4 Hitchcock Transportation Problem

The balanced transportation problem is defined as follows:

- $c_{i,j}$: Delivery costs for each product unit that is transported from supplier i to customer j
- a_i : Total supply of i = 1,...,m
- b_i : Total demand of j = 1,...,n
- $x_{i,j}$: Quantity that supplier i = 1,...,m delivers to the customer j = 1,...,n

(P)Minimize $c^T \cdot x$

$$\text{s.t.} \begin{pmatrix} \mathbf{I}_{n}^{T} & & & \\ & \mathbf{I}_{n}^{T} & & & \\ & & \dots & & & \\ E_{n} & E_{n} & E_{n} & E_{n} & E_{n} \end{pmatrix} \cdot \mathbf{x} = \begin{pmatrix} a_{1} \\ \dots \\ a_{m} \\ b \end{pmatrix}$$

Business Computing and Operations Research WINFOR 382

The dual problem

• Thus, we obtain as the dual problem

(D) Maximize
$$\sum_{i=1}^{m} a_i \cdot \pi_i + \sum_{j=1}^{n} b_j \cdot \pi_{m+j} = \sum_{i=1}^{m} a_i \cdot \alpha_i + \sum_{j=1}^{n} b_j \cdot \beta_j$$
 s.t.

$$\begin{pmatrix} 1_n & & & E_n \\ & 1_n & & & E_n \\ & & \dots & & E_n \\ & & \dots & & E_n \\ & & & 1_n & E_n \end{pmatrix} \cdot \pi \leq \begin{pmatrix} c_{1,1} \\ & \dots \\ & c_{i,1} \\ & \dots \\ & c_{m,n} \end{pmatrix} \Leftrightarrow \begin{pmatrix} 1_n & & & E_n \\ & 1_n & & & E_n \\ & & \dots & & E_n \\ & & \dots & & E_n \\ & & & \dots & E_n \\ & & & & 1_n & E_n \end{pmatrix} \cdot \begin{pmatrix} \alpha \\ \beta \end{pmatrix} \leq \begin{pmatrix} c_{1,1} \\ \dots \\ c_{i,1} \\ \dots \\ c_{m,n} \end{pmatrix}$$

$$\forall i \in \{1,...,m\} : \forall j \in \{1,...,n\} : \alpha_i + \beta_j \le c_{i,j}$$

 $\forall i \in \{1,...,m\} : \alpha_i \text{ free } \land \forall j \in \{1,...,n\} : \beta_j \text{ free}$

Business Computing and Operations Research WINFOR 383

4.1 Using the Simplex Algorithm

• Relevant costs are calculated as follows

$$\forall i \in \{1,...,m\} : \forall j \in \{1,...,n\} : \overline{c}_{i,j} = c_{i,j} - \left(\pi^T \cdot A\right)_{(i-1),n+j} = c_{i,j} - \left(A^T \cdot \pi\right)_{(i-1),n+j} \\ = c_{i,j} - \alpha_i - \beta_j$$

• Observation: Consider the matrix A

$$A = \begin{pmatrix} 1_n^T & & & & \\ & 1_n^T & & & \\ & & \dots & \dots & \\ E_n & E_n & E_n & E_n & E_n \end{pmatrix}$$

Transportation matrix

$$A = \begin{pmatrix} 1_n^T & & & \\ & 1_n^T & & \\ & & \dots & & \\ E_n & E_n & E_n & E_n & E_n \end{pmatrix} = \begin{pmatrix} a_1 \\ a_m \\ \hat{a}_1 \\ \vdots \\ \hat{a}_n \end{pmatrix} = \begin{pmatrix} a_1 \\ a_m \\ \hat{a}_1 \\ \vdots \\ \hat{a}_n \end{pmatrix} \in IR^{(m+n)\times(m\cdot n)}$$
Obviously, it holds:
$$\sum_{i=1}^m a_i - \sum_{i=1}^n \hat{a}_i = 0 \Leftrightarrow \hat{a}_n = \sum_{i=1}^m a_i - \sum_{i=1}^{n-1} \hat{a}_i$$

Consequences

- Thus, we obviously can skip the last row of matrix
- Note that this does not have any impact on the problem solvability since there is direct dependency between the a- and the b-vector, too
- Specifically, it holds:

$$\sum_{i=1}^{m} a_i = \sum_{j=1}^{n} b_j \iff \sum_{i=1}^{m} a_i - \sum_{j=1}^{n-1} b_j = b_n$$

Business Computing and Operations Research WINFOR 386

Example

• We consider the following constellation:

$$a = \begin{pmatrix} 3 \\ 5 \\ 6 \end{pmatrix}; b = \begin{pmatrix} 2 \\ 3 \\ 6 \\ 3 \end{pmatrix}; c = \begin{pmatrix} 3 & 3 & 1 & 2 \\ 1 & 2 & 2 & 3 \\ 4 & 5 & 6 & 3 \end{pmatrix}$$

