
1

Business Computing and Operations Research 680

7.5 Analyzing the Ford-Fulkerson algorithm

� In what follows, we analyze the complexity of the

introduced Ford-Fulkerson algorithm

� First of all, we will see that the correctness of the

algorithm is limited to integer and rational

capacity values

� However, in case of irrational capacity values,

even termination and correctness of the

procedure are not guaranteed anymore

� This result is somehow surprising since the

procedure seems to be finite as every previously

introduced algorithm

Business Computing and Operations Research 681

7.5.1 Correctness

� If capacities are integers, the termination of the
algorithm follows directly from the fact that the
flow is increased by at least one unit in each
iteration

� Since, if the optimal flow has the total amount of
fopt, fopt iterations (augmentations) are at most
necessary

� Analogously, if all capacities are rational, we may
put them over a common denominator D, scale
by D, and apply the same argument.

� Hence, if the optimal flow has the total amount of
fopt, fopt

.D iterations (augmentations) are at most
necessary (see Papadimitriou and Steiglitz
(1982) pp.124)

Business Computing and Operations Research 682

The pitfall – irrational case

� However, when the capacities are irrational, one

can show that the method does not only fail to

compute the optimal result but also converges to a

flow strictly less than optimal

� In what follows, we shall introduce and illustrate an

example originally given by Ford and Fulkerson

(1962) and depicted in Papadimitriou and Steiglitz

(1982)

� Edmonds and Karp (1972) proposed a modified

labeling procedure and proved that this algorithm

requires no more than (n3-n)/4 augmentation
iterations, regardless of the capacity values

Business Computing and Operations Research 683

Analyzing the problem in detail

I cannot believe that there
are irrational examples where
the Ford-Fulkerson algorithm

is not able to provide an
optimal solution

I cannot believe that there
are irrational examples where
the Ford-Fulkerson algorithm

is not able to provide an
optimal solution

This can actually
happen!

I will show you a very
simple example

This can actually
happen!

I will show you a very
simple example !

2

Business Computing and Operations Research 684

The irrational case – the network

s

x1

x2

x3

x4

y1

y2

y3

y4

t

Arc A1 with capacity a0

Arc A2 with capacity a1

Arc A3 with capacity a2

Arc A4 with capacity a2

Capacity S

Capacity S

Capacity S

special arcs nonspecial arcs

Business Computing and Operations Research 685

The irrational case – capacities

� Special arcs

� These are the arcs A1, A2, A3, and A4

� Capacity is a0 for A1, a1 for A2, a2 for A3, and a2 for A4

� Nonspecial arcs

� All other arcs are nonspecial arcs, i.e., all arcs (s,xi),
(yi, yj), (yi, xj), (xi, yj), or (yi, t) with i≠j

� Capacity is S

� We define

2 1

0 1

5 1 5 1 1
1, 1, 0.618033989, and

2 2

n n n
a a a

a a Sσ
σ

+ += −

− −
= = = < ≈ =

Business Computing and Operations Research 686

The capacities of the special arcs

7.5.1.1 Lemma:

It holds that:

Proof:

We prove the proposition by induction:
0

0

1

1

2 1 2

2 1

2 2

0 : 1

5 1
1:

2

5 1 5 1 5 1 5 1
1: 1

2 2 2 2

5 1 2 5 1 5 1 3 5

2 2 2 2

i

i

i

i

i i i

i i i

i i

i a a

i a a

i a a a

σ σ

σ σ σ

− − −

− −

− −

= = = = =

−
= = = = = =

       − − − −
> = − = − = ⋅ −              

       

       − − + − −
= ⋅ = ⋅              
       

{ }0 : 1,..., :
i

i
n i n a σ∀ ≥ ∀ ∈ =

Business Computing and Operations Research 687

Proof of Lemma 7.5.1.1

� Since it holds that

� we obtain

� This completes the proof

2

2 5 1 5 1 5 1 5 2 5 1 6 2 5 3 5

2 2 2 4 4 2
σ

     − − − − ⋅ + − ⋅ −
= = ⋅ = = =          
     

2 2 2

2 1

5 1 3 5 5 1 5 1
1:

2 2 2 2

5 1

2

i i

i i i

i

i

i a a a

σ

− −

− −

       − − − −
> = − = ⋅ = ⋅              

       

 −
= =  
 

3

Business Computing and Operations Research 688

Consequence

7.5.1.2 Lemma:

It holds that

Proof:

() () ()0 1 0 2 3 3 4

2

1
0 : lim ...

