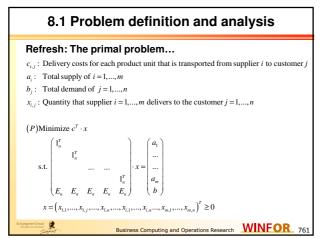
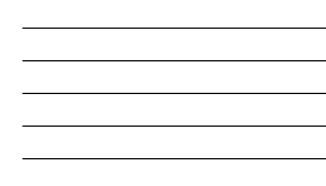
8 Transportation Problem – Alpha-Beta

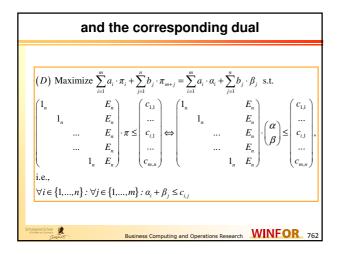
- Now, we introduce an additional algorithm for the Hitchcock Transportation problem, which was already introduced before
- This is the Alpha-Beta Algorithm

2

- It completes the list of solution approaches for solving this well-known problem
- The Alpha-Beta Algorithm is a primal-dual solution algorithm
- Owing to the simplicity of the dual problem, this procedure is capable of using significant insights into the problem structure







Direct Observation

- The dual considers a somewhat modified problem
- This may be interpreted as follows

2

2

2

- There is a third party that offers transportation service between the plants and the consumers
- For this service, both sides have to pay an individual fee. Specifically, the *i*th supplier pays α_i and the *j*th consumer β_j
- Obviously, it is not possible to charge more than c_{i,j} for the respective combination
- Otherwise, since it possesses a more efficient alternative, the company would not make use of this alternative
- Thus, the difference $c_{i,j},\alpha_j,\beta_j$ is denoted as a speculative gain of the considered company
- Consequently, whenever this difference is negative, the primal problem is hold to introduce (i,j) in the basis. Otherwise, we better keep it out.

Business Computing and Operations Research WINFOR 763

The first row of the primal tableau

If we consider the first row of the primal tableau, we directly obtain

$$\overline{c}_{i,j} = c_{i,j} - c_B \cdot A_B^{-1} \cdot A = c_{i,j} - \pi^T \cdot A = c_{i,j} - A^T \cdot \pi$$
$$= c_{i,j} - \alpha_i - \beta_j$$

If we have $\overline{c}_{i,j} < 0$, the dual variables are not feasible and outsourcing is not reasonable.

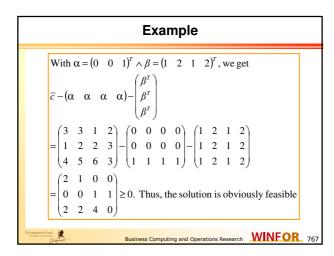
Business Computing and Operations Research WINFOR 764

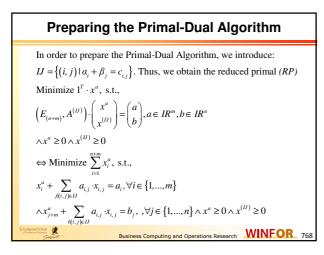
Feasible dual solutions

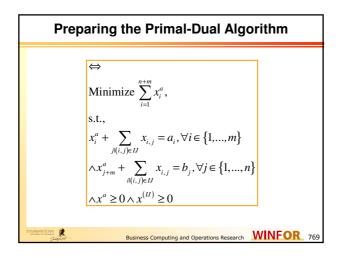
Obviously, since $c_{i,j} \ge 0$, we have $\pi = 0^{n+m}$ as a trivial initial solution.

