
1

Business Computing and Operations Research 608

7 Max-Flow Problems
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7.1 Max-Flow Problems 

� In what follows, we consider a somewhat 
modified problem constellation

� Instead of costs of transmission, vector c now 
indicates a maximum capacity that has to be 
obeyed

� Again, we consider a network with two 
specifically assigned vertices s and t

� The objective is to find a maximum flow from 
source s to sink t

� E.g., this flow may be a transport of materials 
from an origin to a destination of consumption
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Flow – Inflow and outflow

7.1.1 Definition
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Observation

� We can transform the equalities (2), which are 

itemized above, as follows

( )( )
( )

( )( )
( )

{ } ( )

( ) .0 Then,  .
~

, ofmatrix 

adjacency  arc- vertex the and 
~

Let 

otherwise  0

      

        

,,

0

00

 node of Inflow

,:

 node from Outflow

,:

fffAEV

At,s,eeEE

tif

sif

ijfjif

m

i

EijVj

i

EjiVj

=∧=⋅

=∪=









=−

=

=− ∑∑
∈∈∈∈ ��������������



2

Business Computing and Operations Research 612

Conclusions

� For what follows, we renumber the arcs, 

beginning with 1, i.e., we obtain n arcs with the 

numbering 1,2,3,…,n

� Note that this includes the artificial arc 0 (now 1), 

connecting terminal t with source s

� We know that
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( ) ( ) ( )
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Max-Flow Problem
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The dual of Max-Flow

( )
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Now, we consider  with 

 and 
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Interpreting the dual

� This time, the dual is given in standard form, i.e., the 
Simplex Algorithm can be directly applied to it

� Thus, we want to analyze it beforehand 
� Let us consider the equalities that have to be fulfilled
� Then, we can transform as follows
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The dual tableau

� Obviously, by conducting the calculation of the Primal 
Simplex, we obtain a tableau as follows…
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Applying the simplex

� The top row of the dual tableau provides comprehensive information 
about the current state of the calculation

� Specifically, it allows a direct link to the corresponding primal problem 
which has to be solved originally

� More precisely, we have the following data in the row
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A simple example
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Applying the Simplex – Step 1.1
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Applying the Simplex – Step 1.2
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Applying the Simplex – Step 2.1
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Applying the Simplex – Step 2.2 
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Applying the Simplex – Step 3.1 
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Applying the Simplex – Step 3.2 
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Applying the Simplex – Step 4.1 
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Applying the Simplex – Step 4.2 
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Applying the Simplex – Step 5.1 
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Applying the Simplex – Step 5.2 
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7.2 Min-Cut Problems

7.2.1 Definition:

( )

( )
( )

Assuming , , , ,  is a network with two labeled nodes 

 and .  A partition  is denoted as an  cut if and only 

if  and .   is denoted as the capacity 
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Illustration
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Problem definition
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Observation

� The Min-Cut Problem corresponds to the dual of 
the Max-Flow Problem

� Thus, there is a direct connection between Min-
Cut and Max-Flow

� Clearly, since it is required that s and t belong to 
different parts of the cut, the Max-Flow is identical 
to the Min-Cut

� This becomes directly conceivable by the fact 
that the Min-Cut is somehow the bottleneck for 
the Max-Flow that may run through the entire 
network
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Consequence

7.2.2 Lemma:

( )

( )

To every  cut , there exists a feasible solution to

the dual of the Max-Flow Problem with the objective 

function value 

c

c

s - t W,W

c W,W
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Proof of Lemma 7.2.2

� Consider the following solution to the dual 
problem that has been generated according to a 
given s-t cut
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Proof of Lemma 7.2.2
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The objective function value

� We calculate the total weight of arcs crossing 

the cut from W to W
c

� Thus, we may conclude
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Direct consequences

� In what follows, our primal problem is…

( )1

1

Minimize   s.t., 0
n
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⋅ ⋅ + − = ∧ ≥∑

� …and the corresponding dual…
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Max-Flow-Min-Cut Theorem

7.2.3 Theorem:

( )

( )

( )

1.  For each feasible flow  and each feasible  cut 

it holds: 

2.  A feasible flow  is maximal and the  cut  that is 

constructed as defined in the Proof of Lemma 7.2.2 is 
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Proof of Theorem 7.2.3 – Part 1

Since the objective function value of each dual solution (Max-Flow) 

is a lower bound to each feasible solution to the primal problem

(Min-Cut), the proposition 1 follows immediately.
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Proof of Theorem 7.2.3 – Part 2

In order to prove the proposition 2, we make use of the Theorem 

of the complementary slackness, i.e., Theorem 5.1. Specifically, 

we have to analyze the rows where the dual program leaves no 

slack at all.  

For this purpose, let us consider the following calculations

Since f is assumed to be feasible, we know by the results 

obtained in Section 7.1 that 0.

