

1
1 1 1

2

1 2 1 3 1 1 1 2 11
1 1

2 6 6

1 1 1

6 2 3

N N N N N N

k k k k k k

k N k kN k k N k k k N N N k

N N N N N N N N N
N N N

N N N O N

     

                

             
       

   

     

Wirtschaftsinformatik und Operations Research 532

Metaheuristics

 These are general higher-level procedures that define the basic
design of search algorithms for efficiently identifying
reasonably good solutions for complex problems

 Do not guarantee optimality

 Provide basic rules for guiding the search process in the
solution space

 Frequently designed as global search techniques that are
theoretically able to overcome local optima

 Many of these approaches are motivated by natural processes,
e.g.,

 Technical processes

 Biological processes

Wirtschaftsinformatik und Operations Research 533

Path oriented metaheuristics

 These approaches try to improve an existing solution repetitively

 These algorithms try to improve an existing solution by the application of
certain operations

 Therefore, the computation process of these algorithms is defined as a
sequence of moves where the current solution is changed by the execution
of some predefined operations. Owing to this, in every move, a
neighborhood of potential subsequent solutions is considered

 This set of solutions consists of all constellations which can be generated by a
single application of a predefined operation to the current solution

 Depending on the way how the neighborhood is examined and which
solution is chosen, we distinguish different meta-strategies

 Among them, there is

 Tabu Search algorithm

 Simulated Annealing algorithm

Wirtschaftsinformatik und Operations Research 534

Path computation

Current
solution

neighborhood of
the current solution

neighborhood of
the current solution

Resulting path

Wirtschaftsinformatik und Operations Research 535

Solution set oriented metaheuristics

 These procedures maintain a large set of different
solutions in memory

 In each iteration this current set of solution is
transformed by the application of specific operations

 These operation may combine existing solutions in
order to generate improved solutions that are inserted
into the next current set

 In genetic procedures these sets are denoted as
generations

Wirtschaftsinformatik und Operations Research 536

Intensification vs. Diversification

 The balance of the following two concepts significantly
influences the success of a metaheuristic

 Intensification
 Exploitation of the accumulated search experience

 Goal: quickly identify regions with high quality solutions

 Diversification
 Exploration of the search space

 Goal: avoid the wasting of time in regions ...
 … which are already explored

 … which yield poor solutions

Wirtschaftsinformatik und Operations Research 537

 Imagine a gold seeker during the gold rush in the US

 If the seeker hits gold, a useful strategy would be to search for
more in the direct vicinity of the place of discovery

 This can be considered as intensification or exploitation

Having unearthed all the gold of an area or the inability to find
any gold at all in an area demands a different strategy:
 The seeker could look around in areas farer away and dig at random

there (diversification or exploration)

Metaheuristics – Gold seeker illustration

Wirtschaftsinformatik und Operations Research 538

6.2 Simulated Annealing

 Heuristic method which tries to overcome local optimality;

 Bases on the analogy between combinatorial optimization
problems and problems from statistical mechanics

 The Metropolis algorithm that simulates the behavior of a
physical many-particle system is naturally applied as a heuristic
method in optimization. There are analogies between a
combinatorial optimization and a many-particle physical
system that basically rely on the following two facts (c.f.
Albrecher et al., 2006):
 Feasible solutions of the combinatorial optimization problem

correspond to states of the physical system

 The value of the objective function value for a feasible solution of
the combinatorial optimization problem corresponds to the
energy of the state of the physical system

Wirtschaftsinformatik und Operations Research 539

Annealing

 Annealing is a thermal process for obtaining lower energy states of a solid in
a heat bath. Two phases process:

 One increases the temperature of the heat bath to a maximum value at
which the solid melts;

 One carefully and slowly decreases the temperature of the heat bath
until particles arrange themselves in the ground state of the solid. This
ground state is characterized by a minimum of energy.

 The Metropolis algorithm works with Monte Carlo techniques for
generating a sequence of states of the solid.

 Let i be the current state with energy Ei. A possible subsequent state j with
energy Ej is generated by displacing one of the particles.

 If the resulting energy difference Ej-Ei is negative, the new state is
accepted.

 Otherwise, j is accepted with a certain probability given by

 where t denotes the temperature and kB is the so-called Boltzmann
constant

   1 j i

B

E E

t ke

  



Wirtschaftsinformatik und Operations Research 540

Thermal process vs. combinatorial problem

 Analogies between the thermal process and a
combinatorial optimization problem:

 System states=Feasible solutions to the problem

 Energy states=Objective values

 Change of the system state=Move between
different solutions

 Temperature=Control parameter for every move

 Frozen state=Heuristic solution to the problem

Wirtschaftsinformatik und Operations Research 541

Pseudo Code

1. Generate an initial solution S0;

2. Generate an initial temperature T0 and store it in the variable
t;

3. Generate a temperature function α;

4. Repeat
1. Choose S randomly out of the neighborhood S in N(S0);

2. Δ:=f(S)-f(S0);

3. If Δ<0, then S0=S; otherwise, randomly generate x out of the
continuous interval [0,1]

4. If x < e(-Δ/t), then S0=S

5. Generate a new temperature according to the chosen function α

5. Until a specific criterion is fulfilled

6. Return the best found solution after applying hill climbing to it
(not mandatory)

Wirtschaftsinformatik und Operations Research 542

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1 23 45 67 89 111 133 155 177 199 221 243

Temperature

A
c
c
e
p

ta
n

c
e
 p

ro
b

a
b

il
it

y

Delta f=20

Delta f=40

Delta f=60

Delta f=80

Acceptance functions

Wirtschaftsinformatik und Operations Research 543

Observations

 In the frozen state, nearly no deterioration can be
executed

 With an increased temperature, the acceptance
probability for the deteriorating moves enlarges

 Therefore, the definition of the cooling schedule
significantly influences the efficiency of the executed
improvement process

Wirtschaftsinformatik und Operations Research 544

Finding efficient cooling schedules

 Thonemann and Bölte propose the application of a
genetic algorithm to find a well-working cooling
schedule

Reference:

 Bölte, A., Thonemann, U., 1996. Optimizing simulated
annealing schedules with genetic programming.
European Journal of Operational Research 92, 402-
416.