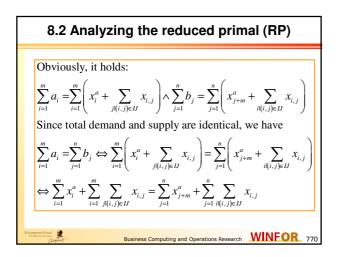
This trivial solution can be directly improved by
$$\begin{split} \beta_{j} &= \min \left\{ c_{i,j} \mid i = 1, ..., m \right\} \\ \wedge \alpha_{i} &= \min \left\{ c_{i,j} - \beta_{j} \mid j = 1, ..., n \right\} \end{split}$$

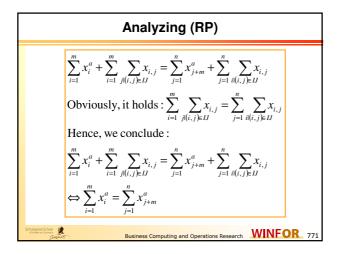
Consider an example			
$a^{T} = (3 5 6) \land b^{T} = (2 3 6 3) \land c = \begin{pmatrix} 3 & 3 & 1 & 2 \\ 1 & 2 & 2 & 3 \\ 4 & 5 & 6 & 3 \end{pmatrix}$ \Rightarrow			
Generating an initial solution : $\beta = (1 \ 2 \ 1 \ 2)^T \Rightarrow$ $(\min\{2 \ 1 \ 0 \ 2\} \ (0)$			
$\alpha = \begin{pmatrix} \min\{3-1,3-2,1-1,2-2\}\\ \min\{1-1,2-2,2-1,3-2\}\\ \min\{4-1,5-2,6-1,3-2\} \end{pmatrix} = \begin{pmatrix} \min\{2,1,0,0\}\\ \min\{0,0,1,1\}\\ \min\{3,3,5,1\} \end{pmatrix} = \begin{pmatrix} 0\\ 0\\ 1 \end{pmatrix}$			
Business Computing and Operations Research WINFOR 766			

