
Business Computing and Operations Research 456

5 The Primal-Dual Simplex Algorithm

� Again, we consider the primal program given as a 
minimization problem defined in standard form

� This algorithm is based on the cognition that both 
optimal solutions, i.e., the primal and the dual 
one, are strongly interdependent 

� Specifically, the approach commences the 
searching process with a feasible dual solution 
and simultaneously observes the complementary 
slackness between the solution value of the dual 
and a primal solution

� If this slackness becomes zero, the optimality of 
the generated solutions is proven and the 
calculation process is terminated
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Invariants of the Primal Simplex

( )

0 0 0 1

0

While conducting the Primal Simplex, the following attributes 

are always fulfilled for a minimization problem:

 Minimize  s.t. 0

1. 

2. 

T

T T T T T T

B B N N B B

T T

B B

P c x, A x b x

c x c x c x c A b π b b π
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−

⋅ ⋅ = ∧ ≥

⋅ = ⋅ + ⋅ = ⋅ ⋅ = ⋅ = ⋅
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( )

0 0 0

1

1

0 0 0  

with 

Thus, if 0  is feasible for 

 Maximize s.t.  free

T T

N N B N

T T T

B B

T T T T

B B

T T

c x x c ,

c c c A A

c c A A π A c π

D b π , A π c π

−

−

+ ⋅ = ⋅ + ⋅ =

= − ⋅ ⋅

≥ ⇒ ⋅ ⋅ = ⋅ ≤ ⇒

⋅ ⋅ ≤ ∧
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Consequences

� The Primal Simplex works on a feasible primal 
solution that is iteratively improved by basis 
changes 

� This is done by the consideration of a 
corresponding dual solution that has an identical 
objective function value

� As long as this dual solution is infeasible, the 
corresponding entries are inserted in the primal 
solution in order to fulfill them exactly in the dual 
program (�Elimination of the corresponding 
slackness)

� If the dual solution becomes feasible as well the 
optimality of both solutions (the primal and the 
dual solution) is proven
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The Primal-Dual Simplex

� As mentioned above, we assume that the primal 
program is given as a minimization problem in 
standard form

� In what follows, we introduce a new algorithm that 
commences the searching process with a feasible 
dual solution

� This solution is analyzed according to a specific 
relationship to the primal problem in order to generate 
a corresponding primal solution that allows to prove 
optimality

� Specifically, we formulate a reduced problem that 
either generates an optimal primal solution or, if this is 
not possible, allows a correction of the dual one

� Obviously, this process is executed until the first case 
applies
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Observation

5.1 Theorem of Complementary Slackness

( ) ( )

( )

Assuming there is a Linear Program in standard form 

and  and  are feasible solutions to  and , 

respectively.  

Then, it holds:

 and  are optimal 0T T

x π P D

x π c π A x⇔ − ⋅ ⋅ =
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Proof of Theorem 5.1

( )
( )

Specifically, it holds:

0 0

Since  is feasible for 

0

 and  are optimal solutions

T T T T

T T T T

c π A x c x π A x

x P

c x π b c x π b

x π

− ⋅ ⋅ = ⇔ ⋅ − ⋅ ⋅ =

⇔ ⋅ − ⋅ = ⇔ ⋅ = ⋅

⇔

� Fortunately, this proof is quite easy to conduct

� Based on the facts we already know about tuples 
of optimal primal and dual solutions, we derive
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5.2 Observation
( ) ( )

( )
( ) ( )

Assuming  and  are feasible solutions to  and , 

respectively.  

Additionally, assume that it holds: 0.

Thus,  and  are optimal solutions to  and , respectively

and it holds: 0

T T

T T

x π P D

c π A x

x π P D

c π A x

− ⋅ ⋅ =

− ⋅ ≥ ∧

( ) { }

{ }

0

Hence, we can conclude 

0, 1,...,

0 , 1,...,

T j

j j

T j

j j

c π a x j n

x π a c j n

≥

− ⋅ ⋅ = ∀ ∈

⇔ = ∨ ⋅ = ∀ ∈

Direct consequence of Theorem 5.1
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A simple example

( )

( )Minimize 2 3 1 0

s.t.