$-\frac{2}{3}$	25																		
_	25																		
3		0	0	0	0	0	0	-2	-2	-2	-1	-2	-2	-2	-1	-2	-2	-2	-1
	3	1	0	0	0	0	0	1	1	1	1	0	0	0	0	0	0	0	0
5	5	0	1	0	0	0	0	0	0	0	0	1	1	1	1	0	0	0	0
6	5	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1
2	2	0	0	0	1	0	0	(1)	0	0	0	1	0	0	0	1	0	0	0
3	3	0	0	0	0	1	0	0	1	0	0	0	1	0	0	0	1	0	0
6	5	0	0	0	0	0	1	0	0	1	0	0	0	1	0	0	0	1	0
Schumg	peter Sci	200	2					Dura		Comput		10			. \	۸/IN	IFO	R	391

		ı	Fi	nd	in	g a	fea	sik	ole	sc	lut	ior	า (3	3b)			
-21	0	0	0	2	0	0 0	-2	-2	-1	0	-2	-2	-1	0	-2	-2	-1
1	1	0	0	-1	0	0 0	1	1	1	-1	0	0	0	-1	0	0	0
5	0	1	0	0	0	0 0	0	0	0	1	1	1	1	0	0	0	0
6	0	0	1	0	0	0 0	0	0	0	0	0	0	0	1	1	1	1
2	0	0	0	1	0	0 1	0	0	0	1	0	0	0	1	0	0	0
3	0	0	0	0	1	0 0	1	0	0	0	1	0	0	0	1	0	0
6	0	0	0	0	0	1 0	0	1	0	0	0	1	0	0	0	1	0
Schumpeter Sch of Bulles on Book	00] 3	2				Bu	siness (Comput	ing an	d Oper	ations	Resear	ch	1IW	NFC	DR_	392

			F	ir	ndi	nç	g	a 1	ea	asi	ble	e s	olu	tio	n (4b))		
		1																	
	-19	2	0	0	0	0	0	0	0	0	1	-2	-2	-2	-1	-2	-2	-2	-1
	1	1	0	0	-1	0	0	0	1	1	1	-1	0	0	0	-1	0	0	0
	5	0	1	0	0	0	0	0	0	0	0	1	1	1	1	0	0	0	0
	6	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1
	2	0	0	0	1	0	0	1	0	0	0	1	0	0	0	1	0	0	0
	2	-1	0	0	1	1	0	0	0	-1	-1	1	1	0	0	1	1	0	0
	6	0	0	0	0	0	1	0	0	1	0	0	0	1	0	0	0	1	0
S	chumpeter Sch of Button and Soon	201 3	·					Busir	ness	Comp	uting a	ind Opi	eration	s Resea	arch	WI	NF	OR	39

			F	in	di	ng	j a	fe	a	sib	le	S	olu	tio	n (6a))		
	ı																		
	-15	2	0	0	2	0	0	2	0	0	1	0	-2	-2	-1	0	-2	-2	-1
	3	1	0	0	0	0	0	1	1	1	1	0	0	0	0	0	0	0	0
	3	0	1	0	-1	0	0	-1	0	0	0	0	1	1	1	-1	0	0	0
	6	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1
	2	0	0	0	1	0	0	1	0	0	0	1	0	0	0	1	0	0	0
	0	-1	0	0	0	1	0	-1	0	-1	-1	0	(1)	0	0	0	1	0	0
	6	0	0	0	0	0	1	0	0	1	0	0	0	1	0	0	0	1	0
Sch	rumpéter Scho	ol 2											rations			W/I	NF	O.R.	397

			F	ir	ndi	ng	а	fe	as	ib	le :	so	lυ	ıtio	n ((7b)		
	1																		
	-9	2	0	0	2	2	0	2	2	0	1	0	0	-2	-1	0	0	-2	-1
	3	1	0	0	0	0	0	1	1	1	1	0	0	0	0	0	0	0	0
	0	0	1	0	-1	-1	0	-1	-1	0	0	0	0	1	1	-1	-1	0	0
	6	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1
	2	0	0	0	1	0	0	1	0	0	0	1	0	0	0	1	0	0	0
	3	0	0	0	0	1	0	0	1	0	0	0	1	0	0	0	1	0	0
	3	-1	0	0	0	0	1	-1	-1	0	-1	0	0	1	0	0	0	1	0
S	chumpeter Sch of Bultima and Goos	col 🗽					Bu	siness	s Comp	outin	g and	Oper	ation	ıs Rese	arch	W	INF	OF	400

			F	in	dir	ng	a	fea	sil	blo	e s	ol	u	tic	n	(9a)		
	1																		
	-9	2	2	0	0	0	0	0	0	0	1	0	0	0	1	-2	-2	-2	-1
	3	1	0	0	0	0	0	1	1	1	1	0	0	0	0	0	0	0	0
	0	0	1	0	-1	-1	0	-1	-1	0	0	0	0	1	1	-1	-1	0	0
	6	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1
	2	0	0	0	1	0	0	1	0	0	0	1	0	0	0	(1)	0	0	0
	3	0	0	0	0	1	0	0	1	0	0	0	1	0	0	0	1	0	0
	3	-1	-1	0	1	1	1	0	0	0	-1	0	0	0	-1	1	1	1	0
Si	chumpeter Scho of Batters and Econo	Control	n				Busi	iness C	comput	ting a	and O	perat	ions	Rese	arch	W	INF	OR	403