1

n

n i i

i

n a a a a a a a a S
σ

→∞ +

=

∀ ≥ + + = + + + + + = =
−

∑

�

�

1

1

0 1 0 1 0

2 2 1

1

0 0

Geometric series with 0< <1

We conclude that:

0 : lim lim lim

1
lim

1

i i

n n n

n i i n i n i

i i i
a a

n
i

n i

i i

n a a a a a a a

a S

σ

σ
σ

−

−

→∞ + →∞ − →∞

= = == −

− ∞

→∞

= =

 
 ∀ ≥ + + = + = +
 
 

= = = =
−

∑ ∑ ∑

∑ ∑

Business Computing and Operations Research 689

Step 0 – augmentation path (s,x1,y1,t)

s

x1

x2

x3

x4

y1

y2

y3

y4

t

Arc A1 with capacity a0

Arc A2 with capacity a1

Arc A3 with capacity a2

Arc A4 with capacity a2

Capacity S

Capacity S

Capacity S

special arcs nonspecial arcs

Business Computing and Operations Research 690

Step 0 - consequences

� Augmentation value is a0

� This is true since

� Hence, the residual capacities in the special arcs

amount to

0

0

5 1 1
1 and 1

2 1
a Sσ σ

σ

−
= < = = < =

−

() ()0 0 1 2 2 1 2 2
, , , 0, , ,a a a a a a a a− =

Business Computing and Operations Research 691

Step n≥1 – assumptions

� Due to the preceding steps, we have the

following remaining capacities on the special arcs

� Note that step 0 has provided such a situation

()

1 1

1 2 3

4 1 1

1

0, , , and

Note that we order now the special arcs such that,

after this step, we have the arcs , , ,

and A with the remaining capacities 0, , , .

Order the connected nodes ,

n n n

n n n

a a a

A A A

a a a

x

+ +

+ +

′ ′ ′

′

′
2 3 4

1 2 3 4

, , and as well

as , , , and , accordingly.

x x x

y y y y

′ ′ ′

′ ′ ′ ′

4

Business Computing and Operations Research 692

Step n≥1 – augmentation path

s

x'1

x'2

x'3

x'4

y'1

y'2

y'3

y'4

t

Arc A’1 with rem. capacity 0

Arc A’2 with rem. capacity an

Arc A’3 with rem. capacity an+1

Arc A’4 with rem. capacity an+1

Capacity S

Capacity S

Capacity S

special arcs nonspecial arcs

()2 2 3 3
, , , , ,s x y x y t′ ′ ′ ′

Business Computing and Operations Research 693

Step n≥1 – consequences

1 2 3

1

1 1

The chosen augmentation path increased the total flow by

 units since we used the special arcs A and A in forward

direction. Since , due to <1, is the

bottleneck on the ch

n

n n

n n n

a

a a aσ σ σ

+

+

+ +

′ ′

= < =

osen path

Note that the inner nonspecial arcs are somehow symmetric,

i.e., we have always arcs with capacity in both directions

from to and vice versa.

After using this augmentation path, we obta

S

x y

()
2

1 1 1 1 2 1

in the following

residual capacities on the special arcs:

0, , , 0, ,0,

n

n n n n n n n

a

a a a a a a a

+

+ + + + + +

 
 − − =
 
 
�����

Business Computing and Operations Research 694

Second augmentation path

s

x'1

x'2

x'3

x'4

y’1

y'2

y'3

y'4

t

Arc A1 with capacity a0

Arc A2 with capacity a1

Arc A3 with capacity a2

Arc A4 with capacity a2

Capacity S

Capacity S

Capacity S

special arcs nonspecial arcs

()2 2 1 1 3 3 4
, , , , , , , ,s x y y x y x y t′ ′ ′ ′ ′ ′ ′

Business Computing and Operations Research 695

Second augmentation – consequences

2 2

1 3

2

2 1

The chosen augmentation path increased the total flow by

 units since we used the special arc A in forward direction

and the special arc A and A in backward direction . Since

n

n

n n

a

a aσ

+

+

+ +

′

′ ′

= < = 1

2
, due to <1, is the

bottleneck on the chosen path

Note again that the inner nonspecial arcs are somehow symmetric,

i.e., we have always arcs with capacity in both directions

from to and

n

n
a

S

x y

σ σ+

+

()

()
2 2 2 2 1

2 2 1

 vice versa.

