4 Hitchcock Transportation Problem

The balanced transportation problem is defined as follows:

- $c_{i,j}$: Delivery costs for each product unit that is transported from supplier *i* to customer *j*
- a_i : Total supply of i = 1, ..., m
- b_j : Total demand of j = 1, ..., n
- $x_{i,j}$: Quantity that supplier i = 1, ..., m delivers to the customer j = 1, ..., n

$$(P) \text{Minimize } c^{T} \cdot x$$
s.t.
$$\begin{pmatrix} 1_{n}^{T} & & & \\ & 1_{n}^{T} & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ E_{n} & E_{n} & E_{n} & E_{n} & E_{n} \end{pmatrix} \cdot x = \begin{pmatrix} a_{1} \\ & & \\ & & \\ & & \\ a_{m} \\ b \end{pmatrix}$$

$$x = (x_{1,1}, \dots, x_{1,j}, \dots, x_{1,n}, \dots, x_{i,1}, \dots, x_{i,n}, \dots, x_{m,1}, \dots, x_{m,n})^{T} \ge 0$$

The dual problem

Thus, we obtain as the dual problem (D) Maximize $\sum_{i=1}^{m} a_i \cdot \pi_i + \sum_{j=1}^{n} b_j \cdot \pi_{m+j} = \sum_{i=1}^{m} a_i \cdot \alpha_i + \sum_{j=1}^{n} b_j \cdot \beta_j$ s.t. i.e. $\forall i \in \{1, ..., m\} : \forall j \in \{1, ..., n\} : \alpha_i + \beta_i \leq c_{i, j}$ $\forall i \in \{1, ..., m\} : \alpha_i \text{ free } \land \forall j \in \{1, ..., n\} : \beta_i \text{ free}$

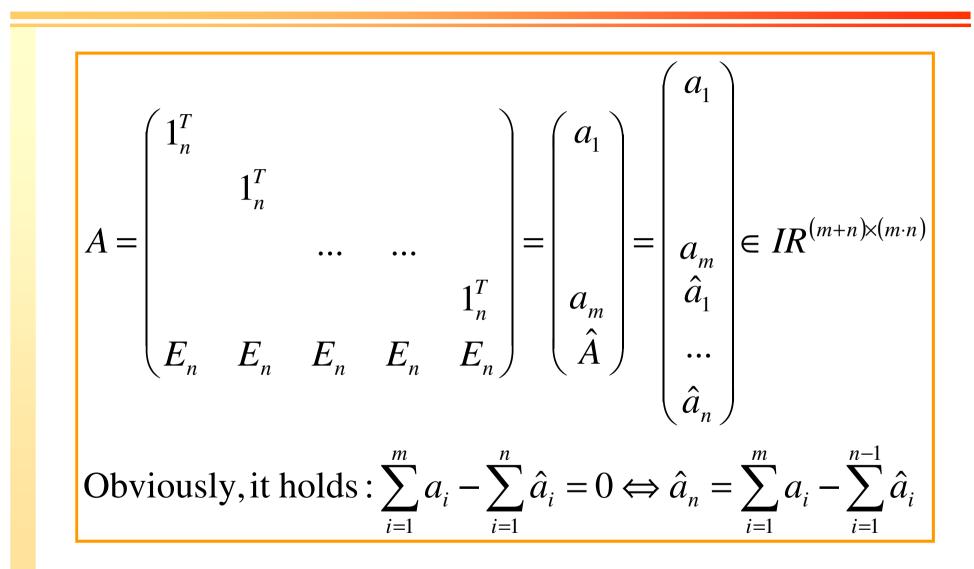
4.1 Using the Simplex Algorithm

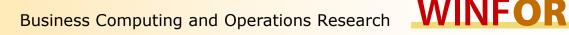
Relevant costs are calculated as follows

$$\forall i \in \{1, \dots, m\} \colon \forall j \in \{1, \dots, n\} \colon \overline{c}_{i,j} = c_{i,j} - \left(\pi^T \cdot A\right)_{(i-1) \cdot n+j} = c_{i,j} - \left(A^T \cdot \pi\right)_{(i-1) \cdot n+j}$$
$$= c_{i,j} - \alpha_i - \beta_j$$

Observation: Consider the matrix A

Transportation matrix





Schumpeter Schoo

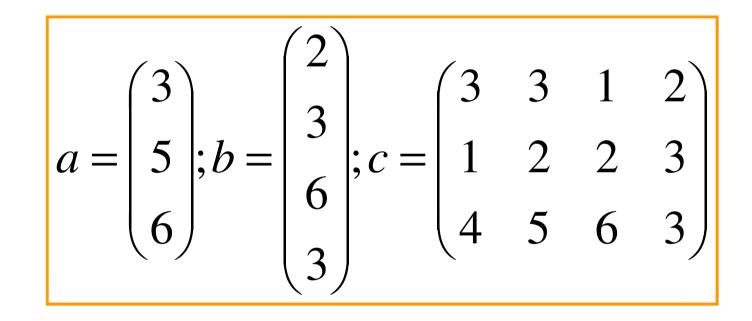
Consequences

- Thus, we obviously can skip the last row of matrix
- Note that this does not have any impact on the problem solvability since there is direct dependency between the *a*- and the *b*-vector, too
- Specifically, it holds:

$$\sum_{i=1}^{m} a_{i} = \sum_{j=1}^{n} b_{j} \iff \sum_{i=1}^{m} a_{i} - \sum_{j=1}^{n-1} b_{j} = b_{n}$$

Example

• We consider the following constellation:



What is to do?

Finding a feasible solution (1)

We add one slack variable per row that equals the righthand side and has an objective function coefficient of one (comparable to the Two-Phase Method)

1

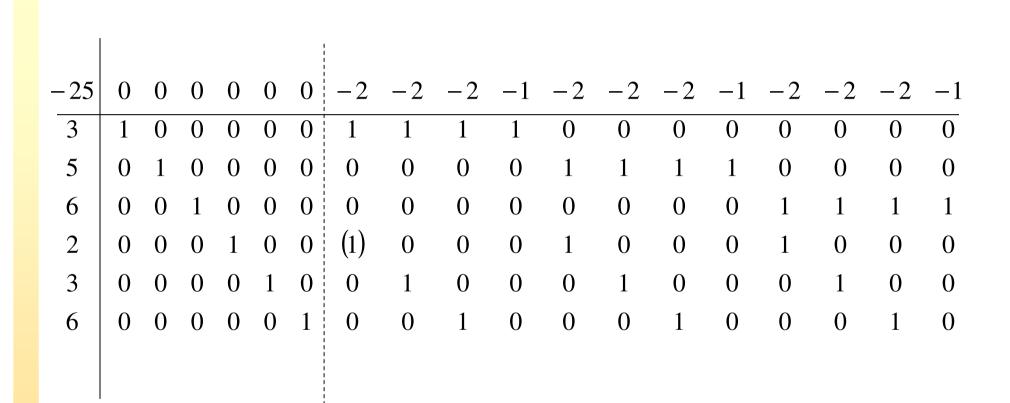
Schumpeter Scho

0	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
3	1	0	0	0	0	0	1	1	1	1	0	0	0	0	0	0	0	0
5	0	1	0	0	0	0	0	0	0	0	1	1	1	1	0	0	0	0
6	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1
2	0	0	0	1	0	0	1	0	0	0	1	0	0	0	1	0	0	0
3	0	0	0	0	1	0	0	1	0	0	0	1	0	0	0	1	0	0
6	0	0	0	0	0	1	0	0	1	0	0	0	1	0	0	0	1	0

Finding a feasible solution (2)

							1											
-25	0	0	0	0	0	0	-2	-2	-2	-1	-2	-2	-2	-1	-2	-2	-2	-1
3	1	0	0	0	0	0	1	1	1	1	0	0	0	0	0	0	0	0
5	0	1	0	0	0	0	0	0	0	0	1	1	1	1	0	0	0	0
6	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1
2	0	0	0	1	0	0	1	0	0	0	1	0	0	0	1	0	0	0
3	0	0	0	0	1	0	0	1	0	0	0	1	0	0	0	1	0	0
6	0	0	0	0	0	1	0	0	1	0	0	0	1	0	0	0	1	0
							- 											

Finding a feasible solution (3a)



Finding a feasible solution (3b)

-21	0	0	0	2	0	0	0	-2	-2	-1	0	-2	-2	-1	0	-2	-2	-1
1	1	0	0	-1	0	0	0	1	1	1	-1	0	0	0	-1	0	0	0
5	0	1	0	0	0	0	0	0	0	0	1	1	1	1	0	0	0	0
6	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1
2	0	0	0	1	0	0	1	0	0	0	1	0	0	0	1	0	0	0
3	0	0	0	0	1	0	0	1	0	0	0	1	0	0	0	1	0	0
6	0	0	0	0	0	1	0	0	1	0	0	0	1	0	0	0	1	0

Business Computing and Operations Research

Finding a feasible solution (4a)

						ļ												
-21	0	0	0	2	0	0	0	-2	-2	-1	0	-2	-2	-1	0	-2	-2	-1
1	1	0	0	-1	0	0	0	(1)	1	1	-1	0	0	0	-1	0	0	0
5	0	1	0	0	0	0	0	0	0	0	1	1	1	1	0	0	0	0
6	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1
2	0	0	0	1	0	0	1	0	0	0	1	0	0	0	1	0	0	0
3	0	0	0	0	1	0	0	1	0	0	0	1	0	0	0	1	0	0
6	0	0	0	0	0	1	0	0	1	0	0	0	1	0	0	0	1	0

Finding a feasible solution (4b)

-19	2	0	0	0	0	0	0	0	0	1	-2	-2	-2	-1	-2	-2	-2	-1
1	1	0	0	-1	0	0	0	1	1	1	-1	0	0	0	-1	0	0	0
5	0	1	0	0	0	0	0	0	0	0	1	1	1	1	0	0	0	0
6	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1
2	0	0	0	1	0	0	1	0	0	0	1	0	0	0	1	0	0	0
2	-1	0	0	1	1	0	0	0	-1	-1	1	1	0	0	1	1	0	0
6	0	0	0	0	0	1	0	0	1	0	0	0	1	0	0	0	1	0

Finding a feasible solution (5a)