Wirtschaftsinformatik und Operations Research 545

6.3 Genetic algorithms

 Genetic programming is based on Darwin’s
evolutionary theory about “survival of the fittest”

 In order to apply the principles of this theory to
combinatorial problems, several generations of feasible
solutions are created by using specific operations
representing evolutionary processes in nature

 By applying these genetic operators on the individuals
of the current generation, the next population is
produced

Wirtschaftsinformatik und Operations Research 546

Genetic algorithms

 Basic genetic operators are:

 Reproduction: Copying an individual from the current
population, without alteration, into the next generation

 Crossover: New offspring is generated consisting of
attributes of two individuals of the current population
(parents)

 Mutation: Copying an individual from the current
population, with alteration, into the next generation

 Fitness is measured by the respective objective function value
and is used as the main attribute to be selected for the
generation of the subsequent population

 Simulation of a natural evolutionary process to adapt the
population according to the attributes of the considered
problem

Wirtschaftsinformatik und Operations Research 547

6.3.1 Genetic operators for cooling schedules

 Temperature functions are defined in the
programming language LISP

 Variable t (Time)

 Resulting function value is interpreted as the
temperature in t

 For instance 0.7t . 10 = (*(^0.7 t) 10)

 By combining terminals and functions, different
expressions can be generated

Wirtschaftsinformatik und Operations Research 548

First generation

 F={+, -, *, %, ^, sign, cos, sin}

 T={t, R}, while R=[-10.0, +10.0] subset of IR

 The initial population is randomly generated

 For every individual, at first an element of F is chosen as the root node

 Then, an arc is attached for each of the required arguments. Next, one
element of F or T is chosen for every element of the arcs. If it is a terminal,
the branch is terminated; while a function leads to additional arcs

 While the minimum depth is two, every randomly generated expression
tree can have at most six levels

 In order to get a wide variety of different constellations in the first
population, 20% of the generated trees have depth 2, 20% have depth 3,
20% have depth 4, 20% have depth 5, and finally 20% have depth six

 In every group, 50% of the trees are generated as full trees where every
path has the predefined length

Wirtschaftsinformatik und Operations Research 549

Fitness and selecting

 An individual I is selected according to the following fitness
level AF(I):

 
 

 

1

1

In this formula, is the objective function value of the

Simulated Annealing procedure working with as the

annealing schedule while denotes a lower bound of

the objective function

AF I
SA I LB

SA I

I

LB


 

 
 
 

 value. In order to decide about the

selection during the population generation process, a

normalized fitness function is used:

I

AF I
NF I

AF I





Wirtschaftsinformatik und Operations Research 550

Selecting

 A selected individual is not removed from the current
population, i.e., the selection is performed without
replacement

 Therefore, an individual can be selected more than
once

 Applied operators:

 Reproduction operation

 Crossover operation

Wirtschaftsinformatik und Operations Research 551

Reproduction and mutation operation

Reproduction:
 Good individuals remain in the population with probability NF
 10% of the population is created by this operation

Mutation:
 Thonemann and Bölte argue that due to the nonlinear

structure of the QAP, the use of mutation operations is not
necessary

 Additionally, mutation is part of the crossover operations

Wirtschaftsinformatik und Operations Research 552

Crossover operation

 First, two individuals are selected with the probability NF
 Both trees are labeled to get definite possible crossover points
 A crossover point is randomly selected for the first parent
 The corresponding node becomes the root of a subtree which

we will refer to as the crossover fragment
 A second crossover fragment from the second tree is

generated subsequently by a random selection of a node
 In order to obtain two offsprings (individuals of the next

generation), we attach the crossover fragment of the first tree
to the remainder of the second tree and vice versa

 80 % of inner nodes and up to 20 % of leafs are used
 Maximal depth is 17

Wirtschaftsinformatik und Operations Research 553

Crossover operation example

*

9 ^

t 2

=9*2t

+

* t

cos 5

=t+(5*cos(t))

First parent Second parent

t

1

3

4

5

1

2 2 3

4 5

6

Selected
crossover
fragments

Wirtschaftsinformatik und Operations Research 554

Crossover operation example

*

^

t 2

=cos(t)*2t

+

* t

5

=t+(5*9)

First offspring Second offspring

cos

t 9

Note that if a resulting offspring has more than 17 levels, it is
deleted while one of the parents is copied to the subsequent
generation

Wirtschaftsinformatik und Operations Research 555

6.3.2 Applied neighborhood search

 In each step, the total neighborhood consists of all applicable
exchanges of two machines that are arranged in the layout

 Therefore, we get the total number of altogether ½.N.(N-1)
applicable operations

 In every move of the SA procedure, the tested operations can
be chosen randomly as well as iteratively in a predefined
order. The latter one can be implemented by applying a
lexicographical order:
(1,2),(1,3),(1,4),…,(1,N),(2,3),…,(2,N),…,(N-1,N)
 Note that the following move always starts examining the

subsequent exchange operation to the one considered before

 Experimental analysis underline that the systematic
examination of the neighborhood yields better results in
comparison to the random choice

Wirtschaftsinformatik und Operations Research 556

Algorithm TB1

1. Generate Generation 0
2. Gen=0;
3. I=1
4. Optimize the problem with SA using cooling schedule I
5. Compute fitness of I
6. I=I+1
7. If I≤500 go to step 4
8. If Gen=50 go to step 12
9. Produce next generation
10. Gen=Gen+1
11. Go to step 3
12. Report best solution found

Wirtschaftsinformatik und Operations Research 557

Parameters in TB1

 The problem data is normalized in order to get values in the
matrices between 0 and 10

 The number of attempted pairwise exchanges is restricted to
SL(N)=0.5.C.N.(N-1) with C=50

 The subchain length that is used for the duration of the
application of each current temperature is set to 500

 51 generations are considered with 500 individuals,
respectively

 Therefore, we obtain, all in all, 25.500 executions of the SA
algorithm

 Consequently, only small problems can be solved

 The procedure was applied to five specific problems of a well-
known benchmark set

Wirtschaftsinformatik und Operations Research 558

Results of the computational tests

 Annealing schedules with a constant temperature
oftentimes performed well, but TB1 always generates
a non-constant one that performed at least as well

 Oscillating schedules enable the search process to
escape from local minima also in later parts of the
performed computation

 Thonemann and Bölte report that TB1 yielded quite
well results for moderate-sized experiments

Wirtschaftsinformatik und Operations Research 559

Properties of good annealing schedules

 The yielded schedules are tailored to the
respective instance. Therefore, they perform
poorly if applied to other (different) problems

 Therefore: An additional experiment was
executed:
 Three instances were solved again by the TB1

procedure with two different initial assignments

 By making use of different random number
streams, each run was executed twice

 Consequently, every schedule was used for 12
different optimizations

Wirtschaftsinformatik und Operations Research 560

Attributes of the best schedules

1. Most of the time, the temperature was between 4
and 8

2. The temperature was usually not constant or
monotonously decreasing, but oscillated between 4
and 8

3. The period length of the oscillation was between 20
and 100 (based on a schedule length of 500)

4. The shape of the oscillation was not relevant

5. Starting and ending temperature was far above zero

Wirtschaftsinformatik und Operations Research 561

6.3.3 The procedure TB2

 Uses a predefined cooling schedule with some of the itemized
attributes of good schedules

 Starting temperature is v(0)=10;

 Subsequent cooling phase:
 v(t)=v(t-1)/(1+b.v(t-1)); b=8/(20.SL(N))

 Annealing schedule length of SL(N)=C.N.(N-1)/2 with C=50, C=250,
C=1000

 If SC(N)=N.(N-1)/4 consecutive pairwise exchanges are rejected,
cooling is stopped with vc and tc

 After the cooling process
 v(t)=vc

.
 [1+½.cos(w(t-tc))] is used with w=16π/(25.N.(N-1))

 Oscillates around vc with an amplitude of 0.5vc

Wirtschaftsinformatik und Operations Research 562

Structure of the resulting annealing schedule

10

Wirtschaftsinformatik und Operations Research 563

The procedure

1. E*=Z(a0); E=Z(a0); t=0; s=0; a*=a0; a=a0; v=10; b=8/(20 SL(N)) /* with
annealing schedule length SL(N)=C.N(N-1)/2 */

2. Choose x,y

3. If ∆Zx,y< 0, then go to 6

4. g=unif[0,1]

