
1

Business Computing and Operations Research 498

6 Optimally solving the Shortest Path Problem

� In what follows, we apply specific variants of the Primal-
Dual Algorithm in order to derive new algorithms for the
Shortest Path (Section 6) and for the Max-Flow Problem
(Section 7)

� We commence our study with the Shortest Path Problem

� In the literature, two main types of shortest path problems
are distinguished

� The single source shortest path problem

Find the shortest path from one distinguished node to all other

nodes in the network

� The all pairs shortest path problem

Find the shortest path between all pairs of nodes in the network

Business Computing and Operations Research 499

Overview of the Section

� The single source shortest path problem

� In Section 6.1, we will derive the famous Dijkstra
algorithm as a special extended Primal Dual procedure

� However, this procedure is not able to handle negative
weights

� Therefore, in Section 6.2, we consider the Bellman-
Ford algorithm

� The all pairs shortest path problem

� In Section 6.3, we finally introduce the Floyd Warshall
procedure that is also able to deal with negative arc
weights

� It is also able to identify cycles of negative length

Business Computing and Operations Research 500

6.1 Deriving the Dijkstra algorithm

First of all, we have to introduce the problem of

finding the shortest path from a distinguished node

to all other nodes in a network

� In what follows, we consider directed weighted

graphs

� In order to provide a complete LP-based problem

definition of this Shortest Path Problem, we

introduce several basic notations

Business Computing and Operations Research 501

Graph, Network, …

6.1.1 Definition

{ }

{ } () (){ }
()

1

Assuming V is a finite set, in what follows, defined as

1 ,

,..., \ , , | , and : .

Then, , , is denoted as a weighted directed graph (also

denoted as a network). i

m

V ,..,n , n IN

E e e V V D D v v v V c E IR

N V E c

V

= ∈

= ⊆ × = ∈ →

=

()

s denoted as the vertices (nodes) and

 the set of arcs. indicates the weight (length, costs) of the

arc .

E c e

e E∈

2

Business Computing and Operations Research 502

A simple example

{ } () () () () () () () () (){ }

() ()()9

1,2,3,4,5,6 , 1,2 , 1,3 , 2,3 , 2,4 , 2,5 , 3,5 , 5,4 , 4,6 , 5,6 ,

2,1,3,3,1,1,2,2,5 ,
T

j j

V E

c c IR c c e

= =

= ∈ =

1

4

6

3

2

5

e1,c1=2

e2,c2=1

e3,c3=3

e4,c4=3

e5,c5=1

e6,c6=1

e7,c7=2

e8,c8=2

e9,c9=5

Business Computing and Operations Research 503

Adjacency lists

� In general: v: w1, c(v,w1)

� 1: 2,2; 3,1

� 2: 3,3; 4,3; 5,1

� 3: 5,1

� 4: 6,2

� 5: 4,2; 6,5

� 6: -

Business Computing and Operations Research 504

Vertex-arc adjacency matrix

()
()
()

()

1 1

1

1

0

1 1

 when

with when

 otherwise

 is source of arc is sink of arc

 with as the th u

k

i ,k i ,k ki n; k m

i,k k i,k k

k i j i

k

j V : e i, j

A , j V : e j ,i

α i e ; α i e

e i , j e e , e i

≤ ≤ ≤ ≤

+ ∃ ∈ =

= α α = − ∃ ∈ =

= ⇒ = − ⇒

= ⇒ α = −

ɶ ɶ

ɶ ɶ

ɶ

1 1 0 0 0 0 0 0 0

1 0 1 1 1 0 0 0 0

0 1 1 0 0 1 0 0 0

0 0 0 1 0 0 1 1 0

0 0 0 0 1 1 1 0 1

0 0 0 0 0 0 0 1 1

nit vector

A

−
 − −

⇒ =
− −

 − −
 − −

ɶ

Business Computing and Operations Research 505

Path

6.1.2 Definition

()

()
0

0 1 2 1

Assuming , , is a weighted directed graph (also

denoted as a network). Then, a path leading from to

is a sequence of nodes , with , , 1 0.

The length (weight,

t

k

k l t t

N V E c

i V i V

i ,i ,i ,...,i e i i k - t+

=

∈ ∈

= ≥ ≥

() () ()
1 1

0 1 2 1

0 0

0 0 1 2

 costs) of the path is calculated by

, .

If , the path is denoted as a cycle

t

k k

k l t t

t t

k k

c i ,i ,i ,...,i c e c i i

i i i ,i ,i ,...,i

− −

+
= =

= =

=

∑ ∑

3

Business Computing and Operations Research 506

Definition of variable x

() { }

0 1 2

1

1

0

Assuming is a path in a network . Then, we define

 as follows

1 if 0 1 2 1

0 otherwise

Then, we obtain

t

k

m

i l l

i

k
l

t

p i ,i ,i ,...,i N

x IR

e i ,i ,l , , ,...,k
x

A x

+

−

=

=

∈

 = ∈ −
=

⋅ = α =∑ɶ ()1 0

0 0 0

1

0

If is cyclic, we have 0

t t k

k

k
i i i i

t

i i i i

e e e e

p A x e e e e

+

−

=

− = −

⋅ = − = − =

∑
ɶ

Business Computing and Operations Research 507

Consequences

{ }

The other way round

0 defines a sequence of cycles in

 defines a path from to (may be combined

with a sequence of cycles)

In what follows, we assume that 0 1

i j

i

A x x N

A x e e i j

c , i ,...,m

⋅ = ⇒

⋅ = −

> ∀ ∈

ɶ

ɶ

Business Computing and Operations Research 508

The Shortest Path Problem

{ }

{ }

0

Minimize

s.t.

0 1

Since we minimize the total flow, this problem is equivalent

to restricting the variable vector to 0 1

T

mi j m

m

!

c x

A x e e x IN x ,

x , .

⋅

⋅ = − ∧ ∈ ⇒ ∈ɶ

� Generate a path from i to j

Business Computing and Operations Research 509

Observation

� By adding all rows of the matrix, we obtain the
null vector

� This results from the fact that each column
represents an arc with a definitely defined source
and sink (represented by the entries 1 and -1)

� Consequently, m-1 is an upper bound of the rank
of the matrix

� We denote A as the resulting matrix that arises
by erasing the last row in

� Hence, in what follows, we consider the following
general Shortest Path Problem

Aɶ

4

Business Computing and Operations Research 510

The Shortest Path Problem

{ }

()
() ()

1

1

1

Minimize

s.t.

