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8 Transportation Problem – Alpha-Beta

� Now, we introduce an additional algorithm for the 

Hitchcock Transportation problem, which was 

already introduced before

� This is the Alpha-Beta Algorithm

� It completes the list of solution approaches for 

solving this well-known problem

� The Alpha-Beta Algorithm is a primal-dual 

solution algorithm

� Owing to the simplicity of the dual problem, this 

procedure is capable of using significant insights 

into the problem structure
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8.1 Problem definition and analysis

Refresh: The primal problem…
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and the corresponding dual
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Direct Observation

� The dual considers a somewhat modified problem

� This may be interpreted as follows
� There is a third party that offers transportation service between 

the plants and the consumers

� For this service, both sides have to pay an individual fee.  
Specifically, the ith supplier pays αi and the jth consumer βj

� Obviously, it is not possible to charge more than ci,j for the 
respective combination

� Otherwise, since it possesses a more efficient alternative, the 
company would not make use of this alternative

� Thus, the difference ci,j- αi- βj is denoted as a speculative gain of 
the considered company

� Consequently, whenever this difference is negative, the primal 
problem is hold to introduce (i,j) in the basis. Otherwise, we better 
keep it out.  
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The first row of the primal tableau
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If we consider the first row of the primal tableau, 
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Feasible dual solutions
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Consider an example
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Example
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Preparing the Primal-Dual Algorithm

( ){ }

( )
( )( ) ( )

( )

In order to prepare the Primal-Dual Algorithm, we introduce:

. Thus, we obtain the reduced primal 

Minimize 1 ,  s.t., 

, , ,

0 0

Minim

i j i, j

T a

a

IJ m n

n m IJ

IJa

IJ i, j |α β c (RP)

x

x a
E A a IR b IR

bx

x x

+

= + =

⋅

   
⋅ = ∈ ∈       

∧ ≥ ∧ ≥

⇔

( )

{ }

( )

{ } ( )

1

,

| ,

,

| ,

ize ,  s.t., 

1

 , 1,..., 0 0

n m
a

i

i

a

i i, j i j i

j i j IJ

IJa a

j m i, j i j j

i i j IJ

x

x a x a , i ,...,m

x a x b , j n x x

+

=

∈

+
∈

+ ⋅ = ∀ ∈

∧ + ⋅ = ∀ ∈ ∧ ≥ ∧ ≥

∑

∑

∑



Business Computing and Operations Research 769

Preparing the Primal-Dual Algorithm
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8.2 Analyzing the reduced primal (RP)
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Analyzing (RP)
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Direct conclusion
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Consequences
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Since minimizing 2  determines the 

objective function of the reduced primal of the Hitchcock Transportation 
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Analyzing the problem in detail

Damn !

This problem reminds me of 
something…

Damn !

This problem reminds me of 
something…

Definitely! It is just a 

MAX-FLOW 
PROBLEM

Definitely! It is just a 

MAX-FLOW 
PROBLEM !
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The RP is a specific Flow Problem
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Illustration of the network

s

v2

v1

v3

vm

w2

w1

w3

wn

.

.

.

.

.

.

t

am

a3

a2

a1
b1

b2

b3

bn

IJ

Edges are out of set IJ

and have unlimited capacity



Business Computing and Operations Research 777

Resuming with our example
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� In the example introduced above, we generated 

the following initial solution

� Thus, we can derive 
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We obtain the following network
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Augmenting the flow

� At first, we find the flow

� s-v1-w3-t

� It can be augmented up to 3

� Therefore, we update the network…
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We obtain the modified network
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Augmenting the flow

� Now, we find 

� s-v2-w1-t

� It can be augmented up to 2

� Therefore, we update the network…
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Illustration
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Augmenting the flow

� Now, we find 

� s-v2-w2-t

� It can be augmented up to 3

� Therefore, we update the network…
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Modifying our network again
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Augmenting again the flow

� Now, we find 

� s-v3-w4-t

� It can be augmented up to 3

� Therefore, we update the network…
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And the network is adjusted to
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Solution to the reduced primal problem
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Updating the dual solution