5. If g≥exp(- ∆Zx,y/v), then s=s+1; go to step 8

6. E=E+ ∆Zx,y; Exchange x and y; s=0;

7. If E<E*, then a*=a; E*=E

8. t=t+1

9. If t=SL(N), go to step 14

10. If b=0, then go to step 13

11. If s≥SC(N), then vc=v; tc=t; b=0; Go to step 13

12. v=v/(1+b.v); Go to step 2

13. v=vc
.
 [1+½.cos(w(t-tc))]; Go to step 2

14. Apply hill climbing to a*

Wirtschaftsinformatik und Operations Research 564

Computational results

 Thonemann and Bölte show that the TB2 procedure
yields substantial improvements of the solution
quality in comparison to Connolly’s SA approach

 TB2 generates improved results, particularly for more
complex problem instances

 By increasing the value of parameter C, the solution
quality of TB2 is further improved, but at the expense
of a significantly increased computational effort

Wirtschaftsinformatik und Operations Research 565

6.4 Tabu Search (TS)

 The main idea of Tabu Search is to select the best not forbidden
neighbor in every move of the computation

 This is an HAMD (=highest ascent mildest descent) strategy

 This exhaustive search increases the intensification

 Since in its basic form Tabu Search is deterministic, a tabu list is
additionally applied that temporarily forbid specific moves

 These tabu moves may bring back the searching process to a
solution that was already visited before, i.e., prevention of cyclical
computations

 The main ingredients of Tabu Search are the neighborhood
structure, the moves, the tabu list, and the aspiration criterion

 An aspiration criterion is a condition which, when fulfilled by a
tabu move, overrules its tabu status

Wirtschaftsinformatik und Operations Research 566

6.4.1 Tabu Search for the QAP

 In case of QAP, the moves are usually transpositions and
the neighborhood is the pair-exchange neighborhood

 Frequently, the inverted exchange is forbidden by a tabu
status for a predefined number of moves

 Alternatively, fingerprints of current solutions can be
computed and compared
 After visiting a new solution its fingerprint is computed

 If it has occurred before there is an entry and the
considered solution may be blocked if it does not improve
the best solution found so far

 This criterion identifies very reliable identical solutions if
more than one fingerprint is applied

Wirtschaftsinformatik und Operations Research 567

Tabu Search Pseudocode

A generic Tabu Search algorithm:

 Select an initial solution x ∈ X

 x* := x, k:=0, T:=empty

 While (k<K and S(x)-T not empty)
 k:=k+1

 Select sk ∈ S(x) –T, such that sk(x) =
OPTIMUM(s(x):s from S(x) -T)

 x:=sk(x)

 If (c(x)<c(x*))
 x*:=x

 Update T

 End While

X: set of all feasible solutions

x: current solution

c(x): objective value of
solution x

S(x): Neighborhood function

T: set of forbidden tabu
moves

k: iteration counter

K: max number of iterations

x*: best found solution

sk(x): best non-tabu solution
out of the neighborhood of x
in iteration k

Wirtschaftsinformatik und Operations Research 568

6.4.2 Sophisticated TS for the VRP

 In what follows, we introduce a series of powerful Tabu
Search approaches for the well-known VRP

 These approaches try to overcome the limited
diversification within the enumeration process of Tabu
Search by integrating this procedure into an extended
procedure

 This procedure applies the Tabu Search optimization
process iteratively in different parts of the solution space in
order to temporarily intensify the search process

 A so-called adaptive memory stores best parts (tours) of
completed solutions in order to combine them in later
steps

Wirtschaftsinformatik und Operations Research 569

6.4.2.1 The Vehicle Routing Problem (VRP)

 Standardized problem for mapping distribution processes conducted
by a fleet of vehicles

 Basic attributes

 Fleet of vehicles whose tours have to be planned

 Single depot or multiple depots where all tours to be planned start and
end

 Pure tours, i.e., pure distribution or pickup tours

 Capacitated or incapacitated case

 Time window integration

 Sought: Tours of the vehicles, Time tables

 Restrictions:

 Each Customer has to be visited once

 Each tour starts and ends at a predefined depot

 Compliance with existing time windows

 Compliance with capacity restrictions

Wirtschaftsinformatik und Operations Research 570

Time window constraints

 A very important model extension comprises the
integration of specific time restrictions

 Therefore, specific time windows are defined by
upper and lower bounds while the respective pick up
or delivery activity can be executed only within this
predefined interval

 By integrating time windows, the VRP becomes to the
VRPTW or VRPSTW

 These extensions, however, require the integration of
a detailed time table planning

 Thus, this problem is frequently denoted as the
Vehicle Routing and Scheduling Problem

Wirtschaftsinformatik und Operations Research 571

Soft vs. Hard time windows

 Hard time windows
 Do not allow any violations of the defined intervals, i.e., each

pickup or delivery activity has to be generated inside each time
window

 Can prevent feasible solutions

 Soft time windows

 Can be violated, but this causes additional costs, i.e., the
respective pickup or delivery activity does not have to be
executed within the time window

 Have no impact on the set of feasible solutions, i.e., can be used
for real-time control activities

 More general case, i.e., hard time windows can be mapped as
soft time windows with infinitive costs for violation

Wirtschaftsinformatik und Operations Research 572

The CVRPSTW

: Number of customers to be satisfied. Again, the

model is mapped as a directed weighted graph where

each customer is a node, numbered from 1 up to

while the single depot gets the number zero

: Numb

N

N

V

 

 

,

er of available vehicles

0 , : Costs occurring for traveling from

node to

1 : Demand of customer

: Capacity of all vehicles

i j

i

c i j N

i j

d i N i

C

 

 

Wirtschaftsinformatik und Operations Research 573

CVRPSTW – Parameters

    

0 0

, 0 : Time window at customer . These

times are defined according to the end of the delivery

processes, i.e., the service times are included.

Note that is the earliest start time and is t

i ie l i N i

e l

 

 

 

 



 

 

0

,

he

latest end time of each vehicle that can be used

 0 : Service time for picking up or unloading

the goods at customer . It holds 0

0 , : Time for traveling from node to

0 :Cost

i

i j

i

s i N

i s

t i j N i j

α i N rate per time unit lateness at

customer i

Wirtschaftsinformatik und Operations Research 574

CVRPSTW – Variables

 

 

, ,

, ,

,

0 , ;1 : Binary decision variable deciding

about the tours of the available vehicles, e.g., if vehicle

travels directly from to 1

0 ;1 : Binary decision variable whic

i j v

i j v

i v

x i j N v V

v

i j x

y i N v V

   

 

   

 ,

h is one

if and only if vehicle satisfied the demand of customer

0 1;1 : Point of time when vehicle finished

serving customer . N 1 represents the arrival at the depot after the

execut

i v

v i

t i N v V v

i

    



   

 

, , ,

,

ion of the respective tour

A solution is defined completely by

| 0 , ;1 | 0 ;1

| 0 1;1

i j v i v

i v

L

L x i j N v V y i N v V

t i N v V

         

     

Wirtschaftsinformatik und Operations Research 575

CVRPSTW – Restrictions

 

 

 

,
1

,

1

1. Capacity requirements: 1,..., :

2. Demand satisfaction: 1,..., : 1

3. Each customer i that is satisfied by vehicle v is

left by this vehicle exactly once:

0,..., : 1,.

