
The dual of Max-Flow
Now, we consider $\tilde{\pi} = (\pi, \gamma, \delta)$, with
$\pi = (\pi_1,, \pi_m), \gamma = (\gamma_1,, \gamma_n), \text{ and } \delta = (\delta_1,, \delta_n)$
Minimize $\sum_{l=1}^{n} c_l \cdot \gamma_l$, s.t., $A^T \cdot \pi + \gamma - \delta = e^1 \wedge (\pi, \gamma, \delta) \ge 0$
Business Computing and Operations Research WINFOR 614

	Interpreting the dual
Simplex Alg Thus, we wa Let us consi	e dual is given in standard form, i.e., the orithm can be directly applied to it ant to analyze it beforehand der the equalities that have to be fulfilled in transform as follows
	$\sum_{l=1}^{n} c_{l} \cdot \gamma_{l}, \text{ s.t.,}$ $_{k} - \delta_{k} = \begin{cases} 1 & \text{if } e_{k} = (t,s) \in E \\ 0 & \text{if } e_{k} = (i,j) \in E \land e_{k} \neq (t,s) \in E \end{cases}$
^	$(0 \text{ if } e_k - (i, j)) \in L \land e_k \neq (i, s) \in L$ $\pi_m) \ge 0, \gamma = (\gamma_1, \dots, \gamma_n) \ge 0, \text{ and } \delta = (\delta_1, \dots, \delta_n) \ge 0$
Schumpeter School	Business Computing and Operations Research WINFOR 615

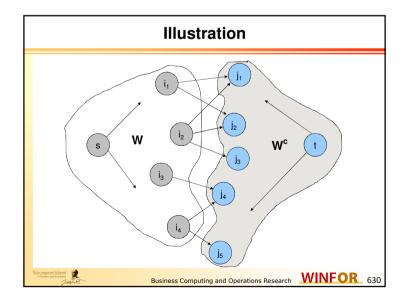
			Ap	oply	ying	g t	he	e S	im	npl	ex	(– (Ste	p 1	.1		
	0	0	0	0	0	6	2	4	1	5	3	0	0	0	0	0	0
	1	-1	0	0	1	1	0	0	0	0	0	-1	0	0	0	0	0
	0	1	-1	0	0	0	1	0	0	0	0	0	-1	0	0	0	0
	0	1	0	-1	0	0	0	1	0	0	0	0	0	-1	0	0	0
	0	0	1	-1	0	0	0	0	1	0	0	0	0	0	-1	0	0
	0	0	1	0	-1	0	0	0	0	1	0	0	0	0	0	-1	0
	0	0	0	1	-1	0	0	0	0	0	1	0	0	0	0	0	-1
		•															
5	ichumpeter et Basian ant	School	2			Bur	inocc	Com	outing	a and	Oper	ations P	esearch	W	'INF	OR	619

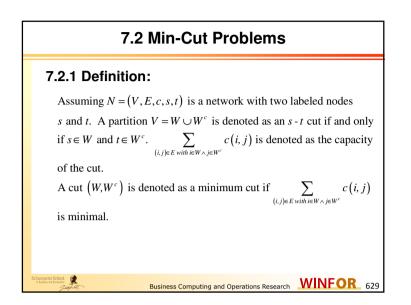
			Ap	ply	ing	tł	ne	Si	m	ple	ex	- 9	Ste	o 1	.2		
	-6	0	-4	2	2	0	0	0	0	0	0	6	2	4	1	5	3
	1	-1	0	0	1	1	0	0	0	0	0	-1	0	0	0	0	0
	0	1	-1	0	0	0	1	0	0	0	0	0	-1	0	0	0	0
	0	1	0	-1	0	0	0	1	0	0	0	0	0	-1	0	0	0
	0	0	1	-1	0	0	0	0	1	0	0	0	0	0	-1	0	0
	0	0	1	0	-1	0	0	0	0	1	0	0	0	0	0	-1	0
	0	0	0	1	-1	0	0	0	0	0	1	0	0	0	0	0	-1
s	chumpeter Scho of Basizen and Boore	ool 🌏														00	
		na Janet-E	~			Busin	ess C	ompu	uting a	and C	pera	tions Re	search	W	INF	OR	620