0 1

Then, we get the corresponding dual problem

Maximize

s.t.,

 free

T

m

T

T

i j k

c x

A x e x ,

e π π ,

A π c π π c i, j , e i, j E

π

⋅

⋅ = ∧ ∈

⋅ =

⋅ ≤ ⇔ − ≤ ∀ = ∈

� Generate a path from 1 to destination n

� Note that in the section named “Integer Programming” we
will see that this problem is equivalent to its LP-relaxation
(switching back to continuous variables)

Business Computing and Operations Research 511

The RP and its dual counterpart

()

()()
()

()
{ }

1

1 1

0

Based on a dual solution and the resulting sets and

we define the reduced problem RP as follows:

Minimize

s.t., 0 1

Hence, we get the correspon

c

n
a

j

j

a

j j n mj m

n
j J

j j J

π J J ,

π

x ,

x

E , a e x IN ,
x

=

≤ ≤

∈

∈

 ⋅ = ∧ ∈ =

∑

()

()

() ()

1

1

ding dual of the reduced problem DRP

Maximize

s.t., 1 0 0

 free

T

T
j

j J i j k

π

e π π ,

π a | π π π , e i, j E k J

π

∈

⋅ =

≤ ∧ ⋅ ≤ ⇔ − ≤ ∀ = ∈ ∧ ∈

Business Computing and Operations Research 512

Solving DRP(π)

()

()
()

()

()

1

1

Hence, we get the corresponding dual of the reduced

problem DRP

Maximize

s.t., 1 0

Let us consider the problem DRP In what follows,

we denote a solution to DRP as

⋅ =

≤ ∧ − ≤ ∀ = ∈ ∧ ∈

T

n

i j k

π

e π π ,

π π π , e i, j E k J

π .

π π .

1

Obviously, each

feasible solution with 1 is optimal. Thus, we have to

follow all paths generated by the edges of set .

=π

J

Business Computing and Operations Research 513

Solving DRP(π)

()

Hence, if node is reachable from node 1, we define

1 But, if we commence our examination at the

destination , we know that it holds 0

with

Note that this results from the fact

i

i

i

π .

n π , i V

i,n J .

=

≤ ∀ ∈

∈

that

0 has to be fulfilled and was erased by

replacing with . Thus, we obtain 0

i n n

i

π π π

A A π .

− ≤

≤ɶ

5

Business Computing and Operations Research 514

Solving DRP(π)

Obviously, in these constellations, we can set 0.

This value is also propagated along each path

generated by arcs of set . Consequently, we may

conclude

1 when there exists a path in from 1 t

i

i

π

J

J

π

=

=

{ }

o

0 when there exists a path in from to

1 otherwise

In what follows, we define 1 in order to distinguish

two sets of nodes

| 0 |c

i

i

J i n

a

a

W i i V π W i i V

 ≤

=

= ∈ ∧ = ∧ = ∈ ∧{ }0 .iπ ≠

Business Computing and Operations Research 515

Solving DRP(π)

{ } { }

() ()
1

0 0

In order to generate a shortest path from 1 to ,

in case 1, we have to add additional arcs .

We know , with 0

We consider those edges that have

c

i i

i, j i j

W i | i V π W i | i V π .

n

j J

i, j E i, j J : c π π

π

= ∈ ∧ = ∧ = ∈ ∧ ≠

= ∉

∀ ∈ ∉ − + >

() ()

() (){ }

0

 negative relative costs, i.e.,

it holds: 0 0 0 1 0

The Primal-Dual Simplex generates

min | with

min | with

i j i j i j

i, j i j

i j

i, j i j

π π π π π π

c π π
λ i, j E i, j J

π π

c π π i, j E i, j J

− + < ⇔ − > ⇒ = ∧ =

 − +
= ∀ ∈ ∉

−

= − + ∀ ∈ ∉

Business Computing and Operations Research 516

Observations

()

{ } { }

 DRP determines a cut between the sets

 0 0

 The considered edges with 1 0 are just the edges that

 bridge the gap, i.e., they connect the incompleted path found to

c

i i

i j

π

W i |i V π W i |i V π

π π

−

= ∈ ∧ = ∧ = ∈ ∧ ≠

− = ∧ =

() (){ }

 node with the beginning of the graph

 indicates the length of the shortest path from to , for .

 This is the invariante of the procedure

min | , with gives the lengt

i

i, j i j

n

π i n i W

c π π i, j E i, j J

− ∈

− − + ∀ ∈ ∉ h

 of the shortest edge bridging the gap between and

Specifically, for this edge it holds: 0

c

i, j i j i i, j j

W W

c π π π c π− − + = ⇔ = +

Business Computing and Operations Research 517

Further observations

() If has become admissable, it stays admissable for

the remaining calculations, i.e., it holds . This

results from the fact that 0

 Consequently, we can conclude that if a node

i j i, j

i j

i, j E

π π c

π π

i

− ∈

− =

= =

− has entered ,

it stays there for the rest of the calculation process

W

6

Business Computing and Operations Research 518

Applying the Primal-Dual Simplex

� Consider the dual of the Shortest Path Problem

� Obviously, since c≥0, we know that π=0 is a first

feasible solution to (D)

� By making use of π=0, we have an initial dual

solution in order to commence the calculation of

the Primal-Dual Simplex Algorithm

Business Computing and Operations Research 519

A simple example (warm up)

()

()

Minimize 1 3 1 ,

s.t.,

1 1 0
1 1 0 1

1 0 1
1 0 1 0

0 1 1

T

P

c x x

A A x x

⇒

⋅ = ⋅

 = − ⇒ ⋅ = ⋅ = − − −

ɶ

1 2 3
1 1

3

Business Computing and Operations Research 520

A simple example (warm up)

() 1

1 1 1

 Maximize s.t. 1 0 3

0 1 1

We additionally set 0

T

n

D π , ,A π π c

π

−
 ⋅ = ⋅ ≤ =

=

1 2 3
1 1

3

Business Computing and Operations Research 521

Applying the Primal-Dual Simplex

{ }

1 1 1 1
0 0

We have 3 3 1 0
0 0

1 1 0 1

1

3 1,2,3

1

T

c

A π

J J

π

−
 = ⇒ − ⋅ = − ⋅

 = ⇒ = ∅ ∧ =

7

Business Computing and Operations Research 522

RP(π)

() ()
2 3

0

0 1 1 0 0 0 1 0 0 0 1 1

1 1 0 1 1 0 1 1 0 1 1 0

0 0 1 1 0 1 0 0 1 1 0 1

1 0
0,0 0,0

1 0 1 0 1
min ,

1 01 0 1

0 1

3 1
min , 1

1 1

T T

c c

,λπ π

π π

− − −

⇒

− −

− ⋅ − ⋅

 ⇒ − = ⇔ = =
 ⋅ ⋅

= =

Business Computing and Operations Research 523

Illustration of RP(π)

1 2 3
1

Current Cut

() ()0,0 1,1T Tπ π= ∧ =

Business Computing and Operations Research 524

Updating π and J

{ } { }

0

0 1 1
1 1

0 1 1

1 1 1 1
1 1

We have 3 3 1 0
1 1

1 1 0 1

1 1 1 1

3 1 2 3 1,2

1 1 0

T

c

λ π

π A π

J J

= ⇒ = + ⋅ =

−

= ⇒ − ⋅ = − ⋅

− +

= − = ⇒ = ∧ =
 −

Business Computing and Operations Research 525

RP(π)

[]

()

() ()