Consequently, the corresponding primal var

⋅ =A f

iables, i.e., ,  may be 

defined arbitrarily.  

π
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Proof of Theorem 7.2.3 – Part 2
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Proof of Theorem 7.2.3 – Part 2

( )
( )

( )
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Thus, whenever there is no gap in the dual (this is now the case 0(!)),

the one-value of the primal does not disturb.  

Other way round, if there is a gap in the dual (this is now the case
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k k
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Proof of Theorem 7.2.3 – Part 3

� This proof is temporarily postponed until we have 

introduced the algorithm of Ford and Fulkerson 

that generates a Min-Cut according to a given 

Max-Flow

� This is provided in Section 7.4
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7.3 A Primal-Dual Algorithm

� We commence with the dual problem 

� Obviously, an initial feasible solution is f=0

1
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f A f f c f E f c
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The reduced primal (RP)
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The dual of the reduced primal (DRP)

( )( )
( )( )
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Updating f

� As provided by the design of primal-dual 

algorithm, an optimal solution of DRP may either 

indicate that f is already optimal or allow an 

improvement of f

� Thus, we have to find an appropriate λ0 which 

ensures an improved but still feasible dual 

solution

� Specifically, …

( )

0

... assuming   as the optimal solution of ,  we 

update  by :
new old

g DRP

f f f gλ= + ⋅

ɶ

ɶ
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Ensuring feasibility I
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Ensuring feasibility II
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Interpreting DRP

� Obviously, DRP can be interpreted as a 
specifically defined accessibility problem, i.e., a 
path is searched in a reduced graph

� This reduced graph restricts the searching 
process as follows
� Arcs that are already used up to capacity may only be 

used in backward direction, i.e., the flow is reduced

� Arcs that are unused, i.e., fk=0, may only be used in 
forward direction

� All other arcs can be used in any direction

� All induced flows are restricted by 1, i.e., a flow of 
maximum capacity 1 is sought
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Augmenting the flow

� Obviously, by solving DRP, we are aspiring an 
augmenting path

� Hence, it is not feasible to augment an already 
saturated flow or to decrease a zero flow along 
some edge

� Consequently, if there is an augmentation 
possible, we are able to generate a flow f that 
induces only 1, -1, or 0 values at the respective 
edges

� This considerably simplifies the updating of the 
dual solution in the Primal-Dual Algorithm
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Ensuring feasibility with g=1,0,-1
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7.4 Ford-Fulkerson Algorithm

� This algorithm is a modified primal-dual solution 

procedure

� The DRP is directly solved, however, that is why 

no Simplex procedure is necessary for this step

� On the other side, this has considerable 

consequences according to the termination of the 

solution procedure

� This will be discussed thoroughly later
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A reduced network

7.4.1 Definition:

( )

( ) ( ){ }
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Interpretation

� Forward arcs
� are used by the current flow f, but they are not used up 

to capacity
� I.e., they are not saturated by now

� Backward arcs
� are not used by the current flow f, but the inverted arc 

is used by flow f
� Consequently, these arcs are used in opposite 

direction by the current flow f
� Consequently, 

� forward arcs are candidates for augmenting the flow in 
the current direction (since they offer remaining 
capacities) 

� backward arcs are candidates for reducing the flow 
(since the opposite direction transfers something)
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Observation

7.4.2 Lemma:

( ) ( )
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Proof of Lemma 7.4.2
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Conclusions

( ) ( ){ }1 1
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The s-t-cut
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Maximum augmentation

� The maximum augmentation δ that is possible for 

the current flow, is determined by

{ }

{ }
arcs of path 

arcs of path 

min |  is forward arc ,
min

min |  is backward arc

p k k k

p k k

c f e
δ

f e

−  
=  

  

Business Computing and Operations Research 661

� In what follows, we introduce the description 

provided by Papadimitriou and Steiglitz (1982) 

p.123

Ford-Fulkerson Algorithm
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Ford-Fulkerson Algorithm

� Input: Network N=(s,t,V,E,c)

� Output: Max-Flow f

� Set f=0, Ef=E;

� While an augmenting s-t-path with min capacity 
value δ > 0 can be found in the reduced network
Ef:
� Set f = f + δ;

� Update reduced network Ef (decrease capacities in path direction 
by value δ and increase capacities in opposite direction by value δ
for all edges on the augmenting path)

� End while

An augmenting path can be found with the labeling

algorithm on the next slide.
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Labeling Algorithm

� We try to label every node with one possible 

predecessor on a path from s until we reach t:

� LIST={s};

� While LIST not empty and t not in LIST:

� Scan x: Remove x from LIST. Label not all labeled yet 
adjacent nodes to x in Ef with x as predecessor and 
put them on LIST.