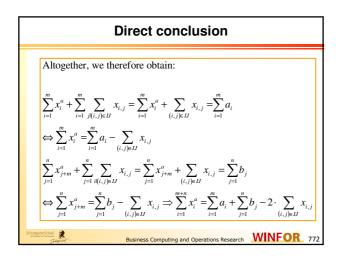


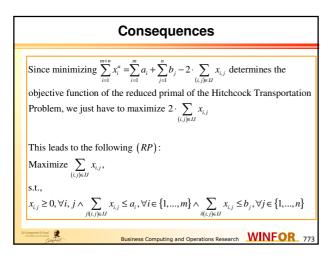


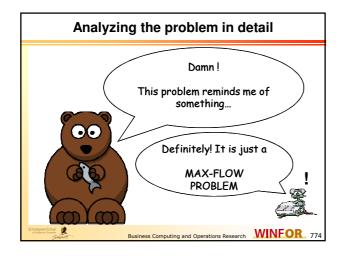


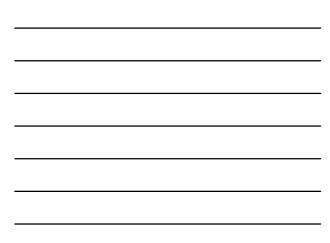




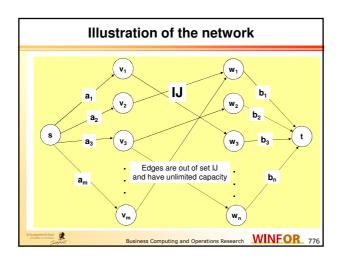


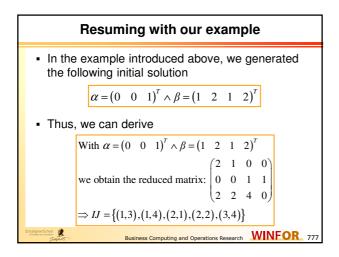


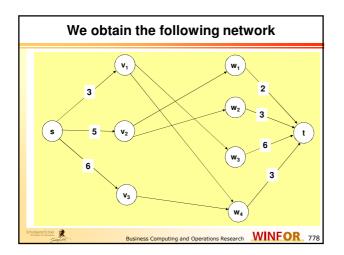


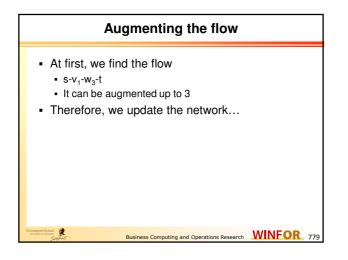


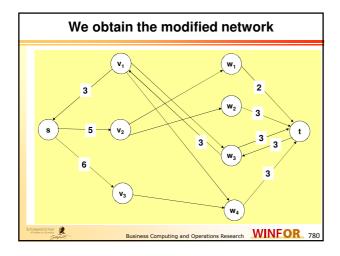
	The RP is a specific Flow Problem			
	Obviously, the problem (RP) can be modeled as			
	a Max-Flow Problem.			
	For this purpose, we define the following network:			
	$V = \{s, v_1,, v_m, w_1,, w_n, t\}$			
	$E = \{(s, v_i) 1 \le i \le m\} \cup \{(v_i, w_j) 1 \le i \le m \land 1 \le j \le n \land (i, j) \in IJ\}$			
	$\cup\{(w_j,t) 1\leq j\leq n\}$			
	$c(s, v_i) = a_i, \forall i \in \{1,, m\} \land c(v_i, w_j) = \infty, \forall (i, j) \in IJ$			
	$\wedge c(w_j, t) = b_j, \forall j \in \{1, \dots, n\}$			
S	Business Computing and Operations Research WINFOR 775			

