

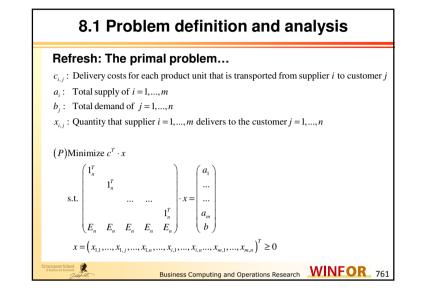
- Now, we introduce an additional algorithm for the Hitchcock Transportation problem, which was already introduced before
- This is the Alpha-Beta Algorithm

2

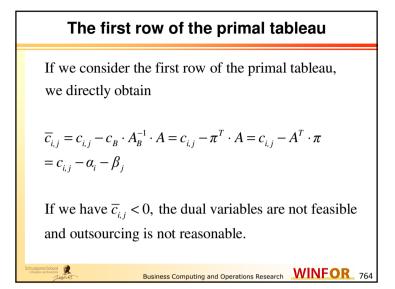
- It completes the list of solution approaches for solving this well-known problem
- The Alpha-Beta Algorithm is a primal-dual solution algorithm
- Owing to the simplicity of the dual problem, this procedure is capable of using significant insights into the problem structure

Business Computing and Operations Research WINFOR 760

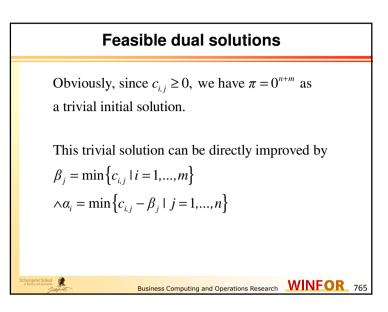
and the corresponding dual	
$ \begin{array}{c} (D) \text{ Maximize } \sum_{i=1}^{m} a_{i} \cdot \pi_{i} + \sum_{j=1}^{n} b_{j} \cdot \pi_{m+j} = \sum_{i=1}^{m} a_{i} \cdot \alpha_{i} + \sum_{j=1}^{n} b_{j} \cdot \beta_{j} \text{ s.t.} \\ \begin{pmatrix} 1_{n} & E_{n} \\ 1_{n} & E_{n} \\ \dots & E_{n} \\ 1_{n} & E_{n} \end{pmatrix} \cdot \pi \leq \begin{pmatrix} c_{1,1} \\ \dots \\ c_{i,1} \\ \dots \\ c_{m,n} \end{pmatrix} \Leftrightarrow \begin{pmatrix} 1_{n} & E_{n} \\ 1_{n} & E_{n} \\ \dots & E_{n} \\ \dots & E_{n} \\ 1_{n} & E_{n} \end{pmatrix} \cdot \begin{pmatrix} \alpha \\ \beta \end{pmatrix} \leq \begin{pmatrix} c_{1,1} \\ \dots \\ c_{i,1} \\ \dots \\ c_{m,n} \end{pmatrix}, $ i.e., $\forall i \in \{1, \dots, n\} : \forall j \in \{1, \dots, m\} : \alpha_{i} + \beta_{j} \leq c_{i,j} \end{cases} $	
Business Computing and Operations Research WINEOR 762	



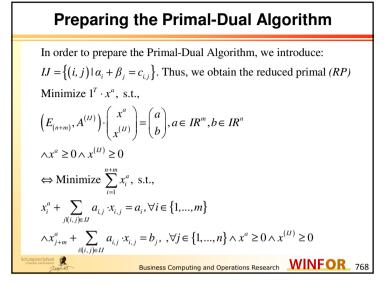
	Direct Observation	
 This may There is the plan For this Specific Obviou respect Otherw compar Thus, the the content of the conte	considers a somewhat modified pr be interpreted as follows a third party that offers transportation set ts and the consumers service, both sides have to pay an individ ally, the <i>i</i> th supplier pays α_i and the <i>j</i> th co sly, it is not possible to charge more than α_i ve combination se, since it possesses a more efficient alt by would not make use of this alternative the difference $c_{i,i}$ - α_i - β_i is denoted as a spe sidered company uently, whenever this difference is negative is hold to introduce (i,j) in the basis. Other but.	rvice between lual fee. nsumer β_j c_{ij} for the ernative, the culative gain of ve, the primal
Schumpeter School	Business Computing and Operations Research	WINFOR 763