� Obviously, we can optimally solve (RP) by 

making use of an efficient Max-Flow Algorithm

� Unfortunately, this does not provide a mechanism 

for updating the dual solution yet 

� In order to do so, we have to analyze the dual of 

the reduced primal (DRP)



Business Computing and Operations Research 789

Modified Reduced Primal (RP1)
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Modified Reduced Primal (RP1)
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…and its dual counterpart (DRP1)
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8.3 Solving the DRP

8.3.1 Theorem
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Proof of the Theorem – Basic cognitions
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( )
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Proof of Theorem 8.3.1 – Feasibility 
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Proof of Theorem 8.3.1 – Optimality 
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RP and DRP have identical objective values
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Feasibility of the updated dual solution
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Proof of Theorem 8.3.1 – Defining λ0

( )

( ){ }

,

0

0

1     if 

,  with 1        if 

0                      otherwise

If ,  we have to consider the case 

min

c

i j

i j i j c

i j i j

i j

c

i j

c

i j i, j i j

v W w W
c α β

λ α β v W w W
α β
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λ α β c | i, j IJ v W w W
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ɶɶ
ɶɶ

( )

( ){ }

( ){ }

0 ,

0 ,

0

If ,  we have to consider the case 

min | 0

Thus, we define 

min | 0

c

i j

i j i j

c

i j i j i j

i, j IJ v W w W

λ c α β i, j IJ

λ c α β i, j IJ v W w W
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⇒ ≤ − − ∉ >

= − − ∉ ∧ ∈ ∧ ∈ >
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Quality of the new dual solution
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And what follows?

Great! That is all we 
need to optimally solve the 

problem…

Great! That is all we 
need to optimally solve the 

problem…

However, we may 
simplify the formula 

considerably...

However, we may 
simplify the formula 

considerably...
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Important observation – Part 1

We consider the resulting constellation after applying the Max-Flow 

procedure. Addionally, we analyze the generated flow . First of 

all, we consider arcs that vanish in the next iteration. This ma

i, j
x

( )

( )

y 

happen only if  in the current iteration, but in the next one 

it holds . This case is characterized that originally 

ˆˆ applies, but subsequently  holds. Note 

that thi

i j i, j i j i, j

i, j IJ

i, j IJ

α β c α β c

∈

∉

+ = + <

( )

s is only possible if 0 1. This is 

the constellation . It is illustrated on the next 

slide. Here, we directly conclude that the arc  was not used 

by the generated flow

i j i j

c

i j

α β α β

v W w W

i, j IJ

+ < ⇒ + = −

∈ ∧ ∈

∈

ɶ ɶɶ ɶ

, at all. Hence, we obtain 0.  
i j

x =
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Illustration of this constellation
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Consequence

� If we erase the edge (i,j) in the subsequent 

iteration, i.e., the solving of the modified (RP), 

this has no impact on the current flow xi,j

� Note that the current flow does not make use of 

this arc

� Consequently, this arc is dispensable 
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Observations II

( ) ,

,

Now we consider arcs  with 0. We 

ˆˆknow that it holds    0.

Therefore, the flow 0 can be kept on these arcs.  

Anyhow, the resulting flow  can be kept for the next

i j

i j i, j i j

i j

i, j

i, j IJ x

α β c α β

x

x

∈ >

+ = ⇒ + =

>

ɶɶ

( )

 

iteration of solving  that arises after updating  and 

. Note that this update may cause additional arcs between 

the  and nodes.  i j

RP α

β

v w− −
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Calculating λ0

( ){ }

( )

0 ,

0

min |

Thus, we can label all rows  in the reduced matrix 

 with . Additionally, we label all 

columns  with .

Then  is determined by the minimum unlabel

c

i j i j i j

c

i, j i j i

j

λ c α β i, j IJ v W w W

i

c α β v W

j w W

λ

= − − ∉ ∧ ∈ ∧ ∈

− − ∈

∈

( )

ed value.  