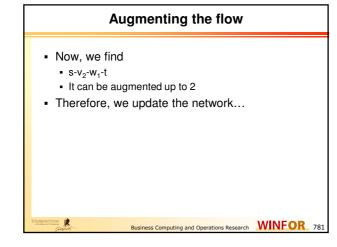


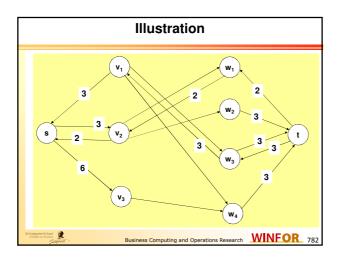


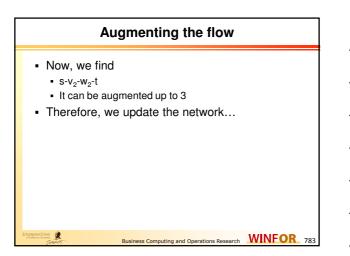


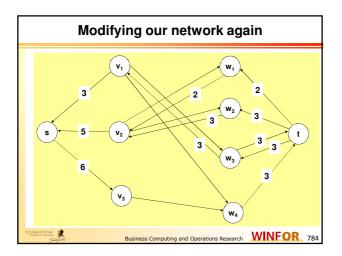


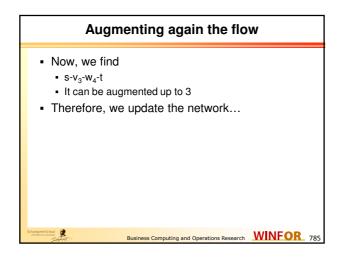


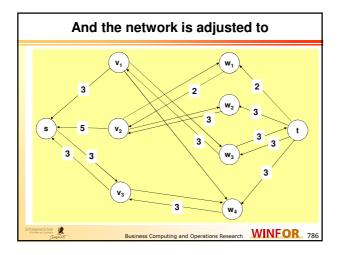


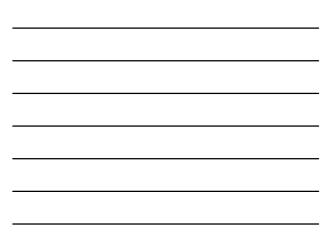




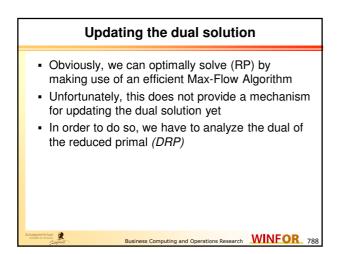


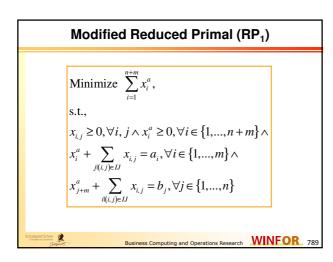


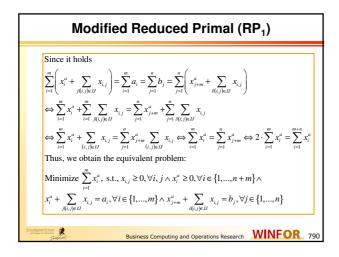


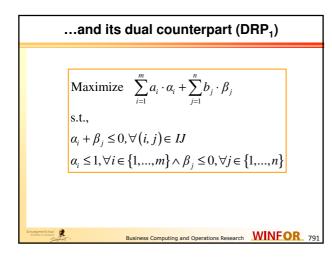


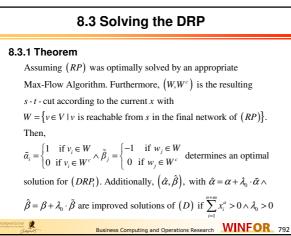
Solution to the reduced primal problem				
Thus, we obtain : $x = \begin{pmatrix} 0 & 0 & 3 & 0 \\ 2 & 3 & 0 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix}$ Obviously <i>x</i> is not feasible for (<i>P</i>) Owing to the vectors $a^{T} = \begin{pmatrix} 3 & 5 & 6 \end{pmatrix} \land$ $b^{T} = \begin{pmatrix} 2 & 3 & 6 & 3 \end{pmatrix}$, we need the vector of slackness variables $x^{a} = \begin{pmatrix} 0 & 0 & 3 & 0 & 0 & 3 & 0 \end{pmatrix}^{T}$				
Business Computing and Operations Research WINFOR 78				









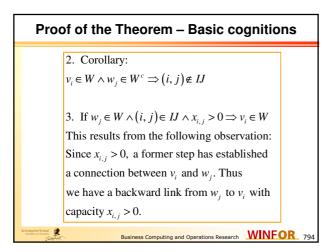


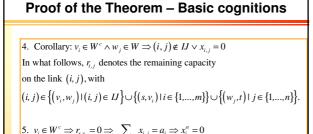
Proof of the Theorem – Basic cognitions

As a preliminary step, we generate some basic attributes

1. If $v_i \in W$, we know that: if additionally $(i, j) \in IJ \Rightarrow w_j \in W$ This results from the following observation: If $v_i \in W \land (i, j) \in IJ$, then we know that there is an edge with unlimited capacity connecting v_i and w_j . Hence, it holds $c_{i,j} > f_{i,j}$ and therefore w_j is reachable from *s* as well.

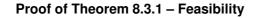
Business Computing and Operations Research WINEOR 793





6.
$$w_j \in W \Rightarrow r_{w_j,t} = 0 \Rightarrow \sum_{a_{i,j} \in E} x_{i,j} = b_j \Rightarrow x_{j+m}^a = 0$$

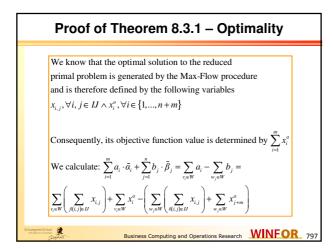
2

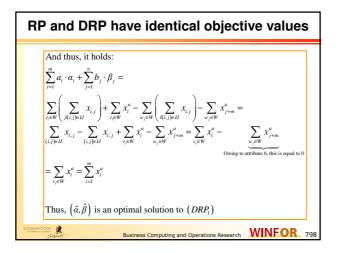


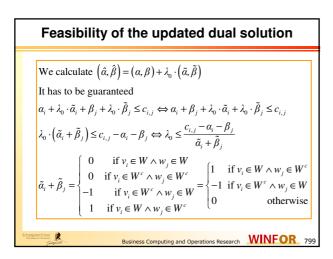
We are now ready to commence the proof. At first, we show the feasibility of the generated solution to (*DRP*). Obviously, it holds:

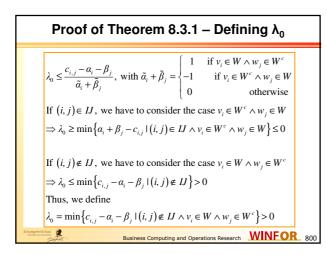
1. $\tilde{\alpha}_i \leq 1, \forall i \in \{1, ..., m\} \land \tilde{\beta}_j \leq 0, \forall j \in \{1, ..., n\}$ Additionally, we have to show 2. $\tilde{\alpha}_i + \tilde{\beta}_j \leq 0, \forall (i, j) \in IJ$. 2.1 $v_i \in W \Rightarrow w_j \in W \Rightarrow \tilde{\alpha}_i = 1 \land \tilde{\beta}_j = -1 \Rightarrow \tilde{\alpha}_i + \tilde{\beta}_j = 0$ 2.2 $v_i \in W^c \Rightarrow \tilde{\alpha}_i = 0 \Rightarrow \tilde{\alpha}_i + \tilde{\beta}_j \leq 0$ Thus, $(\tilde{\alpha}_i, \tilde{\beta}_j)$ is a feasible solution to (DRP).

2

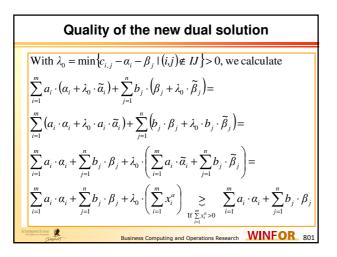


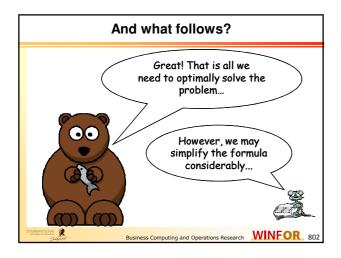






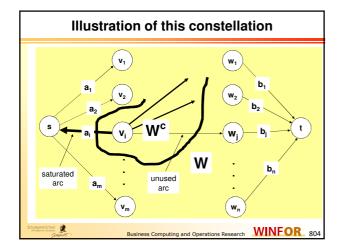






Important observation – Part 1

We consider the resulting constellation after applying the Max-Flow procedure. Addionally, we analyze the generated flow $x_{i,j}$. First of all, we consider arcs that vanish in the next iteration. This may happen only if $(i, j) \in IJ$ in the current iteration, but in the next one it holds $(i, j) \notin IJ$. This case is characterized that originally $\alpha_i + \beta_j = c_{i,j}$ applies, but subsequently $\hat{\alpha}_i + \hat{\beta}_j < c_{i,j}$ holds. Note that this is only possible if $\tilde{\alpha}_i + \tilde{\beta}_j < 0 \Rightarrow \tilde{\alpha}_i + \tilde{\beta}_j = -1$. This is the constellation $v_i \in W^c \land w_j \in W$. It is illustrated on the next slide. Here, we directly conclude that the arc $(i, j) \in IJ$ was not used by the generated flow at all. Hence, we obtain $x_{i,j} = 0$.



Consequence

- If we erase the edge (i,j) in the subsequent iteration, i.e., the solving of the modified (RP), this has no impact on the current flow x_{i,j}
- Note that the current flow does not make use of this arc
- Consequently, this arc is dispensable

2

.

Observations II

Business Computing and Operations Research WINFOR 805

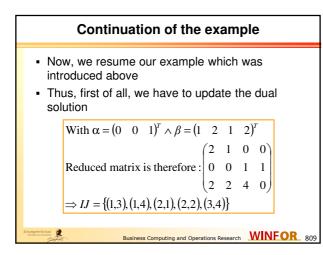
Now we consider arcs $(i, j) \in IJ$ with $x_{i,j} > 0$. We know that it holds $\hat{a}_i + \hat{\beta}_j = c_{i,j} \implies \tilde{a}_i + \tilde{\beta}_j = 0$. Therefore, the flow $x_{i,j} > 0$ can be kept on these arcs.