			Ap	oply	yin	g t	he	9 5	Sim	pl	ex	- \$	Ste	p 2	.2		
	-6	0	0	-2	2	0	0	0	4	0	0	6	2	4	-3	5	3
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$															0	
	0 1 0 -1 0 0 1 0 1 0 0 0 -1 0 -1 0 0															0	
	0	1	0	-1	0	0	0	1	0	0	0	0	0	-1	0	0	0
	0	0	1	-1	0	0	0	0	1	0	0	0	0	0	-1	0	0
	0	0	0	1	-1	0	0	0	-1	1	0	0	0	0	1	-1	0
	0	0	0	1	-1	0	0	0	0	0	1	0	0	0	0	0	-1
s	chumpeter Sch	aol 🔿															
	of Backson and Room	Juni E	~			Bu	siness	s Con	puting	and (Opera	tions Re	esearch	W	INF	OR	622

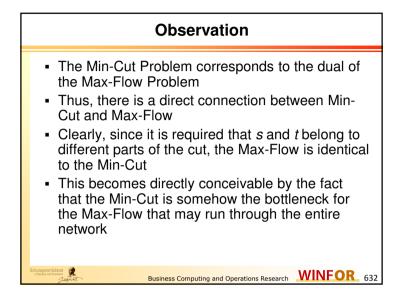
		Арр	olyi	ng	th	e	Si	m	ple	ЭX	- 5	Ste	o 2.	.1		
-6	0	[-4]	2	2	0	0	0	0	0	0	6	2	4	1	5	3
1	-1	0	0	1	1	0	0	0	0	0	-1	0	0	0	0	0
0	1	-1	0	0	0	1	0	0	0	0	0	-1	0	0	0	0
0	1	0	-1	0	0	0	1	0	0	0	0	0	-1	0	0	0
0	0	(1)	-1	0	0	0	0	1	0	0	0	0	0	-1	0	0
0	0	1	0	-1	0	0	0	0	1	0	0	0	0	0	-1	0
0	0	0	1	-1	0	0	0	0	0	1	0	0	0	0	0	-1
Schumpeter Sch of Basten and Econ	col	_		E	Busine	ess Ci	ompu	ting a	ind O	perat	ions Re	search	W	INF	OR	621

			Ap	oply	ing	tl	ne	S	im	ole	ЭX	- 5	Step	5 3	.1		
	-6	0	0	[-2]	2	0	0	0	4	0	0	6	2	4	-3	5	3
	1	-1	0	0	1	1	0	0	0	0	0	-1	0	0	0	0	0
	0	1	0	-1	0	0	1	0	1	0	0	0	-1	0	$^{-1}$	0	0
	0	1	0	-1	0	0	0	1	0	0	0	0	0	-1	0	0	0
	0	0	1	-1	0	0	0	0	1	0	0	0	0	0	-1	0	0
	0	0	0	(1)	-1	0	0	0	-1	1	0	0	0	0	1	-1	0
	0	0	0	1	-1	0	0	0	0	0	1	0	0	0	0	0	-1
1	Schumpeter Scho of Basines and Roorer	ol 🙎 Jung-E	~			Busir	ness (Comp	uting a	nd O	perati	ions Re	search	W	INF	OR	623

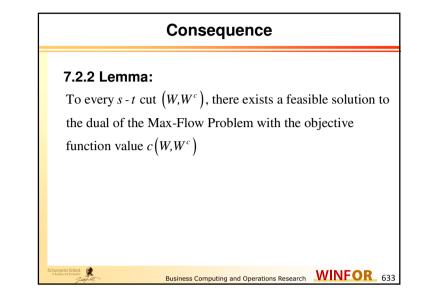

			Aŗ	p	lyir	ıg	th	e	Sin	npl	ex	- \$	Ste	р3	.2		
	-6	0	0	0	0	0	0	0	2	2	0	6	2	4	-1	3	3
	1	-1	0	0	1	1	0	0	0	0	0	-1	0	0	0	0	0
	0	1	0	0	-1	0	1	0	0	1	0	0	-1	0	0	-1	0
	0	1	0	0	-1	0	0	1	-1	1	0	0	0	-1	1	-1	0
	0	0	1	0	-1	0	0	0	0	1	0	0	0	0	0	-1	0
	0	0	0	1	-1	0	0	0	-1	1	0	0	0	0	1	-1	0
	0	0	0	0	0	0	0	0	1	-1	1	0	0	0	-1	1	-1
-	Schumpeter Scho of Basies ant Boose	and and the second s	_			E	usine	ess Co	mputir	ig and (Opera	tions R	esearch	W	INF	OR	624