ˆˆWe update  by applying the following rules:i, j i jc α β− −
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Updating rules

( )

( )

( )

0

0

We distinguish:

1.  If  is unlabeled

We subtract  from 

2.  If  is labeled twice

1.  We add  to 

3.  If  is labeled only by the th row or th

c

i j

i, j i j

c

i j

i j i, j i j

i, j v W w W

λ c α β

i, j v W w W

α β λ c α β

i, j i

⇒ ∈ ∧ ∈

⇒ − −

⇒ ∈ ∧ ∈

⇒ + = − − −

( ) ( )

e th column

0

 is kept unchanged

c c

i j i j i j

i, j i j

j

v W w W v W w W α β

c α β

⇒ ∈ ∧ ∈ ∨ ∈ ∧ ∈ ⇒ + =

− −
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Continuation of the example

� Now, we resume our example which was 

introduced above

� Thus, first of all, we have to update the dual 

solution

( ) ( )

( ) ( ) ( ) ( ) ( ){ }4,3,2,2,1,2,4,1,3,1

0422

1100

0012

 : thereforeismatrix  Reduced

2121100With 

=⇒
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IJ

β
TT
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Illustration of the calculation
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Updating the dual solution

{ }

{ }

( ) ( )

( )

3 4

1 2 1 2 3, , , , ,

With 0 0 1 1 2 1 2

2 1 0 0 2 1 0 0

0 0 1 1 0 0 1 1

2 2 4 0 2 2 4 0

c

T T

i, j i j
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β

c α β

α

⇒
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=
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Updating the dual solution

{ }

( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( )

0
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Illustration
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Applying Max-Flow
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Results

� Unfortunately, we are not able to augment the 

flow

� Thus, x is kept as a maximum flow

� However, we have changed the sets W and W
c

� This is considered in the following
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Applying Max-Flow
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Updating the dual solution

{ }

{ }

( ) ( )

( )

2 3 1 2 4

1 3
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Updating the dual solution

{ }

( ) ( )

( ) ( )
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Modified network
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We obtain the augmented flow
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Illustration
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The new decomposition
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The modified primal solution
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Proof of optimality

{ } { }

{ }

( )

1 2 3 1 2 3 4, , , , , , ,

0, 1,...,  and it holds:

1 3 1 2 3 2 5 3 3 3 35

3 0 5 1 6 4 2 0 3 1 6 1 3 1

5 24 3 6 3 38 3 35

 and ,  are optimal solutions!

c
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T T
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a α b β
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⋅ + ⋅ = ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ − ⋅
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Alpha-Beta-Algorithm

1. Construct a feasible dual solution to the TPP

� Set and 

� Calculate the matrix with the reduced costs

2. Prepare the network for the Max-Flow-Calculation 

� Nodes:

� Arcs: with capacity 

3. Furthermore: If and only if , the arc exists with 

infinite capacity 

4. Calculate the Maximum s-t-Flow in the network. Let     be 

the set of nodes reachable from node    in the 

corresponding s-t-Cut

5. While , conduct the following steps (see next slide):

ij ij i j
c c α β= − −

{ }min | 1,...,j ijc i mβ = = { }min | 1,...,i ij jc j nα β= − =

1 1, ,..., , ,..., ,m ns v v w w t

1( , ),..., ( , )ms v s v 1, ,
m

a a…

1
( , ),..., ( , )

n
w t w t 1, , nb b…

0
ij

c = ( , )
i j

v w

{ }W s≠

W

s
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Alpha-Beta-Algorithm (Dual Solution Update)

� If , label the i-th row in the reduced 

cost matrix.

� If , label the j-th column in the reduced 

cost matrix.

� All other variables of the DRP-solution are set to 0.

� Set      to the minimum value of the unlabeled entries in 

the reduced cost matrix.

� Subtract from every unlabeled entry and add it to every 

entry labeled twice in the reduced cost matrix.

� Set

� Update the network as indicated by the new reduced cost 

matrix.

� Try to augment the current flow and update the set     .

1; c

i i iv W v Wα∈ ⇒ = ∈ ⇒ɶ

1j jw W β∈ ⇒ = − ⇒ɶ

0λ

0λ

W

0 0β β λ β α α λ α= + ∧ = +ɶ ɶ

,α βɶɶ