		Fir	nd	in	g a	fe	as	ibl	е	so	lut	io	n	(10)b)		
	l I						:											
-3	0	0	0	2	2	2	0	0	0	-1	0	0	0	-1	0	0	0	-1
3	1	0	0	0	0	0	1	1	1	1	0	0	0	0	0	0	0	0
3	0	0	0	0	0	1	-1	-1	0	-1	0	0	1	0	0	0	1	0
3	1	1	1	-1	-1	-1	0	0	0	1	0	0	0	1	0	0	0	1
2	0	0	0	1	0	0	1	0	0	0	1	0	0	0	1	0	0	0
2	1	1	0	0	0	-1	1	1	0	1	1	1	0	1	0	0	-1	0
1	-1	-1	0	0	1	1	-1	0	0	-1	-1	0	0	-1	0	1	1	0
Schumpeter Sch	col &					Busine								V	./1	VI.	OF	406

			Fi	n	din	ıg a	a fe	eas	sib	le	s	olι	ıtic	on	(1	28	a)		
	-1	1	1	0	2	2	1	1	1	0	0	1	1	0	0	0	0	-1	-1
	1	0	-1	0	0	0	1	0	0	1	0	-1	-1	0	-1	0	0	(1)	0
	5	1	1	0	0	0	0	0	0	0	0	1	1	1	1	0	0	0	0
	1	0	0	1	-1	-1	0	-1	-1	0	0	-1	-1	0	0	0	0	1	1
	2	0	0	0	1	0	0	1	0	0	0	1	0	0	0	1	0	0	0
	2	1	1	0	0	0	-1	1	1	0	1	1	1	0	1	0	0	-1	0
	3	0	0	0	0	1	0	0	1	0	0	0	1	0	0	0	1	0	0
Sch	numpeter School Butters and Econo	201 3	8				Busin	ess C	omput	ing a	nd C	perati	ons Re	sear	ch	WI	N	FO	R 409

			Fi	nc	lin	g a	ı fe	as	ib	le s	so	lut	tio	n	(12	b))		
	-0	1	0	0	2	2	2	1	1	1	0	0	0	0	-1	0	0	0	-1
	1	0	-1	0	0	0	1	0	0	1	0	-1	-1	0	-1	0	0	1	0
	5	1	1	0	0	0	0	0	0	0	0	1	1	1	1	0	0	0	0
	0	0	1	1	-1	-1	-1	-1	-1	-1	0	0	0	0	1	0	0	0	1
	2	0	0	0	1	0	0	1	0	0	0	1	0	0	0	1	0	0	0
	3	1	0	0	0	0	0	1	1	1	1	0	0	0	0	0	0	0	0
	3	0	0	0	0	1	0	0	1	0	0	0	1	0	0	0	1	0	0
Schump	peter School na ina tananana	Doy-4-F	į.				Busin	ess Co	mputir	ng and	Ope	ration	s Rese	arch	M	/IN	١F	O	R 410

			F	inc	lin	ga	ı fe	as	sib	e s	so	lut	tio	n	(1:	3k)			
	-0	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	
	1	0	0	1	-1	-1	0	-1	-1	0	0	-1	-1	0	0	0	0	1	1	
	5	1	0	-1	1	1	1	1	1	1	0	1	1	1	0	0	0	0	-1	
	0	0	1	1	-1	-1	-1	-1	-1	-1	0	0	0	0	1	0	0	0	1	
	2	0	0	0	1	0	0	1	0	0	0	1	0	0	0	1	0	0	0	
	3	1	0	0	0	0	0	1	1	1	1	0	0	0	0	0	0	0	0	
	3	0	0	0	0	1	0	0	1	0	0	0	1	0	0	0	1	0	0	
	ı																			
of Busi	peter School sea and formers	2094	80				Busin	ess Co	mputi	ng and	Оре	ration	s Rese	arch		ΝI	N	<u> </u>	R	412

		F	Fin	diı	ng	a f	ea	sik	ole	sc	olu	tio	n	(14	1)			
-0	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	1	-1	-1	0	-1	-1	0	0	-1	-1	0	0	0	0	[1]	1
5	1	0	-1	1	1	1	1	1	1	0	1	1	[1]	0	0	0	0	-1
0	0	1	1	-1	-1	-1	-1	-1	-1	0	0	0	0	[1]	0	0	0	1
2	0	0	0	1	0	0	1	0	0	0	1	0	0	0	[1]	0	0	0
3				0												0	0	0
3	0	0	0	0	1	0	0	1	0	0	0	1	0	0	0	[1]	0	0
<u></u>	· -	. 0 .		$0, x_{1.3}$	-0	r -	: - 3 r	-0	ır	-0	v -	-5 r	- (1				
				$x_{3,3} =$			· J, A2	.,1 — 0	, A _{2,2}	- 0,	1 _{2,3} –	· J, A2	.4 - 1	,				
A _{3,1}	<i>–</i> ∠,	A3,2	- 5,	A _{3,3} —	1, 13,	4 – 0												
Schumpeter Sch	ool 🚰)												10	/I N I	F-6		
of Brateria and Door	Just.	è				Busin	ess C	omput	ing an	d Ope	rations	Rese	arch	V۱	'IN	FC	K_	413

