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7.5 Analyzing the Ford-Fulkerson algorithm

� In what follows, we analyze the complexity of the 

introduced Ford-Fulkerson algorithm

� First of all, we will see that the correctness of the 

algorithm is limited to integer and rational 

capacity values

� However, in case of irrational capacity values, 

even termination and correctness of the 

procedure are not guaranteed anymore

� This result is somehow surprising since the 

procedure seems to be finite as every previously 

introduced algorithm
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7.5.1 Correctness

� If capacities are integers, the termination of the 
algorithm follows directly from the fact that the 
flow is increased by at least one unit in each 
iteration

� Since, if the optimal flow has the total amount of 
fopt, fopt iterations (augmentations) are at most 
necessary

� Analogously, if all capacities are rational, we may 
put them over a common denominator D, scale 
by D, and apply the same argument. 

� Hence, if the optimal flow has the total amount of 
fopt, fopt

.D iterations (augmentations) are at most 
necessary (see Papadimitriou and Steiglitz
(1982) pp.124)

Business Computing and Operations Research 682

The pitfall – irrational case

� However, when the capacities are irrational, one 

can show that the method does not only fail to 

compute the optimal result but also converges to a 

flow strictly less than optimal

� In what follows, we shall introduce and illustrate an 

example originally given by Ford and Fulkerson 

(1962) and depicted in Papadimitriou and Steiglitz

(1982)

� Edmonds and Karp (1972) proposed a modified 

labeling procedure and proved that this algorithm 

requires no more than (n3-n)/4 augmentation 
iterations, regardless of the capacity values
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Analyzing the problem in detail

I cannot believe that there 
are irrational examples where 
the Ford-Fulkerson algorithm 

is not able to provide an 
optimal solution

I cannot believe that there 
are irrational examples where 
the Ford-Fulkerson algorithm 

is not able to provide an 
optimal solution

This can actually 
happen!

I will show you a very 
simple example

This can actually 
happen!

I will show you a very 
simple example !
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The irrational case – the network 

s

x1

x2

x3

x4

y1

y2

y3

y4

t

Arc A1 with capacity a0

Arc A2 with capacity a1

Arc A3 with capacity a2

Arc A4 with capacity a2

Capacity S

Capacity S

Capacity S

special arcs nonspecial arcs
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The irrational case – capacities 

� Special arcs

� These are the arcs A1, A2, A3, and A4

� Capacity is a0 for A1, a1 for A2, a2 for A3, and a2 for A4

� Nonspecial arcs

� All other arcs are nonspecial arcs, i.e., all arcs (s,xi), 
(yi, yj), (yi, xj), (xi, yj), or (yi, t) with i≠j

� Capacity is S

� We define
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The capacities of the special arcs

7.5.1.1 Lemma:

It holds that: 

Proof:

We prove the proposition by induction:
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Proof of Lemma 7.5.1.1

� Since it holds that

� we obtain

� This completes the proof
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Consequence

7.5.1.2 Lemma:

It holds that 

Proof:
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Step 0 – augmentation path (s,x1,y1,t)

s

x1

x2

x3

x4

y1

y2

y3

y4

t

Arc A1 with capacity a0

Arc A2 with capacity a1

Arc A3 with capacity a2

Arc A4 with capacity a2

Capacity S

Capacity S

Capacity S

special arcs nonspecial arcs
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Step 0 - consequences

� Augmentation value is a0

� This is true since 

� Hence, the residual capacities in the special arcs 

amount to 

0

0

5 1 1
1 and 1
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Step n≥1 – assumptions 

� Due to the preceding steps, we have the 

following remaining capacities on the special arcs

� Note that step 0 has provided such a situation

( )

1 1

1 2 3

4 1 1

1

0, , ,  and 

Note that we order now the special arcs such that, 

after this step, we have the arcs , , ,  

and A  with the remaining capacities 0, , , .