-19	2	0	0	0	0	0	0	0	0	1	-2	-2	-2	-1	-2	-2	-2	-1
1	1	0	0	-1	0	0	0	1	1	1	-1	0	0	0	-1	0	0	0
5	0	1	0	0	0	0	0	0	0	0	1	1	1	1	0	0	0	0
6	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1
2	0	0	0	1	0	0	1	0	0	0	(1)	0	0	0	1	0	0	0
2	-1	0	0	1	1	0	0	0	-1	-1	1	1	0	0	1	1	0	0
6	0	0	0	0	0	1	0	0	1	0	0	0	1	0	0	0	1	0

Finding a feasible solution (5b)

							1											
-15	2	0	0	2	0	0	2	0	0	1	0	-2	-2	-1	0	-2	-2	-1
3	1	0	0	0	0	0	1	1	1	1	0	0	0	0	0	0	0	0
3	0	1	0	-1	0	0	-1	0	0	0	0	1	1	1	-1	0	0	0
6	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1
2	0	0	0	1	0	0	1	0	0	0	1	0	0	0	1	0	0	0
0	-1	0	0	0	1	0	-1	0	-1	-1	0	1	0	0	0	1	0	0
6	0	0	0	0	0	1	0	0	1	0	0	0	1	0	0	0	1	0

Business Computing and Operations Research

Finding a feasible solution (6a)

-15	2	0	0	2	0	0	2	0	0	1	0	-2	-2	-1	0	-2	-2	-1
3	1	0	0	0	0	0	1	1	1	1	0	0	0	0	0	0	0	0
3	0	1	0	-1	0	0	-1	0	0	0	0	1	1	1	-1	0	0	0
6	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1
2	0	0	0	1	0	0	1	0	0	0	1	0	0	0	1	0	0	0
0	-1	0	0	0	1	0	-1	0	-1	-1	0	(1)	0	0	0	1	0	0
6	0	0	0	0	0	1	0	0	1	0	0	0	1	0	0	0	1	0
							, , , , ,											

Finding a feasible solution (6b)

-15	0	0	0	2	2	0	0	0	-2	-1	0	0	-2	-1	0	0	-2	-1
3	1	0	0	0	0	0	1	1	1	1	0	0	0	0	0	0	0	0
3	1	1	0	-1	-1	0	0	0	1	1	0	0	1	1	-1	-1	0	0
6	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1
2	0	0	0	1	0	0	1	0	0	0	1	0	0	0	1	0	0	0
0	-1	0	0	0	1	0	-1	0	-1	-1	0	1	0	0	0	1	0	0
6	0	0	0	0	0	1	0	0	1	0	0	0	1	0	0	0	1	0

Business Computing and Operations Research

Finding a feasible solution (7a)

-15	0	0	0	2	2	0	0	0	-2	-1	0	0	-2	-1	0	0	-2	-1
3	1	0	0	0	0	0	1	1	(1)	1	0	0	0	0	0	0	0	0
3	1	1	0	-1	-1	0	0	0	1	1	0	0	1	1	-1	-1	0	0
6	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1
2	0	0	0	1	0	0	1	0	0	0	1	0	0	0	1	0	0	0
0	-1	0	0	0	1	0	-1	0	-1	-1	0	1	0	0	0	1	0	0
6	0	0	0	0	0	1	0	0	1	0	0	0	1	0	0	0	1	0

Finding a feasible solution (7b)

-9	2	0	0	2	2	0	2	2	0	1	0	0	-2	-1	0	0	-2	-1
3	1	0	0	0	0	0	1	1	1	1	0	0	0	0	0	0	0	0
0	0	1	0	-1	-1	0	-1	-1	0	0	0	0	1	1	-1	-1	0	0
6	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1
2	0	0	0	1	0	0	1	0	0	0	1	0	0	0	1	0	0	0
3	0	0	0	0	1	0	0	1	0	0	0	1	0	0	0	1	0	0
3	-1	0	0	0	0	1	-1	-1	0	-1	0	0	1	0	0	0	1	0

Finding a feasible solution (8a)

							1											
-9	2	0	0	2	2	0	2	2	0	1	0	0	-2	-1	0	0	-2	-1
3	1	0	0	0	0	0	1	1	1	1	0	0	0	0	0	0	0	0
0	0	1	0	-1	-1	0	-1	-1	0	0	0	0	(1)	1	-1	-1	0	0
6	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1
2	0	0	0	1	0	0	1	0	0	0	1	0	0	0	1	0	0	0
3	0	0	0	0	1	0	0	1	0	0	0	1	0	0	0	1	0	0
3	-1	0	0	0	0	1	-1	-1	0	-1	0	0	1	0	0	0	1	0

Finding a feasible solution (8b)

-9	2	2	0	0	0	0	0	0	0	1	0	0	0	1	-2	-2	-2	-1
3	1	0	0	0	0	0	1	1	1	1	0	0	0	0	0	0	0	0
0	0	1	0	-1	-1	0	-1	-1	0	0	0	0	1	1	-1	-1	0	0
6	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1
2	0	0	0	1	0	0	1	0	0	0	1	0	0	0	1	0	0	0
3	0	0	0	0	1	0	0	1	0	0	0	1	0	0	0	1	0	0
3	-1	-1	0	1	1	1	0	0	0	-1	0	0	0	-1	1	1	1	0

1

Business Computing and Operations Research

Finding a feasible solution (9a)

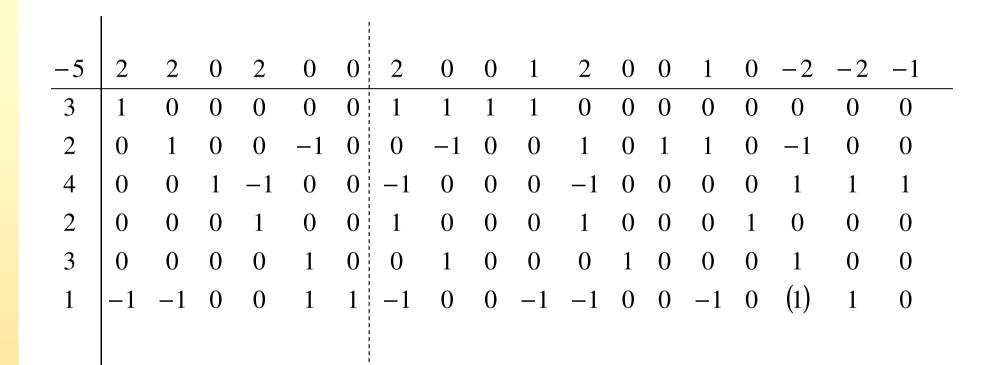
-9	2	2	0	0	0	0	0	0	0	1	0	0	0	1	-2	-2	-2	-1
3	1	0	0	0	0	0	1	1	1	1	0	0	0	0	0	0	0	0
0	0	1	0	-1	-1	0	-1	-1	0	0	0	0	1	1	-1	-1	0	0
6	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1
2	0	0	0	1	0	0	1	0	0	0	1	0	0	0	(1)	0	0	0
3	0	0	0	0	1	0	0	1	0	0	0	1	0	0	0	1	0	0
3	-1	-1	0	1	1	1	0	0	0	-1	0	0	0	-1	1	1	1	0

Business Computing and Operations Research

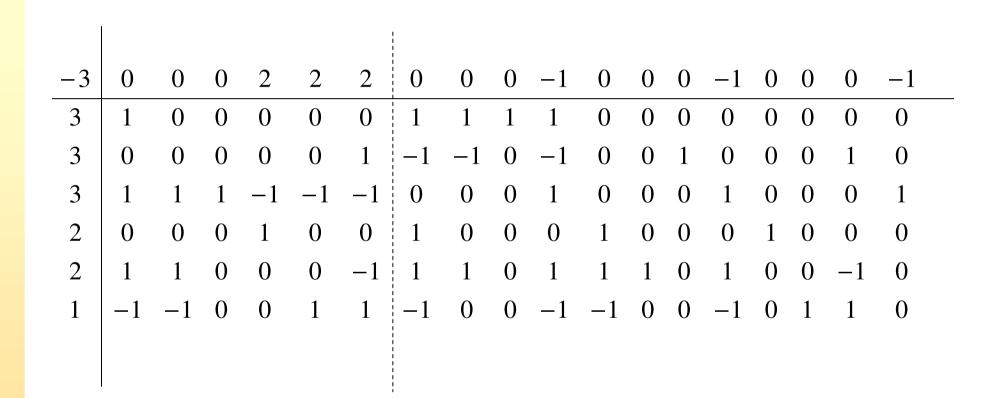
Finding a feasible solution (9b)

-5	2	2	0	2	0	0	2	0	0	1	2	0	0	1	0	-2	-2	-1
3	1	0	0	0	0	0	1	1	1	1	0	0	0	0	0	0	0	0
2	0	1	0	0	-1	0	0	-1	0	0	1	0	1	1	0	-1	0	0
4	0	0	1	-1	0	0	-1	0	0	0	-1	0	0	0	0	1	1	1
2	0	0	0	1	0	0	1	0	0	0	1	0	0	0	1	0	0	0
3	0	0	0	0	1	0	0	1	0	0	0	1	0	0	0	1	0	0
1	-1	-1	0	0	1	1	-1	0	0	-1	-1	0	0	-1	0	1	1	0

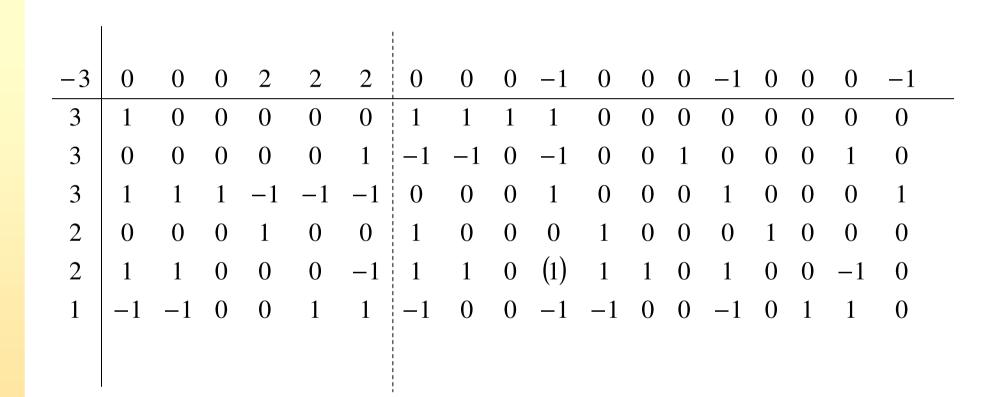
Finding a feasible solution (10a)