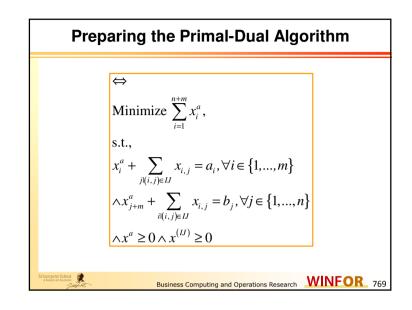
Consider an example		
$a^{T} = \begin{pmatrix} 3 & 5 & 6 \end{pmatrix} \land b^{T} = \begin{pmatrix} 2 & 3 & 6 & 3 \end{pmatrix} \land c = \begin{pmatrix} 3 & 3 & 1 & 2 \\ 1 & 2 & 2 & 3 \\ 4 & 5 & 6 & 3 \end{pmatrix}$ \Rightarrow Generating an initial solution : $\beta = \begin{pmatrix} 1 & 2 & 1 & 2 \end{pmatrix}^{T} \Rightarrow$ $\alpha = \begin{pmatrix} \min\{3-1,3-2,1-1,2-2\} \\ \min\{1-1,2-2,2-1,3-2\} \\ \min\{4-1,5-2,6-1,3-2\} \end{pmatrix} = \begin{pmatrix} \min\{2,1,0,0\} \\ \min\{0,0,1,1\} \\ \min\{3,3,5,1\} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$		
Stanger stand The stand of the		

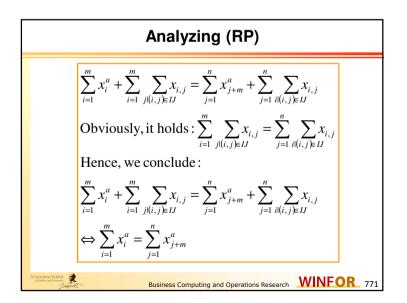


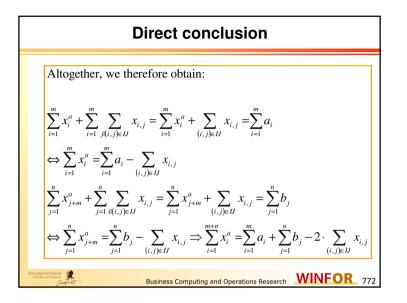
Example		
With $\alpha = (0 \ 0 \ 1)^T \land \beta = (1 \ 2 \ 1 \ 2)^T$, we get $\overline{c} - (\alpha \ \alpha \ \alpha \ \alpha) - \begin{pmatrix} \beta^T \\ \beta^T \\ \beta^T \end{pmatrix}$ $= \begin{pmatrix} 3 \ 3 \ 1 \ 2 \\ 1 \ 2 \ 2 \ 3 \\ 4 \ 5 \ 6 \ 3 \end{pmatrix} - \begin{pmatrix} 0 \ 0 \ 0 \ 0 \\ 0 \ 0 \ 0 \ 0 \\ 1 \ 1 \ 1 \ 1 \end{pmatrix} - \begin{pmatrix} 1 \ 2 \ 1 \ 2 \\ 1 \ 2 \ 1 \ 2 \\ 1 \ 2 \ 1 \ 2 \end{pmatrix}$ $= \begin{pmatrix} 2 \ 1 \ 0 \ 0 \\ 0 \ 0 \ 1 \ 1 \\ 2 \ 2 \ 4 \ 0 \end{pmatrix} \ge 0.$ Thus, the solution is obviously feasible		
Business Computing and Operations Research WINFOR 767		

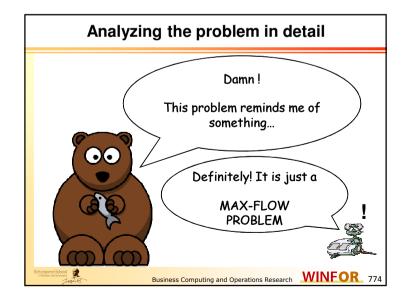


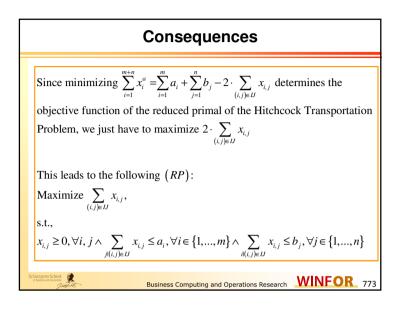
8.2 Analyzing the reduced primal (RP)	
Obviously, it holds: $\sum_{i=1}^{m} a_i = \sum_{i=1}^{m} \left(x_i^a + \sum_{j \mid (i,j) \in IJ} x_{i,j} \right) \wedge \sum_{j=1}^{n} b_j = \sum_{j=1}^{n} \left(x_{j+m}^a + \sum_{i \mid (i,j) \in IJ} x_{i,j} \right)$ Since total demand and supply are identical, we have $\sum_{i=1}^{m} a_i = \sum_{j=1}^{n} b_j \Leftrightarrow \sum_{i=1}^{m} \left(x_i^a + \sum_{j \mid (i,j) \in IJ} x_{i,j} \right) = \sum_{j=1}^{n} \left(x_{j+m}^a + \sum_{i \mid (i,j) \in IJ} x_{i,j} \right)$ $\Leftrightarrow \sum_{i=1}^{m} x_i^a + \sum_{i=1}^{m} \sum_{j \mid (i,j) \in IJ} x_{i,j} = \sum_{j=1}^{n} x_{j+m}^a + \sum_{j=1}^{n} \sum_{i \mid (i,j) \in IJ} x_{i,j}$	
Business Computing and Operations Research WINEOR 770	