Order the connected nodes ,

n n n

n n n

a a a

A A A

a a a

x

+ +

+ +

′ ′ ′

′

′
2 3 4

1 2 3 4

, ,  and  as well 
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Step n≥1 – augmentation path 

s

x'1

x'2

x'3

x'4

y'1

y'2

y'3

y'4

t

Arc A’1 with rem. capacity 0

Arc A’2 with rem. capacity an

Arc A’3 with rem. capacity an+1

Arc A’4 with rem. capacity an+1

Capacity S

Capacity S

Capacity S

special arcs nonspecial arcs

( )2 2 3 3
, , , , ,s x y x y t′ ′ ′ ′
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Step n≥1 – consequences

1 2 3

1

1 1

The chosen augmentation path increased the total flow by 

 units since we used the special arcs A  and A  in forward 

direction. Since ,  due to <1,  is the 

bottleneck on the ch
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Second augmentation path

s

x'1

x'2

x'3

x'4

y’1

y'2

y'3

y'4

t

Arc A1 with capacity a0

Arc A2 with capacity a1

Arc A3 with capacity a2

Arc A4 with capacity a2

Capacity S

Capacity S

Capacity S

special arcs nonspecial arcs

( )2 2 1 1 3 3 4
, , , , , , , ,s x y y x y x y t′ ′ ′ ′ ′ ′ ′
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Second augmentation – consequences
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2

2 1

The chosen augmentation path increased the total flow by 

 units since we used the special arc A  in forward direction 

and the special arc A  and A  in backward direction . Since 
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Consequences of step n≥1

� Step n ends with residual capacities appropriate 

for conducting the succeeding step n+1

� Hence, each step augments the total flow by 

an+1+an+2

� Therefore, the flow is augmented by an

2 1 2 1
It holds that: 

n n n n n n
a a a a a a+ + + += − ⇔ + =

0

0

All in all, after  steps, we therefore obtain the total flow 

Consequently, there is always an improvement possible and the 

1
algorithm does not terminate and the total flow approaches 

1
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No termination and …

� However, the max flow in our pathological 

example is obviously 4.S

� So the Ford-Fulkerson algorithm approaches 

one-fourth the optimal flow value

� Therefore, the algorithm is not correct
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Worth to mention

Really amazing this example !
No termination and even the 
value that is approached is 

wrong !

Really amazing this example !
No termination and even the 
value that is approached is 

wrong !

However, the example 
is NOT really fair !

However, the example 
is NOT really fair ! !
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In the sense of fairness

� The raised question of finiteness of the Ford 

Fulkerson algorithm is in a sense a mathematical 

but not a practical one, since computers always 

work with rational numbers

� Hence, it is reasonable to assume that data can 

be represented by a finite number of bits

� A practical question, which is however related to 

that of finiteness, will ask how many steps may 

be required by a computation as a function of the 

total number of bits in the data
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7.5.2 Complexity analysis

� In what follows, we analyze the complexity of the Ford-
Fulkerson algorithm for integral capacity values

� Unfortunately, it turns out that – depending on the given 
capacity values of the considered instance – this labeling 
procedure may require in the worst case an exponential 
amount of time

� Fortunately, there exists an efficient algorithm for the max 
flow problem, which is, in fact, a rather simple modification 
of the labeling algorithm

� In order to analyze the labeling procedure and to prepare a 
modified version of it, we first examine a fundamental graph 
algorithm called ������ �

� Such a procedure is required in both algorithms
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Graph representations

� A graph 	 = �, 
 can be represented in many 

alternative ways

� Adjacency matrix:

� A matrix �� = ��,� ���� � ,���� �
, with binary entries such that

� ��,� = 1 if arc �, � ∈ 
 and ��,� = 0 otherwise

� However, in case of graphs that are sparse in that the number 

of their arcs is far less than �
�

2
= � � � , this 

representation is the most economical one. E.g., if we have 

100 nodes and 500 edges, an representation with 10,000 (!) 

binary entries has to be stored
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Graph representations

� Adjacency lists: For each node � ∈ �	�(�) gives an 
ordered list of successors, i.e., we have � � =

��, ��, … , �! " # , with �, �� ∈ 
, ∀� ∈ 1,… , % � �

� Example

� 1 = 2,4 , � 2 = 1,3,4 , 

� 3 = 2,4 , � 4 = 1,2,3,5 , � 5 = 4

� In what follows, we assume that the graph 	 =

�, 
 is connected, i.e., there are no isolated 

nodes

1 2

34

5
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Algorithm ������(�)

{ }

: A graph , defined by adjacency lists and a node 

: The graph with the nodes reachable by path from the node  marked

  

  let  be any element of 

  remove  from 

  mark 

  f

G v

v

Q v

Q

u Q

u Q

u

=

≠ ∅

Input

Output

while do

( )or all  do

      is not maked  insert  into 

u A u

u u Q

′∈

′ ′if then

end while
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Complexity

7.5.2.1 Theorem:

The algorithm ������(�) marks all nodes of 	

connected to � in �(|
|)	time.