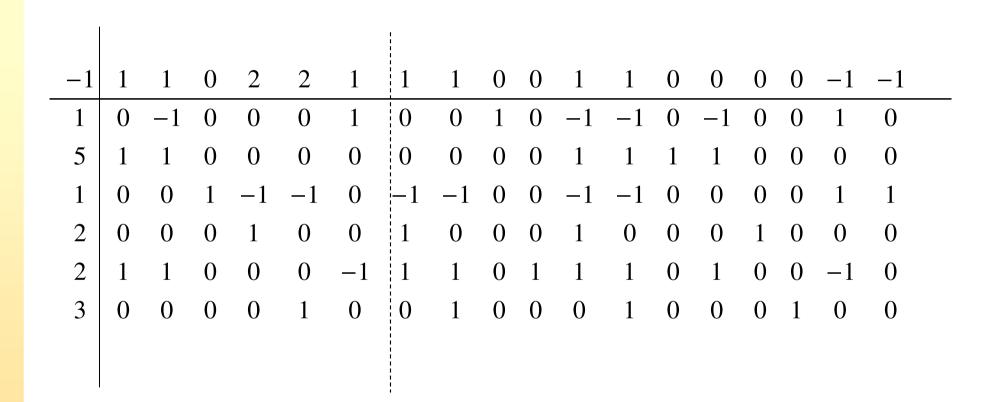
Finding a feasible solution (10b)



Finding a feasible solution (11a)

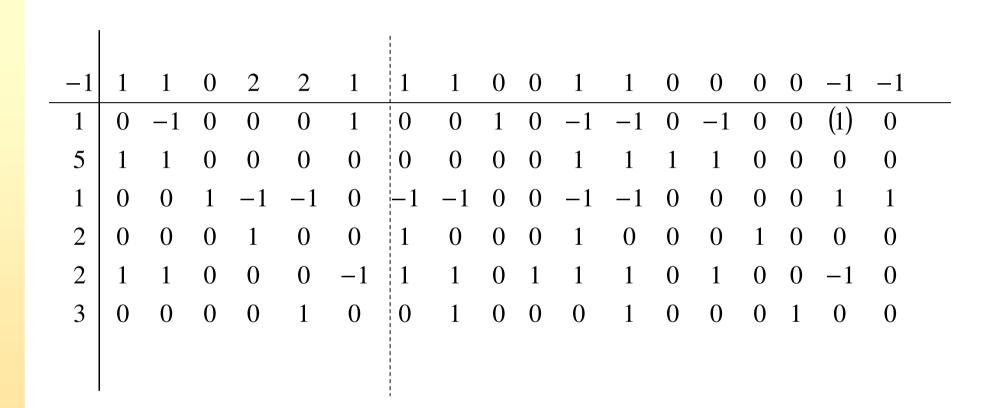


Finding a feasible solution (11b)



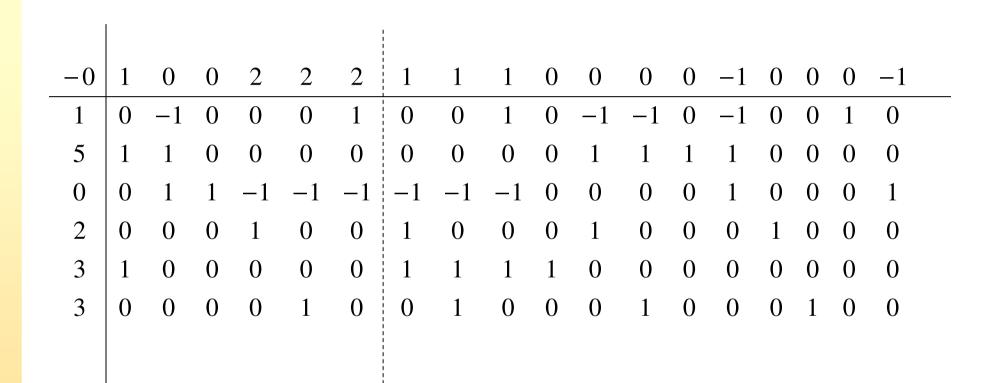
Business Computing and Operations Research

Finding a feasible solution (12a)

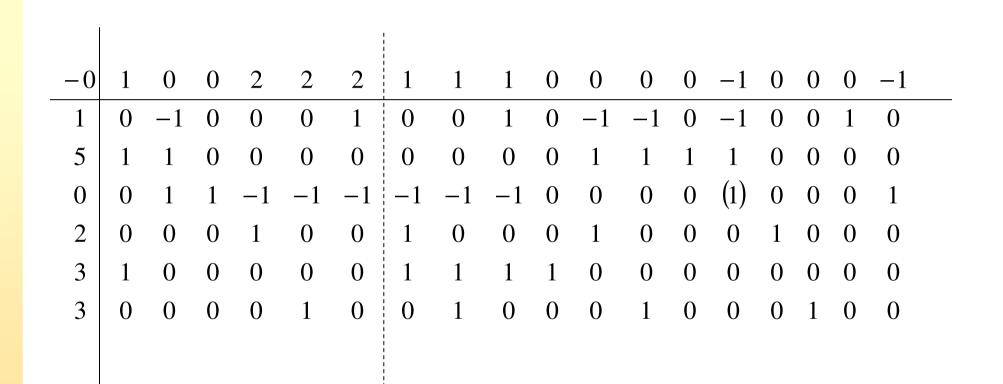


Business Computing and Operations Research

Finding a feasible solution (12b)

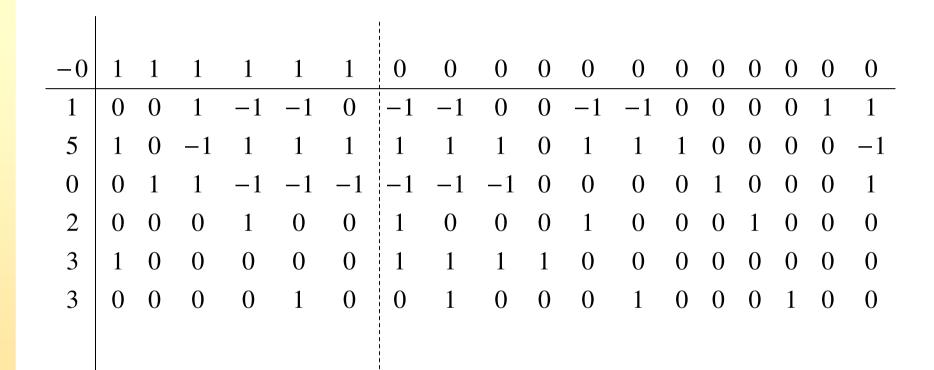


Finding a feasible solution (13a)

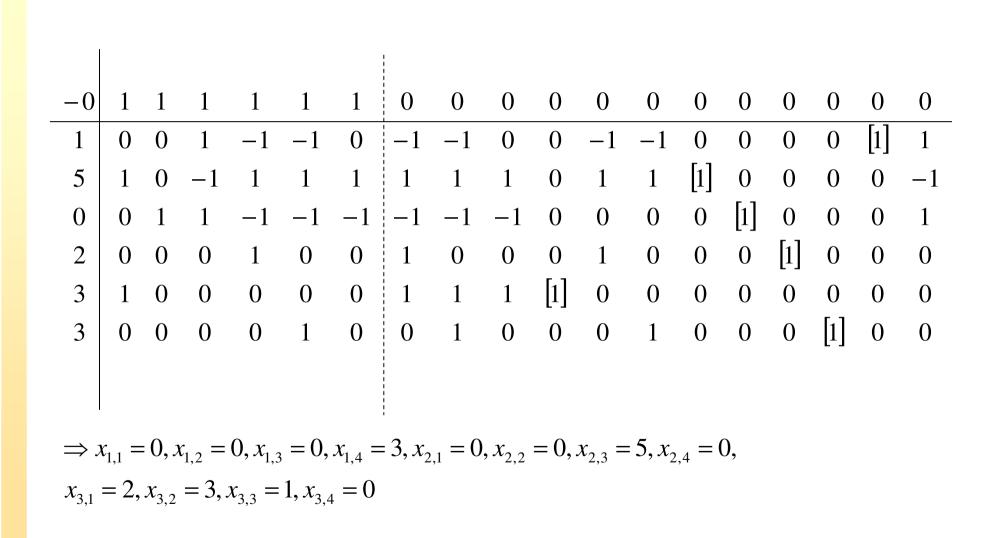


Business Computing and Operations Research

Finding a feasible solution (13b)



Finding a feasible solution (14)



Business Computing and Operations Research WINFOR

Schumpeter School of Business and Economics

Feasible solution

$$x_{1,1} = 0, x_{1,2} = 0, x_{1,3} = 0, x_{1,4} = 3,$$

$$x_{2,1} = 0, x_{2,2} = 0, x_{2,3} = 5, x_{2,4} = 0,$$

$$x_{3,1} = 2, x_{3,2} = 3, x_{3,3} = 1, x_{3,4} = 0,$$

i.e., $x = \begin{pmatrix} 0 & 0 & 0 & 3 \\ 0 & 0 & 5 & 0 \\ 2 & 3 & 1 & 0 \end{pmatrix}$

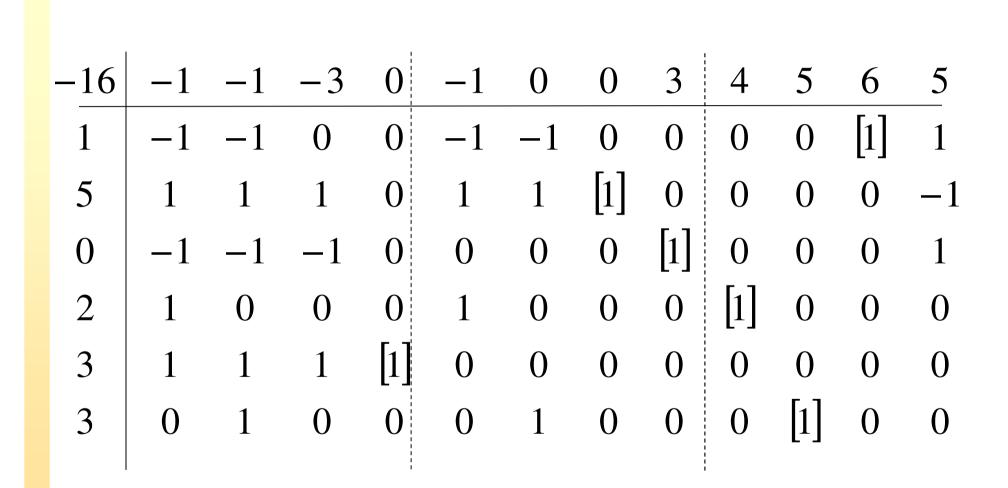
What is to do?