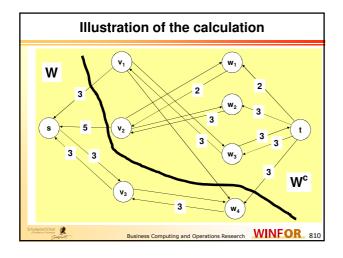
Anyhow, the resulting flow $x_{i,j}$ can be kept for the next iteration of solving (*RP*) that arises after updating α and β . Note that this update may cause additional arcs between the v_i – and w_j – nodes.

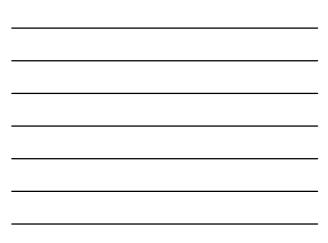
Business Computing and Operations Research WINFOR 806

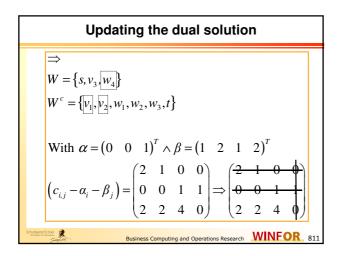
 $\begin{aligned} & \lambda_{0} = \min \left\{ c_{i,j} - \alpha_{i} - \beta_{j} \mid (i,j) \notin IJ \land v_{i} \in W \land w_{j} \in W^{c} \right\} \\ & \text{Thus, we can label all rows } i \text{ in the reduced matrix} \\ & \left(c_{i,j} - \alpha_{i} - \beta_{j} \right) \text{ with } v_{i} \in W^{c}. \text{ Additionally, we label all columns } j \text{ with } w_{j} \in W. \\ & \text{Then } \lambda_{0} \text{ is determined by the minimum unlabeled value.} \\ & \text{We update } \left(c_{i,j} - \hat{\alpha}_{i} - \hat{\beta}_{j} \right) \text{ by applying the following rules:} \end{aligned}$

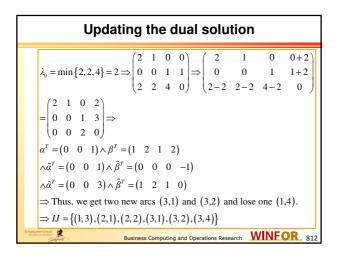
Updating rules				
We distinguish:				
1. If (i, j) is unlabeled $\Rightarrow v_i \in W \land w_j \in W^c$				
\Rightarrow We subtract λ_0 from $c_{i,j} - \alpha_i - \beta_j$				
2. If (i, j) is labeled twice $\Rightarrow v_i \in W^c \land w_j \in W$				
$\Rightarrow \alpha_i + \beta_j = -1$. We add λ_0 to $c_{i,j} - \alpha_i - \beta_j$				
3. If (i, j) is labeled only by the <i>i</i> th row or the <i>j</i> th column				
$\Rightarrow (v_i \in W \land w_i \in W) \lor (v_i \in W^c \land w_i \in W^c) \Rightarrow \alpha_i + \beta_i = 0$				
$c_{i,j} - a_i - \beta_j$ is kept unchanged				
Edwardford				
Business Computing and Operations Research WINFOR 8				