Feasible solution $x_{1,1} = 0, x_{1,2} = 0, x_{1,3} = 0, x_{1,4} = 3, \\ x_{2,1} = 0, x_{2,2} = 0, x_{2,3} = 5, x_{2,4} = 0, \\ x_{3,1} = 2, x_{3,2} = 3, x_{3,3} = 1, x_{3,4} = 0, \\ i.e., x = \begin{pmatrix} 0 & 0 & 0 & 3 \\ 0 & 0 & 5 & 0 \\ 2 & 3 & 1 & 0 \end{pmatrix}$

				Op	tim	izin	g – I	Pha	se l	I			
	0	3	3	1	2	1	2	2	3	4	5	6	3
	1	-1	-1	0	0	-1	-1	0	0	0	0	[1]	1
	5	1	1	1	0	1	1	[1]	0	0	0	0	-1
	0	-1	-1	-1	0	0	0	0	[1]	0	0	0	1
	2	1	0	0	0	1	0	0	0	[1]	0	0	0
	3	1	1	1	[1]	0	0	0	0	0	0	0	0
	3	0	1	0	0	0	1	0	0	0	[1]	0	0
		1			1					1			
Sch	numpeter Sch d Busines and Doors	001 2			Busine	ess Compi	uting and	Operatio	ns Resea	arch 1	NIN I	FOR	416

	Op	timi	zing	J – I	Pha	se II	– F	rep	oara	atio	n	
-16	-1	-1	-3	0	-1	0	0	3	4	5	6	5
1	-1	-1	0	0	-1	-1	0	0	0	0	[1]	1
5	1	1	1	0	1	1	[1]	0	0	0	0	-1
0	-1	-1	-1	0	0	0	0	[1]	0	0	0	1
2	1	0	0	0	1	0	0	0	[1]	0	0	0
3	1	1	1	[1]	0	0	0	0	0	0	0	0
3	0	1	0	0	0	1	0	0	0	[1]	0	0
Schumpeter Scho of Bultima and Gorson	244			Busines	s Comput	ing and (peration	ns Resea	rch 💄	VIN	FOR	418

	Opt	imiz	ing	– P	has	e II	– P	rep	ara	tior	1	
-16	2	2	0	0	-1	0	0	0	4	5	6	2
1	-1	-1	0	0	-1	-1	0	0	0	0	[1]	1
5	1	1	1	0	1	1	[1]	0	0	0	0	-1
0	-1	-1	-1	0	0	0	0	[1]	0	0	0	1
2	1	0	0	0	1	0	0	0	[1]	0	0	0
3	1	1	1	[1]	0	0	0	0	0	0	0	0
3	0	1	0	0	0	1	0	0	0	[1]	0	0
Schumpeter School of Business and Bostonia	9		В	usiness	Computir	ng and Op	erations	Resear	ch M	/INF	OR	419

	Op	timi	zing	j – F	Phas	se II	– P	rep	ara	tio	า	
-24	-2	2	0	0	-5	0	0	0	0	5	6	2
1	-1	-1	0	0	-1	-1	0	0	0	0	[1]	1
5	1	1	1	0	1	1	[1]	0	0	0	0	-1
0	-1	-1	-1	0	0	0	0	[1]	0	0	0	1
2	1	0	0	0	1	0	0	0	[1]	0	0	0
3	1	1	1	[1]	0	0	0	0	0	0	0	0
3	0	1	0	0	0	1	0	0	0	[1]	0	0
								-				
Schumpeter Scho of Builden and Domes	cal Q Cany-E			Busines	s Computi	ng and O	peration:	s Resea	rch V	VINE	OR	420

	Opti	miz	ing	– P	has	e II -	- Pı	repa	ara	tior	1	
-39	-2	-3	0	0	-5	-5	0	0	0	0	6	2
1	-1	-1	0	0	-1	-1	0	0	0	0	[1]	1
5	1	1	1	0	1	1	[1]	0	0	0	0	-1
0	-1	-1	-1	0	0	0	0	[1]	0	0	0	1
2	1	0	0	0	1	0	0	0	[1]	0	0	0
3	1	1	1	[1]	0	0	0	0	0	0	0	0
3	0	1	0	0	0	1	0	0	0	[1]	0	0
Schumpeter School of Business and Economies	2		В	usiness	Computin	g and Ope	erations	Researci	. M	/INF	OR	421