{ } 121min
1

2

1

1
min

1

13

1

01
min

0

1

0

1
11

1

1

1

1
11

min
0

1

1

0

1

1

101100

011011

011101

101100

011011

110001

21

0

==

=

 −−

=

⋅

⋅−

−
⋅

−
⋅−

=

=⇔

=−

⇒

−

−−−

⇒

−

−−−

,,,

π

,c

,

π

,c

,λππ

TT

8

Business Computing and Operations Research 526

Illustration of RP(π)

1 2 3
1

Current Cut

1

3

() ()1,1 1,0T Tπ π= ∧ =

Business Computing and Operations Research 527

Updating π and J

{ } { }

0

1 1 2
1 1

1 0 1

1 1 1 1
2 2

We have 3 3 1 0
1 1

1 1 0 1

1 2 1 0

3 2 1 1 3 2

1 1 0

T

c

λ π

π A π

J , J

= ⇒ = + ⋅ =

−

= ⇒ − ⋅ = − ⋅

− +

= − = ⇒ = ∧ =
 −

Business Computing and Operations Research 528

RP(π)

[]
()

() ()

0

1 0 1 1 1 0 0 1 1 0 0 0

1 1 0 1 1 0 1 1 0 1 1 0

0 0 1 1 0 1 1 1 1 0 1 1

0 optimal solutions are found, i.e.,

1
2

0 are proven to be optimal for and ,
1

1

respectively

x π P D

ξ

− − −

⇒

−

⇒ =

= ∧ =

Business Computing and Operations Research 529

Illustration of RP(π)

1 2 3
11

() ()2,1 0,0

The shortest path 1, 2,3 has an objective function value of 2.

T Tπ π= ∧ =

9

Business Computing and Operations Research 530

A somewhat more complicated example

1

4

6

3

2

5

e1,c1=2

e2,c2=1

e3,c3=3

e4,c4=3

e5,c5=1

e6,c6=1

e7,c7=2

e8,c8=2

e9,c9=5

Business Computing and Operations Research 531

Iteration 1 – step 1

()

{ }

We commence our calculations with 0 0 0 0 0

1 2 3 4 5 6 7 8 9

Consequently, we obtain the following tableau

0 1 1 1 1 1 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 1 1 0 0 0 0 0 0 0

0 0 1 0 0 0 1 0 1 1 1 0 0 0 0

0 0 0 1 0 0 0 1 1 0 0 1 0 0 0

0 0 0 0 1 0 0 0 0 1 0 0 1 1 0

0 0 0 0

T

c

π , , , ,

J J , , , , , , , ,

=

⇒ = ∅ ∧ =

−

− −

− −

0 1 0 0 0 0 1 1 1 0 1− −

Business Computing and Operations Research 532

Iteration 1 – step 2

() () () { }

() { } { }
0

1 0 0 0 0 0 0 0 0 0 0 0 0 1 1

1 1 0 0 0 0 1 1 0 0 0 0 0 0 0

0 0 1 0 0 0 1 0 1 1 1 0 0 0 0

0 0 0 1 0 0 0 1 1 0 0 1 0 0 0

0 0 0 0 1 0 0 0 0 1 0 0 1 1 0

0 0 0 0 0 1 0 0 0 0 1 1 1 0 1

0 0 0 0 0 1 1 11 1 1 11 1 1 2 5 2

2 2 2 2 2 8 1 2 3 4 5 6 7 9

T T

T c

, , , , , , , , π π , , , , λ min ,

π , , , , J J , , , , , , ,

− − −

−

− −

− −

− −

⇒

= − ⇔ = ⇒ = =

⇒ = ⇒ = ∧ =

Business Computing and Operations Research 533

Iteration 2 – step 1

[]

()
101110000100000

011001000010000

000100110001000

000011101000100

000000011000011

110000000000001

−−

−−

−−

−

−−−

10

Business Computing and Operations Research 534

Iteration 2 – step 2

() { } () ()

() { } { }9,6,5,4,3,2,18,742444

1011122222223,2,3min10111

101110000100000

011001000010000

000100110001000

000011101000100

000000011000011

101001000010001

0

=∧=⇒=

⋅+=π⇒==⇒=

⇒

−−

−−

−−

−

−−−−

c

TT

JJ,,,,

,,,,,,,,λ,,,,π

Business Computing and Operations Research 535

Iteration 3 – step 1

[]

() 101110000100000

011001000010000

000100110001000

000011101000100

000000011000011

101001000010001

−−

−−

−−

−

−−−−

Business Computing and Operations Research 536

Iteration 3 – step 2

() { } { }

() () ()

{ } { }9,3,2,18,7,6,5,4

4255500111142444

11,1,1min1,1,23min00111

101110000100000

110111000110000

000100110001000

000011101000100

000000011000011

000111000110001

0

=∧=⇒

=⋅+=⇒

==−=⇒=⇒

−−

−−−

−−

−

−−−−

c

T

T

JJ

,,,,,,,,,,,,

λ,,,,π

π

Business Computing and Operations Research 537

Iteration 4 – step 1

[]

()

101110000100000

110111000110000

000100110001000

000011101000100

000000011000011

000111000110001

−−

−−−

−−

−

−−−−

11

Business Computing and Operations Research 538

Iteration 4 – step 2

101110000100000

110100101110100

000100110001000

000011101000100

000000011000011

000100101110101

−−

−−

−−

−

−−−

Business Computing and Operations Research 539

Iteration 4 – step 3

[]

()

101110000100000

110100101110100

000100110001000

000011101000100

000000011000011

000100101110101

−−

−−

−−

−

−−−

Business Computing and Operations Research 540

Iteration 4 – step 4

()

() { }

() () ()
{ } { }9,3,18,7,6,5,4,2

4255600001142555

11,2min00001

101010110101000

110000011111100

000100110001000

000011101000100

000000011000011

000000011111101

0

=∧=⇒

=⋅+=π⇒

==⇒=⇒

−−−

−−

−−

−

−−−

c

T

T

JJ

,,,,,,,,,,,,

λ,,,,π

Business Computing and Operations Research 541

Iteration 5 – step 1

[]
()

()

101010110101000

110000011111100

000100110001000

000011101000100

000000011000011

000000011111101

−−−

−−

−−

−

−−−

12

Business Computing and Operations Research 542

Iteration 5 – step 2

() ()

() ()
0

0 1 1 1 1 1 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 1 1 0 0 0 0 0 0 0

0 0 1 0 0 0 1 0 1 1 1 0 0 0 0

1 1 0 1 0 0 1 0 1 0 0 1 0 0 0

1 1 1 1 1 1 0 0 0 0 0 0 0 1 1

1 1 0 1 0 1 1 0 1 0 1 0 1 0 1

0 0 1 0 0 0 1 1 1 0 6 5 5 2 4 are

optimal solutions to and , respectively.

The shortest path

T T
x , , , , , , , , π , , , ,

P D

ξ

−

−

− −

⇒ = ⇒ = ∧ =

1,3,5, 4,6 has an objective function value of 6.