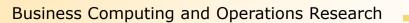
Optimizing – Phase II

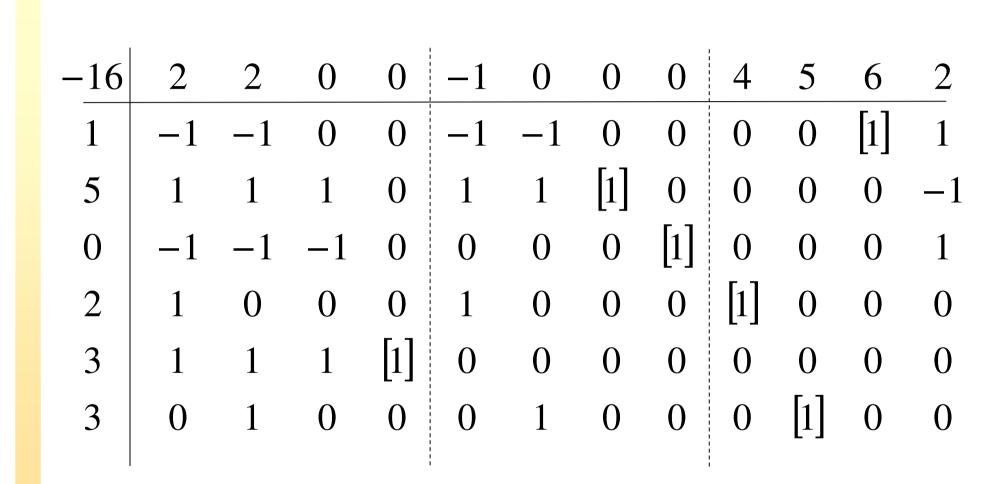
0	3	3	1	2	1	2	2	3	4	5	6	3
1	-1	-1	0	0	-1	-1	0	0	0	0	[1]	1
5	1	1	1	0	1	1	[1]	0	0	0	0	-1
0	-1	-1	-1	0	0	0	0	[1]	0	0	0	1
2	1	0	0	0	1	0	0	0	[1]	0	0	0
3	1	1	1	[1]	0	0	0	0	0	0	0	0
3	0	1	0	0	0	1	0	0	0	[1]	0	0
	1				1				i			

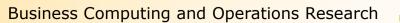
Optimizing – Phase II – Preparation

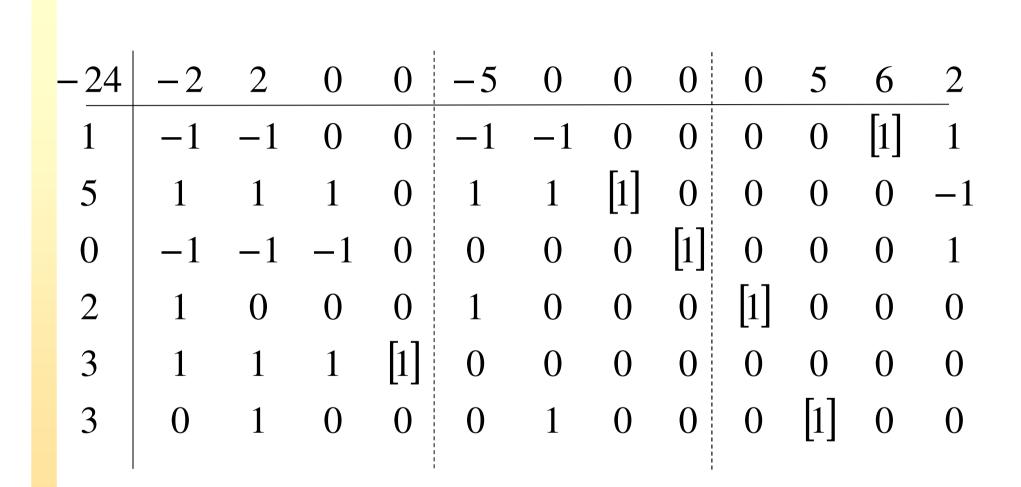
-6	1	1	-1	0	1	2	2	3	4	5	6	3
1	-1	-1	0	0	-1	-1	0	0	0	0	[1]	1
5	1	1	1	0	1	1	[1]	0	0	0	0	-1
0	-1	-1	-1	0	0	0	0	[1]	0	0	0	1
2	1	0	0	0	1	0	0	0	[1]	0	0	0
3	1	1	1	[1]	0	0	0	0	0	0	0	0
3	0	1	0	0	0	1	0	0	0	[1]	0	0
									1			