1 1 1 0 5
0

2 1 3 1 9

P

, , , x

x x

⋅

   
⋅ = ∧ ≥   

−   

Consider the following Linear Program
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Example – Thus, we get the following (D)

( )

( )Maximize 5 9

1 2 2

1 1 3
s.t.    free

1 3 1

0 1 0

D

, π

π π

⋅

   
   
   ⋅ ≤ ∧
   
   

−   
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( )

{ }

1 2 3 4

0

0
Obviously,  is a feasible solution to .

5

6

Thus, we have 0 , 0. Consequently, we 

need a  with the following attributes

1 0 1
1. 3 4

3 1 0

2.  is feasib

T i T

i

x P

x x x x

π

i , : π a c π

π

 
 
 =
 
 
 

= = ∧ ≠

   
∀ ∈ ⋅ = ⇔ ⋅ =   

−   

( )le for D

Example – How to generate π ?
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( ) ( )

1
Obviously,  fulfills both restrictions and, therefore, 

0

we have shown that 

0

0 1
 and  are optimal solutions to  and , 

5 0

6

respectively.

π

x π P D

 
=  
 

 
 

  = =     
 
 

Example – How to generate π ?
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A feasible solution to (D)

� For what follows, we need at first a feasible 

solution to the dual problem. Fortunately, this is 

quite simple to provide.

� If c is positive, we just make use of π=0.

� Otherwise, we apply the following simple 

procedure that is depicted next.
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Generating a feasible dual solution

1

1

1 2 1 1 1

1

1

1.  We introduce a 1th variable  as well as a 1th 

equality in 

... , with  as a huge 

number.  

Since we add 0, we know that this restriction has no 

impact 

n

n

n n i m m

i

n

n x m

(P)

x x x x x b b

c

+

+

+ + +
=

+

+ +

+ + + + = =

=

∑

on the optimal solutions.

� In order to generate a feasible dual solution to 
cases where c≥0 does not apply, we provide 

the following simple construction procedure
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Generating a feasible dual solution

( )

( )
{ }

1 1

1 1 1

1

1 1

1 2 1

2.  Consider now the dual program.

Maximize 

0, i.e., 

:

3.  We generate , ,  as follows:

... 0 min | 0 0

T

T

m m

TT

m m m

T j

m j

T
ini ini ini

m

ini ini ini

m m j j

b π b π

A π π ... π c π

j π a π c

π π ... π

π π π π c c

+ +

+ + +

+

+

+

⋅ + ⋅

⋅ + ≤ ∧ ≤

∀ ⋅ + ≤

=

= = = = ∧ = < <

{ }

( )

hus, since 1,...,  exists with 0,  

 is feasible for .

j

ini

j n c

π D

∈ <



Business Computing and Operations Research 470

The set J

{ }

Assume  to be a feasible solution to the dual 

program of a Linear Program in standard form.  

An index 1  is denoted as feasible if and 

only if it holds: 

We introduce J as the set of f

T j

j

π

j ,...,n

π a c .

∈

⋅ =

{ }{ }
easible indices, i.e., 

1 T j

j
J j | j ,...,n π a c .= ∈ ∧ ⋅ =
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Reduced primal problem (RP)

{ }

( ) ( )
( )

( )

( )

1

1

1

0

We assume 0 and define 

 and 

with  as slack variables.