Business Computing and Operations Research 543

Dijkstra’s Algorithm

() ()

{ } ()

{ } ()

()

() (){ }

BEGIN

 : The following must hold : 0,

 : : 0 Denote as the source of the graph

 FOR all DO :

 WHILE DO

 : min

i, j i, j

s,y

c , i, j E c i, j E

W s ; π s ; s

y V \ s π y c

W V

π x π y | y W

= ∞ ∀ ∉ ≥ ∀ ∈

= =

∈ =

≠

= ∉

{ }

() () (){ }

()

 :

 FOR all DO : min

 END DO

END

Laufzeit log

x,y

W W x

y V \W π y π y ,π x c

O n n m

= ∪

∈ = +

⋅ +

Business Computing and Operations Research 544

Full version with storing an optimal path

() ()

{ }

BEGIN

 : The following must hold for this algorithm: 0

 : Denote as the source of the graph

0 if
 : Let be the length of the shortest

otherwise

ij ij

i i
si

c i, j E c i, j E

W s s

i s
 π i V π

c

= ∞ ∀ ∉ ≥ ∀ ∈

=

=
= ∀ ∈

()

{ }
{ }

 path ,...,

 : Let be the preceeding vertex of in the shortest path ,..., ,

 WHILE DO

 : min

 :

 FOR all

i i i

x y

s i

Pre s s,i E Pre i s Pre i

W V

π π | y W

W W x

y V \W

= ∀ ∈

≠

= ∉

= ∪

∈ DO

 IF THEN DO

 :

 :

 END DO

 END DO

 END DO

END

x xy y

y x xy

y

π c π

π π c

Pre x

+ <

= +

=

Business Computing and Operations Research 545

Dijkstra’s Algorithm and the simple example

{ }

{ }

{ }

1 2 3
START

0 1 3
1

1 1
ITERATION 1

0 1 2
1,2

1 2
ITERATION 2

0 1 2
1,2,3

1 2

\ STOP

The shortest path 1,2,3 has an

objective function value of 2.

x

x

x

x

x

x

x

W
Pre

W
Pre

W
Pre

V W

π

π

π

=

=

=

= ∅ ⇒

1 2 3
1 1

3

(),

1 3

1i jc

∞

= ∞ ∞
 ∞ ∞ ∞

13

Business Computing and Operations Research 546

Dijkstra algorithm – running time

� In each step of the procedure a node is determined
(labeled) to which a shortest path is found

� Hence, there are n-1 steps for n=|V| nodes

� Moreover, each arc of set E in the network has to be
considered once

� If all nodes are stored in a min-heap (sorting criterion is
the distance to the labeled nodes) we obtain the total
asymptotic running time

()()logO E V V+ ⋅

Business Computing and Operations Research 547

Negative arc weights

� The basic idea of the Dijkstra procedure is based on the
fact that if we have identified a node with a minimum
distance to the labeled nodes the shortest path to this
node is found

� However, this is not necessarily correct if negative arc
weights occur

� In this case, a path to another node with even longer
length may become shorter over an arc with negative
weight

� Note that the Dijkstra algorithm can be extended to the
case of negative arc weights. However, this results in an
increased time complexity of O(n3) (cf., Nemhauser
(1972), Bazaraa and Langley (1974))

Business Computing and Operations Research 548

Cycles of negative weights

� The shortest path problem in a network may be

not well-defined anymore if there exists cycles of

negative length

� In this case, some paths can be arbitrarily shortened
by integrating this cycle infinitely often

� Hence, if there is a connection to this cycle, the
problem has no solution and, therefore, is not well-
defined

Business Computing and Operations Research 549

6.2 Bellman-Ford algorithm

� The Bellman-Ford algorithm is based on separate
algorithms by Bellman and by Ford (cf. Bellman (1958),
Ford and Fulkerson (1962))

� Like the Dijkstra algorithm, it solves the single source shortest

path problem starting from a source node �

� But, in contrast to the Dijkstra algorithm, it is able to deal with

edges that possess a negative weight

� Moreover, the algorithm of Bellman-Ford also identifies whether a
cycle of positive length exists in the graph that is reachable from �

� The algorithm possesses a very simple structure that
enables us to easily derive its asymptotic running time

� However, the proving of the correctness of the algorithm
becomes quite technical

14

Business Computing and Operations Research 550

Attributes of each vertex �

� � single source from that the shortest paths have
to be found

� � � shortest path estimate of vertex �

� � � predecessor node in graph �� (node that lastly
brought an reduction of the estimate of vertex �)

� � �, � weight of arc �, � in network � = �, �

� � actual length of the shortest path from s to �

Initialization of the attributes

procedure initialization(� = �, � , �)

� � = 0

for each vertex � ∈ �

do � � = ∞, � � = −1 od

Business Computing and Operations Research 551

Technique of relaxation

� The algorithm of Bellman and Ford iteratively

applies the technique of relaxation

� This operation tries to reduce the estimate � � 	of

a node � by considering a reduction over an arc

�, � that connects the estimate � � of node �
to node �

procedure relax �, �, �

if � � > � � + � �, �

then � � > � � + � �, � , � � = �

Business Computing and Operations Research 552

Bellman-Ford – pseudo code

procedure initialization(� = �, � , �, �)

1. initialization(� = �, � , �)

2. for � = 1 to � − 1

3. for each edge �, � ∈ �

4. relax �, �,�

5. for each edge �, � ∈ �

6. if � � > � � + � �, �

7. then return FALSE, stop

8. return TRUE

Business Computing and Operations Research 553

Predecessor subgraph ��

� We often wish to compute not only shortest-path weights,
but also the nodes visited on these shortest paths

� For this purpose, for a given graph � = �, � , we
introduce a predecessor subgraph ��	as follows

� For each vertex � ∈ �, a predecessor � � that is either another
vertex or “-1”

� The Bellman-Ford algorithm introduced in the following will

generate a predecessor subgraph ��	such that the chain of

predecessors originating at a vertex � runs backwards along a
shortest path from � to �.

� We define the predecessor subgraph �� = �� , �� with

�� = � ∈ �	|	� � ≠ −1 ∪ �

and �� = � � , � ∈ �	|	� ∈ �� − �

15

Business Computing and Operations Research 554

Shortest-paths tree

� Let � = �, � be a weighted directed graph with

weight function �:� → � and source node �.

� A shortest path tree rooted at node � of � is a

directed subgraph �′ = (�′, �′) with

1. �′ ⊆ � and �′ ⊆ �

2. �′ is a set of nodes that are reachable from node �

3. �′ = (�′, �′) forms a rooted tree (a tree is a connected
graph such that each node possesses an
unambiguously defined predecessor) with root node �

4. For all � ∈ �′, the unique simple path from � to � in
�′ = (�′, �′) is a shortest path from � to � in �

Business Computing and Operations Research 555

Triangle inequality

6.2.1 Lemma

Let � = �, � be a weighted directed graph with

weight function �:� → � and source node �. Then,

for all edges �, � ∈ �, we have

 �, � ≤ �, � + � �, �

Business Computing and Operations Research 556

Proof of Lemma 6.2.1

� Suppose that ' is a shortest path from source �
to vertex �

� Then ' has no more weight than any other path

from � to �

� Specifically, path ' has no more weight than the

particular path that takes a shortest path from

source � to vertex � and then takes edge �, �

Business Computing and Operations Research 557

Upper bound property

6.2.2 Lemma

Let � = �, � be a weighted directed graph with

weight function �:� → � and source node �.
Moreover, the attributes are initialized by executing

the procedure initialization(� = �, � , �, �). Then,

� � ≥ �, � ,∀� ∈ � and this invariant is

maintained over any sequence of relaxation steps

on the edges of G. Furthermore, once � �
coincides with �, � , it never changes.

