8 Transportation Problem — Alpha-Beta
——)
= Now, we introduce an additional algorithm for the
Hitchcock Transportation problem, which was
already introduced before
= This is the Alpha-Beta Algorithm
= It completes the list of solution approaches for
solving this well-known problem
= The Alpha-Beta Algorithm is a primal-dual
solution algorithm

= Owing to the simplicity of the dual problem, this
procedure is capable of using significant insights
into the problem structure
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8.1 Problem definition and analysis
s |
Refresh: The primal problem...

¢, ;= Delivery costs for each product unit that is transported from supplier i to customer j

J :

a;: Totalsupplyof i =1,...m
bj : Totaldemand of j=1,....n
Xt Quantity that supplier i =1,...,m delivers to the customer j =1,...,n

(P)Minimize ¢” - x

1: a,
lT
s.t. x=
1 a
E E E E E b
T
= (xu,..,,x NEREE) Xitoewes Xipoees Xy ’Cm,u) 20
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and the corresponding dual
————)

n 0 n f
(D) Maximize ) a,-m,+Y b, @, ;=D a0+ b f; st
i=1 = i=1 =

L, E, Cii L, E, Ciy
17! EH lrl EII
o
E, |'n<| ¢, |& E, {ﬂ]s [
EH . EII
1, E, Con 1, E, Ca
ie.,

Vie{l,..,n}:Vje{l,...m}: a+p; <c;
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Direct Observation

S ——)
= The dual considers a somewhat modified problem

= This may be interpreted as follows

There is a third party that offers transportation service between
the plants and the consumers

For this service, both sides have to pay an individual fee.
Specifically, the th supplier pays a;and the jth consumer g;
Obviously, it is not possible to charge more than c;; for the
respective combination

Otherwise, since it possesses a more efficient alternative, the
company would not make use of this alternative

Thus, the difference c¢;- o;- B is denoted as a speculative gain of
the considered company

Consequently, whenever this difference is negative, the primal
problem is hold to introduce (i,j) in the basis. Otherwise, we better
keep it out.
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The first row of the primal tableau

——)
If we consider the first row of the primal tableau,
we directly obtain

ra = —_— . 71. = —_— ’1‘. = —_— ’1‘.
G, =¢;—C3 Ay A=¢,;—m -A=c,;—A 7w

:ci,j_ai_ﬂj

If we have ¢, ;< 0, the dual variables are not feasible

and outsourcing is not reasonable.

/%g‘/ Business Computing and Operations Research WINFOR 764

Feasible dual solutions

T ——
Obviously, since ¢, ; 20, we have 7 = 0" as

a trivial initial solution.

This trivial solution can be directly improved by
B, =min{c,, li=1,..m}

AG; = min{cw. -B;lj= ln}
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Consider an example

331 2
=B 5 6)Ab"=(2 3 6 3)ac=|1 2 2 3
456 3

=
Generating an initial solution :
p=01 21 2=
min{3-13-2,1-1,2-2}) (min{2,1,0,0}) (0
o=| min{l-1,2-2,2-1,3-2} |=| min{0,0,1,1} |=| 0
minf4-1,5-2,6-13-2}) | min{33,51}) |1
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Example
e ——
Witha=(0 0 1) Ag=0 2 1 2), weget
)BT
c—(a a a o)-|p"
ﬁT
331 2 0000 1212
=1 2 2 3/-|0 0 0 O|—-|1 2 1 2
4 5 6 3 1 1 11 121 2
21 00
=0 0 1 1[=0. Thus, the solution is obviously feasible
2 240
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Preparing the Primal-Dual Algorithm
e —
In order to prepare the Primal-Dual Algorithm, we introduce:

U= {(i, Ne+p,= cu}. Thus, we obtain the reduced primal (RP)