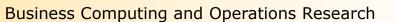


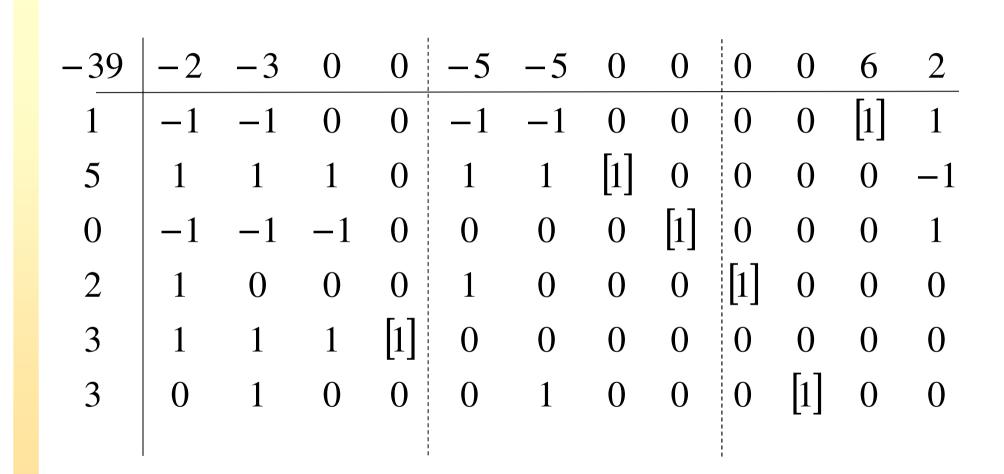


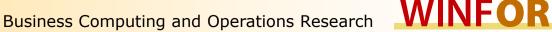




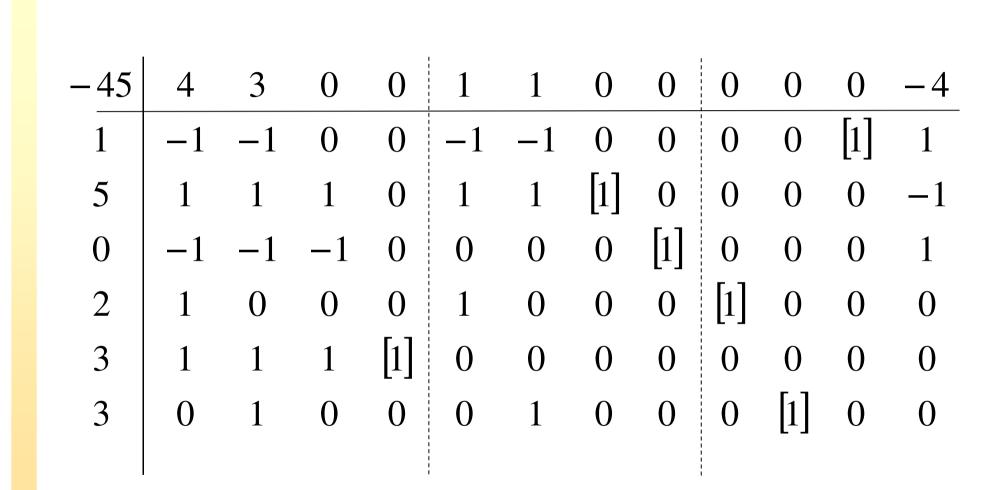


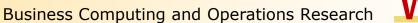




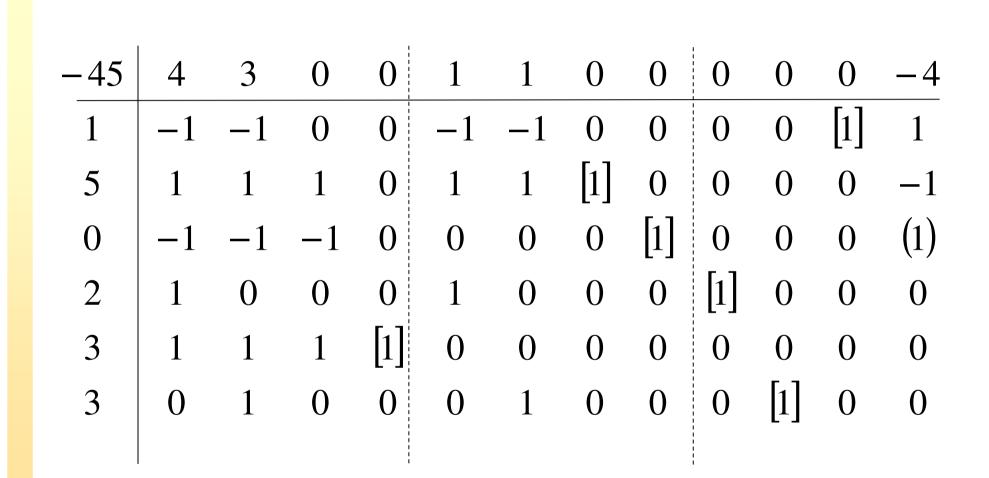


421



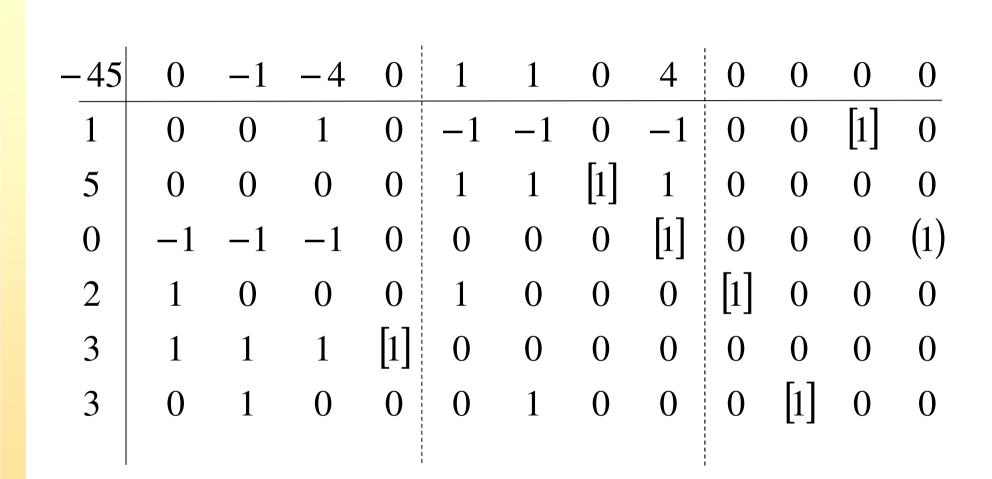


Optimizing – Phase II – Step 1a



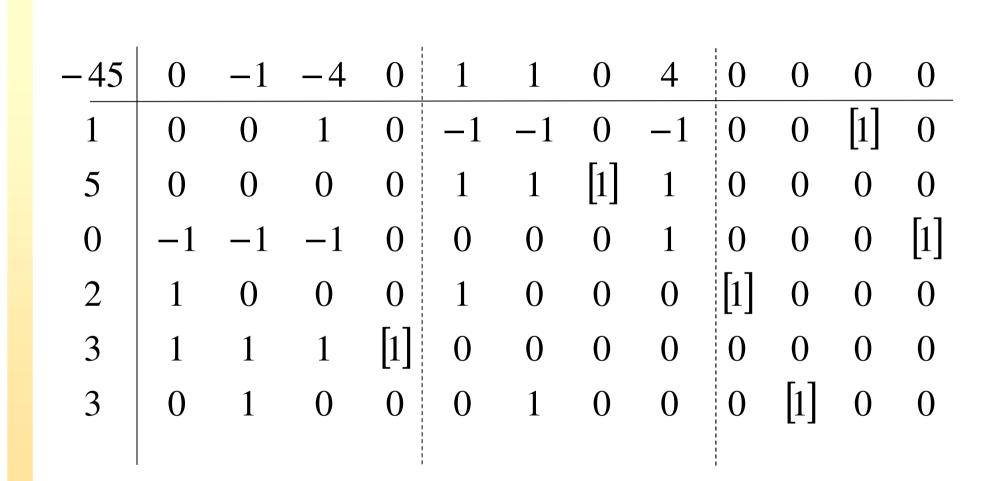
Business Computing and Operations Research

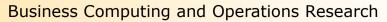
Optimizing – Phase II – Step 1b



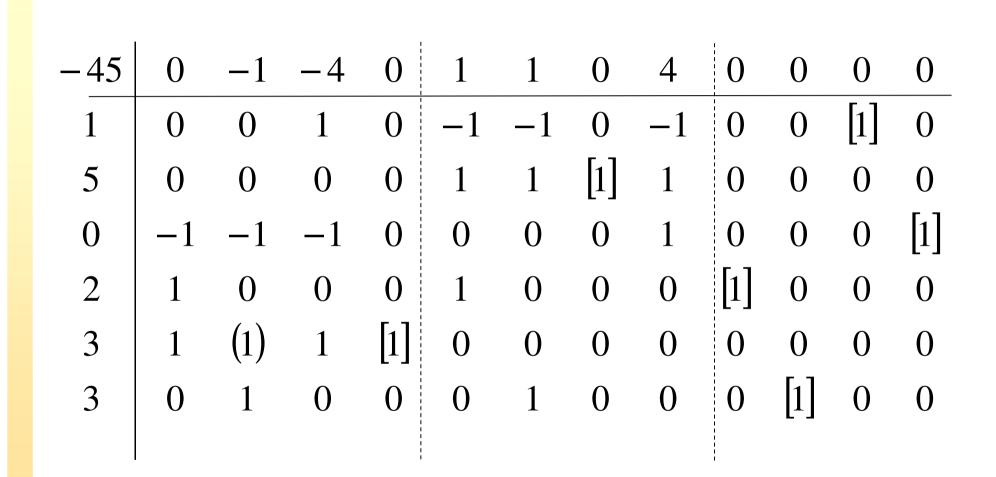
Business Computing and Operations Research

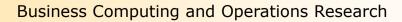
Optimizing – Phase II – Step 1c



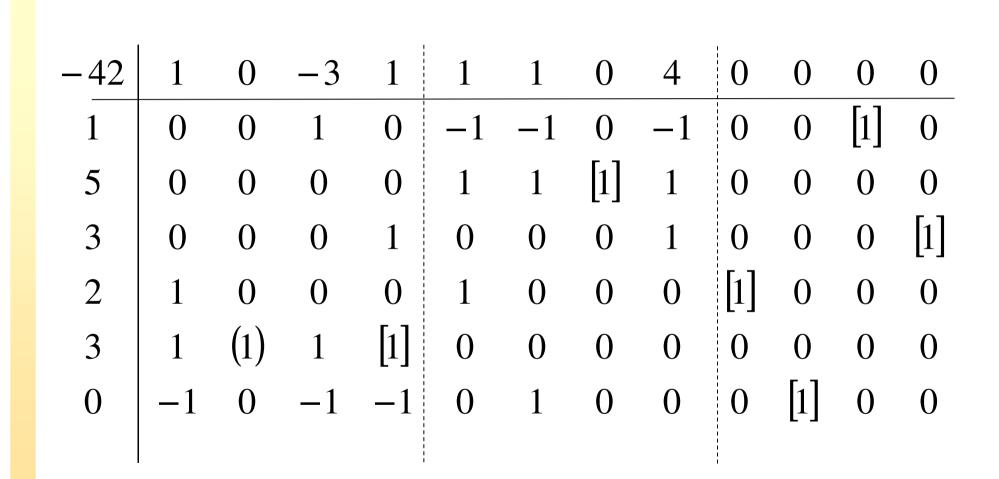


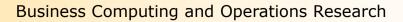
Optimizing – Phase II – Step 2a



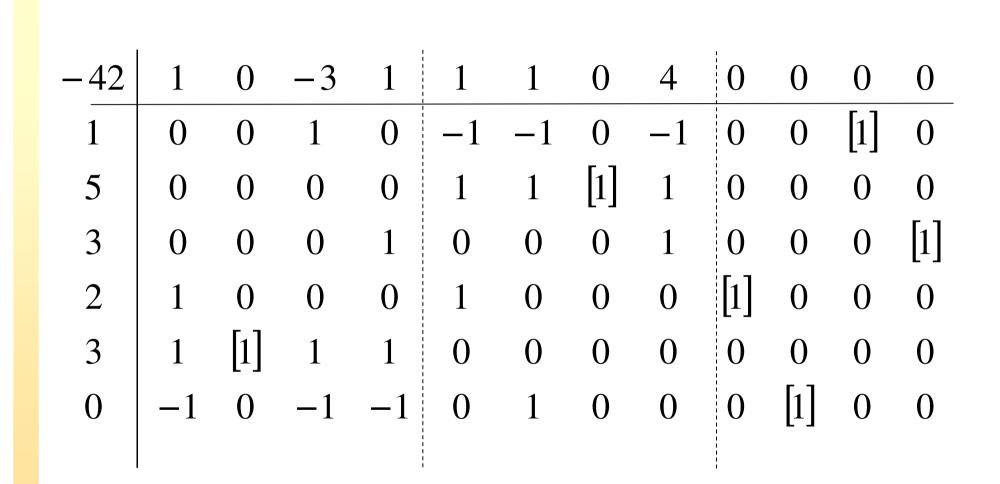


Optimizing – Phase II – Step 2b





Optimizing – Phase II – Step 2c

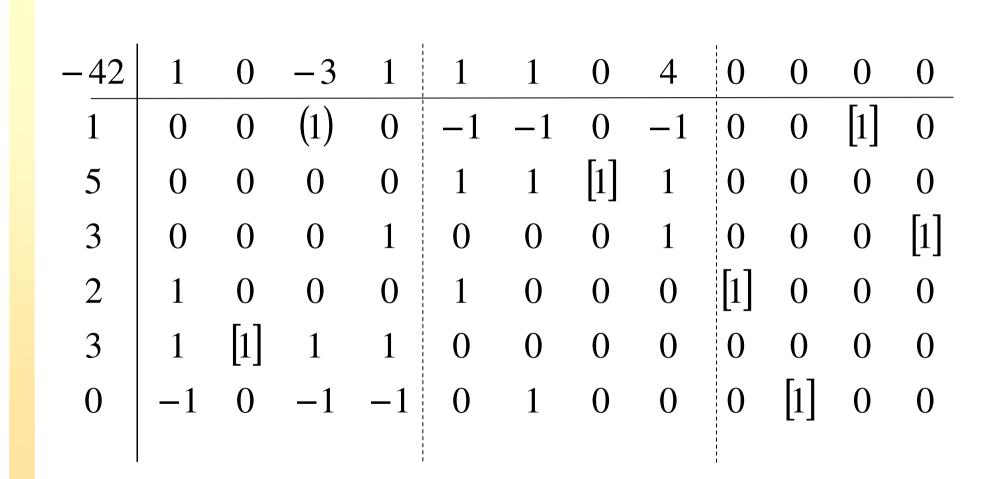


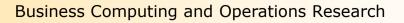
Business Computing and Operations Research