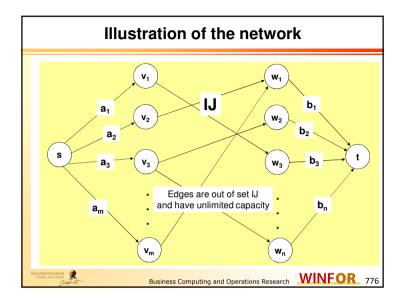




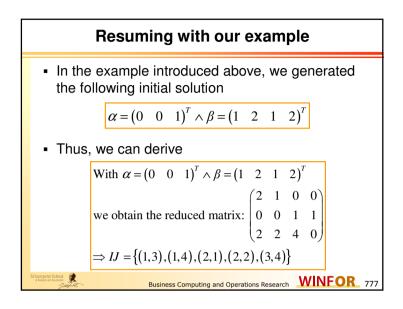


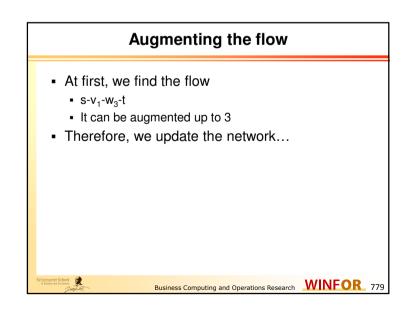


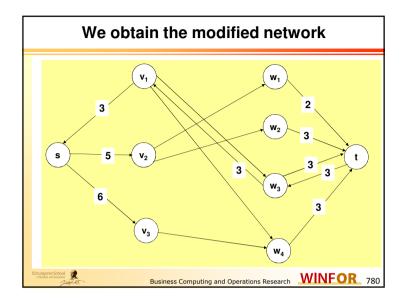
	The RP is a specific Flow Problem		
	Obviously, the problem (<i>RP</i>) can be modeled as		
	a Max-Flow Problem.		
	For this purpose, we define the following network:		
	$V = \{s, v_1,, v_m, w_1,, w_n, t\}$		
	$E = \left\{ \left(s, v_i\right) 1 \le i \le m \right\} \cup \left\{ \left(v_i, w_j\right) 1 \le i \le m \land 1 \le j \le n \land (i, j) \in IJ \right\}$		
	$\cup \left\{ \left(w_{j}, t\right) 1 \le j \le n \right\}$		
	$c(s, v_i) = a_i, \forall i \in \{1,, m\} \land c(v_i, w_j) = \infty, \forall (i, j) \in IJ$		
	$\wedge c(w_j, t) = b_j, \forall j \in \{1,, n\}$		
S	Business Computing and Operations Research WINFOR 775		