Minimize 1" - x“, s.t.,

x* a
(E(IW”),A(”))' 14 =[ ]’ae IRm’bE IR"
NIV

Ax 20X >0
ntm
& Minimize Y x¢, s.t.,
i=1
a _ .
X+ Y a,x =a,Vie{l,..,m}
i el
“ _ . a (1)
AX Y ax =b, Vie{lnfax 20ax") 20
(i, et
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Preparing the Primal-Dual Algorithm

54
n+m
Minimize ) x{,

i=l

s.t.,
X'+ Z X, = a,Vie {1,...,m}
Miden
AXS,, + Z x,;=b;Vje {L....n}
wigey

Ax*>0Ax") >0
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8.2 Analyzing the reduced primal (RP)

Obviously, it holds:
zz[z jzbz[ > j
i=1 i=1 i, j)el il(i,j)el]

Since total demand and supply are identical, we have

a, = b/@i[x + Z xi,j]:i[x?m*' z xw.]
(

'MS

i=1 j=1 i=1 i j)el j=1 il(i, j)els
m n n
a — a
EORTSNDWETED DU W
i=1 =1 ji(i,j)el] j=1 j=tii. j)els
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Analyzing (RP)

DIREDIDIIES WM WDV

i=1 jli,j)el) Jj=1 J=1ili, jely
Obviously, it holds : Z z:xX ; z Zx, ;
i=1 jl(i,j)el] j=1il(i,jely

Hence, we conclude :

m n
a
2% +Y Y- Zx,+m+2 D%
i=1 jli,j)el) J=1ili, jely
m n
a __ a
& X =2 X
i=1 j=1
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Direct conclusion

Altogether, we therefore obtain:

m

2%”2 Z xw:ix,”.;. Z Xij =iai

i=1 jl(i,j)els i=1 (i.j)els i=1
a_ _
SO EIWEDIEH
i=1 i=1 (i, j)eld
0 0 0 0
a —_ a —
PSS WD IETED I D NETED I}
j=1 =L, j)el Jj=1 (i.j)els j=1
n n m+n m n
a _ a _ _n.
SO VI IETED WA WEDWIELIDIES
j=1 j=1 (i, j)el] i=1 i=1 j=1 (i, j)els
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Consequences

min " u
Since minimizing Zx“’ :Z a, +Zb7 -2 Z x,; determines the

i=1 i=1 F= (el
objective function of the reduced primal of the Hitchcock Transportation

Problem, we just have to maximize 2- z X,

(i)l
This leads to the following (RP):
Maximize Z X, js
(il
st
X, 20,Vi, jA Z x,;<a,Vie {L....m}A Z X, <b,Vje {L,...n}
JG)el (i f)el)
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Analyzing the problem in detail

Damn !

This problem reminds me of
something...

Definitely! It is just a

MAX-FLOW
PROBLEM
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The RP is a specific Flow Problem

Obviously, the problem (RP) can be modeled as
a Max-Flow Problem.

For this purpose, we define the following network:

V ={8V eV, Wi W, 1}
E={(sv)n<i<m}of(v.w)1<i<mAal<j<nna(i,j)e I}
(w111 j<n}
c(sv)=a,Vie{l...m}rc(v.w,)=c0,Y (i, j)e I/
Ac(w,.t)=b,Vje{l....n}
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Illustration of the network

PO ON

a, IJ

b,
W
b,
ag | Ws b%)
- Edges are outofsetlJ |
bn

am\ . and haveunlimitedca<citi .
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Resuming with our example
S ——)

= In the example introduced above, we generated
the following initial solution

a=(0 0 1)’ Ag=(1 2 1 2)
= Thus, we can derive

Withe=(0 0 1) aAp=(1

we obtain the reduced matrix:

NO NN
BN O = =
~ — ©
S~ o
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We obtain the following network

t n/,y:% Business Computing and Operations Research WINFOR 778

Augmenting the flow
———)
= At first, we find the flow
= S-Vy-Wp-t
= |t can be augmented up to 3
= Therefore, we update the network...
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We obtain the modified network
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Augmenting the flow
——)