16

Business Computing and Operations Research 558

Proof of Lemma 6.2.2

� This proof is given by induction over the number

k of performed relaxation steps

� Start of induction with k=0, i.e., no relaxation step

is executed

� Here, the proposition obviously holds for all � ∈ � − �
since we initialized the shortest path estimate by
� � = ∞ ≤ �

� Moreover, � � = 0 ≤ � holds since � = −∞ if �
is on a cycle of negative length and � = 0 otherwise

� Therefore, the proposition holds

Business Computing and Operations Research 559

Proof of Lemma 6.2.2

� Induction step k→k+1

� We consider the relaxation of an edge �, � . By the
inductive proposition we know that, prior to the * + 1th
relaxation, it holds that � + ≥ �, + ,∀+ ∈ �

� In this particular relaxation of edge �, � only the
estimate � � may be updated

� If it is not updated we know, by the inductive proposition
� � ≥ �, �

� Otherwise, we have � � = � � + � �, �
� Due to the inductive proposition, we know that

� � = � � + � �, � ≥ � + � �, �

� And due to the triangle property (Lemma 6.2.1), we have � � =
� � + � �, � ≥ � + � �, � ≥ �

Business Computing and Operations Research 560

Proof of Lemma 6.2.2

� In order to see that the value of � � never

changed once it coincides with �, � , note that

we have just proven that � � ≥ �, � , ∀�, and it

cannot increase since the application of the

relaxation operation may only reduce the

estimate � � but never increase it

� This completes the proof

Business Computing and Operations Research 561

No-path property

6.2.3 Corollary

Suppose that in a weighted directed graph � =
�, � with weight function �:� → � no path

connects a source node � to a given node �. Then,

after the graph is initialized by calling the procedure

initialization � = �, � , �, � , we have �(�) = ∞
and this invariant is maintained over any sequence

of relaxation steps on the edges of G.

17

Business Computing and Operations Research 562

Proof of Corollary 6.2.3

� Due to the upper bound property (Lemma 6.2.2),

we conclude that

		∞ = �, � ≤ � � ⇒ � � = ∞

Business Computing and Operations Research 563

Simple consequence

6.2.4 Lemma

Let � = �, � be a weighted directed graph with

weight function �:� → � and �, � ∈ �. Then,

immediately after relaxing edge �, � ∈ �	by

executing the procedure relax �, �, � , we have

� � ≤ � � + � �, � .

Business Computing and Operations Research 564

Proof of Lemma 6.2.4

� If, just before relaxing the edge �, � ∈ �, we

have � � > � � + � �, � , then we have � � =
� � + � �, � afterward

� If, instead, we have �(�) ≤ �(�) + � �, � just

before relaxing the edge �, � ∈ �, then no

update is conducted and we also obtain � � ≤
� � + � �, � afterward

� This completes the proof

Business Computing and Operations Research 565

Convergence property

6.2.5 Lemma

Let � = �, � be a weighted directed graph with

weight function �:� → � , source node � ∈ � and

two nodes �, � ∈ �. Moreover, let ' a shortest path

from � to �, while the last used arc of ' is �, � ∈ �.

After executing the procedure initialization(� =
�, � , �, �) and performing a sequence of

relaxation steps that includes the call relax �, �, �
is executed on the edges of � = �, � . If �(�) =
(�, �)	at any time prior to the call, then � � =
 �, � at all times after the call.

18

Business Computing and Operations Research 566

Proof of Lemma 6.2.5

� Due to the upper bound property (Lemma 6.2.2),

if we obtain �(�) = �, � at some point before

calling relax �, �, � , then this equality holds

thereafter. Moreover, after calling relax �, �,� ,

due to Lemma 6.2.4, we obtain

� � ≤ � � + � �, � = �, � + � �, �

� And due to the definition of ' and the fact that

subpaths of a shortest path are also shortest
paths (otherwise, the shortest path can be

shortened), we conclude

� � ≤ � � + � �, � = �, � + � �, � = �, �

Business Computing and Operations Research 567

Proof of Lemma 6.2.5

� Again, due to the upper bound property (Lemma

6.2.2), after obtaining �(�) = �, � , this equality

is maintained thereafter

� This completes the proof

Business Computing and Operations Research 568

Path-relaxation property

6.2.6 Lemma

Let � = �, � be a weighted directed graph with weight
function �: � → � and a source node � ∈ �. Moreover, let ' =
�-, … , �/ any shortest path from � = �- to �/. After executing

the procedure initialization(� = �, � ,�, �) and performing a
sequence of relaxation steps that includes, in order, the calls
relax �-, �0, � , relax �0, �1, � ,…, relax �/20, �/ , � , then
� �/ = �, �/ = �-, �/ after these relaxations and at all
times afterward. This property holds no matter what other edge
relaxations occur, including relaxations that are intermixed with
relaxations of the edges of '.

Business Computing and Operations Research 569

Proof of Lemma 6.2.6

� This proof is given by induction, i.e., specifically,

we show that after the �th edge of path ' (i.e.,

edge �320, �3) is relaxed, we have � �3 =
 �, �3 = �-, �3

� The basis of the induction is � = 0

� No relaxation of edges of path ' is performed

� Hence, due to the initialization, we have
� �- = � � = 0 = �, �	 = �, �-

� Due to the upper bound property (Lemma 6.2.2), the
value of � �- never changes after the initialization

19

Business Computing and Operations Research 570

Proof of Lemma 6.2.6

� For the inductive step, we assume, by induction,

that it holds � �320 = �, �320 = �-, �320 and

we call relax �320, �3 , �

� Hence, due to the convergence property (Lemma

6.2.5), we conclude � �3 = �, �3 = �-, �3
and, again, due to the upper bound property

(Lemma 6.2.2), the value of �(�3) never changes

after this relaxation

� This completes the proof

Business Computing and Operations Research 571

Relaxation and shortest-paths trees

� We now show that once a sequence of relaxations

has caused the shortest-path estimates to

coincide with the shortest-path weights, the

predecessor subgraph �� induced by the resulting

values is a shortest-paths tree for �

� We start with the following lemma, which shows

that the predecessor subgraph always forms a

rooted tree whose root is the source

Business Computing and Operations Research 572

Rooted tree with root �

6.2.7 Lemma

Let � = �, � be a weighted directed graph with

weight function �:� → � and a source node � ∈ �,

while there exists no cycle of negative length that is

reachable from node �. Then, after executing the

procedure initialization(� = �, � , �, �), the

predecessor subgraph �� forms a rooted tree with

root �, and any sequence of relaxation steps on

edges of � maintains this property as an invariant.