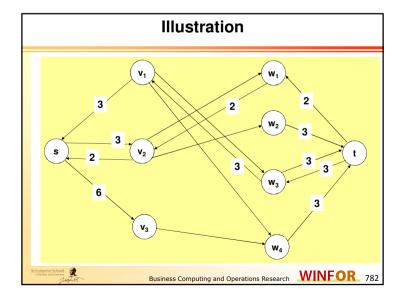


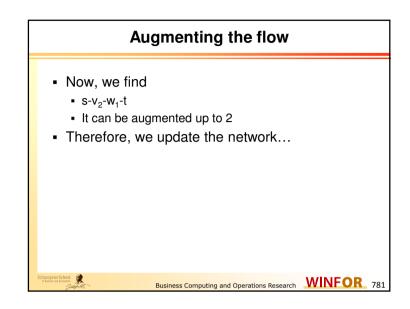


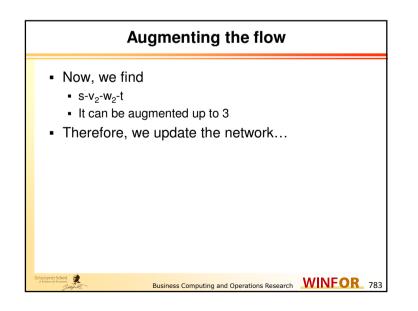


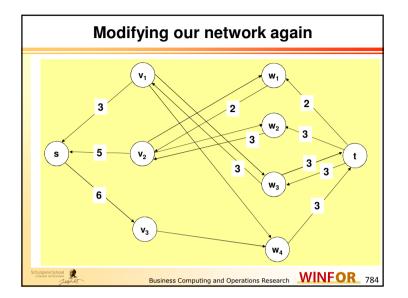


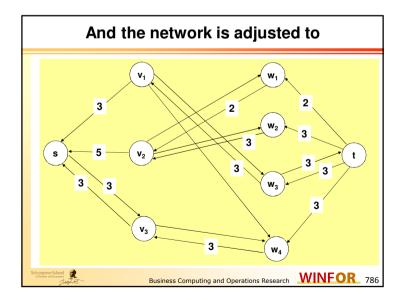


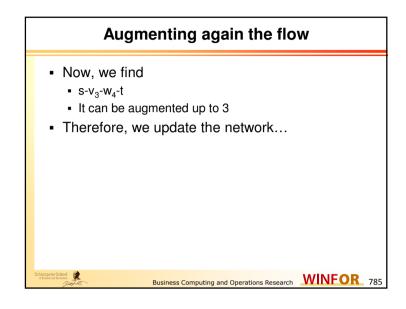


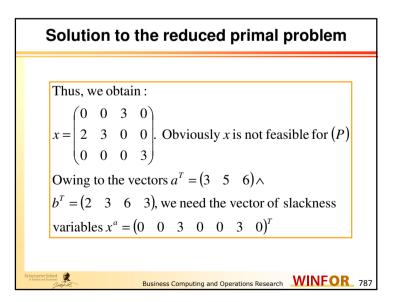


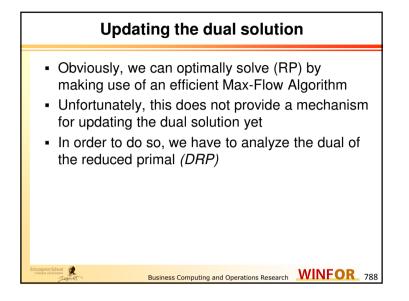




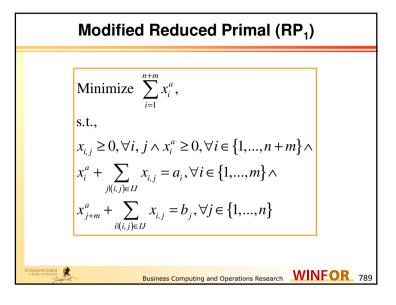


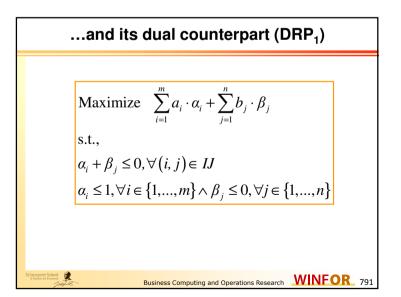


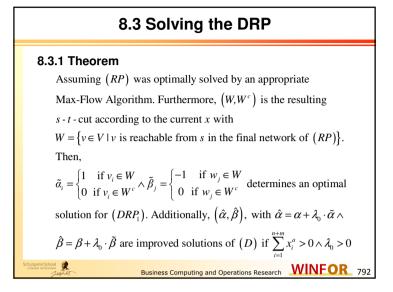




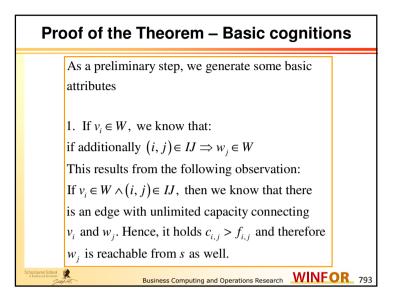
Modified Reduced Primal (RP ₁)		
Since it holds		
$\sum_{i=1}^{m} \left(x_i^a + \sum_{j(i,j) \in U} x_{i,j} \right) = \sum_{i=1}^{m} a_i = \sum_{j=1}^{n} b_j = \sum_{j=1}^{n} \left(x_{j+m}^a + \sum_{i(i,j) \in U} x_{i,j} \right)$		
$\Leftrightarrow \sum_{i=1}^m x_i^a + \sum_{i=1}^m \sum_{j \mid (i,j) \in U} x_{i,j} = \sum_{j=1}^n x_{j+m}^a + \sum_{j=1}^n \sum_{i \mid (i,j) \in U} x_{i,j}$		
$\Leftrightarrow \sum_{i=1}^m x_i^a + \sum_{(i,j)\in U} x_{i,j} = \sum_{j=1}^n x_{j+m}^a \sum_{(i,j)\in U} x_{i,j} \Leftrightarrow \sum_{i=1}^m x_i^a = \sum_{j=1}^n x_{j+m}^a \Leftrightarrow 2 \cdot \sum_{i=1}^m x_i^a = \sum_{i=1}^{m+n} x_i^a$		
Thus, we obtain the equivalent problem:		
$\text{Minimize } \sum_{i=1}^{m} x_i^a, \text{ s.t., } x_{i,j} \ge 0, \forall i, j \land x_i^a \ge 0, \forall i \in \{1,, n+m\} \land$		
$x_i^a + \sum_{j(i,j) \in U} x_{i,j} = a_i, \forall i \in \{1,,m\} \land x_{j+m}^a + \sum_{i(i,j) \in U} x_{i,j} = b_j, \forall j \in \{1,,n\}$		
Business Computing and Operations Research WINFOR 790		



