8 Transportation Problem — Alpha-Beta

Now, we introduce an additional algorithm for the
Hitchcock Transportation problem, which was
already introduced before

This is the Alpha-Beta Algorithm

It completes the list of solution approaches for
solving this well-known problem

The Alpha-Beta Algorithm is a primal-dual
solution algorithm

Owing to the simplicity of the dual problem, this
procedure is capable of using significant insights
into the problem structure
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8.1 Problem definition and analysis

Refresh: The primal problem...

¢, .. Delivery costs for each product unit that is transported from supplier i to customer j
a . Totalsupplyofi=1,....m
b.: Totaldemandof j=1,...,n

x. .. Quantity that supplier i =1,...,m delivers to the customer j =1,...,n

(P)Minimize ¢’ - x

L, a,
1T
S.t. "X =
1£ a,
E E E E E b

T
X = (xl’l,...,xl,j,...,xl,n,...,xl.’l,...,xi’n...,xm’l,...,xm,n) 20
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and the corresponding dual

m n m n
(D) Maximize ) a, 7, + ) b, mw,., =D a,-a,+) b B, st
i=1 =1 i=1 =1

1n En Cl,l 1n En\ Cl,l
1 E 1 E
04
En T < Ci,l = En (ﬂj < Cll ’

1.€.,
Viel,..,n}:Vje{l,..m}: o +p <c;
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Direct Observation

= The dual considers a somewhat modified problem
= This may be interpreted as follows

There is a third party that offers transportation service between
the plants and the consumers

For this service, both sides have to pay an individual fee.
Specifically, the ith supplier pays a; and the jth consumer g,

Obviously, it is not possible to charge more than c;; for the
respective combination

Otherwise, since it possesses a more efficient alternative, the
company would not make use of this alternative

Thus, the difference c; - a- §; is denoted as a speculative gain of
the considered company

Consequently, whenever this difference is negative, the primal
problem is hold to introduce (i,j) in the basis. Otherwise, we better
keep it out.
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The first row of the primal tableau

If we consider the first row of the primal tableau,

we directly obtain

~ — — ] _1. f— — TO — — TO
C,,=C;—Cg-Ay A=¢c,,—m -A=c¢,,—A 7

:Ci,j_ai_lgj

It we have ¢, ; <0, the dual variables are not feasible

and outsourcing 1s not reasonable.
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Feasible dual solutions

Obviously, since ¢, ; 20, we have 7 = 0" as

a trivial 1nitial solution.

This trivial solution can be directly improved by
,Bj = min{cl.,j i = 1,...,m}

A0, = min{cl.’j —,Bj | j=1,...,n}
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Consider an example

a"=(3 5 6)Ab"=(2 3 6 3)ac=|1 2 2 3

p—

Generating an initial solution :
f=01 2 1 2) =
(min{3-13-21-1,2-2}\ (min{2,1,0,0}) (0)
o=| min{l-1,2-2,2-1,3-2} |=| min{0,0,1,1} |=| 0
\min{4-1,5-2,6-1,3-2}) | min{3,3,51}) (1,
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Example

Witha=0 0 1) Af=(1 2 1 2),weget

(A7)

c—(a a o o)-|p"
T

A
3 3 1.2 (0 0 0 0} (1 2 1 2
=1 2 2 3(-|0 0 O O|—|1 2 1 2
4 5 6 3)(1 1 1 1)1 21 2)
(2 1 0 0)
=0 0 1 1 |=0. Thus, the solutionis obviously feasible
2 2 4 0
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Preparing the Primal-Dual Algorithm

In order to prepare the Primal-Dual Algorithm, we introduce:

lJ = { (i, j) o, + p;=c } Thus, we obtain the reduced primal (RP)

Minimize 1 - x*

n+m ( J: ,ae IR" be IR"
2

AX” >O/\x

n+m

< Minimize le.“, S.t.,
i=1

a _ .
X!+ Z a,;x, . =a,Vie iL,...,m}
(i, j)el
a _ . a (17)
AXm Z a, ;X —bj, ,Vje {1,...,n}/\x >0Ax" 20

il(i,j el
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Preparing the Primal-Dual Algorithm

—

n+m

Minimize Z X,
=1

S.t.,

x; + Z X; =a,Vie {1m}
jIi,jely |

AX o T Z X, =b,Vje{l,..n}

il(i,j)el]

Ax' >0AxH) >0
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8.2 Analyzing the reduced primal (RP)

Obviously, it holds:

m m / n n

Zai :Z x; + Z X, |ANDQ b= Xipm T Z X;
i=1 i=1 \ i, j)el j=1 j=1 il(i, j)elJ
Since total demand and supply are identical, we have

