9 Integer Programming - In what follows, we consider a subset of Linear Programs where solutions, i.e., the variables as well as the parameters of the problem definition, are restricted to integers - Although this leads to a considerable reduction of the size of the solution space, it complicates the solution process significantly - It turns out that these problems cannot be solved efficiently, i.e., based on current knowledge, a solution of these problems cannot be guaranteed in polynomial time - However, by inspecting specific problems introduced and analyzed above, it turns out that optimal solutions are already integer Business Computing and Operations Research WINFOR 827 ## 9.1 Well-solvable problems - Already introduced representatives of wellsolvable problems are - Transportation Problem - Shortest Path Problem - Max-Flow - The interesting question at this point is "WHY, i.e., what makes these problems such simple?" Business Computing and Operations Research WINFOR 828 #### **Unimodular matrices** #### 9.1.1 Definition A matrix $B \in IR^{n \times n}$ is denoted as unimodular if and only if $|\det B| = 1$. #### 9.1.2 Definition A matrix $B \in IR^{m \times n}$ is denoted as totally unimodular, in the following denoted as TUM, if and only if every square non-singular submatrix of A is unimodular. We know that each singular square matrix A has a determinant equal to zero. Hence, we can conclude that a matrix $B \in IR^{m \times n}$ is denoted as totally unimodular if and only if every square submatrix A has a determinant equal to -1,0,+1. ## **Examples** Let us consider some examples $$\begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \text{ since } det \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} = +1 \cdot 1 - (-1) \cdot 1 = 1 + 1 = 2$$ $$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix} \text{ since } det \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix} = 1 \cdot (1 - 0) - 1 \cdot (0 - 1) + 0 = 2$$ - However, consider the zero matrix - Obviously, it is NOT unimodular since the determinant has the value zero - However, there is no non-singular sub-matrix. Thus, nothing to fulfill wherefore the matrix is TUM Business Computing and Operations Research WINFOR 831 Effect of unimodularity Consider the LP $$\operatorname{Min} c^T \cdot x, \text{ s.t. } A \cdot x = b \wedge x \ge 0$$ - Furthermore, according to a basis *B*, let matrix *A*_B be unimodular - Then, we can conclude that the corresponding basic feasible solution (bfs) is an integer solution Business Computing and Operations Research WINFOR 832 #### And what follows? #### Cramer's rule Consider the adjoint matrix $$adj(A_B)_{i,j} = (-1)^{i+j} \cdot det(A_B(i \mid j))$$ - Note that $A_B(i|j)$ arises from A_B by erasing the *i*th row and ith column - Then, we know that $$A_B^{-1} = \frac{1}{\det(A_B)} \cdot adj(A_B)$$ • Since the entries of the adjoint matrix are obviously integers, the inverted matrix has only integer entries #### The basic feasible solution Thus, we get $$(x_B, x_N) = (A_B^{-1} \cdot b, 0) = \left(\frac{1}{\det(A_B)} \cdot adj(A_B) \cdot b, 0\right)$$ as feasible integer solution Consequently, we can conclude the following Theorem Business Computing and Operations Research WINFOR 835 #### **Proof of Theorem 9.1.3** - The Theorem follows immediately out of the following simple observations - Owing to unimodularity, each basic feasible solution becomes integer - If we have a totally unimodular matrix A the combined matrixes (E,A) and (-E,A) are also totally unimodular - Thus, we always obtain basic feasible solutions comprising only integer values - In what follows, we are looking for simple criteria that guarantee unimodularity for a given matrix #### Main consequence #### 9.1.3 Theorem A linear program Min $c^T \cdot x$, s.t. $A \cdot x = b$ with a totally unimodular matrix A has only integer basic feasible solutions. This is also true for problems Min $c^T \cdot x$, s.t. $A \cdot x \ge b$ and Max $c^T \cdot x$, s.t. $A \cdot x \leq b$. Business Computing and Operations Research WINFOR 836 ## Criteria for unimodularity #### 9.1.4 Proposition A matrix A is totally unimodular if - Matrix A has only -1, 0, +1 entries - Each column comprises at most two non-zero elements - The rows of A can be partitioned into two subsets A₁ and A_2 (i.e., $A_1 \cup A_2 = \{1,...,m\}$) such that two non-zero elements in a column are either in the same set of rows if they have different signs or they are in different sets of rows if they have equal signs ## **Proof of Proposition 9.1.4** - We identify an arbitrary square submatrix B of the matrix - Obviously, the given criteria also apply to this submatrix - We show that det(B)={0,-1,1} by induction by the size n of the submatrix B - We commence with n=1: Here, the proposition is obviously true - Let us assume that the determinant of all submatrices with size lower than n have value {0,-1,1} - Now, we distinguish three cases - Case 1: B has a zero column. Obviously, by generating the determinant by this column, we obtain det(B)=0 - Case 2: B has a column with one value equal to 1 or -1. Then, by generating the determinant by this column, we know that det(B)=det(C) or det(B)=-det(C) Business Computing and Operations Research WINFOR 839 #### **Direct consequences** - Transportation Problem - What kind of matrix is it? $$(P) \text{ Minimize } c^T \cdot x$$ s.t. $$\begin{pmatrix} 1_n^T & & & \\ & 1_n^T & & & \\ & & \dots & & \\ & & \dots & & & \\ E_n & E_n & E_n & E_n & E_n \end{pmatrix} \cdot x = \begin{pmatrix} a_1 \\ & \dots \\ & & \dots \\ & a_m \\ b \end{pmatrix}$$ $$x = \begin{pmatrix} x_1, \dots, x_{1n}, \dots, x_{mn}, \dots, x_{mn} \end{pmatrix}^T \ge 0$$ - Obviously, we have exactly two 1 values and nothing else in each - Moreover, we have a separation of this matrix - Specifically, on the one side A₁={1,...,m} and on the other side $A_2=\{m+1,...,m+n\}$. Hence, by applying Proposition 8.1.4, we know that A is totally unimodular Business Computing and Operations Research WINFOR 841 #### **Proof of Proposition 9.1.4** • Case 3: All columns have exactly two values unequal to zero. Then, the sets A₁ and A₂ provide us with a separation. Specifically, we have $$\sum_{i \in A_1} a_{i,j} = \sum_{i \in A_2} a_{i,j}, \forall j \in \{1, ..., n\}$$ - I.e., the matrix is obviously singular and, therefore, we have det(B)=0 - This completes the proof Business Computing and Operations Research WINFOR 840 #### **Direct consequences** - Vertex-arc adjacency matrix - What kind of matrix is it? $$A = (\alpha_{i,k})_{1 \le i \le n; 1 \le k \le m}, \text{ with } \alpha_{i,k} = \begin{cases} +1 \text{ when } \exists j \in V : e_k = (i,j) \\ -1 \text{ when } \exists j \in V : e_k = (j,i) \\ 0 \text{ otherwise} \end{cases}$$ $\alpha_{ik} = 1 \Rightarrow i$ is source of arc e_k ; $\alpha_{ik} = -1 \Rightarrow i$ is sink of arc e_k - Obviously, we have exactly one "1-value" and one "-1-value" in each column - Moreover, we have a trivial separation of this matrix - Specifically, on the one side A₁={1,...,n} comprises all rows of matrix A and on the other side A₂ is empty. Hence, by applying Proposition 8.1.4, we know that A is totally unimodular # Criteria for unimodularity #### 9.1.5 Corollary A matrix A is totally unimodular if and only if - the transpose matrix AT is totally unimodular - the matrix (A,E) is totally unimodular The Proof follows directly out of Proposition 9.1.4 Business Computing and Operations Research WINFOR 843 ## In general ... - Linear Integer Programs are unfortunately NP hard - I.e., out of current knowledge, we assume that it is not possible to solve this problem with an algorithm whose running time is polynomially bounded - Unfortunately, since those problems are of significant interest, we have to provide new techniques - that find best integer solutions - but cannot avoid exponential running times for specific worst case - This is addressed in the following sections Business Computing and Operations Research WINFOR 845 ## 9.2 Cutting Plane Method - The basic idea goes back to Gomory (1958) - By optimally solving the continuous problem (i.e., the so-called **LP-relaxation**), we may face two different constellations - The found solution is already integer, i.e., an optimal solution is also found for the integer variant of the continuous problem - Otherwise, the found optimal solution comprises some entries that are not integers - The second case is handled as follows - Integrate an additional restriction that excludes the optimal non-integer solution, but - keeps all integer solutions ## We consider an example Maximize $$1 \cdot x_1 + 1 \cdot x_2$$ s.t. $$-6 \cdot x_1 + 8 \cdot x_2 \le 