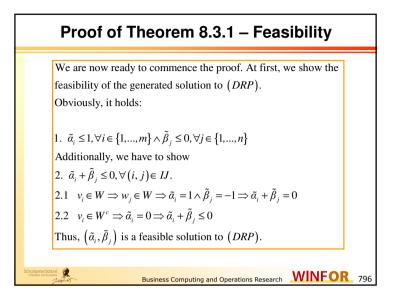




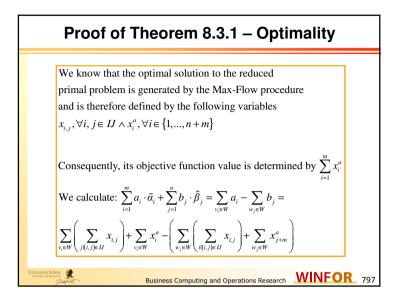
Proof of the Theorem – Basic cognitions		
2. Corollary:		
$v_i \in W \land w_j \in W^c \Longrightarrow (i, j) \notin IJ$		
3. If $w_i \in W \land (i, j) \in IJ \land x_{i, j} > 0 \Longrightarrow v_i \in W$		
This results from the following observation:		
Since $x_{i,j} > 0$, a former step has established		
a connection between v_i and w_j . Thus we have a backward link from w_i to v_i with		
capacity $x_{i,j} > 0$.		
Business Computing and Operations Research WINEOR 794		



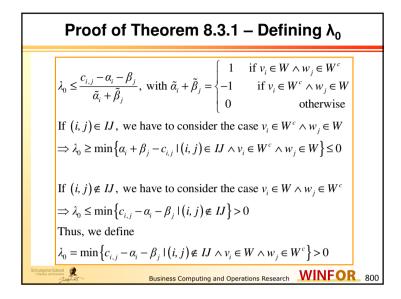
Proof of the Theorem – Basic cognitions		
4. Corollary: $v_i \in W^c \land w_j \in W \Longrightarrow (i, j) \notin IJ \lor x_{i,j} = 0$		
In what follows, $r_{i,j}$ denotes the remaining capacity		
on the link (i, j) , with		
$(i, j) \in \{(v_i, w_j) (i, j) \in IJ\} \cup \{(s, v_i) i \in \{1,, m\}\} \cup \{(w_j, t) j \in \{1,, n\}\}.$		
5. $v_i \in W^c \Rightarrow r_{s,v_i} = 0 \Rightarrow \sum_{j (i,j) \in E} x_{i,j} = a_i \Rightarrow x_i^a = 0$		
6. $w_j \in W \Rightarrow r_{w_j,i} = 0 \Rightarrow \sum_{i(i,j) \in E} x_{i,j} = b_j \Rightarrow x_{j+m}^a = 0$		
Business Computing and Operations Research WINFOR 795		

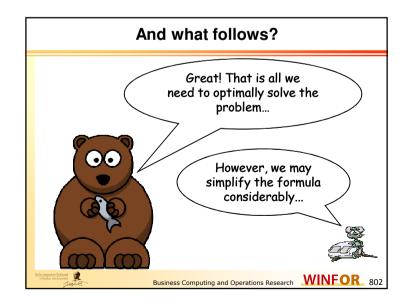


RP and DRP have identical objective values		
And thus, it holds: $\sum_{i=1}^{m} a_i \cdot \alpha_i + \sum_{j=1}^{n} b_j \cdot \beta_j = \sum_{v_i \in W} \left(\sum_{j(i,j) \in IJ} x_{i,j} \right) + \sum_{v_i \in W} x_i^a - \sum_{w_j \in W} \left(\sum_{i(i,j) \in IJ} x_{i,j} \right) - \sum_{w_j \in W} x_{j+m}^a = \sum_{i(j) \in IJ} x_{i,j} - \sum_{(i,j) \in IJ} x_{i,j} + \sum_{v_i \in W} x_i^a - \sum_{w_j \in W} x_{j+m}^a = \sum_{v_i \in W} x_i^a - \sum_{w_j \in W} x_i^a - \sum_{w_j \in W} x_i^a = \sum_{v_i \in W} x_i^a = \sum_{i=1}^{m} x_i^a$ Owing to attribute 6, this is equal to 0		
Thus, $\left(ilde{lpha}, ilde{eta} ight)$ is an optimal solution to $\left(DRP_1 ight)$		
Business Computing and Operations Research WINEOR 798		