After using this augmentation path, we obtain the following

residual capacities on the special arcs: 0 , ,0 ,

,0, ,

n n n n n

n n n

a a a a a

a a a

+ + + + +

+ + +

+ − +

=

5

Business Computing and Operations Research 696

Consequences of step n≥1

� Step n ends with residual capacities appropriate

for conducting the succeeding step n+1

� Hence, each step augments the total flow by

an+1+an+2

� Therefore, the flow is augmented by an

2 1 2 1
It holds that:

n n n n n n
a a a a a a+ + + += − ⇔ + =

0

0

All in all, after steps, we therefore obtain the total flow

Consequently, there is always an improvement possible and the

1
algorithm does not terminate and the total flow approaches

1

n

i

i

i

i

n a

a

=

∞

=

=

∑

∑ S
σ

=
−

Business Computing and Operations Research 697

No termination and …

� However, the max flow in our pathological

example is obviously 4.S

� So the Ford-Fulkerson algorithm approaches

one-fourth the optimal flow value

� Therefore, the algorithm is not correct

Business Computing and Operations Research 698

Worth to mention

Really amazing this example !
No termination and even the
value that is approached is

wrong !

Really amazing this example !
No termination and even the
value that is approached is

wrong !

However, the example
is NOT really fair !

However, the example
is NOT really fair ! !

Business Computing and Operations Research 699

In the sense of fairness

� The raised question of finiteness of the Ford

Fulkerson algorithm is in a sense a mathematical

but not a practical one, since computers always

work with rational numbers

� Hence, it is reasonable to assume that data can

be represented by a finite number of bits

� A practical question, which is however related to

that of finiteness, will ask how many steps may

be required by a computation as a function of the

total number of bits in the data

6

Business Computing and Operations Research 700

7.5.2 Complexity analysis

� In what follows, we analyze the complexity of the Ford-
Fulkerson algorithm for integral capacity values

� Unfortunately, it turns out that – depending on the given
capacity values of the considered instance – this labeling
procedure may require in the worst case an exponential
amount of time

� Fortunately, there exists an efficient algorithm for the max
flow problem, which is, in fact, a rather simple modification
of the labeling algorithm

� In order to analyze the labeling procedure and to prepare a
modified version of it, we first examine a fundamental graph
algorithm called ������ �

� Such a procedure is required in both algorithms

Business Computing and Operations Research 701

Graph representations

� A graph 	 = �,
 can be represented in many

alternative ways

� Adjacency matrix:

� A matrix �� = ��,� ���� � ,���� �
, with binary entries such that

� ��,� = 1 if arc �, � ∈
 and ��,� = 0 otherwise

� However, in case of graphs that are sparse in that the number

of their arcs is far less than �
�

2
= � � � , this

representation is the most economical one. E.g., if we have

100 nodes and 500 edges, an representation with 10,000 (!)

binary entries has to be stored

Business Computing and Operations Research 702

Graph representations

� Adjacency lists: For each node � ∈ �	�(�) gives an
ordered list of successors, i.e., we have � � =

��, ��, … , �! " # , with �, �� ∈
, ∀� ∈ 1,… , % � �

� Example

� 1 = 2,4 , � 2 = 1,3,4 ,

� 3 = 2,4 , � 4 = 1,2,3,5 , � 5 = 4

� In what follows, we assume that the graph 	 =

�,
 is connected, i.e., there are no isolated

nodes

1 2

34

5

Business Computing and Operations Research 703

Algorithm ������(�)

{ }

: A graph , defined by adjacency lists and a node

: The graph with the nodes reachable by path from the node marked

 let be any element of

 remove from

 mark

 f

G v

v

Q v

Q

u Q

u Q

u

=

≠ ∅

Input

Output

while do

()or all do

 is not maked insert into

u A u

u u Q

′∈

′ ′if then

end while

7

Business Computing and Operations Research 704

Complexity

7.5.2.1 Theorem:

The algorithm ������(�) marks all nodes of 	

connected to � in �(|
|)	time.

Proof:

Correctness: We assume that a node * is

connected to node � by a path +. Clearly, it can be

shown by induction on the path length that * will be

marked. If, otherwise, node * is not connected to

node � u will not be marked since this would lead to

the contradictory conclusion that there is a path

from node � to node *

Business Computing and Operations Research 705

Proof of Theorem 7.5.2.1

Time bound:

� In order to estimate the running time of ������(�),

we have to consider three components:

1. Initialization: this takes constant time

2. Maintaining the set ,: We store the set Q as a queue
with a -���. and %��. pointer (variables) in order to
enable insertion and deletion in constant time (see the
next slide for a brief illustration). The pointers
(variables) -���. and %��. are initialized to zero while ,
is stored as a simple array with � entries. Array , is
empty if and only if it holds -���. = %��.. We remove
from top and add at the tail of the queue (FIFO
principle).