= Now, we find
= S-VoWy-t
= It can be augmented up to 2
= Therefore, we update the network...
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lllustration
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Augmenting the flow
——)
= Now, we find
"S-V Wyt
= It can be augmented up to 3
= Therefore, we update the network...
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Modifying our network again

t n/,y:% Business Computing and Operations Research WINFOR 784

Augmenting again the flow
———)
= Now, we find
" S-Vg-W,t
= |t can be augmented up to 3
= Therefore, we update the network...
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And the network is adjusted to
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Solution to the reduced primal problem

——)
Thus, we obtain :
0030
x=[2 3 0 0| Obviously xis not feasible for (P)
0 0 0 3

Owing to the vectorsa” =(3 5 6)A
b"=(2 3 6 3), weneed the vector of slackness

variablesx*=(0 0 3 0 0 3 0)
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Updating the dual solution

Obviously, we can optimally solve (RP) by
making use of an efficient Max-Flow Algorithm
Unfortunately, this does not provide a mechanism
for updating the dual solution yet

In order to do so, we have to analyze the dual of
the reduced primal (DRP)

/;,,2/. Business Computing and Operations Research WINFOR 788

Modified Reduced Primal (RP,)

n+m
Minimize Zx,.“,
i=1
s.t.,
x,; 20,Vi, jA x' 20,Vie {1,...,n+m}/\
x'+ Z X, =a,Vie {L,....m} A
i j)els
xjm + z X, =b}.,Vje {1,...,n}

il(i, j)e1s
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Modified Reduced Primal (RP,)

Since it holds

n n " "
Z[x,” + Z x”] =Za, = bl = [x‘,’m + Z x”]
p p

i=l il i=l =1 = i(ij)ens

m m n n
< L+ = Com T

Xi Xij = 2K jem Xij
i=1 i=1 ji(i,j)el] j=1 j=Lil(i, j)e 1]
m n m n m min
a _ a a _ a . a_ a

S+ D x, =N, X x, @) =) K, 2K =)

i= (i)l = (i)l i= =1 i=l i=l

Thus, we obtain the equivalent problem:
n
L u c i a ;
Minimize Zx, cstx; 20Vi jax 20,Vie l,...n+m}A
i=1
X+ Y x=aVie{l,miaxl, + Y x;=b,Vje{l,..n}
Jij)ets iij)els
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...and its dual counterpart (DRP,)

m n
Maximize z a;-o, + ij . ﬁj
i=1 j=1

s.t.,
a+p, <0V (i, j)e ]
o <LVie{l,...m}A B, <0,Vje{l....n}
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8.3 Solving the DRP
e —
8.3.1 Theorem
Assuming (RP) was optimally solved by an appropriate
Max-Flow Algorithm. Furthermore, (W,W") is the resulting
s -t - cut according to the current x with
w :{ve V | v is reachable from s in the final network of (RP)}.
Then,
1 ifvew o -1 ifweW . .
a; :{O iy e W ~B; :{ 0 if w, cwe determines an optimal
solution for (DRF,). Additionally, (0?, ,3), with @=a+4,-an

ntm

B =+ B are improved solutions of (D) if > x'>0A%>0
=l

t n/,y:% Business Computing and Operations Research WINFOR 792
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Proof of the Theorem — Basic cognitions
———————————
As a preliminary step, we generate some basic

attributes

1. If v,e W, we know that:

if additionally (i, j)e IJ = w, e W

This results from the following observation:
Ifv,e W A(i, j)e I/, then we know that there
is an edge with unlimited capacity connecting

v; and w;. Hence, it holds ¢, ; > f, ; and therefore

w; is reachable from s as well.