3$$ $$2 \cdot x_1 - 2 \cdot x_2 \le 1$$ $$x_1, x_2 \ge 0$$ x_1, x_2 are integers • Therefore, we obtain for the LP-relaxation | | | | -, | | | | | _ | | | | | | | | | |---------------|---------------|----|----|----|---------------|---------------|----|-----|-----|-----|---------------|-----|---|-----|---------------|---------------| | | | | | | | | | | | | -1 | | | | | | | 3 | -6 | 8 | 1 | 0= | > 3 | -6 | 8 | 1 | 0 = | > 3 | -6 | 8 | 1 | 0 | _ | | | 1 | 2 | -2 | 0 | 1 | 1 | (2) | -2 | 0 | 1 | 1/2 | 1 | -1 | 0 | 1/2 | | | | | | | | | | | | | | | 1/2 | | | | | $\frac{1}{2}$ | | \Rightarrow | 3 | -6 | 8 | 1 | 0 = | ⇒ 6 | 0 | (2 | 2) | 1 | 3 ⇒ | 3 | 0 | 1 | $\frac{1}{2}$ | $\frac{3}{2}$ | | | $\frac{1}{2}$ | 1 | -1 | 0 | $\frac{1}{2}$ | $\frac{1}{2}$ | 1 | - | 1 | 0 | $\frac{1}{2}$ | 1/2 | 1 | -1 | 0 | 1/2 | | hool | 2 | | | | D | | ~ | 4.5 | | | | - D | | W | /IN | FΩ | #### Let us consider the final tableau - It holds: - First row $z = z_0 + \overline{c}_N^T \cdot x_N$ • The rest $$\overline{b} = x_B + \overline{A}_N \cdot x_N = x_B + A_B^{-1} \cdot A_N \cdot x_N$$ By setting $$y = \left(y_{i,j}\right)_{0 \le i \le m, 0 \le j \le n} = \begin{pmatrix} -z_0 & \overline{c}^T \\ \overline{b} & \overline{A} \end{pmatrix} \text{ and } x_{B(0)} = -z_0$$ we may write restriction (1) $$y_{i,0} = x_{B(i)} + \sum_{i \in N} y_{i,j} \cdot x_j, \forall i \in \{0,...,m\}$$ (1) - I.e., the left-hand side always represents a combination of a basic variable and non-basic variables - It is fulfilled by all feasible solutions to the LP Business Computing and Operations Research WINFOR 849 ## And obtain finally as follows - We obtain the solution x=(3,7/2) - Obviously, this solution is not integer #### **Conclusions** • Since we know $x_N \ge 0$, we conclude $$y_{i,0} \ge x_{B(i)} + \sum_{j \in N} [y_{i,j}] \cdot x_j, \forall i \in \{0,...,m\}$$ - Let us now assume that we have an integer solution, i.e., x and z are integer vectors - In that case, the left-hand side becomes integer, i.e., we have only summation and multiplication operations with integers - Thus, we directly obtain as restriction (2) $$\left[y_{i,0}\right] \ge x_{B(i)} + \sum_{j \in N} \left[y_{i,j}\right] \cdot x_j, \forall i \in \{0,...,m\}$$ (2) #### Observation - While (1) applies to all feasible solutions, (2) is fulfilled only if x_R is integer - Note that this follows directly from the fact that $$\underbrace{ \left[y_{i,0} \right] \ge x_{B(i)} + \sum_{j \in N} \left[y_{i,j} \right] \cdot \underbrace{x_j}_{=0}, \forall i \in \{0,...,m\} }_{=x_{B(i)} = y_{i,0}}$$ (2) And if x_{B(i)} is not integer, we obtain $$\underbrace{\begin{bmatrix} y_{i,0} \\ y_{i,0} \end{bmatrix}}_{< y_{i,0} = x_{B(i)}} \ge x_{B(i)} + \sum_{\substack{j \in N \\ = 0}} \underbrace{\begin{bmatrix} y_{i,j} \\ y_{i,j} \end{bmatrix}}_{=0} \cdot \underbrace{x_j}_{, \forall i \in \{0,...,m\}}$$ $$\underbrace{= 0}_{=x_{B(i)} = y_{i,0}}$$ $$\underbrace{\Rightarrow}_{|y_{i,0}| \leq x_{B(i)}}$$ ## Resume with our example • Note that the first row has led to the first cut - Obviously, the resulting solution is not feasible since $x_5 < 0$ - However, owing to the fact that we introduce an additional dual variable, the dual solution obviously stays feasible - Hence, we apply the Dual Simplex Algorithm ## Generating a new restriction • In order to obtain the desired new restriction, we have to get rid of $x_{B(i)}$. We just subtract (1) from (2) $$y_{i,0} = x_{B(i)} + \sum_{i \in N} y_{i,j} \cdot x_j, \forall i \in \{0,...,m\}$$ (1) $$\lfloor y_{i,0} \rfloor \ge x_{B(i)} + \sum_{i \in N} \lfloor y_{i,j} \rfloor \cdot x_j, \forall i \in \{0,...,m\}$$ (2) $$\Rightarrow \lfloor y_{i,0} \rfloor - y_{i,0} \ge \sum_{j \in N} \left(\lfloor y_{i,j} \rfloor - y_{i,j} \right) \cdot x_j \tag{2} - (1)$$ - Adding the last restriction (cut) to the Simplex tableau, we exclude the fractional solution $x_{\rm p}$ but do not loose any integer solution. In fact, the restriction is designed such that at least one integer solution is on its hyperplane - IPs are still difficult! We don't know how many cuts to add ## **Applying the Dual Simplex Algorithm** - We obtain the second optimal LP solution $x^T = (3/2, 3/2, 0, 1, 0)$ - This solution is not integer and we introduce a **second cut**: Business Computing and Operations Research WINFOR 855 ## **Additional constraint** - We obtain