N

i i v

i

V

i v

v

v V d y C

i N y

i N v





   

  

   





 
1

, , ,

1

.., :
N

i j v i v

j

V x y






Wirtschaftsinformatik und Operations Research 576

CVRPSTW – Restrictions

   

   

, , ,

0

, ,

4. Each customer i that is satisfied by vehicle v is

visited by this vehicle exactly once:

1,..., : 1,..., :

5. Preventing inner cycles:

1,..., : 1,..., with 2 :

N

j i v i v

j

i j v

j Q

i N v V x y

v V Q N Q N

x Q





    

     







  0,6. Node 0 belongs to each cycle: 1,..., : 1

i Q

vv V y



  



Wirtschaftsinformatik und Operations Research 577

CVRPSTW – Restrictions

 

 

   



  

  

     

0, 0

1, 0

, ,

7. Start time of each vehicle tour:

1,..., :

8. End time of each vehicle tour:

1,..., :

9. Earliest completion of delivery:

1,..., : 1,..., :

10. Time dependencies in

v

N v

i i v i v

v V t e

v V t l

i N v V e y t

     

 

     

    

      

       

, , , , , , ,

1, , , ,0 ,0,

side the tours:

1,..., : , 1,..., :

1,..., : 1,..., :

i v i v j v j v j i i j i v

N v j v j v j j v

v V i j i j N

t y t y t s x

v V j N t t y t x

Wirtschaftsinformatik und Operations Research 578

CVRPSTW – Objective function

 

 

, , ,

0 0 1

Transportation costs

, ,
1 1

Lateness costs

Minimize

max ,0

N N V

i j i j v

i j v

N V

i v i i v i

i v

F L c x

y t l

  

 

 
   

 

   

 

 

Wirtschaftsinformatik und Operations Research 579

6.4.2.2 The procedure of Taillard, Badeau et al.

 Makes use of the meta-strategy Tabu Search

 This is a well-known metaheuristic attaining a
competitive solution quality for various complex
optimization problems

 While only the basic structure of this strategy is
predetermined, the applied instruments/ procedures
have to be generated application-dependent

Wirtschaftsinformatik und Operations Research 580

Basic attributes of Tabu Search

 A single current solution and a best solution are stored

 By applying specific operations, this current solution is modified iteratively

 In each iteration (move), solutions that result from a single application of
the operations define the neighborhood of a current solution

 Tabu Search selects the best performing alternative that is not set tabu out
of the current neighborhood

 Tabu states are assigned to solutions in order to prevent cyclical
computations

Illustration of the computation:

Current solution

Neighborhood of the solution Computed path

Wirtschaftsinformatik und Operations Research 581

The used exchange heuristic

 Generally speaking, Tabu Search usually attains a high
intensification, i.e., applied to a specific locality in the solution
space, it may be able to find the best solutions located there (if
the neighborhood is reasonably defined)

 However, since the computational effort is considerable, Tabu
Search may suffer from limited diversification

 Hence, Taillard, Badeau et al. deal with this tradeoff by
integrating Tabu Search into a diversifying environment

 In the procedure of Taillard, Badeau et al., the neighborhood is
defined as a set of exchange operations resulting from the
application of a specific CROSS operation which exchanges
elements of two different tours

 In order to yield a high solution quality, the CROSS operation
contains a large variety of possible constellations resulting in a
very flexible neighborhood

Wirtschaftsinformatik und Operations Research 582

The used exchange heuristic

 This well-known operation exchanges parts of two
selected tours

 In order to do so, we have to chose two edges from
each tour
 First route: Edges (X1, X1’) and (Y1, Y1’)

 Second route: Edges (X2,X2’) and (Y2, Y2’)

 In order to generate the subsequent constellation, we
delete these edges in the current solution and
integrate in tour 1 the subtour X2’ – Y2 and in tour 2
the subtour X1’ – Y1. Therefore, the edges X1 – X2’ and
Y2 – Y1’ are added in tour 1 and the edges X2 – X1’ and
Y1 – Y2’ in tour 2

 Always the best constellation is implemented

Wirtschaftsinformatik und Operations Research 583

CROSS-exchange

X1

X1’

Y1

Y1’

X2

X2’

Y2

Y2’

X1

X1’

Y1

Y1’

X2

X2’

Y2

Y2’

Wirtschaftsinformatik und Operations Research 584

Or-opt

 Originally proposed by Or (1976)

 Moves all possible sequences of at most three visited
customers to another tour

 This can be simulated by the CROSS operation as
follows
 By setting X2=Y2 and X2’=Y2’, we have an empty subtour to

be exchanged in tour 2

 In order to exchange at most three visited customers, we
set Y1 either
 equal to X1’,

 or equal to the direct successor of X1’

 or equal to the direct successor of the direct successor of X1’

 in tour 1

Wirtschaftsinformatik und Operations Research 585

CROSS exchange – Or-opt simulation

X1

X1’

Y1

Y1’

X2=Y2

X2’=Y2’

X1

Y1’

X2=Y2

X2’=Y2’

X1’

Y1

Y1 is either X1’, or
Y1 is direct successor of X1’, or
Y1 is direct successor of the
direct successor of X1’

Wirtschaftsinformatik und Operations Research 586

2-opt*

 Originally proposed by Potvin and Rosseau (1995)

 Only exchanges two edges taken from different tours

 I.e., the remaining steps up to the depot in both tours
are exchanged

 Consequently, we can simulate 2-opt* by the flexible
CROSS operation as follows
 Y1’ and Y2’ are the depots, i.e., there is no return to

remaining steps of the respective original tour

Wirtschaftsinformatik und Operations Research 587

CROSS-exchange – 2-opt* simulation

X1

X1’

Y1

Y1’

X2

X2’

Y2

Y2’

X1

X1’

Y1

Y1’

X2

X2’

Y2

Y2’

Depot

Wirtschaftsinformatik und Operations Research 588

Neighborhood

 The resulting neighborhood contains all possible applications
of the CROSS operation to two arbitrarily chosen tours in the
current solution

 We restrict the possible segment length of the subtours to be
exchanged to L while N is the number of existing customers

 The application of the CROSS operation preserves the
orientation of the respective tours

 Therefore, each neighborhood contains altogether N
possibilities to choose the first edge while at most L
possibilities remain for the second one

 Hence, for each exchange, we have altogether O(N2 L2)
possible constellations

Wirtschaftsinformatik und Operations Research 589

Neighborhood – Move evaluation

 Each possible examined move has to be evaluated to decide
about its realization

 Due to the large size of each considered neighborhood, it is
necessary to generate an efficient technique in order to
compute the objective value of each considered constellation

 In the following, we simplify the objective function by
introducing equal weights, i.e., we assume the modified
objective function value for each solution S using M chosen
edges with transfer costs d1, d2, … , dM:

   
1 1

max 0,
M N

k i i

k i

f S d t l
 

    

Wirtschaftsinformatik und Operations Research 590

 It is easy to evaluate Δd in constant time since we only subtract the length
of the (at most four) edges that have been removed and add the (at most
four) edges that have been inserted. Note that, due to homogeneous
vehicles, exchanged subtours do not affect the objective function value