Business Computing and Operations Research 573

Proof of Lemma 6.2.7

� Initially, � is the only node in the predecessor subgraph ��
and the proposition holds

� Therefore, we consider the situation after performing a
sequence of relaxation steps

� First, we show that �� is acyclic

� Suppose by performing the relaxation steps there occurs a first cycle
4 = �-, … , �/ in �� with �- = �/. This implies ∀� ∈ 1, … , * : � �3 =
�320

� By renumbering the nodes on the cycle, we can assume, without loss

of generality, that this cycle occurs after calling the operation
relax �/20, �/ , �

� Clearly, all nodes �3 on the cycle are reachable from � since � �3 ≠
− 1 and therefore the upper bound property (Lemma 6.2.2) tells us
that � �3 is finite and through � �3 ≥ �, �3 , we have �, �3 ≠ ∞
and, therefore, there is a connection from � to �3

20

Business Computing and Operations Research 574

Proof of Lemma 6.2.7

� First, we show that �� is acyclic (continuation)
� We consider the situation just before calling the operation relax �/20, �/ , �

� There, since it holds ∀� ∈ 1,… , * − 1 : � �3 = �320, the last update of � �3
was � �3 = � �320 +� �320, �3 and since then, � �320 was only further

decreased, i.e., we have � �3 ≥ �, �320 +� �320, �3 , ∀� ∈ 1,… , * − 1

� Due to � �/ = �/20, just prior to the update, we have � �/ > � �/20 +
� �/20, �/ (otherwise, no update would be performed by calling
relax �/20, �/ , �)

� We calculate the estimates of nodes on cycle 4

� Hence, we have a cycle of negative length which provides the desired
contradiction

� Thus, no cycle is possible

() () ()() () ()

() () ()

1 1 1 1

1 1 1 1

0 1 1

1 1 1

, ,

Since , we have and this implies 0 ,

k k k k

i i i i i i i

i i i i

k k k

k i i i i

i i i

d v d v w v v d v w v v

v v d v d v w v v

− − − −
= = = =

− −
= = =

> + = +

= = >

∑ ∑ ∑ ∑

∑ ∑ ∑

Business Computing and Operations Research 575

Proof of Lemma 6.2.7

� In order to show that �� is a rooted tree with root �, it is
sufficient to prove that for all � ∈ �� there is a unique single
path from � to � in ��

� First, we show that there is a path from � to � in ��
� Nodes � in �� are those with � � ≠ −1 plus the source node �

� By induction over the number of the relaxation steps *, we show
that a path exists from � to � ∈ �� in ��

� * = 0: Trivial case since the path starts at � ∈ ��

� * > 0: We consider the *th relaxation that relaxes an edge

�, � ∈ � and consider node � ∈ ��. If the estimate � � was not
reduced the connection results by the proposition of the

induction

� Otherwise, if the estimate � � was reduced, we have a
connection over � � = � that is connected by the proposition of

the induction

Business Computing and Operations Research 576

Proof of Lemma 6.2.7

� Finally, we have to show for all � ∈ �� that there is a
single path from � to � in ��

� Let us assume �� contains two paths from � to �

� Path 1: � ↝ � ↝ + ⟶ 7 ↝ �

� Path 2:	� ↝ � ↝ 8 ⟶ 7 ↝ �

� With + ≠ 8 (Note that � may be � and/or 7 may be �)

� But, then � 7 = + and � 7 = 8 which implies the contradiction

that + = 8

� All in all, we conclude that for all � ∈ �� there is a unique
single path from � to � in �� and, therefore, predecessor
subgraph �� forms a rooted tree with root �

Business Computing and Operations Research 577

Predecessor-subgraph property

6.2.8 Lemma

Let � = �, � be a weighted directed graph with

weight function �:� → � and a source node � ∈ �,

while there exists no cycle of negative length that is

reachable from node �. Then, after calling the

procedure initialization(� = �, � , �, �) any

sequence of relaxation steps on edges of � =
�, � is executed that produces for all � ∈ �	� � =
 �, � . Then, the predecessor subgraph �� is a

shortest path tree rooted at �.

21

Business Computing and Operations Research 578

Proof of Lemma 6.2.8

� In what follows, it is shown that the four attributes of shortest path

trees are fulfilled by the predecessor subgraph ��

� These are the following
A shortest path tree rooted at node � of � is a directed subgraph �′ = (�′, �′) if

1. �′ ⊆ � and �′ ⊆ �

2. �′ is a set of nodes that are reachable from node �

3. �′ = (�′, �′) forms a rooted tree (a tree is a connected graph such that each

node possesses an unambiguously defined predecessor) with root node �

4. For all � ∈ �′, the unique simple path from � to � in �′ = (�′, �′) is a shortest

path from � to � in �

1. Is trivial

2. If a node � is reachable from � we have (�, �) ≠ ∞. Therefore, if

� ∈ �� 	we have � � ≠ −1	and �(�) ≠ ∞. Due to �(�) ≥ (�, �), we

know that (�, �) ≠ ∞ and node � is reachable from �

3. Follows directly from Lemma 6.2.7

Business Computing and Operations Research 579

Proof of Lemma 6.2.8

4. Let ' = �-, … , �/ the unique path in �� with �- = � and �/ = �.

This implies ∀� ∈ 1, … , * : � �3 = �320, �(�3)≥ �(�320)+� �320, �3
and (by proposition) �(�3)= �, �3 . Hence, we obtain �, �3 ≥
 �, �320 +� �320, �3 ⇒ �, �3 − �, �320 ≥ � �320, �3 . By

summing the weights along the path ' we get

Thus, we have � ' ≤ �, �/ = �, � and since �, � is the length of

the shortest path, we conclude � ' = �, � , and thus ' is a shortest

path from � to � in �

This completes the proof

() () () ()() () ()
()

()1 1 0

1 1
, 0

, , , , , ,
k k

i i i i k k

i i
s s

w p w v v s v s v s v s v s v

δ

δ δ δ δ δ− −
= =

= =

= ≤ − = − =∑ ∑ �����

Business Computing and Operations Research 580

Correctness of the found estimates

6.2.9 Lemma

Let � = �, � be a weighted directed graph with

weight function �:� → � and a source node � ∈ �,

while there exists no cycle of negative length that is

reachable from node �. Then, after calling the

procedure initialization(� = �, � , �, �) and � − 1
iterations of the for loop of lines 2-4 of the Bellman-

Ford algorithm, we have � � = �, � 	∀� ∈ � with
� is reachable from �.

Business Computing and Operations Research 581

Proof of Lemma 6.2.9

� We apply the path-relaxation property (Lemma 6.2.6). For
this purpose, consider any node v that is reachable from �
and ' = �-, … , �/ any shortest path from � = �- to �/ = �.

� Clearly, ' has at most � − 1 edges, and so we have * ≤
|�| − 1. Each of the � − 1 iterations of the for loop of lines
2-4 relaxes all � edges. Among the edges relaxed in the
�th iteration, for � = 1,2,… , * is �320, �3 .