the third optimal LP solution $x^T = (1,1,1,1,0,0)$ - Thus, we obtain the optimal IP solution $x^T = (1,1)$ ## **Gomory's Cutting Plane Method** - 1. Solve the LP relaxation with the Simplex Algorithm to optimality. Let α^{j} be the *j*th column with j = 0, 1, ..., n of the optimal tableau and hence, $\alpha^0 = (\overline{z}_0, \overline{b}_1, ..., \overline{b}_m)^T \wedge \alpha^j = (\overline{c}_j, \overline{a}_1^j, ..., \overline{a}_m^j)^T$, j = 1, ..., n. - 2. If the LP solution space is unbounded, terminate since the ILP is unbounded - 3. If $\alpha^0 \in \mathbb{Z}^{m+1}$, terminate since the integer solution is optimal to the ILP. - 4. Select the row with the smallest index i_0 with $\alpha_i^0 \notin \mathbb{Z}$ and add the following Gomory cut to the optimal tableau: $$\left[\alpha_{i_0}^0\right] - \alpha_{i_0}^0 = \sum_{j \in N} \left(\left[\alpha_{i_0}^j\right] - \alpha_{i_0}^j\right) \cdot x_j + x_{n+1}$$ - 5. Apply the lexicographic version of the Dual Simplex Algorithm. - 6. Go to 2. Note that the lexicographic version of the Dual Simplex Algorithm prevents **cvcling**! ## Lexicographic order #### 9.2.1 Definition (lexicographically positive) $x \in IR^n$ is denoted as lexicographically positive if and only if the lowest numbered non-zero entry of x is positive. I.e., if and only if it holds: $x_{min\{i|x_i\neq 0\}} > 0$. If it holds that x = 0, we say x is lex-zero. ## 9.2.2 Definition (lexicographical order) $x \in IR^n$ has an earlier position than $y \in IR^n$ in the lexicographical order if and only if $x - y \in IR^n$ is lexicographically positive. We write $x >^L y$. ## Finiteness of the algorithm - In what follows, we consider the guestion whether the algorithm will always terminate if the original problem has an finite upper bound - Therefore, in order to provide an understandable structure of pivoting, we first introduce the socalled lexicographic order - This order allows us to attain significant insight into the structure of the resulting tableaus after each iteration Business Computing and Operations Research WINFOR 860 ## **Examples** It holds that: $$(0,0,1,0) >^{L} (0,0,0,2)$$ $$(1,0,0,0) >^{L} (0,9,5,2)$$ $$(-2,0,0,0) <^{L} (-1,9,5,2)$$ $$(1,3,7,2) <^{L} (1,3,7,2,0,9,5,2)$$ $$(1,3,7,2) >^{L} (1,3,7,2,0,-9,5,2)$$ #### Consequences - >L is obviously a complete ordering of the elements in IRn - Now, we have to define how the lexicographical version of the Dual Simplex Algorithm works in detail - In this procedure, in order to break ties, the largest lexicographical column is always taken to improve the current dual solution Business Computing and Operations Research WINFOR 863 #### **Proof of Theorem 9.2.3** - During the execution of each application of the dual simplex it holds that - All columns 1,...,n stay lex-positive throughout the computation - Column zero strictly lex-decreases - This results from the following facts α_i ($1 \le i \le n$) stays lex-positive after pivoting. The i_0 th row becomes $\tilde{\alpha}_{i_0} = \frac{\alpha_{i_0}}{\alpha_i^t}$, with $\alpha_{i_0}^t < 0 \Rightarrow \tilde{\alpha}_i$ is lex-positive since α_i is lex negative $(\alpha_i^0 < 0)$. The column $t = \tilde{\alpha}^t$ becomes $(0,...,0,1,0,...,0)^T$. ## The Lexicographical Dual Simplex #### 9.2.3 Theorem We consider the Simplex tableau defined by $$\frac{-z_0}{\overline{b}} \quad \begin{vmatrix} 0 & \overline{c}_N^T \\ E_{(B)} & \overline{A}_N \end{vmatrix}, \text{ with } \overline{c}_N^T \ge 0 \land \exists i : \overline{b}_i < 0$$ Thus, we may apply the Dual Simplex Algorithm. Moreover, $\alpha^0, \alpha^1, ..., \alpha^n$ are the columns of the tableau. We assume that all these columns (starting with column 1), i.e., the columns $\alpha^1,...,\alpha^n$, are lexicographically positive (if not, we introduce an additional restriction $1^T \cdot x + x_{n+1} \le M$). Then, the Dual Simplex Algorithm terminates after conducting a finite number of steps complying with the following rules 1. Select an arbitrary i_0 fulfilling $a_i^0 < 0$ 2. Determine $$t$$ by $\frac{\alpha^t}{-a_{i_0}^t} = lex - min_j \left\{ \frac{\alpha^j}{-a_{i_0}^j} \mid a_{i_0}^j < 0 \right\}$ Business Computing and Operations Research WINFOR 864 #### **Proof of Theorem 9.2.3** We consider the rth column $(r \neq t)$ and compute $\tilde{\alpha}_i^r = \alpha_i^r - \frac{\alpha_i^t \cdot \alpha_{i_0}^t}{\alpha_i^t} = \alpha_{i_0}^r \cdot \left(\frac{\alpha_i^r}{\alpha_i^r} - \frac{\alpha_i^t}{\alpha_i^t}\right)$ We consider the first non-zero element $\max\{\alpha_i^r, \alpha_i^t\}$. Since both columns are lex-positive, we have at this lowest numbered row i: $\alpha_i^r \ge 0$, $\alpha_i^t \ge 0$. We additionally assume that $\alpha_i^r > 0$. Due to $\alpha_i^r < 0$, we conclude $\tilde{\alpha}_i^r > 0$ and $\tilde{\alpha}^r$ is lex-positive. Now, we assume $\alpha_i^r < 0$. Due to the choice of column t, we know that the column with the entry $\left(\frac{\alpha_i^r}{\alpha_i^r} - \frac{\alpha_i^t}{\alpha_i^t}\right)$ at row *i* is lex-positive since the first non-zero element *j* coincides with $\left(\frac{\alpha_j'}{\alpha_i'} - \frac{\alpha_j'}{\alpha_i'}\right) = \left(\frac{\alpha_j'}{-\alpha_i'} - \frac{\alpha_j'}{-\alpha_i'}\right) < \left(\frac{\alpha_j'}{-\alpha_i'} - \frac{\alpha_j'}{-\alpha_i'}\right) = 0$ and we have $\alpha_{i_0}' < 0$. Consequently, we obtain for the first non-zero position: $\tilde{\alpha}'_j = \alpha'_{i_0} \cdot \left(\frac{\alpha'_j}{\alpha'} - \frac{\alpha'_j}{\alpha'} \right) > 0$. #### **Proof of Theorem 9.2.3** We consider the column zero and compute $$\tilde{\alpha}_i^0 = \alpha_i^0 - \frac{\alpha_i^t \cdot \alpha_{i_0}^0}{\alpha_{i_0}^t}$$. We know that $\alpha_{i_0}^0 < 0$ and $\alpha_{i_0}^t < 0$. Clearly, if it holds that $\alpha_i^t = 0$ we have $\tilde{\alpha}_i^0 = \alpha_i^0$. We consider the lowest numbered row i with $\alpha_i^t \neq 0$. Since α^t is lex-positive, we conclude $$\alpha_i^t > 0$$ and due to $\frac{\alpha_i^t \cdot \alpha_{i_0}^0}{\alpha_i^t} > 0$, we conclude $\tilde{\alpha}_i^0 < \alpha_i^0$. Hence, the column zero lex-decreases in each iteration of the dual simplex algorithm. Business Computing and Operations Research WINFOR 867 #### **Proof of Theorem 9.2.3** - Clearly, between two applications of the dual simplex algorithm an additional row is added to the tableau - This additional restriction reduces the set of feasible solutions - Moreover, in each step of the dual simplex the column zero strictly lex-decreases Let A_i^k be the *i*th column of the tableau matrix after the kth execution of the dual simplex algorithm. Due to the aforementioned attributes, we conclude that $A_0^1 > {}^L A_0^2 > {}^L A_0^3 > {}^L ... > {}^L A_0^1$ Business Computing and Operations Research WINFOR 869 #### **Proof of Theorem 9.2.3** We have assumed that the problem is bounded. Therefore, the first component $a_{0,0}$ converges towards some number $w_{0,0}$ with the following definition: $w_{0,0} = |w_{0,0}| + f_{0,0}$ After a finite number of iterations $a_{0,0}$ falls below $|w_{0,0}|+1$, and for some k we can write $$a_{0,0}^k = |w_{0,0}| + f_{0,0}^k$$, with $f_{0,0}^k < 1$ Consequently, this row provides the next cut $$-f_{0,0}^{k} = -\sum_{j \notin B} f_{0,j}^{k} \cdot x_{j} + s$$ We then apply the dual simplex and choose column p to enter the basis. After this pivot we obtain: $a_{0,0}^{k+1} = a_{0,0}^k - \frac{a_{0,p}^k}{f_{c}^k} \cdot f_{0,0}^k$ #### **Proof of Theorem 9.2.3** Now, at an optimal tableau of the dual simplex we have (1) $a_{0,n}^k \ge 0$ and therefore it is larger than its fractional part (2) $a_{0,n}^k \ge f_{0,n}^k$ Hence, it holds that: $$(3) \ a_{0,0}^{k+1} = a_{0,0}^k - \frac{a_{0,p}^k}{f_{0,p}^k} \cdot f_{0,0}^k \le a_{0,0}^k - \frac{a_{0,p}^k}{a_{0,p}^k} \cdot f_{0,0}^k = a_{0,0}^k - f_{0,0}^k = \left\lfloor a_{0,0}^k \right\rfloor = \left\lfloor w_{0,0}^k \right\rfloor$$ Due to the convergence of the sequence $a_{0,0}^l$ to $w_{0,0}$, this shows that from this point on $a_{0,0}^k = |w_{0,0}^k|$ is an integer. #### **Proof of Theorem 9.2.3** - Moreover, an indefinite number of rows and columns is avoided by dropping a slack variable of a cut if it becomes fractional and is associated with a new Gomory cut (by entering the basis) - Consequently, we have always at most n rows and at most n-m additional cuts - Since it was shown that the first column is strictly lexdecreasing during the computation, the number of considered constellations is bounded by an exponential function - Consequently, the procedure terminates after a finite number of steps Business Computing and Operations Research WINFOR 873 #### **Proof of Theorem 9.2.3** The vectors A_0^l are lex-decreasing, and