WINFOR

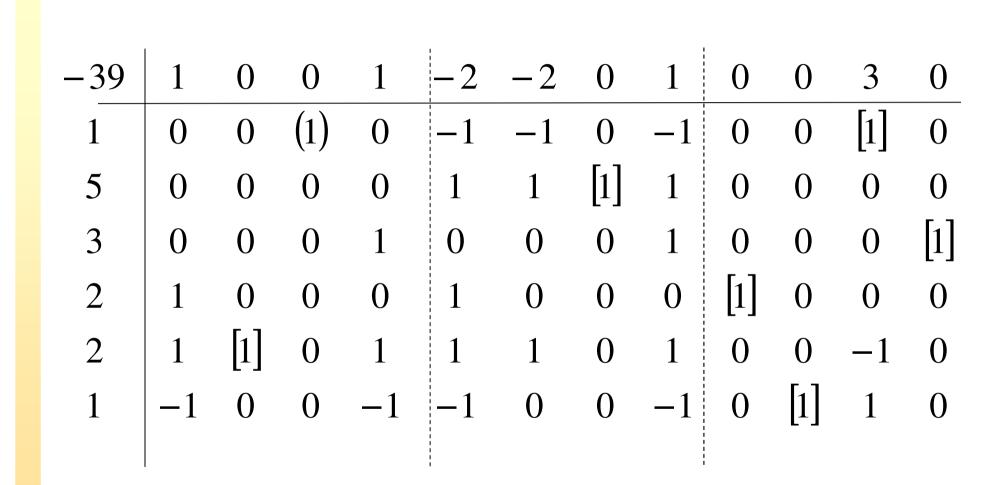
428

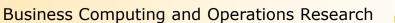
Optimizing – Phase II – Step 3a



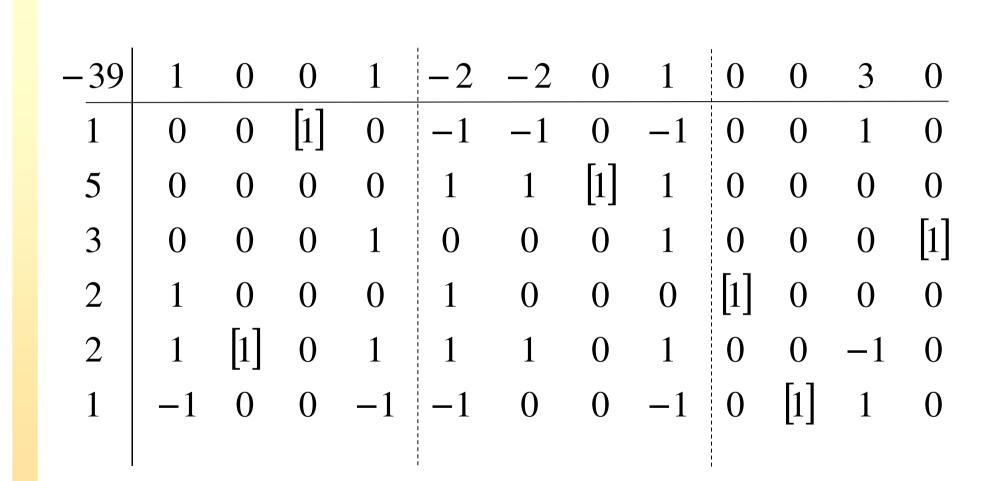


Optimizing – Phase II – Step 3b





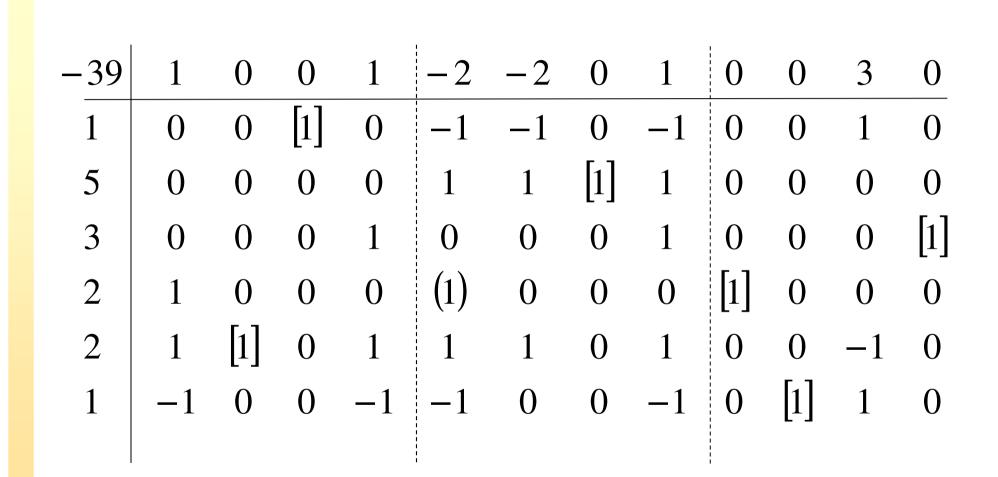
Optimizing – Phase II – Step 3c

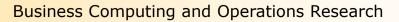


Business Computing and Operations Research WINFOR

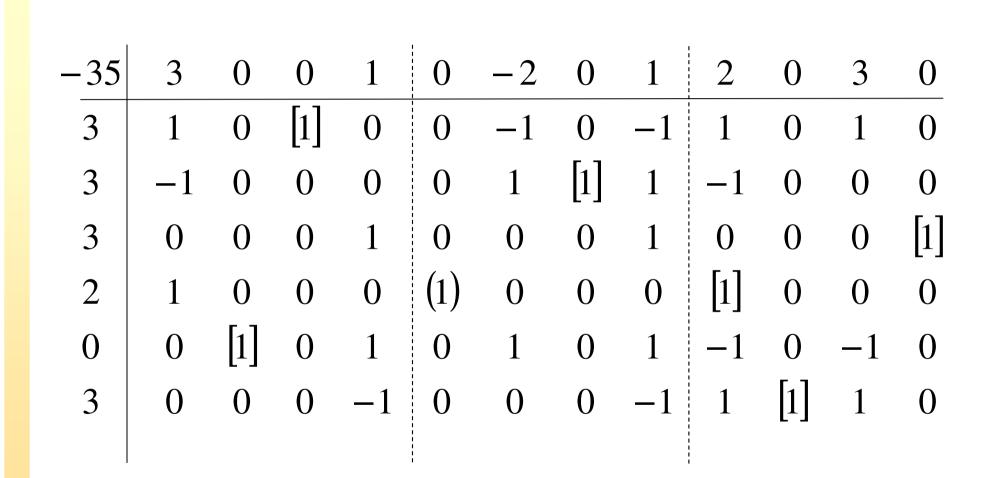
431

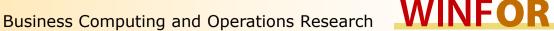
Optimizing – Phase II – Step 4a





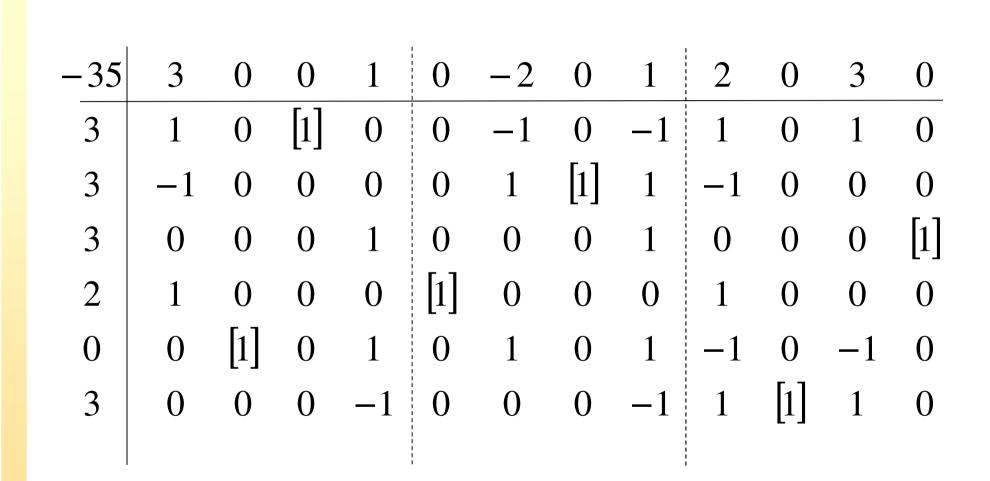
Optimizing – Phase II – Step 4b





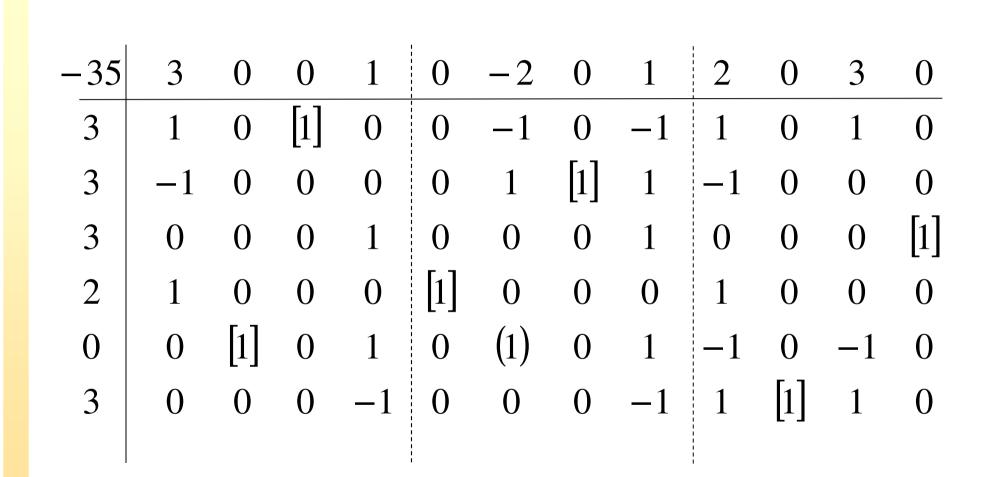
433

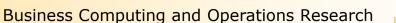
Optimizing – Phase II – Step 4c



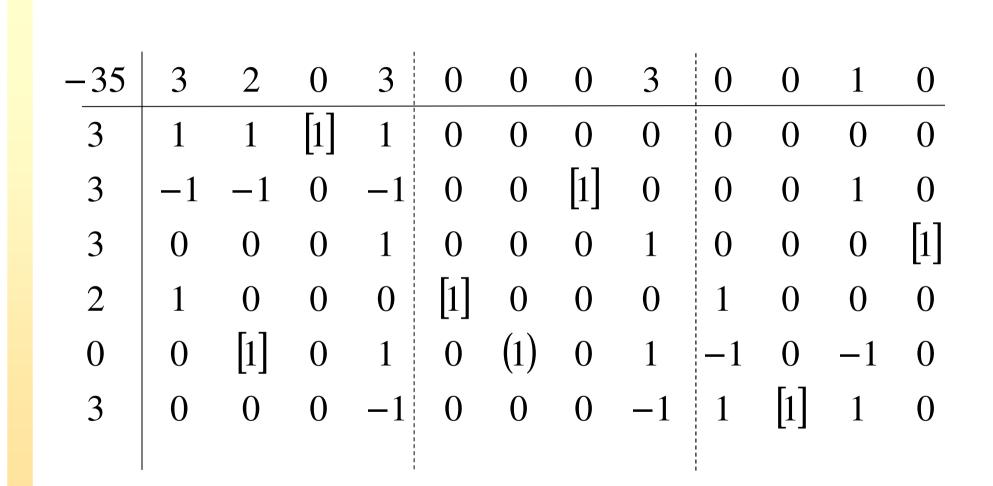
434

Optimizing – Phase II – Step 5a





Optimizing – Phase II – Step 5b

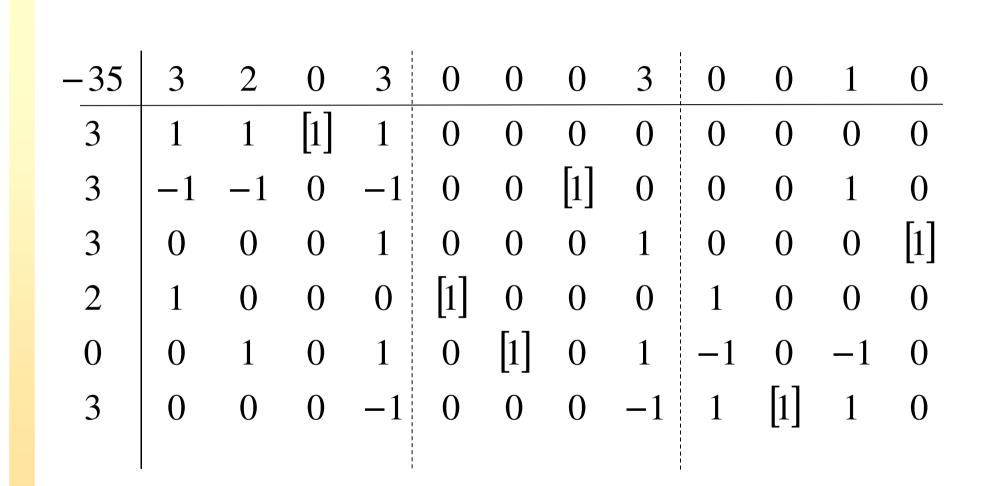


Business Computing and Operations Research

Schumpeter School of Business and Economics

Jast funger

Optimizing – Phase II – Step 5c



Business Computing and Operations Research

Optimal solution

$$x_{1,1} = 0, x_{1,2} = 0, x_{1,3} = 3, x_{1,4} = 0,$$

$$x_{2,1} = 2, x_{2,2} = 0, x_{2,3} = 3, x_{2,4} = 0,$$

$$x_{3,1} = 0, x_{3,2} = 3, x_{3,3} = 0, x_{3,4} = 3,$$

i.e., $x = \begin{pmatrix} 0 & 0 & 3 & 0 \\ 2 & 0 & 3 & 0 \\ 0 & 3 & 0 & 3 \end{pmatrix}$

And now?

4.2 The MODI Algorithm

- As we have seen already, the reduced costs are easy to compute for the Transportation Problem
- Thus, in what follows, we analyze them more in detail
- Here, a direct connection to the dual program is used

Calculating reduced costs

It holds:

Schumpeter School

$$\overline{c}^{T} = c^{T} - c^{T}_{B} \cdot A^{-1}_{B} \cdot A = c^{T} - \pi^{T} \cdot A \Longrightarrow \overline{c}_{i,j} = c_{i,j} - \alpha_{i} - \beta_{j}$$

Let us assume:
$$\forall (i, j) \in B : \overline{c}_{i,j} = c_{i,j} - \alpha_i - \beta_j = 0 \land x \text{ bfs}$$

$$\Rightarrow Z(x) = \sum_{(i,j)\in B} c_{i,j} \cdot x_{i,j} = \sum_{(i,j)\in B} (\alpha_i + \beta_j) \cdot x_{i,j} = \sum_{(i,j)\in B} (\alpha_i \cdot x_{i,j} + \beta_j \cdot x_{i,j}) =$$

$$\sum_i \sum_{j:(i,j)\in B} \alpha_i \cdot x_{i,j} + \sum_j \sum_{i:(i,j)\in B} \beta_j \cdot x_{i,j} = \sum_i \alpha_i \cdot \left(\sum_{j:(i,j)\in B} x_{i,j}\right) + \sum_j \beta_j \cdot \left(\sum_{i:(i,j)\in B} x_{i,j}\right) =$$

$$\sum_i \alpha_i \cdot (\alpha_i) + \sum_j \beta_j \cdot (b_j) = b^T \cdot \pi$$

if π is feasible $\Rightarrow x, \pi$ are optimal!

(Later we will see that this procedure is a direct application of the

Theorem of Complementary Slackness.)

Basic structure of the algorithm

- Start with a primal solution that is based on a basis B