� By applying the path-relaxation property (Lemma 6.2.6), we
conclude � � = � �/ = �-, �/ = �, �/ = �, �	

� This completes the proof

22

Business Computing and Operations Research 582

Identifying cycles of negative length

6.2.10 Corollary

Let � = �, � be a weighted directed graph with

weight function �:� → � and a source node � ∈ �,

while there exists no cycle of negative length that is

reachable from node �. Then, ∀� ∈ � there is a path

from � to � if and only if the Bellman-Ford algorithm

terminates with � � < ∞ when it is run on �.

Business Computing and Operations Research 583

Proof of Corollary 6.2.10

� First, we assume that there is a path from � to �

� Then, there exists a shortest path ' = �-, … , �/ from � =
�- to �/ = �

� Hence, by Lemma 6.2.9, we have � � = �, � < ∞

� Second, we assume that there is no path from � to �

� Therefore, by Lemma 6.2.3, we have � � = ∞ = �, �

� This completes the proof

Business Computing and Operations Research 584

Correctness of the Bellman-Ford algorithm

6.2.11 Theorem

Let the Bellman-Ford algorithm run be run on a

weighted, directed graph � = �, � with weight

function �:� → � and a source node � ∈ �. If � =
�, � 	contains no cycle of negative length that is

reachable from node �, then the algorithm returns

TRUE, we have � � = �, � ∀� ∈ �, and the

predecessor subgraph �� is a shortest path tree
rooted at �. If � does contain a negative-weight

cycle reachable from �, then the algorithm returns

FALSE.

Business Computing and Operations Research 585

Proof of Theorem 6.2.11

� First, we assume that � does not contain a cycle that is
reachable from �

� If node � is reachable from �, then the proposition � � = �, �

∀� ∈ �	results from Lemma 6.2.9

� If node � is not reachable from �, then the proposition � � =
 �, � = ∞ results from applying Corollary 6.2.3

� Moreover, the predecessor-subgraph property (Lemma 6.2.8) proves

that the predecessor subgraph �� is a shortest path tree rooted at �.

� It remains to show that the TRUE/FALSE output is correct

� At termination, we have for all edges �, � ∈ �

() () () () () ()
by the triangle inequality

, , , ,d v s v s u w u v d u w u vδ δ= ≤ + = +
�������

23

Business Computing and Operations Research 586

Proof of Theorem 6.2.11

We consider the lines 5-8 of the Bellman-Ford algorithms

5. for each edge �, � ∈ �

6. if � � > � � + � �, �

7. then return FALSE, stop

8. return TRUE

� Hence, none of the tests in line 6 causes the algorithm to return

FALSE. Therefore, it returns TRUE

� Second, if there is a cycle of negative length in graph � that is
reachable from the source �

� Let the cycle be 4 = �-, … , �/ with �- = �/. Then, it holds

()1

1

, 0
k

i i

i

w v v−
=

<∑

Business Computing and Operations Research 587

Proof of Theorem 6.2.11

� We assume that the Bellman-Ford algorithm returns TRUE

� Thus, since we have not return FALSE, it holds that

� Summing the inequalities around cycle 4 results in

� This is a contradiction to the assumption of the negative length of cycle 4

� Therefore, the algorithm provides the correct output FALSE if there is a

cycle of negative length in graph � that is reachable from the source �

() () ()1 1
, , 1,2,...,

i i i i
d v d v w v v i k− −≤ + ∀ =

() () ()() () ()

() () ()

0

1 1 1 1

1 1 1 1

1 1

1 1 1

Since v v

, ,

, 0 ,

k

k k k k

i i i i i i i

i i i i

k k k

i i i i i

i i i

d v d v w v v d v w v v

d v w v v w v v

− − − −
= = = =

− −
= = =

=

≤ + = +

= + ⇔ ≤

∑ ∑ ∑ ∑

∑ ∑ ∑
�����

Business Computing and Operations Research 588

Complexity

� The initialization step (line 1) possesses an

asymptotic running time of : �

� Each of the � − 1 passes over the edges (lines

2-4) requires an asymptotic running time of

: �

� The final for loop of lines 5-7 takes asymptotic

running time of : �

� Hence, all in all, we have a total asymptotic

running time of :(� · |�|)

Business Computing and Operations Research 589

Example

0

∞ ∞

∞ ∞

6

5

-2

7

8 -3

-4
7

9

2

0

0

6 ∞

7 ∞

6

5

-2

7

8 -3

-4
7

9

2

1

0

6 4

7 2

6

5

-2

7

8 -3

-4
7

9

2

2

0

2 4

7 2

6

5

-2

7

8 -3

-4
7

9

2

3

s

t x

y z

s

t x

y z

s

t x

y z

s

t x

y z

() () ()

() () () () () () () () () ()

If edge , is printed in bold it holds that and 1, otherwise

The sequence of edges is given by , , , , , , , , , , , , , , , , , , ,

u v E v u v

t x t y t z x t y x y z z x z s s t s y

π π∈ = = −

24

Business Computing and Operations Research 590

Example

0

2 4

7 -2

6

5

-2

7

8 -3

-4
7

9

2

4

0

2 4

7 -2

6

5

-2

7

8 -3

-4
7

9

2

5

s

t x

y z

s

t x

y z

() () ()

() () () () () () () () () ()

If edge , is printed in bold it holds that and 1, otherwise

The sequence of edges is given by , , , , , , , , , , , , , , , , , , ,

u v E v u v

t x t y t z x t y x y z z x z s s t s y

π π∈ = = −

Node π d Path

s -1 0 s

t x 2 s-y-x-t

y s 7 s-y

x y 4 s-y-x

z t -2 s-y-x-t-z

Business Computing and Operations Research 591

Example

0

2 4

7 -2

6

5

-2

7

8 -3

-4
7

9

2

5

s

t x

y z

Node π d Path

s -1 0 s

t x 2 s-y-x-t

y s 7 s-y

x y 4 s-y-x

z t -2 s-y-x-t-z

5. for each edge �, � ∈ �

6. if � � > � � + � �, �

7. then return FALSE, stop

8. return TRUE

Since � � > � � + � �, � does not apply for any edge �, � ∈ �, the

Bellman-Ford algorithm returns TRUE in this example

Business Computing and Operations Research 592

6.3 Floyd-Warshall algorithm

� In what follows, we introduce a second shortest

path algorithm that computes the shortest path

between all pairs of nodes in a network

� Therefore, this algorithm is frequently denoted as

the “all pairs shortest path” procedure

� In contrast to the Dijkstra algorithm, it works with

negative arc weights

� Moreover, the algorithm can be extended in order

to deal with cycles of negative length

� The running time of this procedure is O(n3)

Business Computing and Operations Research 593

Triangle operation

6.3.1 Definition

We consider a quadratic distance matrix �3,< . A

triangle operation for a fixed node k is

� This operation provides the basic idea of the

algorithm

For each relation it is iteratively tested whether a length
reduction over an immediate node k is possible or not

{ }, , , ,min , , 1,..., but , .

This includes .

i j i j i k k jd d d d i k n i k j

i j

= + ∀ = ≠

=

25

Business Computing and Operations Research 594

Iterative application of the triangle operation

6.3.2 Theorem

We initialize �3,< with 43,< and set �3,3 = 0.