we have shown that after some point the first component becomes fixed at an integer. Consequently, the second component is monotonically non-increasing. It is lower bounded by zero. The argument above can then be repeated for a_{1}^{l} . However, we need to show that $a_{1,n}^k \ge 0$ so that the steps following step (2) go through. This follows because $a_{0,0}^k$ remains fixed, which implies that $a_{0,p}^k = 0$. This implies $a_{1,n}^k \ge 0$ because $A_n^k >^L 0$. Hence, $a_{1,0}^l$ becomes integer after a finite number of steps. We can continue in this way down column zero, showing that all components eventually reach integer values, at which point the algorithm terminates. The only other possible termination occurs when the dual simplex algorithm finds that the dual is unbounded, and hence that the original ILP is infeasible. #### **Example** Maximize $$-1 \cdot x_2$$ s.t. $3 \cdot x_1 + 2 \cdot x_2 \le 6$ $-3 \cdot x_1 + 2 \cdot x_2 \le 0$ $x_1, x_2 \ge 0 \land x_1, x_2 \in \mathbb{N}$ We obtain for the LP-relaxation of the IP: ## **Example** - We obtain the optimal LP solution x^T =(4/3,1,0,2,0) - Consequently, we add an additional restriction resulting from the second row ## **Example (lexicographic algorithm)** $$\frac{\frac{3}{2} \begin{vmatrix} 0 & 0 & \frac{1}{4} & \frac{1}{4} \\ 1 & 1 & 0 & \frac{1}{6} & -\frac{1}{6} \\ \frac{3}{2} \begin{vmatrix} 0 & 1 & \frac{1}{4} & \frac{1}{4} & 0 \\ 1 & 1 & 0 & \frac{1}{6} & -\frac{1}{6} & 0 \\ \frac{3}{2} \begin{vmatrix} 0 & 1 & \frac{1}{4} & \frac{1}{4} & 0 \\ 0 & 1 & \frac{1}{4} & \frac{1}{4} & 0 \\ -\frac{1}{2} \begin{vmatrix} 0 & 0 & -\frac{1}{4} & -\frac{1}{4} \\ 0 & 0 & -\frac{1}{4} & -\frac{1}{4} \end{vmatrix} & 1 \leftarrow Cut$$ $$i_0 = 3 \wedge a_0^3 = -\frac{1}{2}$$ $$\frac{\alpha^3}{-a_3^3} = \frac{\left(\frac{1}{4} & \frac{1}{6} & \frac{1}{4} & -\frac{1}{4}\right)^T}{\frac{1}{4}} = \left(1 & \frac{2}{3} & 1 & -1\right)^T$$ $$\frac{\alpha^4}{-a_3^4} = \frac{\left(\frac{1}{4} & -\frac{1}{6} & \frac{1}{4} & -\frac{1}{4}\right)^T}{\frac{1}{4}} = \left(1 & -\frac{2}{3} & 1 & -1\right)^T$$ $$\Rightarrow \frac{\alpha^2}{-a_3^3} - \frac{\alpha^4}{-a_3^4} = \left(1 & \frac{2}{3} & 1 & -1\right)^T - \left(1 & -\frac{2}{3} & 1 & -1\right)^T = \left(0 & \frac{4}{3} & 0 & 0\right)^T > 0 \Rightarrow \frac{\alpha^3}{-a_3^3} >^L \frac{\alpha^4}{-a_3^4}$$ Thus, we resume with the fourth column Business Computing and Operations Research WINFOR 876 ## **Example** $$\frac{1}{\frac{4}{3}} \begin{vmatrix} 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & \frac{1}{3} & 0 & -\frac{2}{3} \Rightarrow 1 \\ 0 & 1 & 0 & 0 & 1 & 2 \\ 2 & 0 & 0 & 1 & 1 & -4 & -\frac{1}{3} \end{vmatrix} = \begin{pmatrix} 0 & 0 & 0 & 0 & 1 & 0 \\ \frac{1}{4}{3} & 1 & 0 & \frac{1}{3} & 0 & -\frac{2}{3} & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 & 2 \\ 0 & 0 & 1 & 1 & -4 & 0 & 2 \\ 0 & 0 & 1 & 1 & -4 & 0 & 2 \\ 0 & 0 & 1 & 1 & -4 & 0 & 2 \\ 0 & 0 & -\frac{1}{3} & 0 & -\frac{1}{3} & 1 & \leftarrow Cut \end{pmatrix}$$ $$\frac{\alpha^3}{-\alpha_4^3} = \frac{\left(0 & \frac{1}{3} & 0 & 1 & -\frac{1}{3}\right)^T}{\frac{1}{3}} = (0 & 1 & 0 & 3 & -1)^T$$ $$\frac{\alpha^5}{-\alpha_4^5} = \frac{\left(1 & -\frac{2}{3} & 1 & -4 & -\frac{1}{3}\right)^T}{\frac{1}{3}} = (3 & -2 & 3 & -12 & -1)^T$$ $$\Rightarrow \frac{\alpha^5}{-\alpha_4^5} - \frac{\alpha^3}{-\alpha_4^3} = (3 & -2 & 3 & -12 & -1)^T - (0 & 1 & 0 & 3 & -1)^T = (3 & -3 & 3 & -15 & 0)^T \Rightarrow \frac{\alpha^5}{-\alpha_4^5} - \frac{\alpha^3}{-\alpha_4^3}$$ Thus, we resume with the third column Solution with the specific of the sum of the second #### **Example** | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | ٥ | ٥ | ٥ | ٥ | 1 | 0 | |----------------|---|---|------------------|---|----------------|-----|-----|---|---|---|---|----|----| | $\frac{4}{3}$ | 1 | 0 | 0
1/3