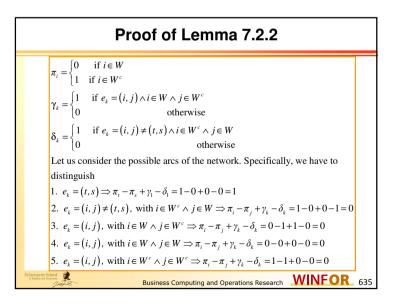

			A	pp	lyir	١g	tł	ne S	Sim	ıpl	ex	(—)	Ste	ep 4	I.2		
	-6	1	0	0	-1	0	0	1	1	3	0	6	2	3	0	2	3
	1	-1	0	0	1	1	0	0	0	0	0	-1	0	0	0	0	0
	0	1	0	0	-1	0	1	0	0	1	0	0	-1	0	0	-1	0
	0	1	0	0	-1	0	0	1	-1	1	0	0	0	-1	1	-1	0
	0	0	1	0	-1	0	0	0	0	1	0	0	0	0	0	-1	0
	0	-1	0	1	0	0	0	-1	0	0	0	0	0	1	0	0	0
	0	1	0	0	-1	0	0	1	0	0	1	0	0	-1	0	0	-1
S	chumpeter Scl et Basines and Roo	nool					Bucin	055 Cor	nputing	and	Oper	ations	locoarc	μ M	/IN	IFO	R 626

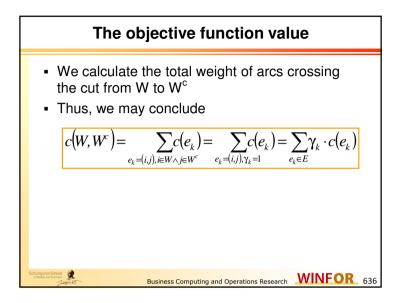
		Ap	эp	lyir	ng	th	e	Sin	npl	ex	(– (Ste	р4	.1		
-6	0	0	0	0	0	0	0	2	2	0	6	2	4	[-1]	3	3
1	-1	0	0	1	1	0	0	0	0	0	-1	0	0	0	0	0
0	1	0	0	-1	0	1	0	0	1	0	0	-1	0	0	-1	0
0	1	0	0	-1	0	0	1	-1	1	0	0	0	-1	(1)	-1	0
0	0	1	0	-1	0	0	0	0	1	0	0	0	0	0	-1	0
0	0	0	1	-1	0	0	0	-1	1	0	0	0	0	1	-1	0
0	0	0	0	0	0	0	0	1	-1	1	0	0	0	-1	1	-1
Schumpeter Schoore	ool 🌧												14		• •	
of Basizets and Boons	Junit	~ ·			E	Busin	ess C	omputir	ng and	Opera	ations R	esearch	ι <u>Μ</u>	/INF	UR	625

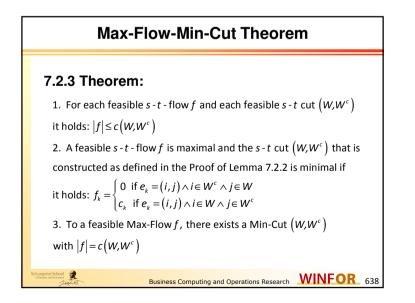

		Ap	эр	lyin	g 1	the	e S	im	ole	X	– S	step	o 5.	1		
-6	1	0	0	[-1]	0	0	1	1	3	0	6	2	3	0	2	3
1	-1	0	0	(1)	1	0	0	0	0	0	-1	0	0	0	0	0
0	1	0	0	-1	0	1	0	0	1	0	0	-1	0	0	-1	0
0	1	0	0	-1	0	0	1	-1	1	0	0	0	-1	1	-1	0
0	0	1	0	-1	0	0	0	0	1	0	0	0	0	0	-1	0
0	-1	0	1	0	0	0	-1	0	0	0	0	0	1	0	0	0
0	1	0	0	-1	0	0	1	0	0	1	0	0	-1	0	0	-1
Schumpeter Sch of Basilies and Borre	ool 🕵 Janne T	~			Bu	sines	s Comp	uting a	nd Op	erati	ons Res	earch	W	NF	OR	627