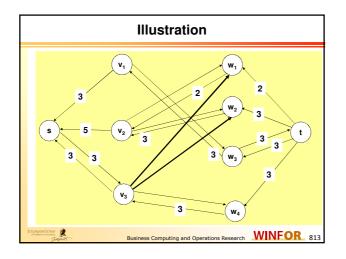


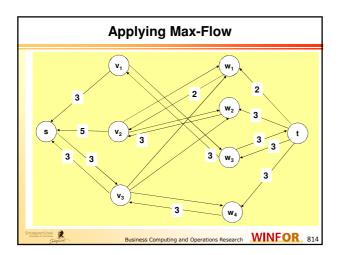


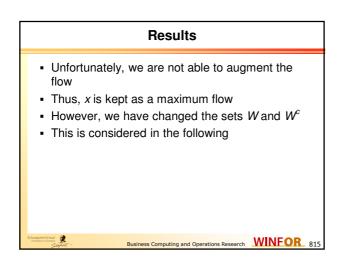


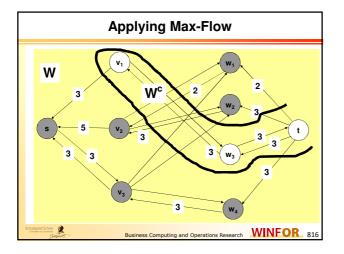


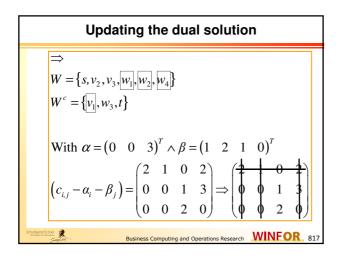




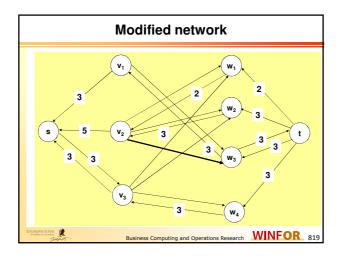


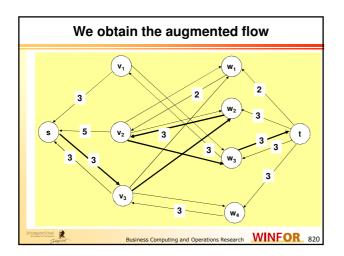


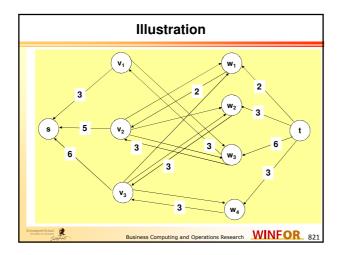


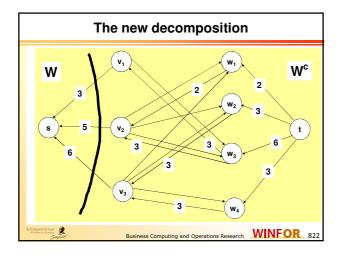


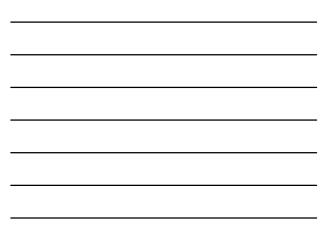
Updating the dual solution				
$\lambda_{0} = \min\{2,1\} = 1 \Rightarrow \begin{pmatrix} 2 & 1 & 0 & 2 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 2 & 0 \end{pmatrix} \Rightarrow \begin{pmatrix} 3 & 2 & 0 & 3 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 1 & 0 \end{pmatrix}$ $\alpha^{T} = \begin{pmatrix} 0 & 0 & 3 \end{pmatrix} \land \beta^{T} = \begin{pmatrix} 1 & 2 & 1 & 0 \end{pmatrix}$ $\land \tilde{\alpha}^{T} = \begin{pmatrix} 0 & 1 & 1 \end{pmatrix} \land \tilde{\beta}^{T} = \begin{pmatrix} -1 & -1 & 0 & -1 \end{pmatrix}$ $\Rightarrow \tilde{\alpha}^{T} = \begin{pmatrix} 0 & 1 & 4 \end{pmatrix} \land \tilde{\beta}^{T} = \begin{pmatrix} 0 & 1 & 1 & -1 \end{pmatrix}$ $\Rightarrow \text{Thus, we get a new arcs (2,3).}$ $\Rightarrow IJ = \{(1,3), (2,1), (2,2), (2,3)(3,1), (3,2), (3,4)\}$				
Business Computing and Operations Research WINEOR 818				