(Opti	miz	ing	– P	has	e II	– P	rep	ara	tio	n	
-45	4	3	0	0	1	1	0	0	0	0	0	-4
1	-1	-1	0	0	-1	-1	0	0	0	0	[1]	1
5	1	1	1	0	1	1	[1]	0	0	0	0	-1
0	-1	-1	-1	0	0	0	0	[1]	0	0	0	1
2	1	0	0	0	1	0	0	0	[1]	0	0	0
3	1	1	1	[1]	0	0	0	0	0	0	0	0
3	0	1	0	0	0	1	0	0	0	[1]	0	0
Schumpeter School of Building and Economics	2		В	usiness	Computir	ig and Op	peration	s Resear	rch 1	VIN	FOR	422

	0	ptin	nizir	ng -	- Ph	ase	· II -	- St	ер	1a		
-45	4	3	0	0	1	1	0	0	0	0	0	-4
1	-1	-1	0	0	-1	-1	0	0	0	0	[1]	1
5	1	1	1	0	1	1	[1]	0	0	0	0	-1
0	-1	-1	-1	0	0	0	0	[1]	0	0	0	(1)
2	1	0	0	0	1	0	0	0	[1]	0	0	0
3	1	1	1	[1]	0	0	0	0	0	0	0	0
3	0	1	0	0	0	1	0	0	0	[1]	0	0
Schumpeser School of Business are Commercia	2		В	usiness	Computi	ng and O	peration	s Resea	rch _	NIN	FOF	423

	Op	otim	izin	g –	Pha	ase	II –	Ste	p 1	b		
-45	0	-1	-4	0	1	1	0	4	0	0	0	0
1	0	0	1	0	-1	-1	0	-1	0	0	[1]	0
5	0	0	0	0	1	1	[1]	1	0	0	0	0
0	-1	-1	-1	0	0	0	0	[1]	0	0	0	(1)
2	1	0	0	0	1	0	0	0	[1]	0	0	0
3	1	1	1	[1]	0	0	0	0	0	0	0	0
3	0	1	0	0	0	1	0	0	0	[1]	0	0
Schumpeter School of Bulling to Constitution (244)	2		Bu	siness C	Computing	g and Ope	erations	Research	. W	INE	OR	424

	0	ptin	nizir	ıg -	- Ph	ase	II –	Ste	p 1	c		
-45	0	-1	-4	0	1	1	0	4	0	0	0	0
1	0	0	1	0	-1	-1	0	-1	0	0	[1]	0
5	0	0	0	0	1	1	[1]	1	0	0	0	0
0	-1	-1	-1	0	0	0	0	1	0	0	0	[1]
2	1	0	0	0	1	0	0	0	[1]	0	0	0
3	1	1	1	[1]	0	0	0	0	0	0	0	0
3	0	1	0	0	0	1	0	0	0	[1]	0	0
Schumpeter School	1		Ві	usiness	Computir	ig and Op	erations	Researc	h <u>M</u>	/INF	OR	425

	0	ptin	nizir	ıg -	- Ph	ase	II -	- Ste	p 2	2a		
-45	0	-1	-4	0	1	1	0	4	0	0	0	0
1	0	0	1	0	-1	-1	0	-1	0	0	[1]	0
5	0	0	0	0	1	1	[1]	1	0	0	0	0
0	-1	-1	-1	0	0	0	0	1	0	0	0	[1]
2	1	0	0	0	1	0	0	0	[1]	0	0	0
3	1	(1)	1	[1]	0	0	0	0	0	0	0	0
3	0	1	0	0	0	1	0	0	0	[1]	0	0
ļ												
Schumpeter School of Business and Dominio	2 480		Ві	usiness	Computir	ng and Op	peration	s Researc	h M	/INF	OR	426

	0	ptin	nizir	ng –	- Ph	ase	II –	Ste	p 2	2b		
-42	1	0	-3	1	1	1	0	4	0	0	0	0
1	0	0	1	0	-1	-1	0	-1	0	0	[1]	0
5	0	0	0	0	1	1	[1]	1	0	0	0	0
3	0	0	0	1	0	0	0	1	0	0	0	[1]
2	1	0	0	0	1	0	0	0	[1]	0	0	0
3	1	(1)	1	[1]	0	0	0	0	0	0	0	0
0	-1	0	-1	-1	0	1	0	0	0	[1]	0	0
Schumpeter School of Bullion Inc Consumo	2		Е	Business	Computir	ig and Op	perations	s Researc	h M	/INF	OR	427

	0	ptir	nizi	ng -	- Ph	ase	· II -	- St	ep 2	2c		
-42	1	0	-3	1	1	1	0	4	0	0	0	0
1	0	0	1	0	-1	-1	0	-1	0	0	[1]	0
5	0	0	0	0	1	1	[1]	1	0	0	0	0
3	0	0	0	1	0	0	0	1	0	0	0	[1]
2	1	0	0	0	1	0	0	0	[1]	0	0	0
3	1	[1]	1	1	0	0	0	0	0	0	0	0
0	-1	0	-1	-1	0	1	0	0	0	[1]	0	0
Schumpeter School of Buildings and Domining	2			Business	Computi	ng and O	peration	ns Resear	rch V	VINI	FOR	428