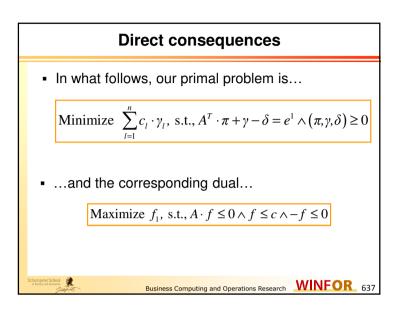
		A	pp	oly	in	g 1	the	Sir	np	ble	× –	- St	ер	5.	2	
-5	0	0	0	0	0	0	1	1	3	0	5	2	3	0	2	3
1	-1	0	0	1	1	0	0	0	0	0	-1	0	0	0	0	0
1	0	0	0	0	0	1	0		1	0	-1	-1	0	0	-1	0
1	0	0	0	0	0	0	1	-1	1	0	-1	0	-1	1	-1	0
1	-1	1	0	0	1	0	0	0	1	0	-1	0	0	0	-1	0
0	-1	0	1	0	0	0	-1	0	0	0	0	0	1	0	0	0
1	0	0	0	0	1	0	1	0	0	1	-1	0	-1	0	0	-1
f =	(5,2	,3,0),2,3	3)^												
$\tilde{\pi} =$	(π,γ,	δ)=	=(0	1	0	1	0	1 0	0	0	0	0	0 0	1	0	0), i.e.,
$\pi =$	(0	1	0	1)^	γ =	(0	1	0 0	0	1)	$\wedge \delta$	=(0	0	0	1 0	0)
Schumpeter So of Basilies and Bo	thool	5				Bu	siness	Comput	ing ar	nd Op	eration	s Resea	arch	WI	NF	OR_ 628

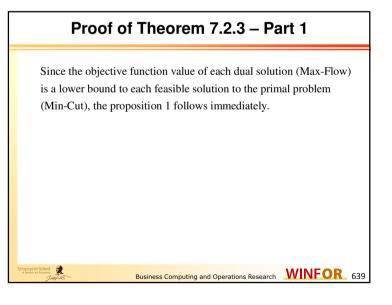





	Problem definition
We introd	uce $\pi^T = (\pi_1,, \pi_m)$, with $\pi_i = \begin{cases} 1 & \text{if } i \in W^c \\ 0 & \text{if } i \in W \end{cases}$
and $\gamma^T = ($	$(\gamma_1,, \gamma_n)$, with $\gamma_k = \begin{cases} 1 & \text{if } e_k = (i, j) \land i \in W \land j \in W^c \\ 0 & \text{otherwise} \end{cases}$
Since $i \in V$	$V \wedge j \in W^c \Leftrightarrow \pi_i = 0 \wedge \pi_j = 1 \Leftrightarrow \pi_i - \pi_j = -1$ and
$i \in W^c \wedge j$	$\in W \Leftrightarrow \pi_i = 1 \land \pi_j = 0 \Leftrightarrow \pi_i - \pi_j = 1$, we obtain
the follow	ing problem:
Minimize	$\sum_{k=1}^{n} c_k \cdot \gamma_k, \text{ s.t.},$
$\forall e_k = (i, j)$	$(\neq (t,s)) \in E: \pi_i - \pi_j + \gamma_k \ge 0 \land \pi_i - \pi_s + \gamma_1 \ge 1$
⇔	
Minimize	$\sum_{i=1}^{n} c_i \cdot \gamma_i, \text{ s.t., } A^T \cdot \pi + \gamma - \delta = e^1 \wedge (\pi, \gamma, \delta) \ge 0$
chumpeter School	Business Computing and Operations Research WINFOR 63




Pr	oof of Lemma 7.2.2	
 Consider the problem that given s-t cut 	nsider the following solution to the dual oblem that has been generated according to a en <i>s-t</i> cut	
$\pi_i = \begin{cases} 0 & \text{i} \\ 1 & \text{if} \end{cases}$	$f \ i \in W$ $i \in W^c$	
$\gamma_k = \begin{cases} 1 \\ 0 \end{cases}$	if $e_k = (i, j) \land i \in W \land j \in W^c$ otherwise	
$\boldsymbol{\delta}_{k} = \begin{cases} 1 & \text{if} \\ 0 \end{cases}$	$e_{k} = (i, j) \neq (t, s) \land i \in W^{c} \land j \in W$ otherwise	
Schumpeter School	Business Computing and Operations Research WINFOR 6	534