) Business Computing and operations Research VW INFOR 703

Proof of the Theorem — Basic cognitions

2. Corollary:
v,eWAaw,eWe =0, j)elJ

3. Iw,eWA(i,j)eUAx,;>0=>v,eW
This results from the following observation:
Since x, ; >0, a former step has established
a connection between v, and w;. Thus

we have a backward link from w; to v; with

capacity x, ; > 0.
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Proof of the Theorem — Basic cognitions

s
4. Corollary: v,e W aw, e W = (i, j)e I/ v x, ;=0

In what follows, 7, ; denotes the remaining capacity

on the link (4, j), with

(i) e{(vow )1 i) e mho{(sv)tie fLmfof(w,.0)1je{l.n}}.

c —_ — a _
5.v,eW'=r, =0=> ) x,=a,=>x'=0
JiJeE

= = a =
6. w,eW=r, =0= Y x,=b>x,=0
illi. j)eE

t n/,y:% Business Computing and Operations Research WINFOR 795

12



Proof of Theorem 8.3.1 — Feasibility

e ——
We are now ready to commence the proof. At first, we show the
feasibility of the generated solution to (DRP).
Obviously, it holds:

1. & <1Vie{l...miA B, <0Vje{l,..n}
Additionally, we have to show

2. a,+f,<0.¥(i,j)e lJ.

21 veW=weW=d=1Ap=-1=d+p =0
22 veW =§=0=d+f <0

Thus, (d,,ﬁi) is a feasible solution to (DRP).
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Proof of Theorem 8.3.1 — Optimality

‘We know that the optimal solution to the reduced
primal problem is generated by the Max-Flow procedure
and is therefore defined by the following variables

x, . Vi, je U ax! Vie{l,...n+m}

Consequently, its objective function value is determined by Zx,“

i=l

We calculate: iai - +zn:b] Bi=>a-> b=
P=] = ew

weW

vieW \ (i, j)el] vew wieW \ il(i.j)els wieW

3252220 5
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RP and DRP have identical objective values

———)
And thus, it holds:

ia’ 'a’+ib7 .ﬂ/ =
DIPTSR o R P

vew \_jlli.f)els veW weW weW
a a  _ a_ a
DI DI DI R IE DI DE
(ij)els (ij)els vew wieWw vew wieW

[Ch—;
Owing to attribute 6, this is equal to 0

m

e
S =S

vew i=1

Thus, ((2, [?) is an optimal solution to (DRP)

t n/,y:% Business Computing and Operations Research WINFOR 798
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Feasibility of the updated dual solution

We calculate ((fzif)=(ozﬁ)+]TJ (&[3)
It has to be guaranteed
a+dy G+ A B Sc o+ p A+ d B <c,,
~ ¢ . —a.—p.
\a+pB)<c, . —a, - B, & Iy $—F—
holdeh)sa,—a-p e hs=o0s
0 ifveWaweW T W
- 0 ifv,eWAw eW* lev’EWCAWfE W
+B. = =J{- : .
a+h, -1 ifv,eWAw,eWw nvie /\w]e‘
. otherwise
1 ifv,eWaAw,eW*
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Proof of Theorem 8.3.1 — Defining A,
B |
1 ifv,eWaw eW"
G _ai_/B 1~ % . . ’
Jy S———=—L, with &+, = -1 ifv,eW'Aw,eW
a+p; .
0 otherwise
If (i, j)e IJ, we have to consider the case v, € W* A w,eWw

= Jyzmin{a,+B,—c, (i j)e U Av,e W Aw, e W}<0

If (i, j)& 1J, we have to consider the case v, e W Aw, € W°

= Jy<min{c,,—o,— B, 1(i, j)e U}>0

Thus, we define

Jy=min{c,,—o, —B,1(i, /)& U Av,eW Aw, e W}>0

22 Business Computng and Operations resesrsn VW INFOR. 500

Quality of the new dual solution

With 7, = minfc, , —a, - 8, 1 (i,j)e 17 }> 0, we calculate

Zlai'(ai+j()'&i)+zlbj'(ﬁj’*%'ﬁj)z
i= J=

Z(ai'ai+ﬂo'ai'&i)+2i:(bj'/’)j+ﬂ0'bj'ﬁj):

i=1

i=1 Jj=t =

i
Zaraﬁzbf/”j”o'( xid) > a0+ b p
i=1 =1 i=1 i sg = =

i=l
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And what follows?
T ——

Great! That is all we
need to optimally solve the
problem...