Feasibility of the updated dual solution		
It has to be guarant $\alpha_i + \lambda_0 \cdot \tilde{\alpha}_i + \beta_j + \lambda_0 \cdot \tilde{\alpha}_i$	$ = (\alpha, \beta) + \lambda_0 \cdot (\tilde{\alpha}, \tilde{\beta}) $ eed $ \cdot \tilde{\beta}_j \le c_{i,j} \Leftrightarrow \alpha_i + \beta_j + \lambda_0 \cdot \tilde{\alpha}_i + \lambda_0 \cdot \tilde$	$_{0}\cdot\tilde{\beta}_{j}\leq c_{i,j}$
	$\begin{aligned} \alpha_i + \beta_j \\ v_i \in W \land w_j \in W \\ i \in W^c \land w_j \in W^c \\ f v_i \in W^c \land w_j \in W^c \\ v_i \in W \land w_j \in W^c \end{aligned} = \begin{cases} 1 & \text{if } v_i \\ -1 & \text{if } v_i \\ 0 \end{cases}$	$\in W \land w_j \in W^c$ $\in W^c \land w_j \in W$ otherwise
Schumpeter School	Business Computing and Operations Research	WINFOR 799





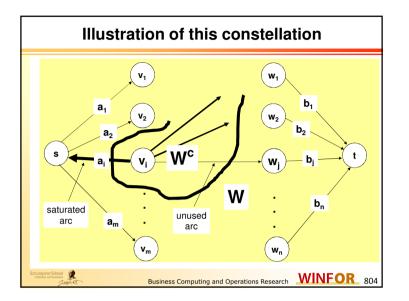
Quality of the new dual solution	
With $\lambda_0 = \min\{c_{i,j} - \alpha_i - \beta_j \mid (i,j) \notin IJ\} > 0$, we calculate	
$\sum_{i=1}^{m} a_i \cdot (\alpha_i + \lambda_0 \cdot \widetilde{\alpha}_i) + \sum_{j=1}^{n} b_j \cdot (\beta_j + \lambda_0 \cdot \widetilde{\beta}_j) =$	
$\sum_{i=1}^{m} (a_i \cdot \alpha_i + \lambda_0 \cdot a_i \cdot \widetilde{\alpha}_i) + \sum_{j=1}^{n} (b_j \cdot \beta_j + \lambda_0 \cdot b_j \cdot \widetilde{\beta}_j) =$	
$\sum_{i=1}^{m} a_i \cdot \alpha_i + \sum_{j=1}^{n} b_j \cdot \beta_j + \lambda_0 \cdot \left(\sum_{i=1}^{m} a_i \cdot \widetilde{\alpha}_i + \sum_{j=1}^{n} b_j \cdot \widetilde{\beta}_j \right) =$	
$\sum_{i=1}^{m} a_i \cdot \alpha_i + \sum_{j=1}^{n} b_j \cdot \beta_j + \lambda_0 \cdot \left(\sum_{i=1}^{m} x_i^a\right) \underset{\text{If } \sum_{i=1}^{m} x_i^a > 0}{\geq} \sum_{i=1}^{m} a_i \cdot \alpha_i + \sum_{j=1}^{n} b_j \cdot \beta_j$	
Business Computing and Operations Research WINFOR 801	

Important observation – Part 1

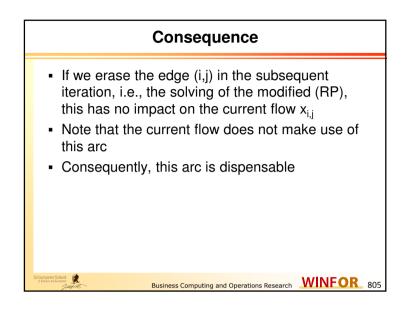
We consider the resulting constellation after applying the Max-Flow procedure. Addionally, we analyze the generated flow $x_{i,j}$. First of all, we consider arcs that vanish in the next iteration. This may happen only if $(i, j) \in IJ$ in the current iteration, but in the next one it holds $(i, j) \notin IJ$. This case is characterized that originally $\alpha_i + \beta_j = c_{i,j}$ applies, but subsequently $\hat{\alpha}_i + \hat{\beta}_j < c_{i,j}$ holds. Note that this is only possible if $\tilde{\alpha}_i + \tilde{\beta}_j < 0 \Rightarrow \tilde{\alpha}_i + \tilde{\beta}_j = -1$. This is the constellation $v_i \in W^c \land w_j \in W$. It is illustrated on the next slide. Here, we directly conclude that the arc $(i, j) \in IJ$ was not used by the generated flow at all. Hence, we obtain $x_{i,j} = 0$.

el 🕵

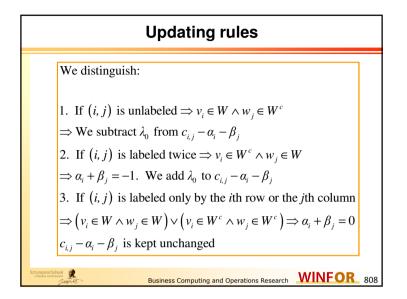
Business Computing and Operations Research WINFOR 803