� End while

� If t is labeled, we can create the augmenting path 

by considering the predecessors in the labels.
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An example

1

4

6

3

2

5

e1,c1=4

e2,c2=3

e3,c3=5

e4,c4=3

e6,c6=1

e7,c7=4

e8,c8=3

e5,c5=1

e9,c9=7
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1. Iteration

� We commence our search with f=0

� All labels are zero

� LIST={1}

� scan 1

� Updating LIST

� LIST={2,3}, and scan 2

� LIST={3,4,5}, and scan 3

� LIST={4,5}, and scan 4

� LIST={5,6} and stop since 6=t is labeled already 

� We have labeled node 6=t. Path is therefore 1-2-4-6.  

� Thus, we now can augment our current flow f by δ=min{4,5,4}=4
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Current flow

Edge Current Flow Found path

1 0+4=4 1

2 0 0

3 0+4=4 1

4 0 0

5 0 0

6 0 0

7 0+4=4 1

8 0 0

9 0+4=4 1
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Updated reduced network

1

4

6

3

2

5

e1,c1=4

e2,c2=3

e3,c3=1

e4,c4=3

e6,c6=1

e7,c7=4

e8,c8=3

e5,c5=1

e9,c9=7

e3,c3=4
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2. Iteration

� We commence our search with f

� All labels are zero

� LIST={1}

� scan 1

� Updating LIST

� LIST={3}, and scan 3

� LIST={4,5}, and scan 4

� LIST={5,2}, and scan 5

� LIST={6} and stop since 6=t is labeled already 

� We have labeled node 6=t. Path is therefore 1-3-5-6.  

� Thus, we now can augment our current flow f by δ=min{3,1,3}=1
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Current flow

Edge Current Flow Found path

1 4 0

2 0+1=1 1

3 4 0

4 0 0

5 0 0

6 0+1=1 1

7 4 0

8 0+1=1 1

9 5 1
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Updated reduced network

1

4

6

3

2

5

e1,c1=4

e2,c2=2

e3,c3=1

e4,c4=3

e6,c6=1

e7,c7=4

e8,c8=2e5,c5=1

e9,c9=7

e3,c3=4

e2,c2=1 e8,c8=1
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3. Iteration

� We commence our search with f

� All labels are zero

� LIST={1}

� scan 1

� Updating LIST

� LIST={3}, and scan 3

� LIST={1,4}. Since 1 is labeled, LIST={4}, and scan 4

� LIST={2}, and scan 2

� LIST={1,4,5} Since 1,4 are labeled, LIST={5}, and scan 5

� LIST={6} and stop since 6=t is labeled already 

� We have labeled node 6=t. Path is therefore 1-3-4-2-5-6.  

� Thus, we now can augment our current flow f by δ=min{2,1,4,3,2}=1
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Current flow

Edge Current Flow Found path

1 4 0

2 1+1=2 1

3 4-1=3 -1

4 0+1=1 1

5 0+1=1 1

6 1 0

7 4 0

8 1+1=2 1

9 5+1=6 1
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1

4

6

3

2

5

e1,c1=4

e2,c2=1

e3,c3=2

e6,c6=0

e7,c7=4

e8,c8=1e5,c5=1

e9,c9=7

e3,c3=3

e2,c2=2 e8,c8=2

e4,c4=2

e4,c4=1

Updated reduced network
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4. Iteration

� We commence our search with f
� All labels are zero
� LIST={1}
� scan 1
� Updating LIST

� LIST={3}, and scan 3

� LIST={1}. Since 1 is labeled, LIST={}, and terminate
� Thus, we obtain the s-t cut 

� W={1,3} and Wc={2,4,5,6}
� The cut has total costs c1+c5+c6=4+1+1=6
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Maximal flow

Edge Flow

1 4

2 2

3 3

4 1

5 1

6 1

7 4

8 2

9 6
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1

4

6

3

2

5

e1,c1=4

e2,c2=3

e3,c3=5

e4,c4=3

e6,c6=1

e7,c7=4

e8,c8=3

e5,c5=1

e9,c9=7

f1=4

f2=2

f3=3

f4=1

f6=1

f5=1

f7=4

f8=2

f9=6

Updated reduced network
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� Clearly, the optimality of the procedure depicted 
above may be directly derived from the Primal-
Dual Algorithm design

� There are, however, some specific interesting 
attributes coming along with the procedure of 
Ford and Fulkerson that are worth mentioning

� In what follows, we briefly discuss or just 
mention them

Optimality
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7.4.3 Lemma:

When the Ford and Fulkerson labeling algorithm 

terminates, it does so at optimal flow.

Correctness of the procedure
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Proof of Lemma 7.4.3

� When the algorithm of Ford and Fulkerson 
terminates, there are some nodes that are 
already labeled while others are still unlabeled.  
We define W and Wc as above

� Consequently, all arcs that are running from W to 
Wc are saturated now 

� Additionally, arcs running in the opposite direction 
have flow zero

� Therefore, by Theorem 7.2.3, the s-t-cut (W,Wc)
and flow f are optimal