0 | 0 | $-\frac{2}{3}$ | 0 | 1 | 1 | 0 | 0 | 0 | -1 | 1 | | 1 | 0 | 1 | 0 | 0 | 1 | 0 = | ⇒ 1 | 0 | 1 | 0 | 0 | 1 | 0 | | 2 | 0 | 0 | 1 | 1 | -4 | 0 | 1 | 0 | 0 | 0 | 1 | -5 | 3 | | $-\frac{1}{3}$ | 0 | 0 | $(-\frac{1}{3})$ | 0 | $-\frac{1}{3}$ | 1 | 1 | 0 | 0 | 1 | 0 | 1 | -3 | The optimal solution to the original integer problem is $x^{T} = (1,1)$ Business Computing and Operations Research WINFOR 879 #### 9.3 Branch&Bound In what follows, we consider a second technique optimally solving general integer linear programs with a bounded solution space. Given an integer Linear Program denoted as M⁰ $$(M^0) Min z(x)$$ s.t. $x \in P^0$ We consider a lower bound LM⁰ to M⁰ that is obtained from a relaxation and has a larger solution space LP⁰⊇P⁰. We solve the relaxation to optimality and obtain its optimal solution x⁰ $$LM^0 = Min \ z(x)$$ s.t. $x \in LP^0$ For example, LM⁰ is the optimal objective function value of the LPrelaxation to Mo - If $x^0 \in P^0$, then the problem M^0 is optimally solved. - Otherwise: Branching (see next slide) Business Computing and Operations Research WINFOR 881 ## **Branching** We partition the solution space Po by some branching rule and yield k+1 subproblems M⁰⁰...M^{0k} $$P^0 = \bigcup_{i=1}^k P^{0i} \wedge \forall i, j = 0,...,k : i \neq j : P^{0i} \cap P^{0j} = \emptyset$$ $$(M^{00}) Min z(x) st. x \in P^{01} ... (M^{0k}) Min z(x) st. x \in P^{0k}$$ For example, if P⁰ is the LP-relaxation, we choose a variable x_i⁰ that is not integer and yield two subproblems with $$P^{00} = \left\{ x \ge 0 \middle| x \in P^0 \land x_j \ge \left\lceil x_j^0 \right\rceil \right\} \qquad P^{01} = \left\{ x \ge 0 \middle| x \in P^0 \land x_j \le \left\lfloor x_j^0 \right\rfloor \right\}$$ ## **Enumeration tree obtained from Branching** Applying the branching rule consecutively, we derive a solution tree Some solutions to the subproblems may be integer. We stop if the solution tree is explored entirely, and thus the best known integer solution is optimal to M⁰. Business Computing and Operations Research WINFOR 883 ## **Bounding** There is always a **global upper bound** UM to the integer Linear Program M⁰. Either UM=∞ or UM is derived from a feasible solution to M⁰ We calculate a lower bound LM0i, which is easy to calculate, for each subproblem M^{0i} , and LM^{0i} has a solution space $LP^{0i} \supseteq P^{0i} \ \forall i=1,...,k$. A subproblem Moi does not need to be considered anymore (i.e., it is pruned) if one of the following pruning criterions holds: - a) $LM^{0i} < UM$ and the optimal solution x^{0i} of LM^{0i} is feasible to M^0 : We found an improved upper bound to Mo, and we remember this solution $UM := LM^{0i}$. - b) $LM^{0i} \ge UM$: The optimal solution to the subproblem M^{0i} , and all integer solutions derived from it cannot be better than the best known feasible solution with UM. - c) $LP^{0i} = \emptyset$: There exists no feasible solution to LM⁰ⁱ and none to M⁰ⁱ. We stop if the solution tree is explored, and thus UM is optimal to M⁰. Business Computing and Operations Research WINFOR 885 ## **Example** $$(M^0)$$ Minimize $-x_1 - 2 \cdot x_2$ s.t. $$2 \cdot x_1 + 2 \cdot x_2 \le 7$$ $$-2 \cdot x_1 + 2 \cdot x_2 \le 1$$ $$-2\cdot x_{_{2}}\leq -1$$ $$x_1,x_2\geq 0$$ $$x_1, x_2 \in \mathbb{Z}$$ We commence with UM=∞ and with the LP-relaxation LM⁰ #### Consequences - Obviously, -11/2 is a lower bound for the optimal solution - Since the solution is unfortunately not integer, we branch and conduct a case statement. Either x₁≤1 or x₁≥2 - Starting from the original set of feasible solutions $$P^{0} = \left\{ \left(x_{1}, x_{2} \right) \in IR_{\geq 0}^{2} \mid 2 \cdot x_{1} + 2 \cdot x_{2} \leq 7 \land -2 \cdot x_{1} + 2 \cdot x_{2} \leq 1 \land -2 \cdot x_{2} \leq -1 \right\}$$ the simple branching step yields two subproblems $$\begin{split} P^{00} = & \left\{ \left(x_1, x_2 \right) \in IR_{\geq 0}^2 \mid 2 \cdot x_1 + 2 \cdot x_2 \leq 7 \land -2 \cdot x_1 + 2 \cdot x_2 \leq 1 \land -2 \cdot x_2 \leq -1 \land x_1 \leq 1 \right\} \land \\ P^{01} = & \left\{ \left(x_1, x_2 \right) \in IR_{\geq 0}^2 \mid 2 \cdot x_1 + 2 \cdot x_2 \leq 7 \land -2 \cdot x_1 + 2 \cdot x_2 \leq 1 \land -2 \cdot x_2 \leq -1 \land x_1 \geq 2 \right\} \end{split}$$ Business Computing and Operations Research WINFOR 887 ## **Resulting problems** Consequently, we obtain the tableaus Business Computing and Operations Research WINFOR 889 ## Transformation of the tableaus - In order to directly conduct the Dual Simplex, we need to transform the problem - Specifically, we subtract the first row from the fourth one or vice versa - Thus, we obtain | Finally, it turns out | | | | | | | | | | | |--|---|--|--|--|--|--|--|--|--|--| | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | | Schumpeter School of bosons boson | ing and Operations Research WINFOR 891 | | | | | | | | | | #### **Conclusions** - Unfortunately, both