Proof:

Correctness: We assume that a node * is 

connected to node � by a path +. Clearly, it can be 

shown by induction on the path length that * will be 

marked. If, otherwise, node * is not connected to 

node � u will not be marked since this would lead to 

the contradictory conclusion that there is a path 

from node � to node *
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Proof of Theorem 7.5.2.1

Time bound:

� In order to estimate the running time of ������(�), 

we have to consider three components:

1. Initialization: this takes constant time

2. Maintaining the set ,: We store the set Q as a queue 
with a -���. and %��. pointer (variables) in order to 
enable insertion and deletion in constant time (see the 
next slide for a brief illustration). The pointers 
(variables) -���. and %��. are initialized to zero while ,
is stored as a simple array with � entries. Array , is 
empty if and only if it holds -���. = %��.. We remove 
from top and add at the tail of the queue (FIFO 
principle). 
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Applied data types

� Add � to ,:

� %��.=%��.+1

� ,[%��.] = �

� Remove:

� -���. = -���. + 1

� � = ,[-���.]

v3 v5 v8 v2v4

-���. = 2 %��. = 7

The contents of ,, in order of arrival

Business Computing and Operations Research 707

Proof of Theorem 7.5.2.1 – Time bound

3. Searching the adjacency lists: we have constant 

time for each element of the lists. Since the total 

number of these elements is 2 · 
 , the time 

required is � 


Therefore, we have a total asymptotic running time 

of � 
 . This completes the proof
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LIFO queue (i.e., a stack)

� Add � to ,:

� %��. = %��. + 1

� ,[%��.] = �

� Remove:

� � = ,[-���.]

� %��. = %��. + 1

v3 v5 v8 v2v4

%��. = 5

The contents of ,, in order of arrival. , is empty if and only if %��. = 0
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Selecting rules applied to ,

� The procedure ������(�) was not completely 

specified

� We have not defined yet exactly how the next 

element � is chosen from , in the while loop

� There are many possibilities

� Two best known are …

� FIFO: The node that waited longest is chosen (breadth 
first search (BFS))

� LIFO: The node that was lastly inserted is chosen 
(depth first search (DFS))
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Directed graphs

� The procedure ������(�) can be applied to 

directed graphs (i.e., so-called digraphs) without 

any changes 
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Example

� We apply BFS and DFS to the digraph below

� The resulting numbers (BFS/DFS) give the indices of the 
step at that the respective node is labeled

� Starting node is node 1 

1 6

72 4

3

5
(1/1)

(2,2) (4/3)

(3/7)

(6/4)

(7/5)

(5/6)
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Algorithm -�45+�.�(�)

( )

( )

: A digraph , , defined by adjacency lists and two subsets ,  of 

: A path in  from a node in  to a node in  if this path exists

for all  do [ ] 0

   return ; ;

G V E S T V

G S T

v S label v

v T v

Q

=

∈ =

∈

=

Input

Output

if then break

( )

( )

  

  let  be any element of 

  remove  from 

   all  

      is not labeled 

[ ]

           return ; ; insert  into 

S

Q

u Q

u Q

u A u

u

label u u

u T path u u Q

≠ ∅

′∈

′

′ =

′ ′ ′∈

while do

for do

if then begin 

        

if then break else 

    en

"no S-T path available in G"

d (begin)

  end (do)

end while

return 
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Algorithm +�.� �

[ ]

[ ]

( )

[ ]( )( ) ( )

: For all nodes :  generated by procedure 

: Path from a node in  to 

 0 

     return ; ;

     ; ;

 stands for concatenation

u V label u findpath

S v T

label v

v

path label v v

∈

∈

=

Input

Output

if

then break

else return break

end if

 of paths

Note that the procedure is recursive!
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Example