Then  is defined as follows:

Minimize 1 , s.t. with 0

is den

k

k

jj T a J

J

a a a

m

a a

T a

m J J J

J j ,..., j ,k

A a ,...,a x x ,x ,

x x ,...,x

RP

x x
x E , A b,

x x

= ≥

= =

=

   
ξ = ⋅ ⋅ = ≥   

   

oted as the reduced primal problem.
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Observations

� (RP) is solvable. Specifically, we can use xT=(b,0)

� Since this trivial solution has the objective function value 

1T.b and this objective function is lower bounded by 0, 

(RP) is bounded

� Thus, (RP) has always a well-defined optimal solution

� Obviously, this optimal solution comprises two parts

� First, there are the slackness variables. If these are zero, 

the objective function value is zero as well. Then, the primal 

solution is optimal to (P)

� Secondly, there are the original variables that correspond to 

the set J. Since the corresponding dual values are equal to 

the c-vector, only these variables may become unequal to 

zero
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Main conclusion

5.3 Theorem

( )

( )

( ) ( )

0

0

 always has an optimal solution. If 1 0,  

0
 is an optimal solution to .  

Otherwise, if 0, then the optimal solution to the dual 

of  always generates an improved solution to .

T a

J

RP x

P
x

RP D

ξ

ξ

⋅ = =

 
 
 

>
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Proof of Theorem 5.3 – Case 1

( )

( ) ( ) ( )

0At first, we assume 0. Thus, we know that 0. Consequently, 

it holds: . Thus, we consider 

0
ˆ ˆ0

0 0 0

Hence,  and  are opt

cc c

a

J J

T T

J

T T T T T T

J JJJ J J

x

A x b

x A x b c π A x
x

c π A x c π A x x c π A

x π

ξ = =

⋅ =

 
= ≥ ⇒ ⋅ = ∧ − ⋅ ⋅ 
 

= − ⋅ ⋅ + − ⋅ ⋅ = ⋅ + − ⋅ ⋅ =

( ) ( )imal solutions to the Linear Programs  and , 

respectively.

P D
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Proof of Theorem 5.3 – Case 2

( ) ( )

( )

( ) ( )

0Now, we consider the case 0  Thus, we know that 0   

Consequently, it holds:   

Let us now consider the dual of , denoted as 

Minimize 1  s.t. 0

Thus, 

a

J J

a

T a J T a J

m J

. x .

A x b.

RP DRP

RP

x
x , E ,A b,x x ,x

x

ξ > ≠

⋅ ≠

 
⋅ ⋅ = = ≥ 

 

( )

( )

we obtain  as follows

1
Maximize s.t.  free

0

m
m

T
T

J J

DRP

E
b π, π ,π

A

   
 ⋅ ⋅ ≤       
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Proof of Theorem 5.3 – Case 2

( )

( )
0

0

Assuming  is an optimal solution to . Then, we 

conclude  0. Furthermore, let .  

We compute  

.

Consequently, if  is feasi

T

T T T T

T T T T

π DRP

b π ξ π π λ π

b π b π λ π b π b λ π

b π λ b π b π λ ξ b π

π

′⋅ = > = + ⋅

′⋅ = ⋅ + ⋅ = ⋅ + ⋅ ⋅ =

⋅ + ⋅ ⋅ = ⋅ + ⋅ > ⋅

′

ɶ

ɶ ɶ

ɶ ɶ

ɶ

( )ble for D ,   outperforms .

Hence, we now have to determine suitable values for  

resulting in feasible values for .

π π

λ

π

′

′
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Proof of Theorem 5.3 – Case 2

( )

( )

Note that it holds:   feasible for 

0

0

0

T j

j

T j

j

T j T j

j

T j T j

j

π D

j : c π a

j : c π λ π a

j : c π a λ π a

j : c π a λ π a

′

′⇔ ∀ − ⋅ ≥

⇔ ∀ − + ⋅ ⋅ ≥

⇔ ∀ − ⋅ − ⋅ ⋅ ≥

⇔ ∀ − ⋅ ≥ ⋅ ⋅

ɶ

ɶ

ɶ
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Proof of Theorem 5.3 – Case 2

( )

( )

0

Since  is feasible for , we know that 0

Let us now consider the corresponding final tableau of  

0 1 0 0 1 0 0

0 0

c

c

T j T j

j

T j

j

T T T T T T T J T T J

J J

m

T T J

j : c π a λ π a

π D c π a .