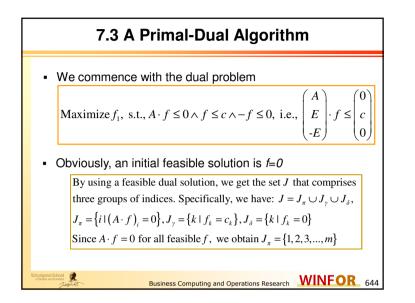


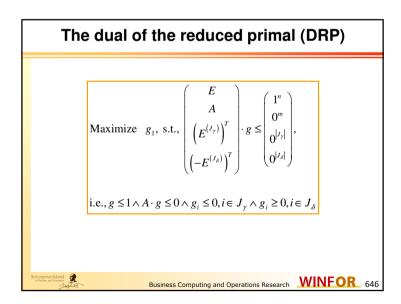
Proof of Theorem 7.2.3 – Part 2

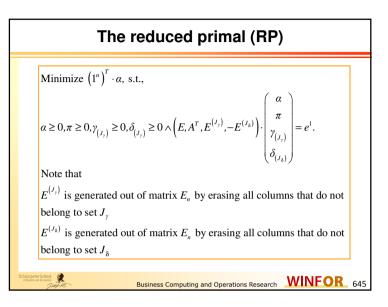
In order to prove the proposition 2, we make use of the Theorem of the complementary slackness, i.e., Theorem 5.1. Specifically, we have to analyze the rows where the dual program leaves no slack at all.

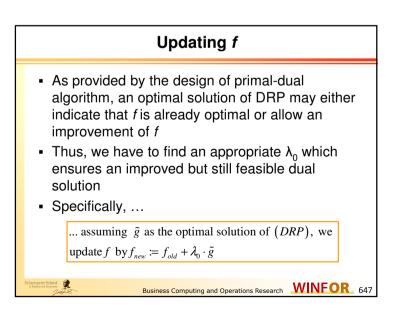
For this purpose, let us consider the following calculations Since f is assumed to be feasible, we know by the results obtained in Section 7.1 that $A \cdot f = 0$.

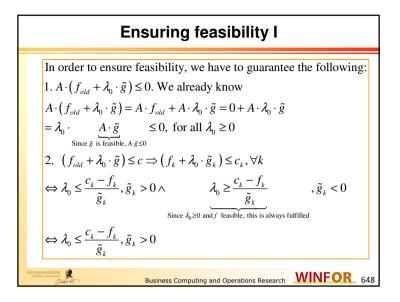
2

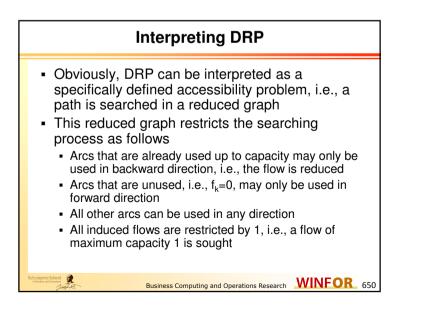

Consequently, the corresponding primal variables, i.e., π , may be defined arbitrarily.

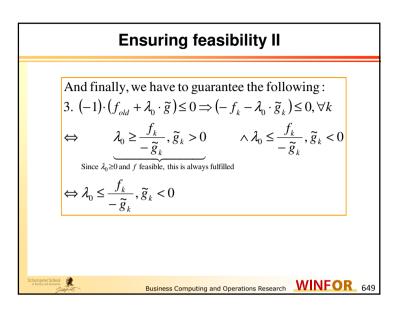

Business Computing and Operations Research WINFOR 640

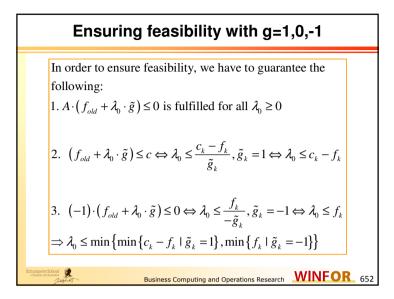

Proof of Theorem 7.2.3 – Part 2
Finally, we consider
$-E_{n} \cdot f \leq 0 \Leftrightarrow -f_{k} \leq 0, \forall e_{k} \in E \Rightarrow f_{k} = \begin{cases} c_{k} \text{ if } e_{k} = (i, j) \land i \in W \land j \in W^{c} \\ 0 \text{ if } e_{k} = (i, j) \land i \in W^{c} \land j \in W \end{cases}$
Corresponding variables are δ . These variables are defined just reversely, i.e., $\delta_k = \begin{cases} 1 & \text{if } e_k = (i, j) \land i \in W^c \land j \in W \\ 0 & \text{otherwise} \end{cases}$
Thus, whenever there is no gap in the dual (this is now the case $f_k = 0(!)$), the one-value of the primal does not disturb.
Other way round, if there is a gap in the dual (this is now the case $f_k = c_k(!)$), the primal fixes it by zero-values.
Business Computing and Operations Research 642