� We apply the procedure -�45+�.� 6, 7 with FIFO queue (bfs) and 

obtain the labels (resulting in a path with a minimum number of arcs)

1 4

52

3

108

6 9

7

S

T

1 4

52

3

108

6 9

70

0

0

3

5

5

6

8

8
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Example – Path reconstruction

� We apply +�.� 9 and obtain

1 4

52

3

108

6 9

70

0

0

3

5

6

8

8

( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

9

8 9 6 8,9 5 6,8,9

3 5,6,8,9 3,5,6,8,9

path

path path path

path

= = =

= =
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Complexity of the Ford Fulkerson procedure

� We now analyze the complexity of the Ford-

Fulkerson algorithm more in detail

� We apply the algorithm to a network 9 = �, ., �, 
, �

and observe the following

� The initialization step of the procedure takes time � 


� Each iteration step involves the scanning and labeling of 
vertices. It can be stated that each edge *, � is 
considered at most twice – once for scanning node * and 
once for �. Moreover, we have to follow back the found 
path that has a length of at most � � steps

� Thus, each iteration takes time � � + 
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Complexity of the Ford Fulkerson procedure

� All in all, in case of integral capacities, if � is the 

value of the max flow and 6 is the number of 

conducted augmentation steps of the applied 

Ford-Fulkerson algorithm, we have 6 ≤ � and a 

total asymptotic running time complexity of 

� � + 
 · 6 = � 
 · 6

� In order to define the running time by the input 

data of a given instance, we obtain the 

asymptotic running time 

( )
( ),

,
x y E

O E c x y
∈

  
⋅    
  
∑
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Worth to mention

I fear that you may know an 
example that comes along 

with a very large number of 
augmentation steps!

I fear that you may know an 
example that comes along 

with a very large number of 
augmentation steps!

That is true! And it is 
a tiny one!

That is true! And it is 
a tiny one! !
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Worst case example

� Consider the following network with total capacity 

of 4,001

� We will see that the Ford Fulkerson algorithm 

requires 2,000 iterations to generate an optimal 

solution

s t

u

v

1000

1000

1000

1000

1
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Worst case example – Optimal solution

� The maximum flow obviously amounts to 2000

� Illustration of the optimal solution

s t

u

v

1000 / 1000

1

1000 / 1000

1000 / 1000

1000 / 1000
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Worst case example

� In what follows, we apply the labeling algorithm 

starting from the initial zero flow

� We commence with the zero flow on each edge

s t

u

v

1000 / 0

1 / 0

1000 / 01000 / 0

1000 / 0

Business Computing and Operations Research 722

Solving the worst case example 1

� We start with the initial flow �, *, �, . with flow 1

� We obtain the following updated network

s t

u

v

1000 / 1

1000 / 0

1000 / 0

1000 / 1

1 / 1
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Solving the worst case example 2

� We start with the initial flow �, �, *, . with flow 1

� We obtain the following updated network

s t

u

v

1000 / 1

1000 / 1

1000 / 1

1000 / 1

1 / 0
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Solving the worst case example 3

� We start with the initial flow �, *, �, . with flow 1

� We obtain the following updated network

s t

u

v

1000 / 1

1000

1000

1000 / 1

1 / 1
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After two augmentation steps, we have

� A total flow of 2

� Hence, there exists a sequence of 1,000 iterations, 

each comprising two augmentation steps with the 

paths �, *, �, . and �, �, *, . , that generates the 

optimal solution with total flow 2,000

� Therefore, the asymptotic runtime bound 

� is actually tight since we can replace the 1,000

values by an arbitrarily large M-value

( )
( ),

,
x y E

O E c x y
∈

  
⋅    
  
∑
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Exponential running time

� If ; = � � holds (with � ≥ 2), the Ford-Fulkerson 
algorithm executes

� steps

� Hence, we have an exponential running time  

( )⋅
V

O E c
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Towards a new max flow algorithm

� Suppose that we wish to apply the labeling routine to a 
network 9 = (�, ., �, 
, �) with initial zero flow - = 0

� We need not examining capacities and flows in this ease; 
it is a priori certain that all arcs in A are forward, and that 
there are no backward arcs Consequently, our task of 
labeling the network in order to discover an augmenting 
path is done by applying procedure -�45+�.� to 9 =
(�, ., �, 
, �) with 6 = � and 7 = .