Business Computing and Operations Research 706

Applied data types

� Add � to ,:

� %��.=%��.+1

� ,[%��.] = �

� Remove:

� -���. = -���. + 1

� � = ,[-���.]

v3 v5 v8 v2v4

-���. = 2 %��. = 7

The contents of ,, in order of arrival

Business Computing and Operations Research 707

Proof of Theorem 7.5.2.1 – Time bound

3. Searching the adjacency lists: we have constant

time for each element of the lists. Since the total

number of these elements is 2 ·
 , the time

required is �

Therefore, we have a total asymptotic running time

of �
 . This completes the proof

8

Business Computing and Operations Research 708

LIFO queue (i.e., a stack)

� Add � to ,:

� %��. = %��. + 1

� ,[%��.] = �

� Remove:

� � = ,[-���.]

� %��. = %��. + 1

v3 v5 v8 v2v4

%��. = 5

The contents of ,, in order of arrival. , is empty if and only if %��. = 0

Business Computing and Operations Research 709

Selecting rules applied to ,

� The procedure ������(�) was not completely

specified

� We have not defined yet exactly how the next

element � is chosen from , in the while loop

� There are many possibilities

� Two best known are …

� FIFO: The node that waited longest is chosen (breadth
first search (BFS))

� LIFO: The node that was lastly inserted is chosen
(depth first search (DFS))

Business Computing and Operations Research 710

Directed graphs

� The procedure ������(�) can be applied to

directed graphs (i.e., so-called digraphs) without

any changes

Business Computing and Operations Research 711

Example

� We apply BFS and DFS to the digraph below

� The resulting numbers (BFS/DFS) give the indices of the
step at that the respective node is labeled

� Starting node is node 1

1 6

72 4

3

5
(1/1)

(2,2) (4/3)

(3/7)

(6/4)

(7/5)

(5/6)

9

Business Computing and Operations Research 712

Algorithm -�45+�.�(�)

()

()

: A digraph , , defined by adjacency lists and two subsets , of

: A path in from a node in to a node in if this path exists

for all do [] 0

 return ; ;

G V E S T V

G S T

v S label v

v T v

Q

=

∈ =

∈

=

Input

Output

if then break

()

()

 let be any element of

 remove from

 all

 is not labeled

[]

 return ; ; insert into

S

Q

u Q

u Q

u A u

u

label u u

u T path u u Q

≠ ∅

′∈

′

′ =

′ ′ ′∈

while do

for do

if then begin

if then break else

 en

"no S-T path available in G"

d (begin)

 end (do)

end while

return

Business Computing and Operations Research 713

Algorithm +�.� �

[]

[]

()

[]()() ()

: For all nodes : generated by procedure

: Path from a node in to

 0

 return ; ;

 ; ;

 stands for concatenation

u V label u findpath

S v T

label v

v

path label v v

∈

∈

=

Input

Output

if

then break

else return break

end if

 of paths

Note that the procedure is recursive!

Business Computing and Operations Research 714

Example

� We apply the procedure -�45+�.� 6, 7 with FIFO queue (bfs) and

obtain the labels (resulting in a path with a minimum number of arcs)

1 4

52

3

108

6 9

7

S

T

1 4

52

3

108

6 9

70

0

0

3

5

5

6

8

8

Business Computing and Operations Research 715

Example – Path reconstruction

� We apply +�.� 9 and obtain

1 4

52

3

108

6 9

70

0

0

3

5

6

8

8

()

() () () () () ()

() () ()

9

8 9 6 8,9 5 6,8,9

3 5,6,8,9 3,5,6,8,9

path

path path path

path

= = =

= =

10

Business Computing and Operations Research 716

Complexity of the Ford Fulkerson procedure

� We now analyze the complexity of the Ford-

Fulkerson algorithm more in detail

� We apply the algorithm to a network 9 = �, ., �,
, �

and observe the following

� The initialization step of the procedure takes time �

� Each iteration step involves the scanning and labeling of
vertices. It can be stated that each edge *, � is
considered at most twice – once for scanning node * and
once for �. Moreover, we have to follow back the found
path that has a length of at most � � steps

� Thus, each iteration takes time � � +

Business Computing and Operations Research 717

Complexity of the Ford Fulkerson procedure

� All in all, in case of integral capacities, if � is the

value of the max flow and 6 is the number of

conducted augmentation steps of the applied

Ford-Fulkerson algorithm, we have 6 ≤ � and a

total asymptotic running time complexity of

� � +
 · 6 = �
 · 6

� In order to define the running time by the input

data of a given instance, we obtain the

asymptotic running time

()
(),

,
x y E

O E c x y
∈

  
⋅    
  
∑

Business Computing and Operations Research 718

Worth to mention

I fear that you may know an
example that comes along

with a very large number of
augmentation steps!