Za zb @z(x + Y xl.,j}i(x;;” S xi,].j

i, j)eld j=1 il(i,j)el]
m m
a
SOREDWUDIETED I IS WD WL
i=l i=l ]I i ] EIJ j=1 j=1 '(i,j)EIJ

2

Tl Business Computing and Operations Research WI N FOR 770



Analyzing (RP)

Saad Y, zz >,

i=1 i=1 jl(i ])eIJ j=1ili,jel
Obviously, it holds: Z le ; Z le ;
i=l1 ]I i ])EIJ j= lll i ])EIJ

Hence, we conclude:

m m
a
RPN meZ 2%
i=l i=1 jl(i,j)el] j=1ili,jel]
m n
a __ a
&Y x=)x,,
i=1 j=1

/w%@\ Business Computing and Operations Research WI N FOR 771



Direct conclusion

Altogether, we therefore obtain:

i=1 i=1 jl(i,j)el] i=1 (i,j)el] i=1
m m
a — —
o3 Sa- 3 s,
i=l1 i=lI (i,j)el]
n n n n
a — a —
Xjem ¥ Xij = 2% T Z Xi.J _ij
j=l1 j=1il(i,j)elJ j=1 (i,j)el J=1
n n m+n m n
a _ . a _ _
O S D SRS S0 D YR
j=1 j=1 (i,j)eld i=1 i=1 j=1 (i.j)el]
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Consequences

m+n m n
Since minimizing Z x; :Z a. + Zb =2 Z x, ; determines the
i=1 i=1 j=1 (i,j)el]

objective function of the reduced primal of the Hitchcock Transportation

Problem, we just have to maximize 2 - Z X;

(i,j)el]
This leads to the following (RP):
Maximize Z X; iy
(i,j)el]
S.t.,
X; >0,Vi, jA Z X, < a,vVie {1,...,m}/\ Z X; Sbj,Vje {1,...,n}
i j)els il(i,j)e 1]
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Analyzing the problem in detail

Damn |

This problem reminds me of
something...

Definitely! It is justa
MAX-FLOW |
PROBLEM iy

Schumpeter School a
of Business and Economics
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The RP is a specific Flow Problem

Obviously, the problem (RP) can be modeled as

a Max-Flow Problem.

For this purpose, we define the following network:

V={8V,e0V, , W, W, 1}
E={(sv)1<i<m}o{(v.w,)I1<ismAl< j<na(i,j)e 1T}
O(w,.1)11< j<n}
c(sv,)=a,Vie{l,..m}rc(v,w,)=o0,Y(i, j)e IJ
re(w,.t)=b,Vje{l,..,n}
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lllustration of the network

po

O SRS Y

=

d, ‘ b2 \
0 ()

Edges are out of set |J _
a_ _and have unlimited capacity b,

NS N
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Resuming with our example

= In the example introduced above, we generated
the following initial solution

a=(0 0 1) Ap=(1 2 1 2)

= Thus, we can derive
Witha=(0 0 1) Af=(1 2 1 2)

21 0 0)
we obtain the reduced matrix: |0 O 1 1

2 2 4 0
= 17 ={(1.3).(1.4).(2.1).(2.2).(3.4)}
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We obtain the following network




Augmenting the flow

= At first, we find the flow
= S-V-Wj-i
= |t can be augmented up to 3
= Therefore, we update the network...
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We obtain the modified network




Augmenting the flow

= Now, we find
= S-V,-Wi-t
= |t can be augmented up to 2
= Therefore, we update the network...
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lllustration




Augmenting the flow

= Now, we find
= S-Vy-Wy-i
= |t can be augmented up to 3
= Therefore, we update the network...
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Modifying our network again




Augmenting again the flow

= Now, we find
= S-Vg-W,-1
= |t can be augmented up to 3
= Therefore, we update the network...
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And the network is adjusted to

N\, s\g/
\\@\\\‘/3

/M/?@\ Business Computing and Operations Researc h WI N FOR 786



Solution to the reduced primal problem

Thus, we obtain :

0 0 3 0)
x=|2 3 0 0] Obviously xis not feasible for (P)
0 0 0 3

Owing to the vectorsa” =(3 5 6)A

b" =(2 3 6 3), weneed the vector of slackness

variablesx*=(0 0 3 0 0 3 0)
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Updating the dual solution

= Obviously, we can optimally solve (RP) by
making use of an efficient Max-Flow Algorithm

= Unfortunately, this does not provide a mechanism
for updating the dual solution yet