� Subsequently, we augment the current flow by applying 
-�45+�.� to a modified network 9 - = (�, ., �, 
 - , ��)

that results from the current flow -

� This modified network is defined next
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A flow-oriented network definition

7.5.2.2 Definition

Given a network 9 = �, ., �, 
, � and a feasible flow 

- of 9. Then, we define the network 9 - =

(�, ., �, 
 - , ��) with 
 - comprising the arcs

1. If *, � ∈ 
 and - *, � < � *, � , then *, � ∈


 - and �� *, � = � *, � − - *, �

2. If *, � ∈ 
 and - *, � > 0, then �, * ∈ 
 -

and �� �, * = - �, *

The value �� *, � is denoted as the augmenting 

capacity of arc *, � ∈ 
 -
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Avoiding multiple copies of arcs in 
 -

� If 
 contains both arcs *, � ∈ 
 and �, * ∈ 
, 

then 
 - may have multiple copies of these 

arcs. However, in this case we may replace one 

arc *, � ∈ 
 by a new node ? and two 

additional arcs *, ? , ?, � ∈ 
 with identical 

capacity, i.e., it holds that � *,? = � ?, � =

� *, �

� Therefore, we can assume that 
 - has no 
multiple arcs
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Interesting attributes of 9 -

� Take any s-t cut @,@A of 9 -

� The value of this cut is the sum of the augmenting 
capacities of all arcs of 9 - going from @ to @A

� Such an arc *, � ∈ 
 - may be either a forward arc 
(case 1 in Definition 7.5.2.2, i.e., �� *, � = � *, � −

- *, � ) or a backward arc (case 2 in Definition 7.5.2.2, 
i.e., �� �, * = - �, * )

� Thus, all in all, if we directly compare the value of @,@A

in 9 - with the value of @,@A of 9, we see that the first 
one is equal to the second one minus the forward flow of 
- across the cut plus the backward flow of - against the 
cut
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Interesting attributes of 9 -

� But for every cut @,@A and flow - we know that 

the flow of - over forward arcs minus the flow of 

-	(i.e., - ) over backward arcs coincides with the 

total flow of - that leaves source �

� We define

� Consequently, we conclude that the value of 

@,@A in 9 - coincides with the value of 

@,@A of 9 minus the total flow - of flow -

� Hence, this proves the following Lemma 7.5.2.3 

since in both networks the value of the minimum 

cut equals the value of the maximum flow

( )
( ),

,
s v E

f f s v
∈

= ∑
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Consequence

7.5.2.3 Lemma

If -B is the value of the maximum flow in network 9, 

then the value of the maximum flow in 9 - is -B −

-

Business Computing and Operations Research 733

Layered network

7.5.2.4 Definition

A layered network C = �, ., D, �, E with 5 + 1 layers 

is a network with vertex set D = DF ∪⋯ ∪ DI, while 
∀� ∈ 1, … , 5 : D�K� ∩ D� = ∅, DF = � , and DI = . . 

The set of arcs � is defined by

( )1

1

d

j j

j

A U U−

=

⊆ ×∪
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Maximal flows

7.5.2.5 Definition

Let 9 = �, ., D, �, E be a layered network. An 

augmenting path in 9 with respect to some flow N is 

denoted as forward if it uses no backward arc. A flow 

N of 9 is called maximal (not maximum) if there is no 

forward augmenting path in 9 with respect to N
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Maximum, maximal flow

7.5.2.6 Conclusion

All maximum flows are maximal. However, not all 

maximal flows are maximum flows.

Proof:

If - is a maximum flow it cannot be augmented. 

Hence, it is maximal. The second part is proven by 

the following example: 1

s t

3 4

2

1, g=1

3, g=0
1, g=1

1, g=1

4, g=01, g=0

2, g=0

Maximum flow amounts to 2
However, N is maximal but 
N =1
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Auxiliary network �9 -

� We introduce the auxiliary network �9 - as a layered 
network to a network 9 - with a flow -

� We create �9 - by carrying out a breadth-first search on 
9(-) while copying only the arcs in �9 - 	that lead us to 
new nodes and only the nodes that are at lower levels than 
node .