 Unfortunately, an accurate computation of Δl cannot be executed in
constant time. Therefore, the following separation is used:

 For the second part, an approximation function is used:

Neighborhood – Move evaluation

 After executing an arbitrary CROSS operation, the following objective
difference is calculated:

X2'-Y2 Y1' depotl l l


    

Lateness differenceDistance difference

f d l     

 Y1' depot Y1' Y1'l g b


  

Wirtschaftsinformatik und Operations Research 591

Exact evaluation of ΔlX2‘-Y2

 This is possible in constant time

 Let us consider the modified tour 1. The service beginning bi
at customer i is modified by Δbi

 Therefore, we can compute ΔbX2’=bnew,X2’-bX2’

 With bnew,X2’=max{eX2’,bX1+sX1+tX1,X2’}

 If we propagate these values along the tour, we cannot yield a
constant complexity

 But in order to reduce the computational complexity to
constant size, we use the following trick
 Fortunately, the exploration of the total neighborhood is done

in such a way that we can use results that are computed in the
previous enumeration step

 For this purpose, we execute the following mainframe
characterized by four nested loops

Wirtschaftsinformatik und Operations Research 592

Four nested loops

 For X1 from depot to the last customer

Set X1’ to the immediate successor of X1

• For X2 from depot to last customer

 Set X2’ to the immediate successor of X2

 For Y1 from X1 to depot

 Set Y1’ to the immediate successor Y1

• For Y2 from X2 to depot

 Set Y2’ to the immediate successor Y2

Wirtschaftsinformatik und Operations Research 593

Observation

 Up to the end of the exchanged segments, we can use
the results of the preceding iteration for the
subsequent one which contains only one additional
step since we have increased its length at most by one

 Therefore, in each iteration, we have only a constant
complexity to adjust the objective function value ΔlX2‘-Y2‘

Wirtschaftsinformatik und Operations Research 594

Approximation of

 With ΔbY2, we can compute ΔbY1’ in constant time

 This offset has an additional impact on the subsequent tour steps
up to the depot

 Unfortunately, we cannot directly generate this impact (i.e., in
constant time) from the results of the neighborhood constellation
considered before

 In order to guarantee an efficient neighborhood examination, we
use a function gi that defines an approximation value of the
resulting additional lateness for a given offset value Δbi

 This functions is updated each time the best CROSS exchange value
is applied to the current solution, i.e., the functions are kept
unchanged during the neighborhood examination

 Furthermore, the update is only performed at customer locations
found on the two routes involved in the CROSS exchange

depotY1'l

Wirtschaftsinformatik und Operations Research 595

Approximation of

 After the generation of the best found CROSS exchange,
the update is executed for each effected customer location
along the tours

 Specifically, Z=6 values are used to generate the corrected
approximation function for each customer

 This is a compromise between an adequate approximation
and the reduction of the computational effort

 Specifically, a correlation coefficient varying from 0.5 to 0.8
has been observed between the approximation function
value and the true modification

depotY1'l

Wirtschaftsinformatik und Operations Research 596

Chosen values

 Positive shifts (positive values):

 zi,1: Set to the maximum modification at some customer
observed during the preceding examination

 zi,2: = zi,1/50

 zi,3: = zi,1/2500

 Negative shifts (negative values):

 zi,4: =zi,6/2500

 zi,5: =zi,6/50

 zi,6: Set to the lateness at customer i plus total lateness at
all subsequent customers. Note that this value determines
the possible total reduction of all lateness in the subtour
starting at customer i, i.e., the local upper bound for
lateness costs reduction of this subtour

Wirtschaftsinformatik und Operations Research 597

Neighborhood examination

 By using the approximation function, the P(=15) best
solutions are saved for further considerations

 Subsequently, the best one of them rated by the
exact objective value is implemented

 Therefore, there is a two-stepped examination
starting with an approximation followed by an exact
one only analyzing the best 15 ones

Wirtschaftsinformatik und Operations Research 598

Feasibility

 Considered restrictions:
 Capacity constraints for each used vehicle

Easy to check by integrating the current capacity
requirements in each step of every tour

 Hard time window at the depot
Can be checked in constant time by integrating the

current latest beginning of the customer services in each
step of every tour. If this date is violated at customer Y1’
(respectively Y2’), the modified solution is not feasible
any more. Note that this latest date can be updated in
constant time after executing the CROSS operation

Wirtschaftsinformatik und Operations Research 599

Neighborhood reductions

 The size of the neighborhood can be reduced by
discarding moves that are unlikely to yield any
improvement

 Reduction rules:
 The execution of the nested loops is reduced by the

stoppage of the inner loop at level Y2 if a monotonous
degradation of the (approximate) objective value is
observed over three consecutive iterations

 The same approach is applied at the level of X2. In this
case, the objective value associated with X2 is the best
solution found after iterating completely over Y1 and Y2

 Note that this interruption leads to a significant reduction
of the computational effort since the variable X2 is
iterated in the second inner loop

Wirtschaftsinformatik und Operations Research 600

Intra-route exchange

 Beside the CROSS operation which is applied in different constellations of
each step of the search process, it make sense to integrate operations
modifying the sequence of a single tour only instead of reducing the
neighborhood to the exchange of steps between two different tours

 Therefore, an additional operation is applied. Namely, two edges of a given
tour are removed, and the segment between the two edges is moved to
another location within the same route

Wirtschaftsinformatik und Operations Research 601

The algorithm

1. Construct I different solutions using a stochastic insertion
heuristic. Then, apply the Tabu Search procedure to each
solution and store subsequently the resulting routes in the
adaptive memory

2. While the stopping criterion does not apply, do:
1. Construct an initial solution from the routes found in the adaptive

memory, and define this solution to be the current solution
2. For W iterations do:

1. Decompose the current solution into C disjoint subsets of routes
2. Apply the Tabu Search on each subset of routes
3. Reconstruct a complete solution by merging the new routes found

by the Tabu Search, and define this to be the new current solution
3. Store the routes of the current solution in the adaptive memory

3. Apply a post-optimization procedure to each individual route
of the best solution

Wirtschaftsinformatik und Operations Research 602

Initialization

 Here, we have to fill the adaptive memory used in the
following to generate new combined constellations

 For this purpose, the routes are initialized by randomly
selecting m seed customers. The remaining non-serviced
customers are inserted one by one (in a random order) at
the location that minimizes the function c1 used in
Solomon’s heuristic I1

 Consequently, we receive I solutions which are
subsequently improved one by one using the Tabu Search
algorithm described later

 Finally, all routes of the I solutions are stored in the
adaptive memory. By doing so, the adaptive memory
comprises a large diversity of solution routes

Wirtschaftsinformatik und Operations Research 603

The adaptive memory

 At first, the memory is partially filled with routes produced during the
initialization process

 The routes associated with the best solutions are found in the first
positions of the memory

 In order to generate a new combined solution, one route after another is
randomly chosen to be integrated in a new feasible solution

 Therefore, routes associated with a better solution get a higher selection
probability

 Once, the first route is selected, the routes in memory with at least one
common customer are discarded from the selecting procedure currently
in execution