However, we may
simplify the formula
considerably...

Business Computing and Operations Research WINFOR 802

Important observation — Part 1
= |

We consider the resulting constellation after applying the Max-Flow
procedure. Addionally, we analyze the generated flow x, ;. First of
all, we consider arcs that vanish in the next iteration. This may
happen only if (i, j)€ IJ in the current iteration, but in the next one
it holds (i, j)& 1J. This case is characterized that originally

a,+ 8, =c,; applies, but subsequently @, +/;’j <¢;; holds. Note

that this is only possible if & + 5, <0=d, + , =—1. This is

the constellation v, e W Aw; € W. It is illustrated on the next

slide. Here, we directly conclude that the arc (i, j )e 1J was not used

by the generated flow at all. Hence, we obtain x, ; =0.

4@2‘/ Business Computing and Operations Research WINFOR 803

Illustration of this constellation

saturated

unused
arc an, . arc
t n/,y:% Business Computing and Operations Research WINFOR 804
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Consequence
———)|

= If we erase the edge (i,j) in the subsequent
iteration, i.e., the solving of the modified (RP),
this has no impact on the current flow x;;

= Note that the current flow does not make use of
this arc

= Consequently, this arc is dispensable

Business Computing and Operations Research WINFOR 805
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Observations Il
——

Now we consider arcs (i,j)e 1J with x> 0. We
know that it holds 4, +ﬁj =¢, = G +ﬁj =0.

Therefore, the flow x> 0 can be kept on these arcs.

Anyhow, the resulting flow x; ; can be kept for the next
iteration of solving (RP) that arises after updating & and

p. Note that this update may cause additional arcs between
the v, — and w; —nodes.
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Calculating A,

dy=min{c, —a, =B, 1(i.j)& IJ Av,eW Aw, e W'}

Thus, we can label all rows i in the reduced matrix
(c.,—a,—B,) with v,e W*. Additionally, we label all
columns j withw, e W.

Then /, is determined by the minimum unlabeled value.

We update (Ci, ;=0 ,é f) by applying the following rules:

t n/,y:% Business Computing and Operations Research WINFOR 807
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Updating rules

We distinguish:

1. If (i, j) is unlabeled = v, e W Aw, e W*

= We subtract 4, from ¢, —a, — 8,

2. 1f (i, j) is labeled twice= v, e W* Aw; e W
=ao+p,=-1. Weadd 4, toc,;—a, - 3,

3. If (i, j) is labeled only by the ith row or the jth column
2(V,GW/\WjeW)v(vieW”/\w_,.eW”):>(xi+ﬁj=0

¢,; — & — B, is kept unchanged

; ;//,-f% Business Computing and Operations Research WINFOR 808

Continuation of the example
= |
= Now, we resume our example which was
introduced above
= Thus, first of all, we have to update the dual
solution

Witha=(0 0 1) Ag=(01 2 1 2)

N )
o - o

1
2 1
Reduced matrix is therefore:| 0 0
2 2
3

= 1/ ={(1.3).(1:4).(2.1).(2.2). 3.4)}
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lllustration of the calculation
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Updating the dual solution
=

W={s,v3
WC =,|§I»W1’W2’W3’t}

Witha=(0 0 1) Ap=(1 2 1 2)
2100

(c,—a—pB)=|0 0 1 1|=
2240 (22 4

t n/,y:% Business Computing and Operations Research WINFOR 811

Updating the dual solution

—t
2100 2 1 0 0+2
Jy=min{2,2,4}=2=|0 0 1 1|=| 0 0 1 1+2

2 2 40 2-2 2-2 4-2 0
21
=[0 0
00

A" =(0 0 DA =(0 0 0 1)
AGT=(0 0 3)AB"=(1 2 1 0)
= Thus, we get two new arcs (3,1) and (3,2) and lose one (1,4).
=17 ={(1,3).(2.1).(2.2).(3.1),(3.2).(3.4)}
2 Business Computing and operatons researcn VWV INFOR 12