� If a node is added all incoming arcs from previously added 
nodes are integrated. However, there is no backward arc

� Hence, �9 - is generated out of 9 - in time � 
 - =

� 


� Using the auxiliary network, we can easily find the shortest 
augmenting path (with a minimal number of edges) with 
respect to the current flow.
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7.6 An efficient max flow algorithm

� In what follows, we introduce a polynomial max 

flow approach

� It has an asymptotic running time of � � O

Basic structure of the max flow procedure

� It operates in stages

� At each stage – depending on the current flow - – it 
constructs the network 9 - and, according to it, it 
generates the auxiliary network �9 -

� Then, we find a maximum flow g in the auxiliary network 
�9 - and add this flow N to flow -
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Basic structure of the max flow procedure

� Adding N to - entails adding N(*, �) to -(*, �) if arc 
(*, �) is a forward arc in �9 - and subtracting N(*, �)
from -(*, �) if arc (*, �) is a backward arc in �9 -

� The procedure terminates when s and t are 
disconnected in 9 -

� This proves that - is optimal
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7.6.1 Pseudo code of the procedure

Input: A network 9 = �, ., �, 
, �

Output: The maximum flow - of 9

- = 0; 5P4� = -�%��;

while (NOT 5P4�) do

N = 0;

construct the auxiliary network �9 - = (�, ., D, Q, ��);

if . is NOT reachable from � in �9 - then 5P4� = .�*�;

else while there is a node with .��P*N�+*. � = 0 do

if � = � OR � = . then go to incr

else delete � and all incident arcs from �9 -

let � be the node in �9 - with minimal nonzero .��P*N�+*.[�];

+*�� �, .��P*N�+*.[�] ;

+*%% �, .��P*N�+*.[�] ;

end while; end if

incr: - = - + N Comment: End of the current stage

end while
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Pseudo code of +*�� R, �

Comment: Increases the flow N by � units pushed from R to .

, = R Comment: , is organized as a queue

for all * ∈ D − R do ��S * = 0;

��S R = � Comment: ��S * defines how many units have to be pushed out of *

while , ≠ ∅	do

let � be an element of Q

remove � from Q

for all * such that �, * ∈ Q and until ��S � = 0 do

V = min �� �, * , ��S � ;

�� �, * = �� �, * − V;

if �� �, * = 0 then remove arc �, * from Q

��S � = ��S � − V;

��S * = ��S * + V;

add * to ,

N �, * = N �, * + V;

end until

end while
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Pseudo code of +*%% R, �

Comment: Increases the flow N by � units pull from R to �

, = R Comment: , is organized as a queue

for all * ∈ D − R do ��S * = 0;

��S R = � Comment: ��S * defines how many units have to be pulled out of *

while , ≠ ∅	do

let � be an element of Q

remove � from Q

for all * such that *, � ∈ Q and until ��S � = 0 do

V = min �� *, � , ��S � ;

�� *, � = �� *, � − V;

if �� *, � = 0 then remove arc *, � from Q

��S � = ��S � − V;

��S * = ��S * + V;

add * to ,

N *, � = N *, � + V;

end until

end while
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7.6.2 Analysis of the algorithm

7.6.2.1 Lemma

An arc � of �9 - is removed from Q at some stage 

only if there is no forward augmenting path with 

respect to flow N in �9 - that passes through �. 

Proof:

Arc � is deleted at a stage for two reasons

1. It may either be that N � = � � or 

2. � = �, * with .��P*N�+*. � = 0 or 

.��P*N�+*. * = 0
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Proof of Lemma 7.6.2.1

� Suppose that N � = � � 	

� This means that arc � is now saturated and may 

appear in an augmenting path in �9 - with 

respect to g only as a backward arc. Hence, the 

proposition follows

� Let us now consider the case when � or * has 

throughput zero 

� Then, no input or output by another arc exists at 

the arc � and, therefore, � = (�, *) cannot be 

used in any forward path

� This completes the proof
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Result of each stage

7.6.2.2 Lemma

At the end of each stage, N is a maximal flow in 

�9 - .