 One by one, further routes are selected…
 This procedure is repeated until the set of selected routes covers all

customers or until there is no admissible route in memory. In the latter
case, Solomon’s insertion procedure I1 is invoked to insert the remaining
customers. If this fails additionally (due to capacity and/or depot’s time
window restrictions), the customers are left aside temporarily but
reinvoked at each D&R step to try to insert these customers in the current
solution

Wirtschaftsinformatik und Operations Research 604

Decomposition / Reconstruction

 Here, we have to define how the decomposition process is executed to
decompose a current solution in altogether C sets of routes

 An upper bound U is predefined for the maximum number of routes
belonging to the same subproblem

 Therefore, we determine C as the smallest integer value larger or equal to
one, such that m/C≤U while m (number of vehicles) defines the number of
routes belonging to the solution currently considered

 A procedure related to the sweeping technique is used to generate
altogether C regions of tours which are modified by the application of the
Tabu Search procedure. The decomposition changes from one D&R to the
next one by choosing a different starting angle for creating sectors, thus
allowing the CROSS exchange heuristic to exploit new pairs of routes

 After the execution of W D&R-operations, the final routes are stored in the
adaptive memory, if it is not filled yet. Otherwise, the routes of the worst
solution found in the adaptive memory are discarded and replaced by the
new ones (if the new solution is better than the solution the old tours belong
to)

Wirtschaftsinformatik und Operations Research 605

The Tabu Search

 Exploits the neighborhood described before in each step of the
executed improvement process

 It is applied to the initial solution as well as to the subproblems
generated by each decomposition step, i.e., in each of the W
D&R steps

 Stopping criterion:

 Only A[1+(DR-1)/B] steps are executed

 A,B: parameters and DR is the number of the current D&R step,
i.e., there are more steps of the Tabu Search procedure at the
end of each improvement process

Wirtschaftsinformatik und Operations Research 606

The steps of the Tabu Search procedure

1. Set the current solution to the initial subset of routes

2. While the stopping criterion is not met, do:

1. Generate the neighborhood of the current solution by
applying the CROSS exchanges

2. Select the best non-tabu solution in this neighborhood
and define this solution to be the new current solution

3. If the current solution is better than the best overall
solution, then reorder the customers within each route
using Solomon’s I1 insertion heuristic; define this new
solution (if it outperforms the former one) to be the new
current solution and the best overall solution

4. Update the Tabu list

3. Return the best overall solution

Wirtschaftsinformatik und Operations Research 607

Stopping criterion

 The Tabu Search stops after a certain number of iterations

 This number is calculated by the formula

A.[1+(DR-1)/B]

 where A and B are predefined parameters and DR gives
the iteration number DR=1,…,W, i.e., the algorithm is
applied in longer periods towards the end of the
procedure. This is due to the fact that towards the end of
the algorithm an improvement frequently requires more
elaborated search processes. This makes longer
computation paths reasonable.

Wirtschaftsinformatik und Operations Research 608

Tabu list

 Length T
 Its positions are indexed from 0 to T-1
 At the position, the iteration number is stored at which the

respective solution will loose its Tabu status
 After executing a CROSS operation, the generated objective

value modulo T provides its Tabu list position. If the value
found at this position is larger than the iteration number, the
move is Tabu; otherwise it is accepted

 Note that this approach can filter out legitimate solutions
 However, if T is large enough and the possible objective

values differ frequently, this occurs rarely
 The Tabu tenure is defined as the number of iterations

divided by two
 Note that only integer objective function values are possible

Wirtschaftsinformatik und Operations Research 609

Diversification methods

 In order to lead the search process in new currently not
considered regions of the solution process, the algorithm
penalizes CROSS exchange constellations that are frequently
performed during the search process

 Therefore, we introduce the following parameters:
 fre is the frequency of a given exchange e

 frmax denotes the maximal frequency observed during the
searching process

 iter gives the current number of iterations

 n defines the total number of customers to be serviced

 m defines the number of routes, respectively

Wirtschaftsinformatik und Operations Research 610

Diversification methods

 If x is a random value uniformly chosen in the interval [0.0,0.5]
and Δmax,iter is the maximal absolute difference observed
between the objective values of two consecutive solutions up
to iteration iter, then the respective exchange is penalized by

x.Δmax,iter
.fre/frmax

Wirtschaftsinformatik und Operations Research 611

Reordering of each route

 If a new overall best solution is found, a reordering of its
different routes is evoked. For this purpose, the I1
insertion procedure proposed by Solomon is applied

 Therefore, all customers of the considered route are
erased and reinserted one by one starting with the one
farthest from the depot as the seed customer generating
an initial one customer cycle

 The procedure is executed R times while the best one is
chosen if it improves the solution previously considered;
otherwise the process tracks back to the old constellation

 This instrument can be seen as a specific form of
intensification after finding an improved constellation

Wirtschaftsinformatik und Operations Research 612

Post-processing

 At the end of the procedure, a specific heuristic,
originally constructed for the TSP (respecting time
windows) is applied on each route of the found solution
(Gendreau et al. (1998))

 This method is an adaption of the GENIUS heuristic
originally devised for the TSP (Gendreau et al. (1992))

 This heuristic only slightly improved the total distance of
the considered instances (10 solutions in Solomon’s test
were improved by at most 1% (with one exception), but
it consumes only a few seconds computational time

Wirtschaftsinformatik und Operations Research 613

Computational results

 Test problems

 Standard benchmark of Solomon (100-customer problems)

 Note that this is a benchmark set for the VRPHTW (Solomon
(1987))

 56 instances, clustered

 Locations are distributed within a [0,100]2 square

 Experiments performed on a SUN Sparc 10 workstation (50
Mhz)

 New objective: Hierarchical objective function

 First objective: Minimization of the number of routes

 Second objective: Minimization of the total travel distance
(costs)

Wirtschaftsinformatik und Operations Research 614

Parameter setting for the Tabu Search

Parameter Setting

Objective function α=100

Initial solutions I=20

Adaptive Memory M=30

D&R/Number of routes W=6/U=8

Iterations A=30, B=3, i.e.

30,40,50,60,70, and 80 iterations for

DR=1,2,3,4,5, and 6 respectively

Total: 330

Neighborhood L=5 or L=7

Tabu list length T=100,000

Tabu tenure Number of iterations/2

Reordering number R=20

Wirtschaftsinformatik und Operations Research 615

Results – Overall

Experiment

Class

Chiang&

Russel

1993

Potvin&

Bengio

1996

Thangiah

et al.