I fear that you may know an
example that comes along

with a very large number of
augmentation steps!

That is true! And it is
a tiny one!

That is true! And it is
a tiny one! !

Business Computing and Operations Research 719

Worst case example

� Consider the following network with total capacity

of 4,001

� We will see that the Ford Fulkerson algorithm

requires 2,000 iterations to generate an optimal

solution

s t

u

v

1000

1000

1000

1000

1

11

Business Computing and Operations Research 720

Worst case example – Optimal solution

� The maximum flow obviously amounts to 2000

� Illustration of the optimal solution

s t

u

v

1000 / 1000

1

1000 / 1000

1000 / 1000

1000 / 1000

Business Computing and Operations Research 721

Worst case example

� In what follows, we apply the labeling algorithm

starting from the initial zero flow

� We commence with the zero flow on each edge

s t

u

v

1000 / 0

1 / 0

1000 / 01000 / 0

1000 / 0

Business Computing and Operations Research 722

Solving the worst case example 1

� We start with the initial flow �, *, �, . with flow 1

� We obtain the following updated network

s t

u

v

1000 / 1

1000 / 0

1000 / 0

1000 / 1

1 / 1

Business Computing and Operations Research 723

Solving the worst case example 2

� We start with the initial flow �, �, *, . with flow 1

� We obtain the following updated network

s t

u

v

1000 / 1

1000 / 1

1000 / 1

1000 / 1

1 / 0

12

Business Computing and Operations Research 724

Solving the worst case example 3

� We start with the initial flow �, *, �, . with flow 1

� We obtain the following updated network

s t

u

v

1000 / 1

1000

1000

1000 / 1

1 / 1

Business Computing and Operations Research 725

After two augmentation steps, we have

� A total flow of 2

� Hence, there exists a sequence of 1,000 iterations,

each comprising two augmentation steps with the

paths �, *, �, . and �, �, *, . , that generates the

optimal solution with total flow 2,000

� Therefore, the asymptotic runtime bound

� is actually tight since we can replace the 1,000

values by an arbitrarily large M-value

()
(),

,
x y E

O E c x y
∈

  
⋅    
  
∑

Business Computing and Operations Research 726

Exponential running time

� If ; = � � holds (with � ≥ 2), the Ford-Fulkerson
algorithm executes

� steps

� Hence, we have an exponential running time

()⋅
V

O E c

Business Computing and Operations Research 727

Towards a new max flow algorithm

� Suppose that we wish to apply the labeling routine to a
network 9 = (�, ., �,
, �) with initial zero flow - = 0

� We need not examining capacities and flows in this ease;
it is a priori certain that all arcs in A are forward, and that
there are no backward arcs Consequently, our task of
labeling the network in order to discover an augmenting
path is done by applying procedure -�45+�.� to 9 =
(�, ., �,
, �) with 6 = � and 7 = .

� Subsequently, we augment the current flow by applying
-�45+�.� to a modified network 9 - = (�, ., �,
 - , ��)

that results from the current flow -

� This modified network is defined next

13

Business Computing and Operations Research 728

A flow-oriented network definition

7.5.2.2 Definition

Given a network 9 = �, ., �,
, � and a feasible flow

- of 9. Then, we define the network 9 - =

(�, ., �,
 - , ��) with
 - comprising the arcs

1. If *, � ∈
 and - *, � < � *, � , then *, � ∈

 - and �� *, � = � *, � − - *, �

2. If *, � ∈
 and - *, � > 0, then �, * ∈
 -

and �� �, * = - �, *

The value �� *, � is denoted as the augmenting

capacity of arc *, � ∈
 -

Business Computing and Operations Research 729

Avoiding multiple copies of arcs in
 -

� If
 contains both arcs *, � ∈
 and �, * ∈
,

then
 - may have multiple copies of these

arcs. However, in this case we may replace one

arc *, � ∈
 by a new node ? and two

additional arcs *, ? , ?, � ∈
 with identical

capacity, i.e., it holds that � *,? = � ?, � =

� *, �

� Therefore, we can assume that
 - has no
multiple arcs

Business Computing and Operations Research 730

Interesting attributes of 9 -

� Take any s-t cut @,@A of 9 -

� The value of this cut is the sum of the augmenting
capacities of all arcs of 9 - going from @ to @A