solutions are still not integer - Thus, we have to resume with the next branching step - This time, we obtain altogether four constellations $$\begin{split} M^{000} &= \left\{ \left(x_1, x_2 \right) \in IR_{20}^2 \mid 2 \cdot x_1 + 2 \cdot x_2 \leq 7 \wedge -2 \cdot x_1 + 2 \cdot x_2 \leq 1 \wedge -2 \cdot x_2 \leq -1 \wedge x_1 \leq 1 \wedge x_2 \leq 1 \right\} \wedge \\ M^{001} &= \left\{ \left(x_1, x_2 \right) \in IR_{20}^2 \mid 2 \cdot x_1 + 2 \cdot x_2 \leq 7 \wedge -2 \cdot x_1 + 2 \cdot x_2 \leq 1 \wedge -2 \cdot x_2 \leq -1 \wedge x_1 \leq 1 \wedge x_2 \geq 2 \right\} \wedge \\ M^{010} &= \left\{ \left(x_1, x_2 \right) \in IR_{20}^2 \mid 2 \cdot x_1 + 2 \cdot x_2 \leq 7 \wedge -2 \cdot x_1 + 2 \cdot x_2 \leq 1 \wedge -2 \cdot x_2 \leq -1 \wedge x_1 \geq 2 \wedge x_2 \leq 1 \right\} \wedge \\ M^{011} &= \left\{ \left(x_1, x_2 \right) \in IR_{20}^2 \mid 2 \cdot x_1 + 2 \cdot x_2 \leq 7 \wedge -2 \cdot x_1 + 2 \cdot x_2 \leq 1 \wedge -2 \cdot x_2 \leq -1 \wedge x_1 \geq 2 \wedge x_2 \geq 2 \right\} \end{split}$$ - M⁰⁰¹ and M⁰¹¹ are infeasible (case c) - Thus, we resume with M⁰⁰⁰ and M⁰¹⁰ | Resulting pro | blems | |--|---| | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | 3 0 0 0 0 0 1 2 1 1 0 0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 2 1 0 1 0 0 0 0 3 0 0 1 0 0 -2 -2 1 0 0 0 1 0 2 -2 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | Schumpeter School of Besies and Biodenia Business Computing and C | Operations Research WINFOR 895 | #### M⁰⁰⁰ and M⁰¹⁰ – Results - Obviously, the problems are optimally solved - Thus, we obtain an integer solution with objective function value -3 from M⁰⁰⁰ and we set UM:=-3 (case a) - Since the lower bound of the remaining problem M⁰¹⁰ is -9/2, we have to resume with this problem - Here, we obtain the new problems $$M^{0100} = \left\{ (x_1, x_2) \in IR_{20}^2 \mid 2 \cdot x_1 + 2 \cdot x_2 \le 7 \land -2 \cdot x_1 + 2 \cdot x_2 \le 1 \land -2 \cdot x_2 \le -1 \land x_1 \ge 2 \land x_2 \le 1 \land x_1 \le 2 \right\} \land M^{0101} = \left\{ (x_1, x_2) \in IR_{20}^2 \mid 2 \cdot x_1 + 2 \cdot x_2 \le 7 \land -2 \cdot x_1 + 2 \cdot x_2 \le 1 \land -2 \cdot x_2 \le -1 \land x_1 \ge 2 \land x_2 \le 1 \land x_1 \ge 3 \right\}$$ Business Computing and Operations Research WINFOR 896 | And | thus, we obtain | | |---|---|---------------------------| | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 1 0 2 0 1 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 | 2 0
1 0
4 0
·1 0 | | 4 0 0 0 0 0 0 0 2 2 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 2 1 0 1 0 0 0 0 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 2 | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | 4 | | tumpeter School Design and Recognition Particle BL | usiness Computing and Operations Research | OR | #### M⁰¹⁰⁰ and M⁰¹⁰¹ – Results - We obtained an improved second feasible solution $x^T=(2,1)$ from M^{0100} and UM:=-4 (case a) - The other alternative constellation M⁰¹⁰¹ still does not provide any integer solution However, since the objective function value is -4. this is a lower bound for all integer solutions resulting from M⁰¹⁰¹ (case b) - Thus, we explored the solution tree and stop our procedure. The optimal solution is $x^T=(2,1)$ with an objective function value of UM=-4 Business Computing and Operations Research WINFOR 900 ## **Branch&Bound Algorithm** - Determine an upper bound UM either via a heuristic or set UM:=∞. - Solve a lower bound LM^i of M^i and obtain its optimal solution x^i . - If either LMi≥UM (case b) or Pi=Ø (case c) holds, then go to 7. - Otherwise (case b) or c) do not apply): If LMi<UM and xi is feasible to M⁰ (case a), then set UM:=LMⁱ. Check for each remaining candidate problem Mk that is in the list whether it can be pruned by LMk≥UM (case b). Remove all pruned problems Mk from the list. Go to 7. - Otherwise (case a) does not apply): LMi is a candidate problem and is stored in a list. - Pick a candidate problem Mk from the list. Branch the problem Mk and derive a supproblem Mki. If no supproblem is derived, then remove Mk from the list. Proceed with Mi:=Mki and go to 2. - 7. If there exists no candidate problem in the list, then terminate the algorithm. The optimal solution is the corresponding solution to UM. - Otherwise (there exist candidate problems in the list): Go to 6.