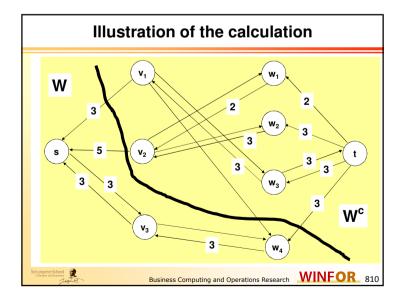


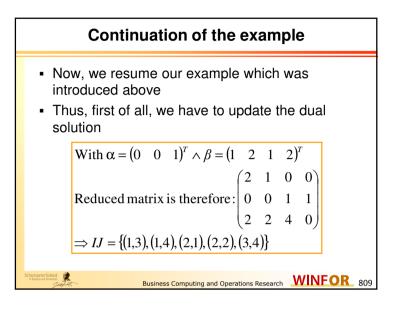
Observations II		
Now we consider arcs $(i, j) \in IJ$ with $x_{i,j} > 0$. We		
know that it holds $\hat{\alpha}_i + \hat{\beta}_j = c_{i,j} \implies \tilde{\alpha}_i + \tilde{\beta}_j = 0.$		
Therefore, the flow $x_{i,j} > 0$ can be kept on these arcs.		
Anyhow, the resulting flow $x_{i,j}$ can be kept for the next		
iteration of solving (RP) that arises after updating α and		
β . Note that this update may cause additional arcs between		
the v_i – and w_j – nodes.		
Business Computing and Operations Research WINFOR 806		

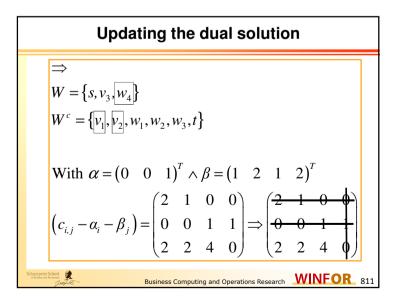


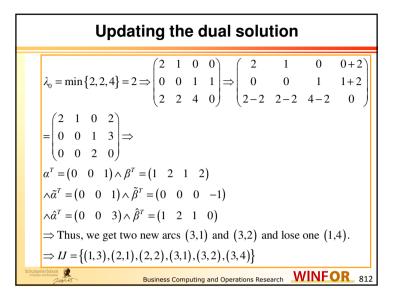
Calculating λ_0		
$\lambda_0 = \min \big\{ c_{i,j} - \alpha \big\}$	$a_i - \beta_j \mid (i, j) \notin IJ \land v_i \in W \land w_j \in W^c \}$	
Thus, we can lat	bel all rows <i>i</i> in the reduced matrix	
$(c_{i,j}-\alpha_i-\beta_j)$ w	ith $v_i \in W^c$. Additionally, we label all	
columns j with v	$v_j \in W.$	
Then λ_0 is determined as the termination of terminatio of	nined by the minimum unlabeled value.	
We update $(c_{i,j})$	$-\hat{\alpha}_i - \hat{\beta}_j$ by applying the following rules:	
Schumpeter School	Business Computing and Operations Research WINEOR 807	