� Such an arc *, � ∈
 - may be either a forward arc
(case 1 in Definition 7.5.2.2, i.e., �� *, � = � *, � −

- *, �) or a backward arc (case 2 in Definition 7.5.2.2,
i.e., �� �, * = - �, *)

� Thus, all in all, if we directly compare the value of @,@A

in 9 - with the value of @,@A of 9, we see that the first
one is equal to the second one minus the forward flow of
- across the cut plus the backward flow of - against the
cut

Business Computing and Operations Research 731

Interesting attributes of 9 -

� But for every cut @,@A and flow - we know that

the flow of - over forward arcs minus the flow of

-	(i.e., -) over backward arcs coincides with the

total flow of - that leaves source �

� We define

� Consequently, we conclude that the value of

@,@A in 9 - coincides with the value of

@,@A of 9 minus the total flow - of flow -

� Hence, this proves the following Lemma 7.5.2.3

since in both networks the value of the minimum

cut equals the value of the maximum flow

()
(),

,
s v E

f f s v
∈

= ∑

14

Business Computing and Operations Research 732

Consequence

7.5.2.3 Lemma

If -B is the value of the maximum flow in network 9,

then the value of the maximum flow in 9 - is -B −

-

Business Computing and Operations Research 733

Layered network

7.5.2.4 Definition

A layered network C = �, ., D, �, E with 5 + 1 layers

is a network with vertex set D = DF ∪⋯ ∪ DI, while
∀� ∈ 1, … , 5 : D�K� ∩ D� = ∅, DF = � , and DI = . .

The set of arcs � is defined by

()1

1

d

j j

j

A U U−

=

⊆ ×∪

Business Computing and Operations Research 734

Maximal flows

7.5.2.5 Definition

Let 9 = �, ., D, �, E be a layered network. An

augmenting path in 9 with respect to some flow N is

denoted as forward if it uses no backward arc. A flow

N of 9 is called maximal (not maximum) if there is no

forward augmenting path in 9 with respect to N

Business Computing and Operations Research 735

Maximum, maximal flow

7.5.2.6 Conclusion

All maximum flows are maximal. However, not all

maximal flows are maximum flows.

Proof:

If - is a maximum flow it cannot be augmented.

Hence, it is maximal. The second part is proven by

the following example: 1

s t

3 4

2

1, g=1

3, g=0
1, g=1

1, g=1

4, g=01, g=0

2, g=0

Maximum flow amounts to 2
However, N is maximal but
N =1

15

Business Computing and Operations Research 736

Auxiliary network �9 -

� We introduce the auxiliary network �9 - as a layered
network to a network 9 - with a flow -

� We create �9 - by carrying out a breadth-first search on
9(-) while copying only the arcs in �9 - 	that lead us to
new nodes and only the nodes that are at lower levels than
node .

� If a node is added all incoming arcs from previously added
nodes are integrated. However, there is no backward arc

� Hence, �9 - is generated out of 9 - in time �
 - =

�

� Using the auxiliary network, we can easily find the shortest
augmenting path (with a minimal number of edges) with
respect to the current flow.

Business Computing and Operations Research 737

7.6 An efficient max flow algorithm

� In what follows, we introduce a polynomial max

flow approach

� It has an asymptotic running time of � � O

Basic structure of the max flow procedure

� It operates in stages

� At each stage – depending on the current flow - – it
constructs the network 9 - and, according to it, it
generates the auxiliary network �9 -

� Then, we find a maximum flow g in the auxiliary network
�9 - and add this flow N to flow -

Business Computing and Operations Research 738

Basic structure of the max flow procedure

� Adding N to - entails adding N(*, �) to -(*, �) if arc
(*, �) is a forward arc in �9 - and subtracting N(*, �)
from -(*, �) if arc (*, �) is a backward arc in �9 -

� The procedure terminates when s and t are
disconnected in 9 -

� This proves that - is optimal

Business Computing and Operations Research 739

7.6.1 Pseudo code of the procedure

Input: A network 9 = �, ., �,
, �

Output: The maximum flow - of 9

- = 0; 5P4� = -�%��;

while (NOT 5P4�) do

N = 0;

construct the auxiliary network �9 - = (�, ., D, Q, ��);

if . is NOT reachable from � in �9 - then 5P4� = .�*�;

else while there is a node with .��P*N�+*. � = 0 do

if � = � OR � = . then go to incr

else delete � and all incident arcs from �9 -

let � be the node in �9 - with minimal nonzero .��P*N�+*.[�];

+*�� �, .��P*N�+*.[�] ;

+*%% �, .��P*N�+*.[�] ;

end while; end if

incr: - = - + N Comment: End of the current stage

end while

16

Business Computing and Operations Research 740

Pseudo code of +*�� R, �

Comment: Increases the flow N by � units pushed from R to .