RP

π π A π A

... ... ... ...b E A A

π A

∀ − ⋅ ≥ ⋅ ⋅

− ⋅ ≥

⇒

−ξ − − ⋅ − ⋅
⇒

⇒ − ⋅ ≥ ⇔

ɶ

ɶ ɶ ɶ

ɶ ɶ 0 0

Hence, if 0  the feasibility restriction is always 

fulfilled. 

T J T j
π A j J : π a

j J ,

⋅ ≤ ⇒∀ ∈ ⋅ ≤

∈ ∧ λ >

ɶ
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Proof of Theorem 5.3 – Case 2

( )

0
0 1 0 0 1 0 0

However, since  does not belong to  there may be 

with  0  If so, we can determine 

0 

c

c

c

T T T T T T T J T T J

J J

m

J c

T j

T j

j c T j

T j

π π A π A

... ... ... ...b E A A

A RP , j J

π a .

c π a
λ min | j J : π a

π a

−ξ − − ⋅ − ⋅
⇒

∈

⋅ >

 − ⋅ 
= ∀ ∈ ⋅ > 

⋅  

ɶ ɶ ɶ

ɶ

ɶ
ɶ

{ }
( )

( )

Consequently,  is feasible for 0,...,

If there is, however, no  with 0   is unbounded 

and, consequently,  is not solvable.

T j

.

π π λ .

j π a , D

P

+ λ ⋅ λ ∈

⋅ >

ɶ

ɶ
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Summary – The algorithm

( )
0

1. 0

The tableau provides an optimal solution to P .

ξ =

⇒

1. We commence the searching process with a 

feasible solution π to the dual program (D).

2. Then, we generate the reduced Linear Program 

(RP(π)) and solve it optimally. Thus, we 

distinguish altogether three cases:
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Summary – The algorithm

( )

( )

0

0

0

0

2. 0 0 The primal problem 

 is not solvable.

3. 0 0

Generate  optimal solution 

to the problem   

Determine 0

Repea

ξ > ∧ ∀ ⋅ ≤ ⇒

ξ > ∧ ∃ ⋅ >

′⇒ = + λ ⋅

 − ⋅ 
λ = ∀ ∈ ⋅ > 

⋅  

T j

T j

T j

j c T j

T j

j : π a

P

j : π a

π π π ,π

DRP π .

c π a
min | j J : π a .

π a

ɶ

ɶ

ɶ ɶ

ɶ
ɶ

t step 2 until one of the cases 1 or 2 applies.

Further cases (Continuation of step 2)
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Illustration

(P)
(D)

π feasible

(RP(π))
(DRP(π))

(1)

(2)

πλππ ~   Update 0 ⋅+←

(1)

(2)

 and  are optimal. Terminationx π

( )

( )
0 Since 

 is not solvable. Termination

T
b π λ π ,

P

⋅ + ⋅ → ∞ɶ

0 and 

 :Solutions

0 >ξπ:x

No j exists

ξ0=0
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The Primal-Dual Simplex Algorithm

1. Transform the problem such that          and generate equations.

2. Initialization with a feasible basic solution to the dual problem.

3. Determine the set                                         .

4. Solve the reduced primal problem (RP) to optimality via the Primal Simplex Algorithm:

5. If , then the optimal solution to the primal problem (P) is found. Terminate and

calculate the objective function value Z with the basic variables of J:

Otherwise (i.e.,           ) :

6. Calculate the dual variables     with cost coefficients of RP belonging to xa:

7. If                                  , then terminate since the primal problem (P) is unbounded and 

no optimal solution exists.