	0	ptin	nizi	ng -	- Ph	ase	II -	- Ste	ер 3	3a		
-42	1	0	-3	1	1	1	0	4	0	0	0	0
1	0	0	(1)	0	-1	-1	0	-1	0	0	[1]	0
5	0	0	0	0	1	1	[1]	1	0	0	0	0
3	0	0	0	1	0	0	0	1	0	0	0	[1]
2	1	0	0	0	1	0	0	0	[1]	0	0	0
3	1	[1]	1	1	0	0	0	0	0	0	0	0
0	-1	0	-1	-1	0	1	0	0	0	[1]	0	0
Schumpeter School of Busines are Democracy	4.65			Business	Computir	ng and O	peration	s Researc	h V	VINE	OR	429

Optimizing – Phase II – Step 3b												
-39	1	0	0	1	-2	-2	0	1	0	0	3	0
1	0	0	(1)	0	-1	-1	0	-1	0	0	[1]	0
5	0	0	0	0	1	1	[1]	1	0	0	0	0
3	0	0	0	1	0	0	0	1	0	0	0	[1]
2	1	0	0	0	1	0	0	0	[1]	0	0	0
2	1	[1]	0	1	1	1	0	1	0	0	-1	0
1	-1	0	0	-1	-1	0	0	-1	0	[1]	1	0
Shumeer Scool Business Computing and Operations Research WINFOR 430												

Optimizing – Phase II – Step 3c												
-39	1	0	0	1	-2	-2	0	1	0	0	3	0
1	0	0	[1]	0	-1	-1	0	-1	0	0	1	0
5	0	0	0	0	1	1	[1]	1	0	0	0	0
3	0	0	0	1	0	0	0	1	0	0	0	[1]
2	1	0	0	0	1	0	0	0	[1]	0	0	0
2	1	[1]	0	1	1	1	0	1	0	0	-1	0
1	-1	0	0	-1	-1	0	0	-1	0	[1]	1	0
Stumperr Stool The first being to be the state of the st												

Optimizing – Phase II – Step 4a												
-39	1	0	0	1	-2	-2	0	1	0	0	3	0
1	0	0	[1]	0	-1	-1	0	-1	0	0	1	0
5	0	0	0	0	1	1	[1]	1	0	0	0	0
3	0	0	0	1	0	0	0	1	0	0	0	[1]
2	1	0	0	0	(1)	0	0	0	[1]	0	0	0
2	1	[1]	0	1	1	1	0	1	0	0	-1	0
1	-1	0	0	-1	-1	0	0	-1	0	[1]	1	0
Sharpport Road Business Computing and Operations Research WINFOR 432												

Optimizing – Phase II – Step 4b												
-35	3	0	0	1	0	-2	0	1	2	0	3	0
3	1	0	[1]	0	0	-1	0	-1	1	0	1	0
3	-1	0	0	0	0	1	[1]	1	-1	0	0	0
3	0	0	0	1	0	0	0	1	0	0	0	[1]
2	1	0	0	0	(1)	0	0	0	[1]	0	0	0
0	0	[1]	0	1	0	1	0	1	-1	0	-1	0
3	0	0	0	-1	0	0	0	-1	1	[1]	1	0
Schumpeter School of Business and Consumers	Shapper Store Business Computing and Operations Research WINFOR 433											

Optimizing – Phase II – Step 4c												
-35	3	0	0	1	0	-2	0	1	2	0	3	0
3	1	0	[1]	0	0	-1	0	-1	1	0	1	0
3	-1	0	0	0	0	1	[1]	1	-1	0	0	0
3	0	0	0	1	0	0	0	1	0	0	0	[1]
2	1	0	0	0	[1]	0	0	0	1	0	0	0
0	0	[1]	0	1	0	1	0	1	-1	0	-1	0
3	0	0	0	-1	0	0	0	-1	1	[1]	1	0
Schumpeter School of Bullium and Economics	Business Computing and Operations Research WINFOR 434											

Optimizing – Phase II – Step 5a												
-35	3	0	0	1	0	-2	0	1	2	0	3	0
3	1	0	[1]	0	0	-1	0	-1	1	0	1	0
3	-1	0	0	0	0	1	[1]	1	-1	0	0	0
3	0	0	0	1	0	0	0	1	0	0	0	[1]
2	1	0	0	0	[1]	0	0	0	1	0	0	0
0	0	[1]	0	1	0	(1)	0	1	-1	0	-1	0
3	0	0	0	-1	0	0	0	-1	1	[1]	1	0
Shappers computing and Operations Research WINFOR 435												

Optimizing – Phase II – Step 5b												
-35	3	2	0	3	0	0	0	3	0	0	1	0
3	1	1	[1]	1	0	0	0	0	0	0	0	0
3	-1	-1	0	-1	0	0	[1]	0	0	0	1	0
3	0	0	0	1	0	0	0	1	0	0	0	[1]
2	1	0	0	0	[1]	0	0	0	1	0	0	0
0	0	[1]	0	1	0	(1)	0	1	-1	0	-1	0
3	0	0	0	-1	0	0	0	-1	1	[1]	1	0
Schumpeter School of Bullians and Goossilan	Business Computing and Operations Research WINFOR 436											