, = R Comment: , is organized as a queue

for all * ∈ D − R do ��S * = 0;

��S R = � Comment: ��S * defines how many units have to be pushed out of *

while , ≠ ∅	do

let � be an element of Q

remove � from Q

for all * such that �, * ∈ Q and until ��S � = 0 do

V = min �� �, * , ��S � ;

�� �, * = �� �, * − V;

if �� �, * = 0 then remove arc �, * from Q

��S � = ��S � − V;

��S * = ��S * + V;

add * to ,

N �, * = N �, * + V;

end until

end while

Business Computing and Operations Research 741

Pseudo code of +*%% R, �

Comment: Increases the flow N by � units pull from R to �

, = R Comment: , is organized as a queue

for all * ∈ D − R do ��S * = 0;

��S R = � Comment: ��S * defines how many units have to be pulled out of *

while , ≠ ∅	do

let � be an element of Q

remove � from Q

for all * such that *, � ∈ Q and until ��S � = 0 do

V = min �� *, � , ��S � ;

�� *, � = �� *, � − V;

if �� *, � = 0 then remove arc *, � from Q

��S � = ��S � − V;

��S * = ��S * + V;

add * to ,

N *, � = N *, � + V;

end until

end while

Business Computing and Operations Research 742

7.6.2 Analysis of the algorithm

7.6.2.1 Lemma

An arc � of �9 - is removed from Q at some stage

only if there is no forward augmenting path with

respect to flow N in �9 - that passes through �.

Proof:

Arc � is deleted at a stage for two reasons

1. It may either be that N � = � � or

2. � = �, * with .��P*N�+*. � = 0 or

.��P*N�+*. * = 0

Business Computing and Operations Research 743

Proof of Lemma 7.6.2.1

� Suppose that N � = � � 	

� This means that arc � is now saturated and may

appear in an augmenting path in �9 - with

respect to g only as a backward arc. Hence, the

proposition follows

� Let us now consider the case when � or * has

throughput zero

� Then, no input or output by another arc exists at

the arc � and, therefore, � = (�, *) cannot be

used in any forward path

� This completes the proof

17

Business Computing and Operations Research 744

Result of each stage

7.6.2.2 Lemma

At the end of each stage, N is a maximal flow in

�9 - .

Proof:

� By Lemma 7.6.2.1, an arc is deleted only if it

cannot belong to a forward augmenting path

� This never changes again since capacities are

only reduced and arcs and nodes are deleted

� However, a stage ends only when node � or node

. is deleted due to a zero throughput

Business Computing and Operations Research 745

Proof of Lemma 7.6.2.2

� Therefore, due to Lemma 7.6.2.1 and zero

throughput in � or ., after completing a stage,

there are no forward augmenting paths at all, and

hence N is maximal

� This completes the proof

Business Computing and Operations Research 746

Improvement

7.6.2.3 Lemma

The �-. distance in �9 - + N at some stage is

strictly greater than the �-. distance in �9 - at the

previous stage.

Proof:

� The auxiliary network �9 - + N coincides with

the auxiliary network of �9 - with respect to

flow N

� Since N is maximal (Lemma 7.6.2.2), there is no

forward augmenting path in �9 - + N

Business Computing and Operations Research 747

Proof of Lemma 7.6.2.3

� Hence, all augmenting paths have length greater

than the �-. distance in �9 - (that is the length

of N)

� We conclude that the �-. distance in �9 - + N is

strictly greater than the �-. distance in �9 -

� This completes the proof

18

Business Computing and Operations Research 748

Correctness and complexity

7.6.2.4 Theorem

The max flow algorithm (with pseudo code given

under 7.6.1) correctly solves the max-flow problem

for a network 9 = �, ., �,
, � in asymptotic time

� � O .

Proof:

Correctness:

After performing the last stage, we have s and t

being disconnected. Hence, the total augmentation

flow in network 9 - is zero.