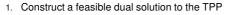




The modified primal solution			
$\Rightarrow W = \{s,\} \land W^c = \{v_1, v_2, v_3, w_1, w_2, w_3, w_4, t\}$ With $\alpha = (0 \ 1 \ 4)^T \land \beta = (0 \ 1 \ 1 \ -1)^T$ $x = \begin{pmatrix} 0 & 0 & 3 & 0 \\ 2 & 0 & 3 & 0 \\ 0 & 3 & 0 & 3 \end{pmatrix}$ $\Rightarrow \text{ Is feasible for } a^T = (3 \ 5 \ 6) \land b^T = (2 \ 3 \ 6 \ 3)$			
Business Computing and Operations Research WINFOR 823			

Proof of optimality		
$\Rightarrow W = \{s,\}$	$\wedge W^{c} = \{v_{1}, v_{2}, v_{3}, w_{1}, w_{2}, w_{3}, w_{4}, t\}$	
$\Rightarrow x_i^a = 0, \forall$	$\forall i \in \{1, \dots, m+n\}$ and it holds:	
	$+1 \cdot 2 + 3 \cdot 2 + 5 \cdot 3 + 3 \cdot 3 = 35$	
	$\beta = 3 \cdot 0 + 5 \cdot 1 + 6 \cdot 4 + 2 \cdot 0 + 3 \cdot 1 + 6 \cdot 1 - 3 \cdot 1$ 6 + 6 - 3 = 38 - 3 = 35	
= 3 + 24 + 5	1+0-3=38-3=35	
$\Rightarrow x \text{ and } (a)$	(α, β) are optimal solutions!	
Schumpeter School	Business Computing and Operations Research WINFOR 824	

Alpha-Beta-Algorithm



- Set $\beta_j = \min\{c_{ij} \mid i = 1, ..., m\}$ and $\alpha_i = \min\{c_{ij} \beta_j \mid j = 1, ..., n\}$
- Calculate the matrix with the reduced costs $\overline{c}_{ij} = c_{ij} \alpha_i \beta_j$
- 2. Prepare the network for the Max-Flow-Calculation

2

- Nodes: $s, v_1, ..., v_m, w_1, ..., w_n, t$ Arcs: $(s, v_1), ..., (s, v_n)$ with capacity $\frac{a_1, ..., a_m}{b_1, ..., b_n}$ 3. Furthermore: If and only if $\overline{c_{ij}} = 0$, the arc (v_i, w_j) exists with infinite capacity
- 4. Calculate the Maximum s-t-Flow in the network. Let *w* be the set of nodes reachable from node s in the corresponding s-t-Cut
- 5. While $W \neq \{s\}$, conduct the following steps (see next slide):

Alpha-Beta-Algorithm (Dual Solution Update)

- If $v_i \in W \Rightarrow \tilde{\alpha}_i = 1; v_i \in W^c \Rightarrow$, label the *i*-th row in the reduced cost matrix.
- If $w_i \in W \Rightarrow \tilde{\beta}_i = -1 \Rightarrow$, label the *j*-th column in the reduced . cost matrix.
- All other variables of the DRP-solution $\tilde{\alpha}, \tilde{\beta}$ are set to 0.
- Set $\lambda_{\rm p}$ to the minimum value of the unlabeled entries in the reduced cost matrix.
- Subtract $\lambda_{\!\scriptscriptstyle 0}$ from every unlabeled entry and add it to every . entry labeled twice in the reduced cost matrix.
- Set $\beta = \beta + \lambda_0 \tilde{\beta} \wedge \alpha = \alpha + \lambda_0 \tilde{\alpha}$.
- Update the network as indicated by the new reduced cost . matrix.
- Try to augment the current flow and update the set W. . 2
 - Business Computing and Operations Research WINFOR 826