Otherwise (i.e.,                                 ) :

8. Determine                                                       .

9. Update the dual variables:                     .

10. Go to step 3.

0
π : π π= + λ ⋅ ɶ

0
0 0T j

j : π aξ > ∧ ∀ ⋅ ≤ɶ

0 0 0T j
j : aξ > ∧ ∃ π ⋅ >ɶ

0
0

T j

j T j

T j

c π a
min j J : π a

π a

 − ⋅ 
λ = ∀ ∉ ⋅ > 

⋅  
ɶ

ɶ

πɶ

{ }1 T j

j
J j ,...,n |π a c= = ⋅ =

( )
1

1m

j j ,...,m
π c

=
= −ɶ

0 0ξ =

0 0ξ >

( ) ( )0  1 0
T

m a a J J a J

m
RP Min x s.t. E x A x b x ,xξ = ⋅ ⋅ + ⋅ = ∧ ≥

( )
T J

j j J
Z c x

∈
= ⋅

0b ≥
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Example

( )

( )

( )

( )

2 5 10

Minimize 20,30 ,s.t., 3 4 12 0

2 1 5

2 5 1 0 0 10

Minimize 20 30 0 0 0 ,s.t., 3 4 0 1 0 12 0

2 1 0 0 1 5

s

P

x x x

P

x x x

   
   

⋅ ⋅ ≥ ∧ ≥   
   
   

⇒

−   
   

⋅ − ⋅ = ∧ ≥   
   −   
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Example

( )

( )

{ } { }

2 3 2 20

5 4 1 30

Maximize 10,12,5, ,s.t.,  free1 0 0 0

0 1 0 0

0 0 1 0

0

Since 0,  we can apply the trivial dual solution 0 .

0

Thus, we get 1, 2 3, 4,5c

D

π  π π-

-

-

c π

J J

   
   
   
   ⋅ ⋅ ≤ ∧
   
   
   
   

 
 

≥ =  
 
 

= ∧ =
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Example – Generate (RP(π))

( )( )

( )
1 0 0 1 0 0 10

Minimize 0 0 0 1 1 1  s.t. , 0 0 1 0 0 1 0 12  

0 0 1 0 0 1 5

In order, however, to identify the values, we integrate the columns of 

set  in the tableau  as well. Thus, we obtac

RP π

x, x x

j -

J

−   
   

⋅ ≥ ∧ − ⋅ =   
   −   

in

0 1 1 1 0 0 0 0 0 27 0 0 0 7 10 1 1 1

10 1 0 0 2 5 1 0 0 10 1 0 0 2 5 1 0 0

12 0 1 0 3 4 0 1 0 12 0 1 0 3 4 0 1 0

5 0 0 1 2 1 0 0 1 5 0 0 1 2 1 0 0 1

− − −

− −
⇒

− −

− −
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Example – Generate λ0

( ) ( ) ( )

( ) ( )

1 2

0 1 2

27 0 0 0 7 10 1 1 1

10 1 0 0 2 5 1 0 0

12 0 1 0 3 4 0 1 0

5 0 0 1 2 1 0 0 1

0 0 0 1 1 1 1 1 1

20 30 20 0 30 0
min min

1 1 1 1 1 1 2 3 2 5 4 1

20 30 20
min

7 10 7

T T

π π

π a π a
λ , ,

a a

,

− − −

−

−

−

⇒ = − ⇔ =

 − ⋅ − ⋅ − −   
= =   

⋅ ⋅ + + + +   

 
= = 

 

ɶ ɶ
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Example – Generate λ0

( ) ( )

( )( )
0

Consequently, we obtain for the next round

20 20 20 20
0 0 0 1 1 1

7 7 7 7

Thus, since 27 0, we get a new 

At first, we have to identify .  