Business Computing and Operations Research 749

Proof of Theorem 7.6.2.4

� By Lemma 7.5.2.3, we know that the total size N

of the maximum flow N in network 9 - amounts to

N = -[− - , while -[is the total size of the

maximum flow in the original network 9

� Thus, we obtain N = -[− - = 0 and, therefore,

-[= -

� This proves the optimality of the current flow -

Time bound

� Due to Lemma 7.6.2.3, we have at most � stages,

since the s-t distance increases monotonously

Business Computing and Operations Research 750

Proof of Theorem 7.6.2.4

� At each stage at most each node is chosen to

transfer its minimal throughput

� Moreover, at most each arc is used completely

only one time (afterwards, it is deleted)

� However, an arc may be also used partially and

this can happen many times

� But, push and pull operations are initiated by

each node at most once (afterwards, the node is

deleted since its throughput is now zero)

Each push and pull operation contains at most � steps
by enumerating the nodes systematically

Business Computing and Operations Research 751

Proof of Theorem 7.6.2.4

� All in all, we have

� At most � stages

� At each stage

� At most � � steps that use an arc partially

� At most
 steps that use an arc completely

� Thus, the total asymptotic running time amounts to

()() ()() ()2 2 3
O V V E O V V O V⋅ + = ⋅ =

19

Business Computing and Operations Research 752

Example

1

4

2
5

s t

3

8

96

7

10

7

3

32

1

3
3

3 2

3

4

2

4

3
4

32

2

1

4

2
5

s t

3

8

96

7

10

7

3

32

1

3
3

3 2

3

4

2

4

3
4

32

2

Minimal throughput 3

Business Computing and Operations Research 753

Example – stage 1: first node

1

4

2
5

s t

3

8

96

7

10

7, g=3

3

3

2, g=2

1, g=1

3
3

3 2

3

4

2, g=2

4, g=1

3, g=3
4, g=3

32

2

After push and pull

1

4

2
5

s t

3

8

96

7

10

4

3

3

3
3

3 2

3

4

4

1

32

2

Next auxiliary network

Business Computing and Operations Research 754

Example – stage 1: second node

1

4

2
5

s t

3

8

96

7

10

4

3

3

3
3

3 2

3

4

4

1

32

2

Minimal throughput 1

1

4

2
5

s t

8

9

7

10

4

3, h=1

3
3

3, h=1 2

3

4, h=1

1, h=1

32

2, h=1

After push and pull

Deletion (zero throughput)

Business Computing and Operations Research 755

Example – stage 1: third node

1

4

2
5

s t

8

9

7

10

4

2

3
3

2 2

3

3

32

1

Next auxiliary network

1

4

2
5

s t

8

9

7

10

4

2

3
3

2 2

3

3

32

1

Minimum throughput 2 Deletion (zero throughput)

20

Business Computing and Operations Research 756

Example

4

2
5

s t

8

7

10

2, i=2

3
3

2, i=2 2

3

3, i=2

3, i=2
2, i=2

After push and pull

4

2
5

s t

8

7

103
3

2

3

1

1

Next auxiliary network

. is not reachable from � anymore

Business Computing and Operations Research 757

Example – termination

� Since . is not reachable from � in �9 N + � + � ,

the procedure terminates

� The maximal flow is given through N + � + � and

has a total size of 6

1

4

2
5

s t

3

8

96

7

10

7, f=3

3, f=3

3
2, f=2

1, f=1

3
3

3, f=3 2

3

4, f=3

2, f=2

4, f=1

3, f=3
4, f=4

3, f=2
2, f=2

2, f=1

Business Computing and Operations Research 758

Additional literature to Section 7

� Edmonds, J.; Karp, R.M. (1972): Theoretical Improvement
m Algorithmic Efficiency for Network Flow Problems.
Journal of the ACM, vol. 19, no. 2 (April 1972), pp. 248-
264.

� Ford, L.R. JR., and Fulkerson, D.R. (1962): Flows in
Networks, Princeton University Press, Princeton, N.J.,
1962.

The efficient max flow algorithm was originally proposed in

� Karzanov, A.V. (1974): Determining the Maximal Flow in a
Network with the Method of Preflows. Soviet
mathematics Doklady, 15 (1974), pp. 434-437.

Business Computing and Operations Research 759

Additional literature to Section 7

The efficient max flow algorithm was considerably simplified
in:

� Malhotra, V.M.; Kumar, M.P., and Maueshwari, S.N.
(1978): An � � O Algorithm for Finding Maximum Flows
in Networks," Inf. Proc. Letters, 7 (no. 6) (October 1978),
pp. 277-278.

� Tarjan, R.E. (1983): Data structures and network
algorithms. In SIAM CBMS-NSF Regional Conference
Series in Applied Mathematics 44, Philadelphia, 1983.
SIAM.