Optimizing – Phase II – Step 5c												
-35	3	2	0	3	0	0	0	3	0	0	1	0
3	1	1	[1]	1	0	0	0	0	0	0	0	0
3	-1	-1	0	-1	0	0	[1]	0	0	0	1	0
3	0	0	0	1	0	0	0	1	0	0	0	[1]
2	1	0	0	0	[1]	0	0	0	1	0	0	0
0	0	1	0	1	0	[1]	0	1	-1	0	-1	0
3	0	0	0	-1	0	0	0	-1	1	[1]	1	0
Submisser Scomputing and Operations Research WINFOR 437												

4.2 The MODI Algorithm

- As we have seen already, the reduced costs are easy to compute for the Transportation Problem
- Thus, in what follows, we analyze them more in
- Here, a direct connection to the dual program is used

Business Computing and Operations Research WINFOR 440

Calculating reduced costs

$$\overline{c}^T = c^T - c_B^T \cdot A_B^{-1} \cdot A = c^T - \pi^T \cdot A \Longrightarrow \overline{c}_{i,j} = c_{i,j} - \alpha_i - \beta_j$$

Let us assume: $\forall (i,j) \in B : \overline{c}_{i,j} = c_{i,j} - \alpha_i - \beta_j = 0 \land x \text{ bfs}$

$$\Rightarrow Z\left(x\right) = \sum_{(i,j) \in B} c_{i,j} \cdot x_{i,j} = \sum_{(i,j) \in B} \left(\alpha_i + \beta_j\right) \cdot x_{i,j} = \sum_{(i,j) \in B} \left(\alpha_i \cdot x_{i,j} + \beta_j \cdot x_{i,j}\right) =$$

$$\sum_{i} \sum_{j \in \{i,j\} \in B} \alpha_i \cdot x_{i,j} + \sum_{j} \sum_{i \in [i,j] \in B} \beta_j \cdot x_{i,j} = \sum_{i} \alpha_i \cdot \left(\sum_{j \in [i,j] \in B} x_{i,j} \right) + \sum_{j} \beta_j \cdot \left(\sum_{i \in [i,j] \in B} x_{i,j} \right) = \sum_{i} \alpha_i \cdot (a_i) + \sum_{j} \beta_j \cdot (b_j) = b^T \cdot \pi$$

$$\sum \alpha_i \cdot (a_i) + \sum \beta_i \cdot (b_i) = b^T \cdot \tau$$

if π is feasible $\Rightarrow x, \pi$ are optimal!

(Later we will see that this procedure is a direct application of the

Theorem of Complementary Slackness.)

Basic structure of the algorithm

- Start with a primal solution that is based on a basis B
- Generate a corresponding dual solution. This solution is characterized by the fact that whenever (i,j) belongs to basis B, the respective entries α_i and β_i are defined so that $\alpha_i + \beta_i = c_{i,i}$ holds
- As long as (i,j) exists with $\alpha_i + \beta_j > c_{i,j}$, find a cyclical exchange flow that reduces either α_i or β_i

Business Computing and Operations Research WINFOR 442

Generating an initial solution

- In the following, we make use of the well-known Northwest Corner Method
- It generates a basic feasible solution by conducting the following steps
 - 1. Start with the northwest corner cell of the matrix.
 - Allocate as much as possible to the selected cell, and adjust the associated amounts of supply and demand by subtracting the allocated amount.
 - Cross out the row or column with zero supply or demand in order to indicate that no further assignment can be made in that row or column. If both, a row and a column, are set to zero simultaneously, cross out only one, and leave a zero supply or demand in the uncrossed row or column.
 - If exactly one row or column is left out uncrossed, stop.
 Otherwise, move to the cell to the right if a column has just crossed, or move below if it was a row. Proceed with step 2.