= In order to do so, we have to analyze the dual of
the reduced primal (DRP)
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Modified Reduced Primal (RP,)

n+m

Minimize ) x|
=1

S.t.,
X; >0,Vi,jAx 20,Vie {1,...,n+m}/\

x; + Z X, =a;,Vie {1,...,m}/\

i j)el

Xiom T Z x,, =b, Vjell,..,n}

Thsrf L

il(i, j)e lJ
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Modified Reduced Primal (RP,)

Since it holds
m m n n
Slee ¥ n|-3a=35 -3 v+ ¥ «
i i,j i J Jtm L]
i=1 i j)els i=1 j=1 j=1 il(i, j)elJ
m m n n
a _ a
And in +Z Xij = Xjem +Z X j
i=1 i=1 jl(i,j)elJ j=l1 j=1il(i, j)eld
m n m n m m+n
a _ a a __ a . a __ a
(:)le. + Z xi’j—Zxﬁm xi’j(:)in =) X &2 X —le.
i=1 (i.j)el j=1 (i.j)el] i=1 j=1 i=1 i=1

Thus, we obtain the equivalent problem:

Minimize ) x{, s.t., x,; 20,Vi, jAx{ 20,Vie{l,..,n+m} A
i=1
X+ Z X, =a,Vie {1,...,m}/\x;l+m + Z x,, =b;,Vje {1,...,n}
i el il(i, j)e 17
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...and its dual counterpart (DRP,)

m n
Maximize Z a - o, + ij - ,BJ.
i=1 =1

S.L.,

o, +p,<0,V(ij)e lJ
o, <1L,Vie{l,...mpAf. <0,Vje{l,..,n}

Thsrf L
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8.3 Solving the DRP

8.3.1 Theorem
Assuming (RP) was optimally solved by an appropriate
Max-Flow Algorithm. Furthermore, (W,WC) is the resulting
s -t - cut according to the current x with
W ={ve V Iv is reachable from s in the final network of (RP)}.
Then,

. 1 ifveW . -1 ifweW
" :{o ity ew _{ 0 if w e W

solution for (DRP,). Additionally, (&, ), with &=a+4,- @

determines an optimal

n+m

B =B+ A, - B are improved solutions of (D) if D x'>0A4>0
i=1
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Proof of the Theorem — Basic cognitions

As a preliminary step, we generate some basic

attributes

1. It v.e W, we know that:

if additionally (i, j)e I/ =>w, e W

This results from the following observation:
Ifv,e W A(i, j)€ IJ, then we know that there

1s an edge with unlimited capacity connecting

v, and w,. Hence, 1t holds ¢, ; > f, . and therefore

W, 1s reachable from s as well.

2
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Proof of the Theorem — Basic cognitions

2. Corollary:
veWaw eW = (i,j)el]

3. Ifw, e WA(i,j)e U Ax , >0=>v,eW

This results from the following observation:

Since x; . >0, a former step has established
a connection between v, and w,. Thus
we have a backward link from w; to v, with

capacity x, . > 0.
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Proof of the Theorem — Basic cognitions

4. Corollary: v,e W Aw, e W = (i, j)e J v x, =0
In what follows, 7, ; denotes the remaining capacity

on the link (i, j), with

(i, /) e {(viow )1 (i j) e T FO{(sv)lie {L...mb}o(w,.0)1 je {L....n}}.

c _ — a __
S. vveW =1, =0= Z X, =a;,=>x; =0

i, j)eE

6. weW=r  =0= Z x,, =b, = x%,,=0

t j+m
il(i,j)eE
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Proof of Theorem 8.3.1 — Feasibility

We are now ready to commence the proof. At first, we show the
feasibility of the generated solution to ( DRP).
Obviously, it holds:

1. @ <LVie{l,...m}A B, <0,Vje{l,..,n}
Additionally, we have to show

2. 6,+p,<0,V(i,j)e .

21 veW=weW=a=1A8=-1=d+p,=0
22 veW'=a=0=a+p,<0

~

Thus, (&i, B j) is a feasible solution to ( DRP).
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Proof of Theorem 8.3.1 — Optimality

We know that the optimal solution to the reduced
primal problem is generated by the Max-Flow procedure

and 1s therefore defined by the following variables

Vi,je U Anx!',Viell,..,.n+m}

l]’

a

Consequently, its objective function value 1s determined by Z X;

i=1
We calculate: Za -l +Zb Za — Z b

j=1 v,eW w,eW
a a
Z Z Xij +in - Z Z Xij |t Z Xjvm
veW \ ji(i,j)els v,eW w.eW \ il(i,j)e 1] w.eW
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RP and DRP have identical objective values