- Generate a corresponding dual solution. This solution is characterized by the fact that whenever (*i*,*j*) belongs to basis *B*, the respective entries α_i and β_j are defined so that $\alpha_i + \beta_j = c_{i,j}$ holds
- As long as (i,j) exists with $\alpha_i + \beta_j > c_{i,j}$, find a cyclical exchange flow that reduces either α_i or β_i

Generating an initial solution

- In the following, we make use of the well-known Northwest Corner Method
- It generates a basic feasible solution by conducting the following steps
 - 1. Start with the northwest corner cell of the matrix.
 - 2. Allocate as much as possible to the selected cell, and adjust the associated amounts of supply and demand by subtracting the allocated amount.
 - 3. Cross out the row or column with zero supply or demand in order to indicate that no further assignment can be made in that row or column. If both, a row and a column, are set to zero simultaneously, cross out only one, and leave a zero supply or demand in the uncrossed row or column.
 - 4. If exactly one row or column is left out uncrossed, stop. Otherwise, move to the cell to the right if a column has just crossed, or move below if it was a row. Proceed with step 2.

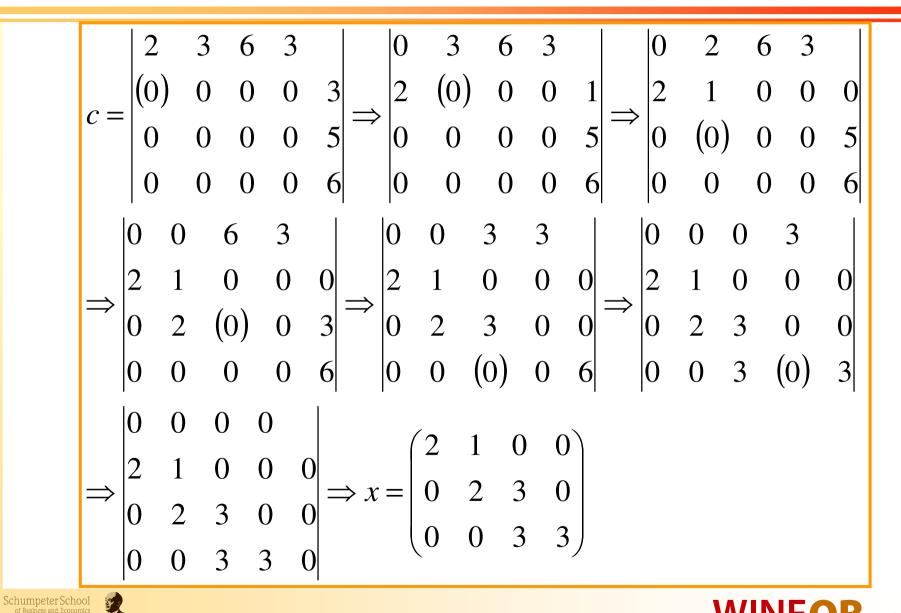
The MODI Algorithm – Example

• We consider the following constellation

$$a = \begin{pmatrix} 3 \\ 5 \\ 6 \end{pmatrix}; b = \begin{pmatrix} 2 \\ 3 \\ 6 \\ 3 \end{pmatrix}; c = \begin{pmatrix} 3 & 3 & 1 & 2 \\ 1 & 2 & 2 & 3 \\ 4 & 5 & 6 & 3 \end{pmatrix}$$

Business Computing and Operations Research

Example – Initial solution



Business Computing and Operations Research

The dual variables

$$\begin{aligned} x = \begin{pmatrix} 2 & 1 & 0 & 0 \\ 0 & 2 & 3 & 0 \\ 0 & 0 & 3 & 3 \end{pmatrix}, c = \begin{pmatrix} 3 & 3 \\ 2 & 2 \\ 6 & 3 \end{pmatrix} \\ \text{We commence with } a_1 = 0. \text{ Thus, we get} \\ \begin{vmatrix} \beta_1 = ? & \beta_2 = ? & \beta_3 = ? & \beta_4 = ? \\ 3 & 3 & a_1 = 0 \\ 2 & 2 & a_2 = ? \\ 6 & 3 & a_3 = ? \end{vmatrix} \Rightarrow \begin{vmatrix} \beta_1 = 3 & \beta_2 = ? & \beta_3 = ? & \beta_4 = ? \\ 3 & 3 & a_1 = 0 \\ 2 & 2 & a_2 = ? \\ 6 & 3 & a_3 = ? \end{vmatrix} \Rightarrow \begin{vmatrix} \beta_1 = 3 & \beta_2 = ? & \beta_3 = ? & \beta_4 = ? \\ 3 & 3 & a_1 = 0 \\ 2 & 2 & a_2 = ? \\ 6 & 3 & a_3 = ? \end{vmatrix} \Rightarrow \begin{vmatrix} \beta_1 = 3 & \beta_2 = ? & \beta_3 = ? & \beta_4 = ? \\ 3 & 3 & a_1 = 0 \\ 2 & 2 & a_2 = ? \\ 6 & 3 & a_3 = ? \end{vmatrix} \Rightarrow \begin{vmatrix} \beta_1 = 3 & \beta_2 = 3 & \beta_3 = ? & \beta_4 = ? \\ 3 & 3 & a_1 = 0 \\ 2 & 2 & a_2 = -1 \\ 6 & 3 & a_3 = ? \end{vmatrix} \Rightarrow \begin{vmatrix} \beta_1 = 3 & \beta_2 = 3 & \beta_3 = ? & \beta_4 = ? \\ 3 & 3 & a_1 = 0 \\ 2 & 2 & a_2 = -1 \\ 6 & 3 & a_3 = ? \end{vmatrix}$$