By iteratively performing the triangle operation

defined in Definition 6.2.1 for successive values
k=1,2,…,n, �3,< 	becomes equal to the length of the

shortest path from i to j according to the arc weights

43,< .

The arc weights may be negative, but we assume

that the input graph contains no negative-weight

cycles.

Business Computing and Operations Research 595

Proof of Theorem 6.3.2

� This proof is given by induction over the index of

the executed iteration k0 =0,1,…,n

� Specifically, we claim that after the execution of

the triangle operation for k0 the entry di,j gives the

length of the shortest path from i to j with

intermediate nodes v≤k0

� Initial step of the induction

� We commence the induction for k0=0

� Therefore, the initialization of �3,< fulfills this invariant

for k0=0 since it coincides with the respective weight of
a potentially existing direct connection

Business Computing and Operations Research 596

Proof of Theorem 6.3.2

Induction step k0→k0+1

� We assume that the proposition holds for k0≥0 and
consider �3,<

� There are two possibilities

Case 1: The shortest path from i to j includes a visit of
node k0

� Therefore, the length of the shortest path from i to j that
includes only intermediate locations with an index v≤k0

coincides with the length of the shortest path from i to k0

(integrating only locations with an index v<k0) plus the
length of the shortest path from k0 to j (integrating only
locations with an index v<k0)

� This is just the current sum �3,/= + �/=,<

Business Computing and Operations Research 597

Proof of Theorem 6.3.2

Case 2: The shortest path from i to j does not include a visit
of node k0

� In that case the length of the shortest path from i to j
that includes only intermediate locations with an index
v≤k0 coincides with the length of the shortest path from i
to j (integrating only locations with an index v<k0)

� This is just the current value �3,<

Hence, in both cases, the triangle operation executed with
node k0 updates �3,< such that it defines the length of the

shortest path from i to j (integrating only locations with an
index v≤k0). This completes the proof. Note that this includes
negative arc weights if there is no cycle of negative length.

26

Business Computing and Operations Research 598

Floyd-Warshall algorithm

Input: An >+>-matrix 43,< 	with nonnegative entries

Output: An >+>-matrix �3,< 	with �3,< as the shortest distance from i to j

according to the >+>-matrix 43,< , ?3,< gives the vertex that is

intermediately visited (reduction was possible)

for all � ≠ @ do �3,< = 43,<, ?3,< = 0

for i=1,…,n do �3,3 = 0, ?3,< = 0

for k=1,…,n do

for i=1,…,n, � ≠ * do

for j=1,…,n, * ≠ @ do

if �3,< > �3,/ + �/,<

then begin

�3,< = �3,/ + �/,<

?3,< = *

end

Business Computing and Operations Research 599

Path reconstruction

� Based on the found reductions over a vertex k
that is stored in ?3,<, we can backtrack the shortest

path

� Specifically, if it holds that ?3,< = *, we know that

the path arises by concatenating the paths from
node i to node k and from node k to node j

� However, if it holds that ?3,< = 0, the path from

node i to node j is a direct path and does not

include any intermediate vertices

Business Computing and Operations Research 600

Dealing with cycles of negative length

� As mentioned above, the results of Theorem 6.3.2 also
apply if we allow some arc weights in the >+>-matrix

43,< 	to become negative as long as there is no cycle of

negative length

� However, if there exists such a negative-length cycle,
during the calculation of the Floyd-Warshall algorithm, it
will cause some �A,A to become negative

� We consider h as the highest-numbered node on the existing

cycle, while k is the second highest-numbered node on this cycle

� Therefore, in the iteration that considers an improvement over the

intermediate node k, the length of this cycle can be computed by
�A,A = �A,/ + �/,A < 0

� Hence, after this iteration, the entry �A,A is negative and the

algorithm terminates since the shortest path is not defined

Business Computing and Operations Research 601

Complexity

� By analyzing the pseudo code of the complete

Floyd-Warshall algorithm, all the loops are of

fixed length, and the algorithm requires a total of

> · > − 1 1 comparisons

� Hence, we obtain a total complexity of : >B

27

Business Computing and Operations Research 602

Example – Initialization

1

34

2

1

2

1 -4

3

CD,E

1 2 3 4

1 ∞ ∞ ∞ 1

2 2 ∞ 1 ∞

3 ∞ ∞ ∞ ∞

4 ∞ -4 3 ∞

FD,E

1 2 3 4

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 0 0

Initialization of the matrices

Business Computing and Operations Research 603

Example – first iteration

1

34

2

1

2

1 -4

3

CD,E

1 2 3 4

1 ∞ ∞ ∞ 1

2 2 ∞ 1 3

3 ∞ ∞ ∞ ∞

4 ∞ -4 3 ∞

FD,E

1 2 3 4

1 0 0 0 0

2 0 0 0 1

3 0 0 0 0

4 0 0 0 0

Iteration k=1

Business Computing and Operations Research 604

Example – second iteration

1

34

2

1

2

1 -4

3

CD,E

1 2 3 4

1 ∞ ∞ ∞ 1

2 2 ∞ 1 3

3 ∞ ∞ ∞ ∞

4 -2 -4 -3 -1

FD,E

1 2 3 4

1 0 0 0 0

2 0 0 0 1

3 0 0 0 0

4 2 0 2 2

Iteration k=2

Business Computing and Operations Research 605

Example – Final results

Cycle of negative length (4-2-1-4) is found and the algorithm terminates

1

34

2

1

2

1 -4

3

CD,E

1 2 3 4

1 ∞ ∞ ∞ 1

2 2 ∞ 1 3

3 ∞ ∞ ∞ ∞

4 -2 -4 -3 -1

FD,E

1 2 3 4

1 0 0 0 0

2 0 0 0 1

3 0 0 0 0

4 2 0 2 2

28

Business Computing and Operations Research 606

Additional literature to Section 6

� Bazaraa, M.S.; Langley, R.W. (1974): A Dual Shortest
Path Algorithm. SIAM Journal of Applied Mathematics
Vol. 26(3) pp. 496-501.

� Bellman, R. (1958): On a routing problem. Quarterly of
Applied Mathematics, 16(1) pp.87-90.

� Ford, L.R. Jr.; Fulkerson, D.R. (1962): Flows in Networks.
Princeton University Press.

� Cormen, T.H.; Leiserson, C.E.; Rivest, R.L.; Stein, C.
(2009): Introduction to Algorithms. 3rd edition. The MIT
Press.

� Dijkstra, E.W. (1959): A Note on Two Problems in
Connexion with Graphs. Numerische Mathematik 1, pp.
269-271.

Business Computing and Operations Research 607

Additional literature to Section 6

� Floyd, R.W. (1962): Algorithm 97: Shortest Path.
Communications of the ACM Vol.5(6), p.345.

� Nemhauser, G. L. (1972): A Generalized Permanent
Label Setting algorithm for the Shortest Path between
Specified Nodes. Journal of Mathematical Analysis and
Applications, Vol. 38, pp. 328-334.

� Warshall, S. (1962): A Theorem on Boolean Matrices.
Journal of the ACM, Vol.9(1), pp.11-12.