1994

Rochat&

Taillard

1995

New

Approach

1997

R1 12,42

1289,95

12,58

1296

12,33

1238

12,25

1208,50

12,17

1209,35 (2nd)

C1 10

885,86

10

838,01

10

832

10

828,38

10

828,38

RC1 12,38

1455,82

12,13

1446,20

12

1284

11,88

1377,39

11,5

1389,22 (3rd)

R2 2,91

1135,14

3

1117,7

3

1005

2,91

961,72

2,82

980,27 (2nd)

C2 3

658,88

3

589,93

3

650

3

589,86

3

589,86

RC2 3,38

1361,14

3,38

1360,57

3,38

1229

3,38

1119,59

3,38

1117,44

Wirtschaftsinformatik und Operations Research 616

Results – Overall

 Fleet size m was set to the number of routes of the
best solution reported in the literature for each
problem

 Best known solutions of altogether 17 instances were
improved by the new approach

 Tied 20 best known solutions

 Average results are always at the top of the list of the
best known results (between 1st and 3rd position in
the “quality list”)

 Competitive solution procedure

Wirtschaftsinformatik und Operations Research 617

Results – CPU-time

Experiment

Class

CPU time

(seconds)

Average number of tours Average overall distance

R1 2.296

6.887

13.774

12,64

12,39

12,33

1.233,88

1.230,48 (0,28 %)

1.220,35 (1,10 %)

C1 2.926

7.315

14.630

10

10

10

830,41

828,59 (0,22 %)

828,45 (0,23 %)

RC1 1.877

5.632

11.264

12,08

12

11,9

1.404,59

1.387,01 (1,25 %)

1.381,31 (1,66 %)

R2 3.372

10.116

20.232

3

3

3

1.046,56

1.029,65 (1,62 %)

1013,35 (3,17 %)

C2 3.275

8.187

16.375

3

3

3

592,75

591,14 (0,27 %)

590,91 (0,31 %)

RC2 1.933

5.798

11.596

3,38

3,38

3,38

1248,34

1220,28 (2,25 %)

1198,63 (3,98 %)

Wirtschaftsinformatik und Operations Research 618

Results – CPU-time

 Significant improvements of the average solution
quality (up to 4 percent!) even after long lasting
computations

 That can be mainly explained by the flexible
neighborhood defined by the complex CROSS
operation

Wirtschaftsinformatik und Operations Research 619

Results – Neighborhood

 A flexible neighborhood is necessary to yield a high solution quality which
improves best solutions in benchmarks

 Unfortunately, the more elaborated the neighborhood structures are, the
more they consume significantly higher computational times

Neighborhood CPU time Average number of

routes

Average total

distance

CROSS 2.296 12,64 1.233,88

6.887 12,39 1.230,48

13.774 12,33 1.220,35

2-opt* 1.259 12,88 1.304,03

3.147 12,73 1.293,97

6.294 12,58 1.288,92

Wirtschaftsinformatik und Operations Research 620

6.4.2.3 The parallel Tabu Search version

 In order to improve its solution quality, the Tabu
Search procedure has been parallelized on a
workstation cluster using PVM library for
communication

 Doing so, simultaneous examination in different parts
of the solution space is initiated

Wirtschaftsinformatik und Operations Research 621

Two main kinds of parallel systems

 Parallel Computers:
 Specific system architectures designed for high-end

computations with a fine granularity
 A large number of CPUs are connected by a specialized

network
 We again distinguish systems with additional shared memory

from systems where each CPU can access its own memory
only while each interaction between the processors results
form message passing in the network

 Ratio of communication and internal calculation is much
better than the one of distributed systems. Especially
initiating new messages does not cause a comparable
amount of time in such kind of parallel systems, i.e., the
latency is much better

Wirtschaftsinformatik und Operations Research 622

Two main kinds of parallel systems

 But compared with internal calculations, communication
operations still cause significantly higher effort, i.e., an
efficient parallel program has to prevent unnecessary
communication routines

 Parallel systems are extremely expensive and their use
requires expert knowledge

 The systems obsolesced very quickly

 In industry, significant use of this kind of specific parallel

systems seems to be not very likely

Wirtschaftsinformatik und Operations Research 623

Distributed systems

 System architectures designed for normal office applications and
communications, known as PC-networks

 A large number of PCs connected by a Local Area Network leading to a more
loosely connected system

 Compared to parallel systems considered before, the ratio of communication
and internal calculation is much worse. Especially, initiating new messages is
extremely costly, i.e., the latency is very high

 Therefore, compared to internal calculations, communication operations
cause extreme effort, i.e., an efficient parallel program can achieve
substantial speedups only if an appropriate design of the procedure is
elaborated

 PC-network already exists in many companies today, while in most cases its
total performance is left unused

 The system stays up to date by exchanging the PCs at the working places

 In industry, modern software systems should integrate distributed routines

for hard-to-solve problems by starting distributed background processes

Wirtschaftsinformatik und Operations Research 624

Consequences

 Dynamic work balancing
 Solution approach is a background process working simultaneously to

normal office application
 The performance of each processor changes dynamically depending on the

complexity of the office application
 Therefore, in order to guarantee an efficient execution, an applied

algorithm must distribute the current work according to the existing
performance of the computers in the considered network

 Specific program design
 Since the ratio between communication and internal calculation is much

more unfavorable than known from parallel systems, a specific program
design is necessary, which prevents frequently occurring communication
periods and reduces the proportion of small messages significantly

 In order to do so, appropriate theoretical models mapping the behavior of
distributed systems accurately are used for analyzing designed procedures

 Coarse grained program structures are necessary to use these kind of
systems efficiently

Wirtschaftsinformatik und Operations Research 625

Parallel scheme

 Master – Slave approach

 Master

 Manages the adaptive memory and generates solutions by using its
current routes

 Transfers these solutions to the independently working slaves

 Slaves

 Apply the Tabu Search procedure on the received solutions

 Send back newly generated constellations

 By doing so, the approach executes several distinct search
paths in parallel

Wirtschaftsinformatik und Operations Research 626

Process scheme

 In the parallel algorithm, the following independent processes
work together
 Manager process (1):

 Master job defined above
 Managing adaptive memory, creates starting solutions for the

decomposition procedure

 Decomposition processes (S):
Decompose the problem into D subproblems

 Dispatcher (1):
Dispatches the work equally among the used processors

 Tabu processes (P):
Apply Tabu Search to the generated subproblems

 Initialization processes (I):
Generate the initial solutions

Wirtschaftsinformatik und Operations Research 627

Process scheme

 Allocation scheme processes – processors:

 1 dedicated processor executes the manager, the
decomposition, and the dispatcher process

 Each Tabu Search process is executed by a distinct
processor, which is additionally used for executing a
predefined number of initialization processes before, i.e.,
I=k.P with a natural number k

 Therefore, we use altogether P+1 processors in the network

 P processors work on independent parallel searching
processes

 One additional process is responsible for some managing
tasks

Wirtschaftsinformatik und Operations Research 628

Computational results

 Test problems
 Standard benchmark of Solomon (100-customer problems)

 56 instances, clustered in the classes R1, R2, C1, C2, RC1
and RC2

 Locations are distributed within a [0,100]2 square while the
respective travel times are equivalent to the Euclidean
distances in the problems

 Experiments performed on a network of altogether 17 SUN
Sparc 5 workstation

 The network was entirely allocated to the planning process
wherefore the measured results were not distorted by
background applications

Wirtschaftsinformatik und Operations Research 629

Parameter setting for the Tabu Search

Parameter Setting

Objective function α=100

Initial solutions I=20

Adaptive Memory M=30

D&R/Number of routes W=6/U=8

Iterations A=30, B=3, i.e.