And thus, it holds:

240+ b=

i=1 j=l1

7{ » jzz{ » ]z
jl(z])eIJ ll(

v.eW \ Jjl(i,j v,eW w,eW \ i ij)el] w,eW
a a a a
PIENEIDNEFE DIl T P D X
(i,j)el] (i,j)el] v,eW w,eW v,eW w,eW
%/_/

Owing to attribute 6, this is equal to 0

DB

v,eW

Thus, (07, ,5’) is an optimal solution to (DRP,)
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Feasibility of the updated dual solution

We calculate (&ﬁ) =(a, B)+ 4 '(d,ﬁ)

It has to be guaranteed

~ ~

o, +Aa+p+lp S, So+p A0+ 4 pSc

. c,.—a. —p.
/10-(051.+,6’.)Sc..—a.—,6’.<:>/1 <=

J L,J ! J ~
a,+p,

(0 ifveWaweWw
0 ifv,eW Aw eWr"
—1 ifvieWc/\wjeW_

1 ifv,eWaw eW’ :

1 ifv,eWaw eW’
—lLifv,eWiAw eW

0 otherwise
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Proof of Theorem 8.3.1 — Defining A,

-

I ifveWaw eWr"
Gi—o—p, . = . .
by S———=—, witha, +f, =1-1 ifv,eWiAw, eW
o+ ). .
B 0 otherwise

\

If (i, j)€ IJ, we have to consider the case v, e W Aw, e W

= Jyzmin{o, + B, —c, 1(i,j)e U Av,e W Aw, e W}<0

If (i, j)& IJ, we have to consider the case v,e W Aw, e W*
= Jy<min{c, ,—a, — B, 1(i, j)& 17} >0
Thus, we define

Jo=min{c, —a,— B, 1(i,j)e T Anv,e W Aw, e W}>0
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Quality of the new dual solution

With /4, = min{ci o= p 1(i,j) e IJ}> 0, we calculate

a, - (a+i 0L, +Zb (,E+/1 ,B)

T

Z(a o+ Ay - a+2(b B, +4,b; ,8)

i=1

Za oc-l—Zb PB4, (ij > iai-ai+zn:bj-ﬁj

If x>0

i=1
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And what follows?

Great! That is all we
need to optimally solve the
problem...

However, we may
simplify the formula
considerably...

Schumpeter School a
of Business and Economics
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Important observation — Part 1

We consider the resulting constellation after applying the Max-Flow

procedure. Addionally, we analyze the generated flow x; ;. First of

all, we consider arcs that vanish in the next iteration. This may

happen only if (i, j)€ IJ in the current iteration, but in the next one
it holds (i, j)& IJ. This case is characterized that originally

o, + f; =c,, applies, but subsequently &, + ,@ ; <c, ; holds. Note

that this is only possible if & + 8, <0=>d, + §, =—1. This is

the constellation v, € W* Aw, € W. It is illustrated on the next

slide. Here, we directly conclude that the arc (i, j)€ IJ was not used

by the generated flow at all. Hence, we obtain x; ; = 0.
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lllustration of this constellation

BN
)y
W b,

saturated - .
unused
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Consequence

= |f we erase the edge (i,)) in the subsequent
iteration, i.e., the solving of the modified (RP),
this has no impact on the current flow x;;

= Note that the current flow does not make use of
this arc

= Consequently, this arc is dispensable
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Observations I

Now we consider arcs (i, j)€ IJ with x, , >0. We

know thatitholdsa, + 5, =c¢,, = o, +f, =0.

Theretore, the tlow x; . >0 can be kept on these arcs.

Anyhow, the resulting tflow x; . can be kept for the next

iteration of solving (RP) that arises after updating a and

[. Note that this update may cause additional arcs between

the v, — and w, —nodes.
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Calculating A,

A :min{ci,j —a, =i j)e T Av,eWAaw, e WC}
Thus, we can label all rows i 1n the reduced matrix
(cl., im0, —p j) with v. e W*°. Additionally, we label all

columns j withw, e W.