Business Computing and Operations Research WINFOR 443

The MODI Algorithm - Example

• We consider the following constellation

$$a = \begin{pmatrix} 3 \\ 5 \\ 6 \end{pmatrix}; b = \begin{pmatrix} 2 \\ 3 \\ 6 \\ 3 \end{pmatrix}; c = \begin{pmatrix} 3 & 3 & 1 & 2 \\ 1 & 2 & 2 & 3 \\ 4 & 5 & 6 & 3 \end{pmatrix}$$


```
Example – Initial solution
c = \begin{vmatrix} 2 & 3 & 6 & 3 \\ (0) & 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 & 5 \\ 0 & 0 & 0 & 0 & 6 \end{vmatrix} \Rightarrow \begin{vmatrix} 0 & 3 & 6 & 3 \\ 2 & (0) & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 5 \\ 0 & 0 & 0 & 0 & 6 \end{vmatrix} \Rightarrow \begin{vmatrix} 0 & 2 & 6 & 3 \\ 2 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 6 \end{vmatrix}
\Rightarrow \begin{vmatrix} 0 & 0 & 6 & 3 \\ 2 & 1 & 0 & 0 & 0 \\ 0 & 2 & (0) & 0 & 3 \\ 0 & 0 & 0 & 0 & 6 \end{vmatrix} \Rightarrow \begin{vmatrix} 0 & 0 & 3 & 3 \\ 2 & 1 & 0 & 0 & 0 \\ 0 & 2 & 3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 6 \end{vmatrix} \Rightarrow \begin{vmatrix} 0 & 0 & 0 & 3 \\ 2 & 1 & 0 & 0 & 0 \\ 0 & 2 & 3 & 0 & 0 \\ 0 & 0 & 3 & 3 & 0 \end{vmatrix} \Rightarrow x = \begin{pmatrix} 2 & 1 & 0 & 0 \\ 0 & 2 & 3 & 0 \\ 0 & 0 & 3 & 3 \end{pmatrix}
Business Computing and Operations Research WINFOR 445
```

```
The dual variables
    (2 1 0 0) (3 3
We commence with \alpha_1 = 0. Thus, we get
|\beta_1 = ? \quad \beta_2 = ? \quad \beta_3 = ? \quad \beta_4 = ? |\beta_1 = 3 \quad \beta_2 = ? \quad \beta_3 = ? \quad \beta_4 = ?
                                     \alpha_1 = 0 \Rightarrow
                                                                                       \alpha_1 = 0 \Rightarrow
         3 2 2
                                                    3 3 2 2

\begin{array}{cccc}
2 & 2 & \alpha_2 = ? \\
6 & 3 & \alpha_3 = ?
\end{array}

                                                     6 3 \alpha_3 = ?
\beta_1 = 3 \beta_2 = 3 \beta_3 = ? \beta_4 = ? \beta_4 = ? \beta_1 = 3 \beta_2 = 3 \beta_3 = ? \beta_4 = ?
                                     \begin{vmatrix} \alpha_1 = 0 \\ \alpha_2 = ? \end{vmatrix} \Rightarrow \begin{vmatrix} 1 \\ 1 \\ 1 \end{vmatrix}
                                                                                         \alpha_1 = 0
  3 3
                                                    3 3
                                                                                         a_2 = -1
                               3
                                       \alpha_3 = ?
                                                                         6
                   Business Computing and Operations Research WINFOR 446
```


The resulting reduced costs

• Eventually, we obtain the tableau

$$\begin{vmatrix} \beta_1 = 3 & \beta_2 = 3 & \beta_3 = 3 & \beta_4 = 0 \\ 0 & 0 & -2 & 2 & \alpha_1 = 0 \\ -1 & 0 & 0 & 4 & \alpha_2 = -1 \\ -2 & -1 & 0 & 0 & \alpha_3 = 3 \end{vmatrix}$$

Business Computing and Operations Research WINFOR 448

MODI execution

- While negative reduced cost entries exist,
 - Determine the smallest reduced cost entry (i,j)
 - Insert the corresponding x-variable into the basis
 - I.e., we have to find a closed loop between the current basis
 - Then the maximum amount is transferred along this cyclical path
 - Consequently, one element leaves the basis while (i,j) enters it
 - · Correct the dual variables accordingly
- Optimal solution found

Business Computing and Operations Research WINFOR 449

MODI Algorithm I

- 1. Find a feasible initial solution to the TPP
- 2. Determine a dual solution:
 - Set an arbitrary dual variable to ZERO
 - $\bullet \quad \text{Calculate} \ \ \alpha_{i} = c_{ij} \beta_{j} \ \text{for a given} \ \ \beta_{j} \ \text{or} \ \ \beta_{j} = c_{ij} \alpha_{i} \ \text{for a given} \ \ \alpha_{i}$
 - Use only those cost coefficients for the calculation, where the corresponding primal variable is a basis variable at that time.
- 3. Calculate the reduced costs \overline{c}_{ij} for all non-basic variables by $\overline{c}_{ij} = c_{ij} - \alpha_i - \beta_j$
- 4. If $\overline{c}_{ij} \ge 0 \ \forall i, j$, then terminate since the optimal solution is
- 5. Otherwise, conduct a basis change (see next slide)

MODI Algorithm II 5. Conduct a basis change • Choose the smallest reduced costs $\overline{c}_{pq} = \min \left\{ \overline{c}_{ij} \middle| \overline{c}_{ij} < 0 \land \forall i, j \right\}$ • Find a closed loop of basic variables that includes x_{pq} • Label x_{pq} with +Δ and label the remaining basic variables in the circle alternately with −Δ and +Δ • Determine an upper bound $x_{ab} = \min \left\{ x_{ij} \middle| (i,j) \text{ is a member of the closed loop and is labeled with −Δ} \right\}$ • x_{pq} enters the basis and x_{ab} becomes a non-basic variable • Calculate new values for all basic variables in the closed loop according to the labels $x_{ij} := x_{ij} \pm \Delta$ • Calculate the objective function value $Z := Z + \overline{c}_{pq} \cdot x_{pq}$ • Go to step 2.