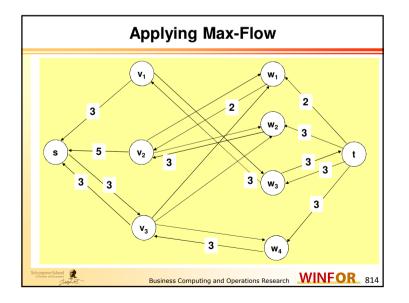


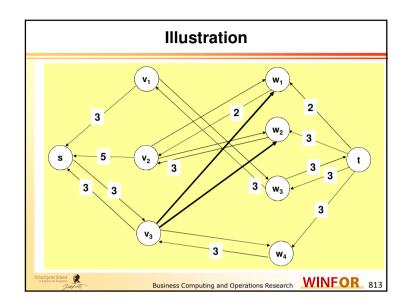




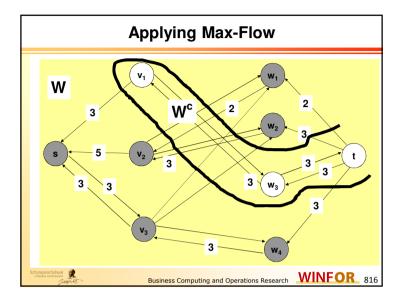




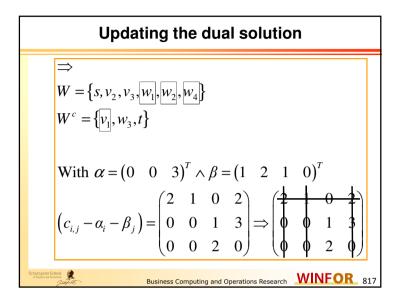


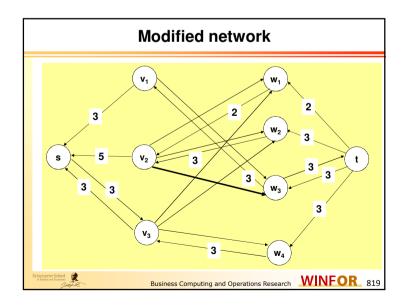


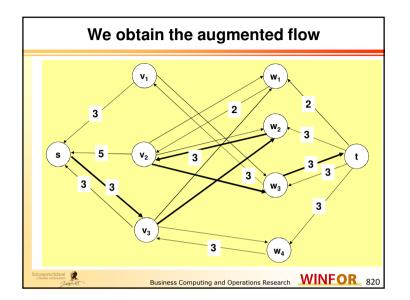
	Results	
flow • Thus, <i>x</i> is kept • However, we have	ve are not able to aug as a maximum flow ave changed the sets red in the following	
Schumpeter School	usiness Computing and Operations Research	WINFOR 815

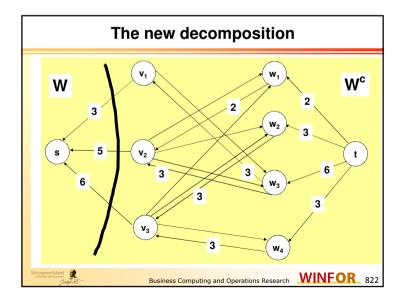


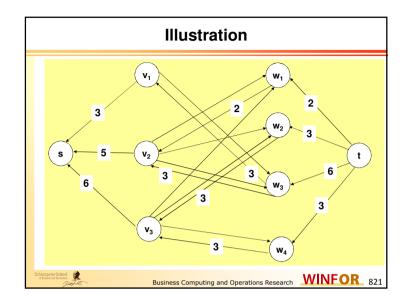
Updating the dual solution		
$\lambda_{0} = \min\{2,1\} = 1 \Rightarrow \begin{pmatrix} 2 & 1 & 0 & 2 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 2 & 0 \end{pmatrix} \Rightarrow \begin{pmatrix} 3 & 2 & 0 & 3 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 1 & 0 \end{pmatrix}$ $\alpha^{T} = (0 0 3) \land \beta^{T} = (1 2 1 0)$ $\land \tilde{\alpha}^{T} = (0 1 1) \land \tilde{\beta}^{T} = (-1 -1 0 -1)$ $\Rightarrow \tilde{\alpha}^{T} = (0 1 4) \land \tilde{\beta}^{T} = (0 1 1 -1)$ $\Rightarrow \text{Thus, we get a new arcs } (2,3).$ $\Rightarrow IJ = \{(1,3), (2,1), (2,2), (2,3)(3,1), (3,2), (3,4)\}$		
Stangard Stand Sta		



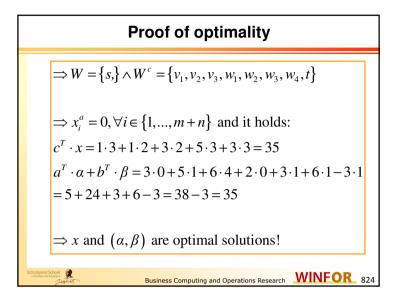








The modified primal solution			
$\Rightarrow W = \{s,\} \land W^{c} = \{v_{1}, v_{2}, v_{3}, w_{1}, w_{2}, w_{3}, w_{4}, t\}$ With $\alpha = (0 \ 1 \ 4)^{T} \land \beta = (0 \ 1 \ 1 \ -1)^{T}$ $x = \begin{pmatrix} 0 \ 0 \ 3 \ 0 \\ 2 \ 0 \ 3 \ 0 \\ 0 \ 3 \ 0 \ 3 \end{pmatrix}$ $\Rightarrow \text{ Is feasible for } a^{T} = (3 \ 5 \ 6) \land b^{T} = (2 \ 3 \ 6 \ 3)$			
Business Computing and Operations Research WINFOR 823			



Alpha-Beta-Algorithm (Dual Solution Update)		
 If v_i ∈ W ⇒ α̃_i = 1; v_i ∈ W^c ⇒, label the <i>i</i>-th row cost matrix. 	<i>in the reduced</i>	
 If w_j ∈ W ⇒ β̃_j = −1 ⇒, label the <i>j</i>-th column cost matrix. 	n in the reduced	
 All other variables of the DRP-solution ã, , 	$ ilde{eta}$ are set to 0.	
 Set λ₀ to the minimum value of the unlabeled entries in the reduced cost matrix. 		
 Subtract λ₀ from every unlabeled entry and add it to every entry labeled twice in the reduced cost matrix. 		
• Set $\beta = \beta + \lambda_0 \tilde{\beta} \wedge \alpha = \alpha + \lambda_0 \tilde{\alpha}$		
 Update the network as indicated by the new reduced cost matrix. 		
 Try to augment the current flow and updat 	the set W.	
Stompeter School Business Computing and Operations Research	MINFOR 826	