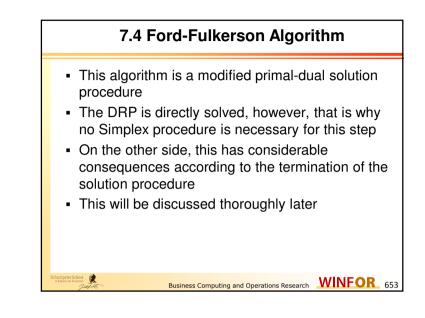

Proof of Theorem 7.2.3 – Part 2
Let us now consider
$E_{n} \cdot f \leq c \Leftrightarrow f_{k} \leq c_{k}, \forall e_{k} \in E \Rightarrow f_{k} = \begin{cases} c_{k} \text{ if } e_{k} = (i, j) \land i \in W \land j \in W^{c} \\ 0 \text{ if } e_{k} = (i, j) \land i \in W^{c} \land j \in W \end{cases}$
Corresponding variables are γ . These variables are defined accordingly,
i.e., $\gamma_k = \begin{cases} 1 & \text{if } e_k = (i, j) \land i \in W \land j \in W^c \\ 0 & \text{otherwise} \end{cases}$
Thus, whenever there is no gap in the dual (this is the case if $f_k = c_k$), the one-value of the primal does not disturb. Other way round, if there is a gap in the dual (this is the case if $f_k = 0$), the primal fixes it by zero-values.
Schangeler School Business Computing and Operations Research 641

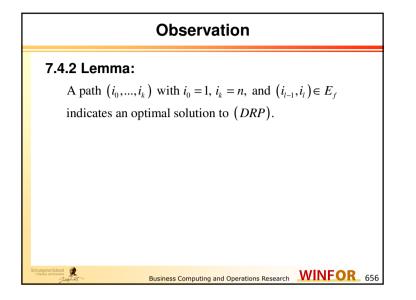

Proof of Theorem 7.2.3 – Part 3
 This proof is temporarily postponed until we have introduced the algorithm of Ford and Fulkerson that generates a Min-Cut according to a given Max-Flow This is provided in Section 7.4
Business Computing and Operations Research WINFOR 643

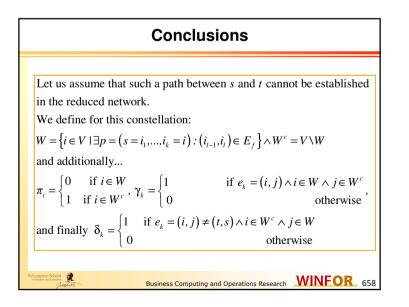


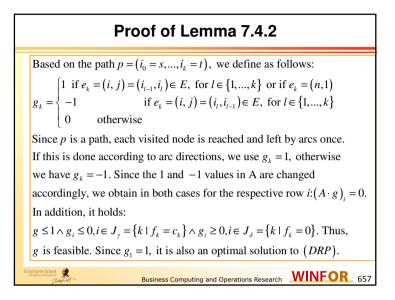


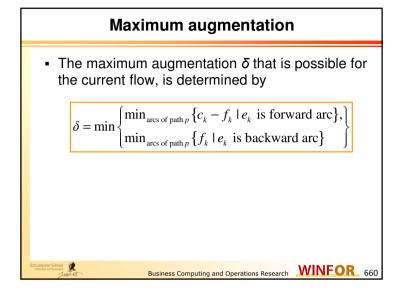




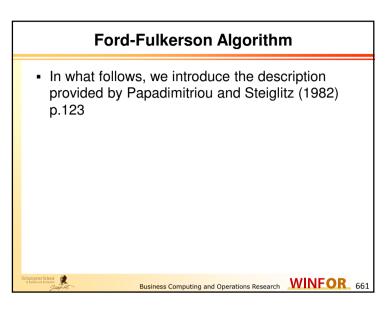

Augmenting the flow Obviously, by solving DRP, we are aspiring an augmenting path Hence, it is not feasible to augment an already saturated flow or to decrease a zero flow along some edge Consequently, if there is an augmentation possible, we are able to generate a flow f that induces only 1, -1, or 0 values at the respective edges This considerably simplifies the updating of the dual solution in the Primal-Dual Algorithm