30,40,50,60,70 and 80 iterations for

DR=1,2,3,4,5 and 6 respectively

Total: 330

Neighborhood L=5 or L=7

Tabu list length T=100

Tabu tenure Number of iterations/2

Reordering number R=20

Wirtschaftsinformatik und Operations Research 630

Measuring efficiency in parallel algorithms

 Parallel processing can help in order to…

 yield improved results in the same period of time or to

 compute identical solutions much faster

 In our application, we can compute the efficiency of the
parallel algorithm by the following formula

sequential time

parallel time × number of used processors

Wirtschaftsinformatik und Operations Research 631

The master process

 The master or controller executing the manager, the
dispatcher and the decomposition processes is not
used sufficiently

 Therefore, the efficiency measurement is only
calculated according to the slave processes

Wirtschaftsinformatik und Operations Research 632

Computational results

Number of

processors

Number of

search

threads per

node

Number of calls to the adaptive memory

20 40 80

1 1 2,645

seconds

4,031 6,796

5

Max 80 %

2 877

60,3 %

1,324

60,9 %

2,223

61,1 %

9

Max 88,8 %

4 459

64 %

691

64,8 %

1,146

65,9 %

17

Max 94,1 %

8 239

65 %

363

65,3 %

587

68,1 %

Wirtschaftsinformatik und Operations Research 633

Observations

 The more work to do, the better the efficiency
becomes

 In case of 80 calls to the adaptive memory, an
acceptable speedup is yielded with up to 17
processors

Wirtschaftsinformatik und Operations Research 634

Computational results - efficiency

Wirtschaftsinformatik und Operations Research 635

Observations

 The oscillating behavior of the efficiency curves can be
easily explained by the fact that the threads are
somewhat synchronized
 The S Decomposition processes reconstruct their

solutions
 and afterwards send them to the manager almost

simultaneously

 As time passes, the threads become less and less
synchronized; as a consequence, this reduces the
unused waiting times for each process receiving a new
subproblem from the controller

 This explains why a decrease in the amplitude of the
patterns and a slight increase with time is observed

Wirtschaftsinformatik und Operations Research 636

Observations

 If we compute the efficiency according to all used
processors in the network, we get reduced values for all
network sizes (now around 65 percent instead of 75 as
measured before). But now, the largest system sizes yield
the highest efficiency rates for long computation times

 This is a clear indication of the under-utilization of the
controller, i.e., the master processor during the
computation process

 Possible work around
 Moving the control process, which is currently resident on the

master, to one of the slaves

 Note that in order to get a considerable improvement, these
moved processes need a high priority to avoid additional
bottlenecks during the computation

Wirtschaftsinformatik und Operations Research 637

Literature for Section 6

 Albrecher, H.; Burkhard, R. E.; Çela, E.: An asymptotical study of
combinatorial optimization problems by means of statistical mechanics.
Journal of Computational and Applied Mathematics 186 (1), 148-162, 2006.

 Badeau, P.; Guertin, F.; Gendreau, M.; Potvin, J.-Y.; Taillard, E.: A Parallel
Tabu Search for the Vehicle Routing Problem with Time Windows.
Transportation Research C, Vol.5, No.2, pp.109-122, 1997.

 Battiti, R.; Tecchiolli, G.: The Reactive Tabu Search. ORSA Journal on
Computing 6, 126-140, 1994.

 Bierwirth, C.; Mattfeld, D.C.: Production scheduling and rescheduling with
genetic scheduling. Evolutionary Computation 7(1), 1-18, 1999.

 Bock, S: Solving Complex QAP-Instances by a PC-LAN. In: Günther, H.-O.;
Mattfeld, D.C.; Suhl, L.: Supply Chain Management und Logistik:
Optimierung, Simulation, Decision Support (German), 531-552, Physica
Verlag, Heidelberg, 2005.

 Bölte, A.; Thonemann, U.: Optimizing simulated annealing schedules with
genetic programming. European Journal of Operational Research 92, 402-
416, 1996.

 Brucker, P.: Scheduling algorithms. Fifth edition. Springer, Berlin, 2007.

Wirtschaftsinformatik und Operations Research 638

Literature for Section 6

 Brucker, P.; Knust, S.: Complex Scheduling. Springer, Berlin, 2006.
 Connolly, D.T.: An improved annealing scheme for the QAP. European Journal

of Operational Research 46, 93-100, 1990.
 Gendreau, M.; Hertz, A.; Laporte, G.: New insertion and postoptimization

procedures for the Traveling Salesman Problem. Operations Research, Vol 40,
No. 6, 1086-1094, 1992.

 Gendreau, M.; Hertz, A.; Laporte, G.; Stan, M.: A Generalized Insertion Heuristic
for the Traveling Salesman Problem with Time Windows. Operations Research
Vol. 46, No. 3, 330-335, 1998.

 Gendreau, M.; Guertin, F.; Potvin, J.-Y.; Taillard, Ê.: Parallel Tabu Search for
Real-Time Vehicle Routing and Dispatching. Transportation Science, Vol.33,
No.4, 1999.

 Glover, F. 1990. Tabu Search Part 1 and 2. ORSA Journal on Computing 1 (1989)
pp. 190-206 and Vol. 2 (1990) pp.4-32.

 Glover, F., Laguna, M. 1997. Tabu Search. Kluwer Acad. Publishers.
 Müller-Merbach, H.: Optimale Reihenfolgen. Springer Verlag, Berlin,

Heidelberg, New York, 1970.
 Nowicki, E.; Smutnicki, C.: An advanced Tabu Search Algorithm for the Job Shop

Problem. Journal of Scheduling 8, 145-159, 2005.

Wirtschaftsinformatik und Operations Research 639

Literature for Section 6

 Nowicki, E.; Smutnicki, C.: A fast Taboo Search Algorithm for the Job Shop
Problem. Management Science 42, 797-813, 1996.

 Or. I. Traveling Salesman-Type Combinatorial Problems and Their Relation to
the Logistics of Regional Blood Banking. Ph. D. Thesis, Northwestern
University, Evanstonm IL, 1976.

 Pinedo, M.: Scheduling: Theory, Algorithms, and Systems. Third edition.
Springer, Berlin, 2008.

 Potvin J-Y, Rousseau J-M. An exchange heuristic for routing problems with
time windows. Journal of the Operational Research Society Vol. 46, pp.1433-
46, 1995.

 Skorin-Kapow, J.: Tabu Search applied to the Quadratic Assignment Problem.
ORSA Journal on Computing 2, 33-45, 1990.

 Skorin-Kapow, J.: Extensions of a Tabu Search adaptation to the Quadratic
Assignment Problem. Computers & Operations Research 21(8), 855-865,
1994.

 Solomon, M.M.: Algorithms for the Vehicle Routing and Scheduling Problems
with Time Window Constraints. Operations Research 35 254-265, 1987

Wirtschaftsinformatik und Operations Research 640

Literature for Section 6

 Taillard, É.; Badeau, P.; Gendreau, M.; Guertin, F.; Potvin, J.-Y.: A Tabu Search
Heuristic for the Vehicle Routing Problem with Soft Time Windows.
Transportation Science Vol.31, No.2, pp.170-186, 1997.

 Taillard, É.D.: Robust Taboo Search for the Quadratic Assignment Problem.
Parallel Computing 17, 443-455, 1991.

 Taillard, É.D.: Comparison of iterative searches for the Quadratic Assignment
Problem. Location Science 3 (2), 87-105, 1995.