Proof:

� By Lemma 7.6.2.1, an arc is deleted only if it 

cannot belong to a forward augmenting path 

� This never changes again since capacities are 

only reduced and arcs and nodes are deleted

� However, a stage ends only when node � or node 

. is deleted due to a zero throughput
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Proof of Lemma 7.6.2.2

� Therefore, due to Lemma 7.6.2.1 and zero 

throughput in � or ., after completing a stage, 

there are no forward augmenting paths at all, and 

hence N is maximal

� This completes the proof
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Improvement

7.6.2.3 Lemma

The �-. distance in �9 - + N at some stage is 

strictly greater than the �-. distance in �9 - at the 

previous stage. 

Proof:

� The auxiliary network �9 - + N coincides with 

the auxiliary network of �9 - with respect to 

flow N

� Since N is maximal (Lemma 7.6.2.2), there is no 

forward augmenting path in �9 - + N
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Proof of Lemma 7.6.2.3

� Hence, all augmenting paths have length greater 

than the �-. distance in �9 - (that is the length 

of N) 

� We conclude that the �-. distance in �9 - + N is 

strictly greater than the �-. distance in �9 -

� This completes the proof
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Correctness and complexity

7.6.2.4 Theorem

The max flow algorithm (with pseudo code given 

under 7.6.1) correctly solves the max-flow problem 

for a network 9 = �, ., �, 
, � in asymptotic time 

� � O .

Proof:

Correctness:

After performing the last stage, we have s and t 

being disconnected. Hence, the total augmentation 

flow in network 9 - is zero. 
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Proof of Theorem 7.6.2.4

� By Lemma 7.5.2.3, we know that the total size N

of the maximum flow N in network 9 - amounts to 

N = -[ − - , while -[ is the total size of the 

maximum flow in the original network 9

� Thus, we obtain N = -[ − - = 0 and, therefore, 

-[ = -

� This proves the optimality of the current flow -

Time bound

� Due to Lemma 7.6.2.3, we have at most � stages, 

since the s-t distance increases monotonously
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Proof of Theorem 7.6.2.4

� At each stage at most each node is chosen to 

transfer its minimal throughput

� Moreover, at most each arc is used completely 

only one time (afterwards, it is deleted)

� However, an arc may be also used partially and 

this can happen many times

� But, push and pull operations are initiated by 

each node at most once (afterwards, the node is 

deleted since its throughput is now zero)

Each push and pull operation contains at most � steps 
by enumerating the nodes systematically
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Proof of Theorem 7.6.2.4

� All in all, we have

� At most � stages

� At each stage 

� At most � � steps that use an arc partially

� At most 
 steps that use an arc completely

� Thus, the total asymptotic running time amounts to 

( )( ) ( )( ) ( )2 2 3
O V V E O V V O V⋅ + = ⋅ =
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Example
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Example – stage 1: first node
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Example – stage 1: second node

1

4

2
5

s t

3

8

96

7

10

4

3

3

3
3

3 2

3

4

4

1

32

2

Minimal throughput 1

1

4

2
5

s t

8

9

7

10

4

3, h=1

3
3

3, h=1 2

3

4, h=1

1, h=1

32

2, h=1

After push and pull

Deletion (zero throughput)

Business Computing and Operations Research 755

Example – stage 1: third node

1

4

2
5

s t

8

9

7

10

4

2

3
3

2 2

3

3

32

1

Next auxiliary network

1

4

2
5

s t

8

9

7

10

4

2

3
3

2 2

3

3

32

1

Minimum throughput 2 Deletion (zero throughput)



20

Business Computing and Operations Research 756

Example
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. is not reachable from � anymore
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Example – termination 

� Since . is not reachable from � in �9 N + � + � , 

the procedure terminates

� The maximal flow is given through N + � + � and 

has a total size of 6

1

4

2
5

s t

3

8

96

7

10

7, f=3

3, f=3

3
2, f=2

1, f=1

3
3

3, f=3 2

3

4, f=3

2, f=2

4, f=1

3, f=3
4, f=4

3, f=2
2, f=2

2, f=1
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