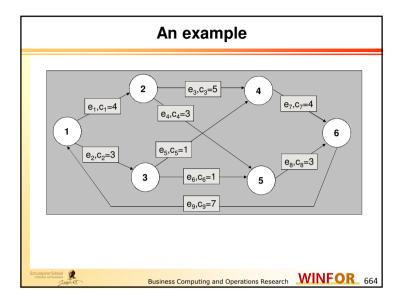

A reduced network
7.4.1 Definition:
Assuming $N = (V, E, c, s, t)$ is an <i>s</i> - <i>t</i> -network and <i>f</i>
a feasible <i>s</i> - <i>t</i> - flow. Then, we introduce
$E_f = E_f^f \cup E_f^b$, with
$E_f^f = \left\{ e_k = (i, j) \mid \exists e_k = (i, j) \in E \land f_k < c_k \right\}$ and
$E_{f}^{b} = \{e_{k} = (i, j) \mid \exists e_{\tilde{k}} = (j, i) \in E \land f_{\tilde{k}} > 0\}.$
E_f^f denotes the set of forward arcs while E_f^b defines
the backward arcs. Then, we denote (V, E_f, c, s, t) as
the corresponding reduced network.
Business Computing and Operations Research WINFOR 654


	Interpretation		
Forward arcs			
 are used by the current flow f, but they are not used up to capacity 			
 I.e., they are not saturated by now 			
 Backward arcs 			
 are not used by the current flow f, but the inverted arc is used by flow f 			
 Consequently, these arcs are used in opposite direction by the current flow f 			
Consequently,			
 forward arcs are candidates for augmenting the flow in the current direction (since they offer remaining capacities) 			
 backward arcs are candidates for reducing the flow (since the opposite direction transfers something) 			
Schumpeter School	Business Computing and Operations Research WINFOR		

	The <i>s-t</i> -cut
	We obtain : $c(W, W^{c}) = \sum_{e_{k} = (i,j), i \in W \land j \in W^{c}} c(e_{k}) = \sum_{e_{k} \in E} c(e_{k}) = \sum_{e_{k} \in E} \gamma_{k} \cdot c(e_{k})$ Since all nodes of W^{c} were not reachable, all arcs bridging the cut (W, W^{c}) are used up to capacity by flow f . Consequently, we know $f_{1} = f = \sum_{e_{k} \in E} \gamma_{k} \cdot c(e_{k}) = c(W, W^{c})$. In addition, f cannot be augmented and is therefore maximal.
Schu	Business Computing and Operations Research WINEOR 659

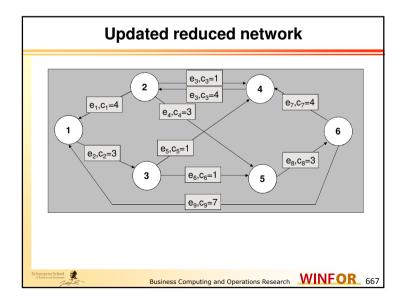

Ford-Fulkerson Algorithm

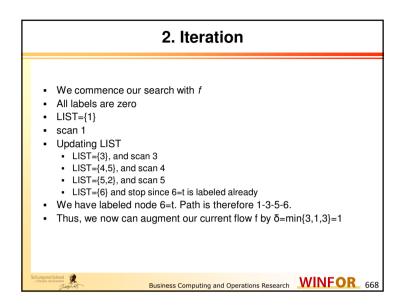
- Input: Network N=(s,t,V,E,c)
- Output: Max-Flow f
- Set f=0, E_f=E;
- While an augmenting *s*-*t*-path with min capacity value δ > 0 can be found in the reduced network *E_f*.
 - Set f = f + δ;
 - Update reduced network E_i (decrease capacities in path direction by value δ and increase capacities in opposite direction by value δ for all edges on the augmenting path)
- End while

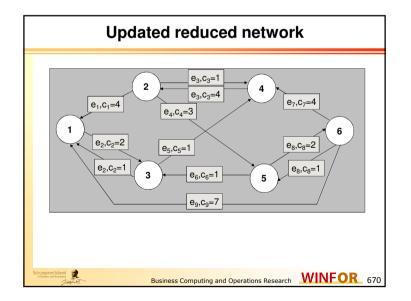

2

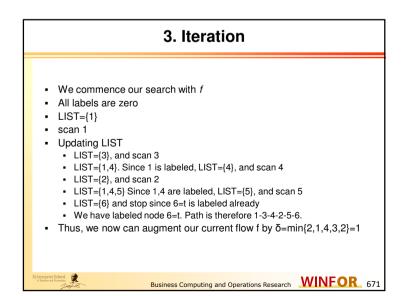
An augmenting path can be found with the labeling algorithm on the next slide.