Schumpeter School Nasterfung R



The dual variables

$$\begin{vmatrix} \beta_{1} = 3 & \beta_{2} = 3 & \beta_{3} = 3 & \beta_{4} = ? \\ 3 & 3 & & \alpha_{1} = 0 \\ 2 & 2 & \alpha_{2} = -1 \\ & 6 & 3 & \alpha_{3} = ? \end{vmatrix} \Rightarrow \begin{vmatrix} \beta_{1} = 3 & \beta_{2} = 3 & \beta_{3} = 3 & \beta_{4} = ? \\ 3 & 3 & & \alpha_{1} = 0 \\ 2 & 2 & & \alpha_{2} = -1 \\ & 6 & 3 & \alpha_{3} = 3 \end{vmatrix}$$
$$\Rightarrow \begin{vmatrix} \beta_{1} = 3 & \beta_{2} = 3 & \beta_{3} = 3 & \beta_{4} = 0 \\ 3 & 3 & & \alpha_{1} = 0 \\ 2 & 2 & & \alpha_{2} = -1 \\ & 6 & 3 & & \alpha_{3} = 3 \end{vmatrix}$$

The resulting reduced costs

Eventually, we obtain the tableau

$$\begin{vmatrix} \beta_1 = 3 & \beta_2 = 3 & \beta_3 = 3 & \beta_4 = 0 \\ 0 & 0 & -2 & 2 & \alpha_1 = 0 \\ -1 & 0 & 0 & 4 & \alpha_2 = -1 \\ -2 & -1 & 0 & 0 & \alpha_3 = 3 \end{vmatrix}$$

MODI execution

- While negative reduced cost entries exist,
 - Determine the smallest reduced cost entry (i,j)
 - Insert the corresponding x-variable into the basis
 - I.e., we have to find a closed loop between the current basis members
 - Then the maximum amount is transferred along this cyclical path
 - Consequently, one element leaves the basis while (i,j) enters it
 - Correct the dual variables accordingly
- Optimal solution found

MODI Algorithm I

- 1. Find a feasible initial solution to the TPP
- 2. Determine a dual solution:
 - Set an arbitrary dual variable to ZERO
 - Calculate $\alpha_i = c_{ij} \beta_j$ for a given β_j or $\beta_j = c_{ij} \alpha_i$ for a given α_i
 - Use only those cost coefficients for the calculation, where the corresponding primal variable is a basis variable at that time.
- 3. Calculate the reduced costs \overline{c}_{ij} for all non-basic variables by $\overline{c}_{ij} = c_{ij} - \alpha_i - \beta_j$
- 4. If $\overline{c}_{ij} \ge 0 \forall i, j$, then terminate since the optimal solution is found
- 5. Otherwise, conduct a basis change (see next slide)

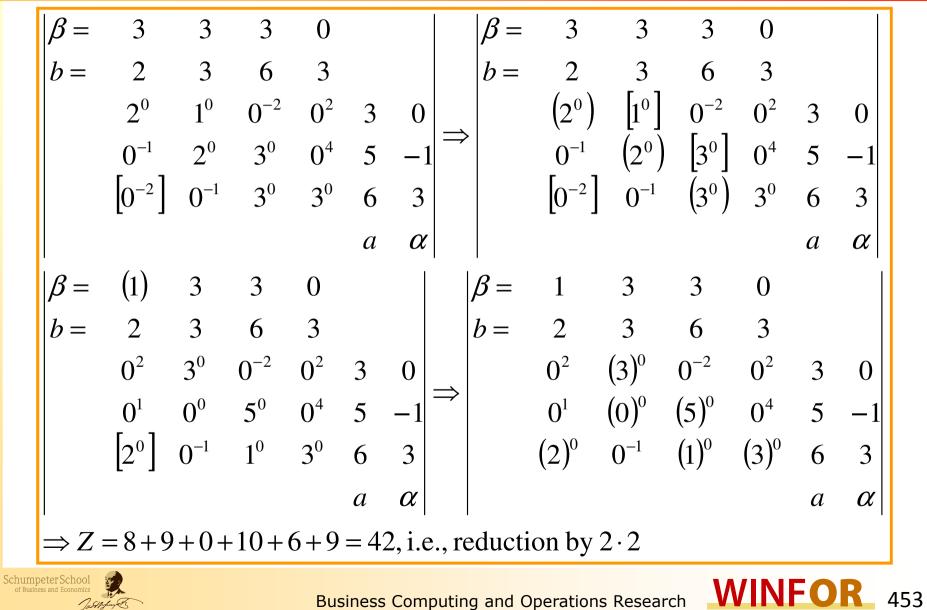
MODI Algorithm II

- 5. Conduct a basis change
 - Choose the smallest reduced costs $\overline{c}_{pq} = \min\{\overline{c}_{ij} | \overline{c}_{ij} < 0 \land \forall i, j\}$
 - Find a closed loop of basic variables that includes x_{pa}
 - Label x_{pq} with $+\Delta$ and label the remaining basic variables in the circle alternately with $-\Delta$ and $+\Delta$
 - Determine an upper bound $x_{ab} = \min \{ x_{ij} | (i, j) \text{ is a member of the closed loop and is labeled with } -\Delta \}$
 - x_{pq} enters the basis and x_{ab} becomes a non-basic variable
 - Calculate new values for all basic variables in the closed loop according to the labels $x_{ii} := x_{ii} \pm \Delta$
 - Calculate the objective function value $Z := Z + \overline{c}_{pa} \cdot x_{pa}$
 - Go to step 2.

Consider the initial solution

$$\begin{vmatrix} \beta = & 3 & 3 & 3 & 0 \\ b = & 2 & 3 & 6 & 3 \\ & (2)^0 & (1)^0 & 0^{-2} & 0^2 & 3 & 0 \\ & 0^{-1} & (2)^0 & (3)^0 & 0^4 & 5 & -1 \\ & 0^{-2} & 0^{-1} & (3)^0 & (3)^0 & 6 & 3 \\ & & & & a & \alpha \end{vmatrix} \Rightarrow Z = 6 + 3 + 4 + 6 + 18 + 9 = 46$$

Business Computing and Operations Research



Business Computing and Operations Research

$$\begin{vmatrix} \beta = & 1 & 3 & 3 & 0 \\ b = & 2 & 3 & 6 & 3 \\ & & 0^2 & 3^0 & [0^{-2}] & 0^2 & 3 & 0 \\ & & 0^1 & 0^0 & 5^0 & 0^4 & 5 & -1 \\ & & 2^0 & 0^{-1} & 1^0 & 3^0 & 6 & 3 \\ & & & & a & \alpha \end{vmatrix} \Rightarrow \begin{vmatrix} \beta = & 1 & 3 & 3 & 0 \\ b = & 2 & 3 & 6 & 3 \\ & & & & a & \alpha \end{vmatrix}$$
$$\Rightarrow \begin{vmatrix} \beta = & 1 & 3 & 3 & 0 \\ b = & 2 & 3 & 6 & 3 \\ & & & & a & \alpha \end{vmatrix} \Rightarrow \begin{vmatrix} \beta = & 1 & 3 & 3 & 0 \\ 0^1 & [0^0] & (5^0) & 0^4 & 5 & -1 \\ & 2^0 & 0^{-1} & 1^0 & 3^0 & 6 & 3 \\ & & & & & a & \alpha \end{vmatrix}$$
$$\begin{vmatrix} \beta = & 1 & 3 & 3 & 0 \\ b = & 2 & 3 & 6 & 3 \\ & & & & & a & \alpha \end{vmatrix}$$
$$\Rightarrow \begin{vmatrix} \beta = & 1 & 3 & 3 & 0 \\ b = & 2 & 3 & 6 & 3 \\ & & & & & a & \alpha \end{vmatrix}$$
$$\Rightarrow \begin{vmatrix} \beta = & 1 & 3 & 3 & 0 \\ b = & 2 & 3 & 6 & 3 \\ & & & & & a & \alpha \end{vmatrix}$$
$$\Rightarrow \begin{vmatrix} \beta = & 1 & 3 & 3 & 0 \\ b = & 2 & 3 & 6 & 3 \\ & & & & & a & \alpha \end{vmatrix}$$
$$\Rightarrow Z = 8 + 6 + 3 + 4 + 6 + 9 = 36, \text{ i.e., reduction by } 3 \cdot 2$$

$$\begin{vmatrix} \beta = & 1 & 3 & 3 & 0 \\ b = & 2 & 3 & 6 & 3 \\ & 0^4 & 0^2 & (3^0) & 0^4 & 3 & -2 \\ & 0^1 & (3^0) & (2^0) & 0^4 & 5 & -1 \\ & (2^0) & [0^{-1}] & (1^0) & (3^0) & 6 & 3 \\ & & & & a & \alpha \end{vmatrix} \Rightarrow \begin{vmatrix} \beta = & 1 & 3 & 3 & 0 \\ b = & 2 & 3 & 6 & 3 \\ & 0^4 & 0^2 & 3^0 & 0^4 & 5 & -1 \\ & 2^0 & [0^{-1}] & (1^0) & 3^0 & 6 & 3 \\ & & & & a & \alpha \end{vmatrix}$$
$$\begin{vmatrix} \beta = & (1) & 3 & 3 & (0) \\ b = & 2 & 3 & 6 & 3 \\ & 0^4 & 0^2 & 3^0 & 0^4 & 3 & -2 \\ & 0^1 & (2^0) & [3^0] & 0^4 & 5 & -1 \\ & 2^0 & [1^{-1}] & (0^0) & 3^0 & 6 & (3) \\ & & & a & \alpha \end{vmatrix} \Rightarrow \begin{vmatrix} \beta = & 2 & 3 & 3 & 1 \\ b = & 2 & 3 & 6 & 3 \\ & 0^3 & 0^2 & (3^0) & 0^3 & 3 & -2 \\ & 0^0 & (2^0) & (3^0) & 0^3 & 5 & -1 \\ & (2^0) & (1^0) & 0^1 & (3^0) & 6 & 2 \\ & & & & a & \alpha \end{vmatrix}$$
$$\Rightarrow Z = 8 + 4 + 5 + 3 + 6 + 9 = 35, \text{ i.e., reduction by 1 \cdot 1}$$
Optimal solution since reduced costs are non - negative!

Schumpeter School of Business and Economics