Then /, 1s determined by the minimum unlabeled value.
We update (cl., S0, — B j) by applying the following rules:
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Updating rules

We distinguish:

1. If (i, j) is unlabeled = v,e W Aw, € W*

— We subtract 4, from ¢, —a, — f,
2. If (i, j) is labeled twice = v, e W Aw, e W

— o, +p,=-1. Weadd 4, toc,; —a;, — f,

3. If (i, j) is labeled only by the ith row or the jth column
:(vieWijeW)v(vieWC/\wjeWc):>oci+,[)’j =0

¢c,; —o; — f. 18 kept unchanged
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Continuation of the example

= Now, we resume our example which was
introduced above

= Thus, first of all, we have to update the dual
solution

Withao=(0 0 1)) Af=(1 2 1 2)
2 1 0 0)

Reduced matrix is therefore:| 0 O 1 1
\2 2 4 0 )

— 17 ={(1,3),(1,4),(2.1),(2,2),(3,4)}
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lllustration of the calculation

w 0\ \

- ¢>“>‘ 2y

: 3\3 3?
AN "

@\\\
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Updating the dual solution

:{ ’V3’W4}

\)
C
:{V19V29W17W29W3’t}
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Updating the dual solution

(2 1 0 0) 2 1 0 0+2)
Jy=min{2,2,4}=2=|0 0 1 1|=| 0 0 1 1+2
2 2 4 0) (2-2 2-2 4-2 0 ,

(2 1 0 2)
0 01 3|=
0 0 2 0,

a"=(0 0 Nap'=(1 2 1 2)

g =(0 0 DA =(0 0 0 -I)

AT =(0 0 3)ApT=(1 2 1 0)

— Thus, we get two new arcs (3,1) and (3,2) and lose one (1,4).
= 17 ={(1,3),(2,1),(2,2),(3.1),(3,2),(3.4)}
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lllustration
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Applying Max-Flow




Results

Unfortunately, we are not able to augment the
flow

Thus, xis kept as a maximum flow
However, we have changed the sets Wand W°
This is considered in the following
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Applying Max-Flow

Business Computing and Operations Research




Updating the dual solution

With x=(0 0 3) Apf=(1 2 1 0)

21 0 2) [ —3
(c.;—a,=B,)=|0 0 1 3|= 1
0 020/ | 2 0,
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Updating the dual solution

Jo=min{2,1}=1={0 0 1 3[(=|0 0 0 3

a"=(0 0 A =(1 2 1 0)
Aa'=(0 1T DA =(-1 -1 0 -I1)
=a" =0 1 4)ap"=(0 1 1 -1)
— Thus, we get a new arcs (2,3).

= 1 ={(1,3),(2,1),(2.2),(2.3)(3,1),(3,2).(3,4)}

2
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Modified network

Business Computing and Operations Research



We obtain the augmented flow




lllustration




The new decomposition




The modified primal solution

:Wz{s,}/\Wc:{vl,vz,v3,w1,w2,w3,w4,t}
Witha=(0 1 4 Af=0 1 1 -1)
0 0 3 0)
x=[2 0 3 0
0 3 0 3,

— Isfeasiblefora”’ =(3 5 6)Ab" =(2 3 6 3)
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Proof of optimality

S>W={s} AW ={v,v,,vs,w,w,, ws,w,,1}

= x' =0,Vie {l,...,m+n} and it holds:

¢ -x=1-3+1-2+3-2+5-3+3-3=35

a -a+b" -f=3-0+51+6-4+2-0+3-1+6-1-3-1
=5+24+3+6-3=38—-3=35

— x and (a, ) are optimal solutions!
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Alpha-Beta-Algorithm

1. Construct a feasible dual solution to the TPP
» Set 5, = min{cl.j Ii=1,...,m} and o, = min{cij —,Bj | j = 1,...,n}
= Calculate the matrix with the reduced costs ¢, =c, —&, -,
2. Prepare the network for the Max-Flow-Calculation
=  Nodes: s,v,...,V ,W,..uW ,t
+Arosi( ) with capacity
3. Furthermore: If and only if ¢, =0, the arc «,.w,) exists with
Infinite capacity
4. Calculate the Maximum s-t-Flow in the network. Letw be
the set of nodes reachable from node s in the
corresponding s-t-Cut

5. While W #{s}, conduct the following steps (see next slide):

m

%wfg@\ Business Computing and Operations Research WI N FOR 825



Alpha-Beta-Algorithm (Dual Solution Update)

If ve W=a =1v,e W =, label the i-th row in the reducead
cost matrix.

fw, e W = g, =-1=, label the jth column in the reduced
cost matrix.

All other variables of the DRP-solution &, 5 are set to 0.

Set 4, to the minimum value of the unlabeled entries in
the reduced cost matrix.

Subtract 4,from every unlabeled entry and add it to every
entry labeled twice in the reduced cost matrix.

Set f=B+Afra=a+a
Update the network as indicated by the new reduced cost
matrix.

Try to augment the current flow and update the set W.

%wfg@\ Business Computing and Operations Research WI N FOR 826