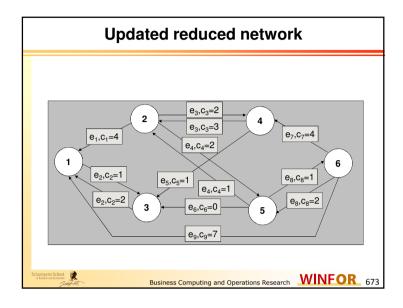
Business Computing and Operations Research WINFOR 662

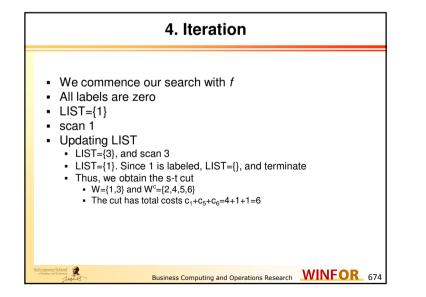


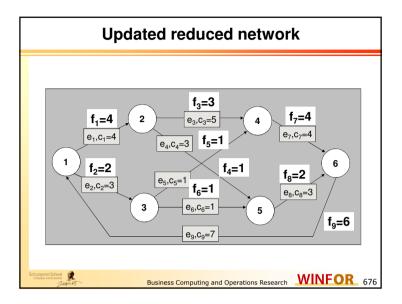

Labeling Algorithm
 We try to label every node with one possible predecessor on a path from <i>s</i> until we reach <i>t</i>: LIST={s};
 While LIST not empty and <i>t</i> not in LIST: Scan <i>x</i>: Remove <i>x</i> from LIST. Label not all labeled yet adjacent nodes to <i>x</i> in <i>E_t</i> with <i>x</i> as predecessor and put them on LIST.
 End while
 If t is labeled, we can create the augmenting path by considering the predecessors in the labels.
Business Computing and Operations Research WINFOR 663


	1. Iteration	
 We have labeled n 	scan 2 d scan 3	
Schumpeter School	Business Computing and Operations Research	WINFOR 66

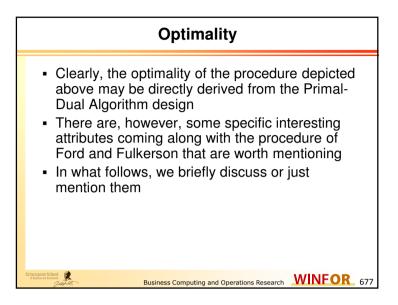

Edge	Current Flow	Found path
1	0+4=4	1
2	0	0
3	0+4=4	1
4	0	0
5	0	0
6	0	0
7	0+4=4	1
8	0	0
9	0+4=4	1

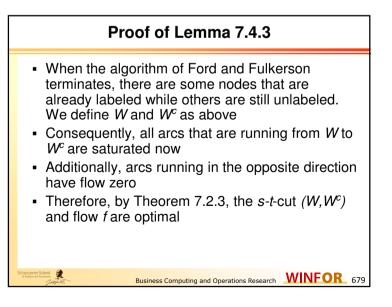



	Current flow	
Edge	Current Flow	Found path
1	4	0
2	0+1=1	1
3	4	0
4	0	0
5	0	0
6	0+1=1	1
7	4	0
8	0+1=1	1
9	5	1
of Benden and Economics	Business Computing and Operations Resea	rch WINFOR



		Current flow	
1	Edge	Current Flow	Found path
	1	4	0
	2	1+1=2	1
	3	4-1=3	-1
	4	0+1=1	1
	5	0+1=1	1
	6	1	0
	7	4	0
	8	1+1=2	1
	9	5+1=6	1
Chumpeter School		Business Computing and Operations Resea	rch WINFOR 6





Edge	Flow
1	4
2	2
3	3
4	1
5	1
6	1
7	4
8	2
9	6

<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header>