Illustration
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Applying Max-Flow

t n,,f% Business Computing and Operations Research WINFOR 814

Results

= Unfortunately, we are not able to augment the
flow

= Thus, xis kept as a maximum flow
= However, we have changed the sets Wand W°
= This is considered in the following

E /ﬂ,?;/ Business Computing and Operations Research WINFOR 815

Applying Max-Flow

t n,,f% Business Computing and Operations Research WINFOR 816
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Updating the dual solution

=
w :{srvwvs”’
W= 7W3’t}

With@=(0 0 3) Ag=(1 2 1 0)

2 1 0 2
(c;—a=p)=|0 0 1 3|= 1
0020 2
i ﬂ/,y% Business Computing and Operations Research WINFOR 817
Updating the dual solution
———)

2102 (3203
J=min{2,1}=1=/0 0 1 3|=[0 0 0 3
020/ 0010

(=]

a"=(0 0 3)Ap"=(1 2 1 0)

A" =(0 1 DA =(-1 -1 0 -1)
=a"=(0 1 ap"=(0 1 1 -1)

= Thus, we get a new arcs (2,3).

=17 ={(1.3),(2.1),(2.2).(2.3)(3.1).(3,2).(3.4)}
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Modified network

t n/,y:% Business Computing and Operations Research WINFOR 819
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We obtain the augmented flow

t n/,y:% Business Computing and Operations Research WINFOR 820

Illustration
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The new decomposition

t n/,y:% Business Computing and Operations Research WINFOR 822
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The modified primal solution

=W ={s,}/\WC ={vl,vz,v3,w1,w2,w3,w4,t}
Witha=(0 1 4 Ap=0 1 1 -1)
0030
x=[2 0 3 0
0303
= Isfeasiblefora”’ =(3 5 6)Ab" =(2 3 6 3)
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Proof of optimality

SW={s} AW ={v,v,, vy, w,w,, w;, w,,1}

= x' =0,Vie{l,...m+n} and it holds:

¢’ x=1-3+1-24+3-2+5-3+3-3=35

a’a+b" - f=3-0+51+6-4+2-0+3-1+6-1-31
=5+244+3+6-3=38-3=35

= x and (@, ) are optimal solutions!
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Alpha-Beta-Algorithm
——)
1. Construct a feasible dual solution to the TPP
= Set B :min{cu Ii:l,m,m} and ¢, :mjn{c,/ —ﬁl lj=1,.., n}
= Calculate the matrix with the reduced costs ¢; =c, —a -5,
2. Prepare the network for the Max-Flow-Calculation

* Nodes: s.v,...,
V)5 (820,)

V,“,W],...,W”,l

with capacity 22

3. Furthermore: If and only if ¢; =0, the arc (v,.w;) exists with
infinite capacity

4. Calculate the Maximum s-t-Flow in the network. Letw be
the set of nodes reachable from node s in the
corresponding s-t-Cut

5. Whilew ={s}, conduct the following steps (see next slide):

: s Business Computing and Operations Research WINFOR  s2s
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Alpha-Beta-Algorithm (Dual Solution Update)

——)
= IfveW=a=1v,eW =, label the i-th row in the reduced
cost matrix.
* Ifw,ew = B, =-1=, label the j-th column in the reduced
cost matrix.

= All other variables of the DRP-solution 07,/3’ are setto 0.
= Set 4, to the minimum value of the unlabeled entries in
the reduced cost matrix.

= Subtract 4,from every unlabeled entry and add it to every
entry labeled twice in the reduced cost matrix.

s SetB=p+ABra=a+ia

= Update the network as indicated by the new reduced cost
matrix.

= Try to augment the current flow and update the set W.
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