T
π

RP π

J

 
= + ⋅ =  

 

ξ = >
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Example – Generate J

{ } { }5,4,3,21obtain   we time thisThus,

0

0

0

30

20

7/20

7/20

7/20

7/200

20

7/20

7/20

7/20

7/200

7/140

7

20
7

20
7

20

100

010

001

145

232

7

20

7

20

7

20

 determine  weTherefore,

=∧=

=
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−

−

−=























−

−

−=























⋅























−

−

−⇒







=

c

T

JJ

cπ
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Example – Solving (RP(π))

[ ]

( )

2
100

2
11

2
100

2
5

2
310

2
50

2
310

2
9

101401015
2

511
2

130
2

700
2

19

2
100

2
11

2
100

2
5

2
310

2
50

2
310

2
9

0015200110

11110700027

2
100

2
11

2
100

2
5

0104301012

0015200110

11110700027

100121005

0104301012

0015200110

11110700027

−

−−

−−

−−−

⇒

−

−−

−

−−−

⇒

−

−

−

−−−

⇒

−

−

−

−−−

⇒
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Example – Solving (RP(π))

( ) ( ) ( )

( )

91

20

35

40
,

91

20
min

2
5

7
20

,

2
13

7

10

min

2
5

7
200

,

2
545

7

200
30

min

2
511~~111

2
700

0

=








=

















=















−−

−+

−
=⇒

−=⇔−=⇒

λ

,,ππ,,,,
TT
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Example – Updating π and J

( )

( )( )
0

Consequently, we obtain for the next round

20 20 20 20 40 40 3051 1
27 7 7 91 13 13 13

19Thus, since 0, we get a new 
2

At first, we again have to identify .  

2 3 2

5 4 1
40 40 30

1 0 0
13 13 13

T

T

π

RP π

J

π

   
= + ⋅ − =   
   

ξ = >

 
= ⇒ − 
 

{ }

40 260 13 20 20
13 390 13 30 30
40

40 13 40 13 0
13

0 1 0 40 13 40 13 0
30

0 0 1 30 13 30 13 0
13

Thus, this time we obtain 1 2

/

/

c/ /

/ /

/ /

J , J

        
        
        
        ⋅ = = ≤ =− −
        
 − − −       
         − − −        

= ∧ { }3 4 5c , ,=
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Example – Solving (RP(π))

[ ]
( )

( ) ( ) ( )
8

71
8

5~~111
8
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8
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8
50

8
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8
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8
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8
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8
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8
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2
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2
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2
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2
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2
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−−
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⇒
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Example – Solving (RP(π))

( ) ( ) ( )

( ) ( )
( )
( ) ( ) ( )

( ) ( )0
7

40
7

100
91

520
728

1040

728
16801680

91
240280

728
12002240

728
1680

13
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91
240

13
40

728
1200

13
40

8
71

8
5

91

240

13
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40 :by  updatecan   weThus,
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8
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8
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Example – Updating J

{ } { }4,35,2,1obtain   we time thisThus,
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Example – Solving (RP(π))

( )

( ) ( )
0

13 15 5 711 0 0 0 1
8 8 8 8 8

5 1 1 1 10 0 1 0
4 4 4 4 4

5 7 5 711 1 0 0 1
8 8 8 8 8

15 5 51 10 1 0 0
8 8 8 8 8

0 1 1 1 0 0 0 0 0

6 3 32 20 0 1 0
7 7 7 7 7

5 8 5 811 1 0 0 1
7 7 7 7 7

20 5 54 40 1 0 0
7 7 7 7 7

0 Optimal solutions are:

10 40 20 6 11 0 0 0
7 7 7 7 7

T T
π , , x

− −−  
 

− −

⇒
− − −

−−

−−

⇒ − −−

−

⇒ ξ = ⇒

= ∧ =
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Additional literature to Section 5

The primal-dual algorithm for general LP's was first described in

� Dantzig, G.B.: Ford, L.R.; Fulkerson, D.R. (1956): A Primal-Dual 
Algorithm for Linear Programs," in Kuhn, H.W.; Tucker, A.W. (eds.): 
Linear Inequalities and Related Systems. Princeton University Press, 
Princeton, N.J., pp. 171-181. 

It is introduced there as a generalization of the paper

� Kuhn, H.W. (1955): The Hungarian Method for the Assignment 
Problem. Naval Research Logistics Quarterly, 2, nos. 1 and 2, pp. 83-
97.


