10 Matrix games
—————)

In what, follows, we provide a brief introduction
to Game Theory
Specifically, we consider specific games that are
definable as Linear Programs
This will lead to specific games, in the following
denoted as Matrix Games
The matrix, the basic structure of the game,
defines the payments resulting from the chosen
policies of the players
Player are, for instance, persons, companies,
states (i.e., their governments)
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Typical applications are

10.1 Introducing examples
- |
In what follows, we introduce two possible
applications that are representative for Matrix
Games
By means of these applications, we will derive
optimal strategies

Well-known two-person game “paper-rock-
scissors”

Location planning

As mentioned above, these games are
completely defined by their respective matrices
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10.1.1 Application: “rock-paper-scissors”

Priority rules:

—————)
In each move, two players may either select rock,
paper, or scissors

These selections are simultaneously executed
and are completely independent of each other

In order to prevent simple optimal strategies of
the players, the following priority rules are applied

Rock beats scissors, but is defeated by paper
Scissors beats paper, but is defeated by rock
Paper beats rock, but is defeated by scissors
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Thus, we obtain the results

P,/P, P, selectsrock | P selects P, selects
scissors paper
P, selects draw P, wins P, wins
rock
P, selects P; wins draw P, wins
scissors
P, selects P, wins P, wins draw
paper

Business Computing and Operations Research WINFOR 906

N
M
B

Matrix of the game
|
Thus, we obtain the following matrix that determines

the results of the first player.
Specifically, we define :

1=Player 1 wins; 0 = draw; - 1 = Player 2 wins

0 -1 1
A=|1 0 -1
-1 1 0
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Moves of the players
|
0 -1 1
With the matrix of results A=| 1 0 -1,
-1 1 0
which is defined from the point of view of player 1, we define
xe{0,1} as the choice of player 1, and ye {0,1}" as the choice
of player 2. Since each player has to provide a definite decision,
we require:

3 3
zxi=x|+x2+x3=1/\zyz=YI+yz+y3=1

i=1 i=1
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Thus, A-xe€ IR’ determines the possible results player 1 will obtain

The result of a move

by his choice depending on the choice of player 2.

Alternatively, (yT ‘A)T € IR’ determines the possible results player 1
will obtain by the choice of player 2 depending on the choice of

player 1.

Thus, we can calculate the resulting payment of player 1 depending

on first player's choice (i.e., x) as well as on second player's choice

(ie.y) byy -A-x.

ot
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10.1.2 Application: Bilateral monopole

Two vendors, namely A and B, want to erect an
additional store in a certain common sales area
Depending on their choices, vendors A and B
attain different profits

Specifically, the area is separated in altogether
four regions and again the vendors take their
decisions independently

Again, we consider the situation out of the
position of player A

Player B pursues a minimization of the profit
attained by player A

Zl
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The attainable profits of vendor A

——)
B/A Aselects | Aselects | Aselects | Aselects
region 1 region 2 region 3 region 4
B selects 44 72 64 64
region 1
B selects 68 58 60 65
region 2
B selects 64 68 72 75
region 3
B selects 56 64 61 59
region 4

ot
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Possible strategies

——)

= Vendor A may chose a max-min strategy

= l.e., A tries to maximize the profit that is minimally
attainable, or, with other words, tries to optimize
its profit in a worst case constellation

= Vendor B may chose a min-max strategy

= l.e., B tries to minimize the profit that is maximally
reachable by A, or, with other words, tries to
minimize the profit that A attains in its best case
constellation
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Thus, the max-min strategy provides for A
- |
= A with max-min
= Region 1: min{44,68,64,56}=44
= Region 2: min{72,58,68,64}=58
= Region 3: min{64,60,72,61}=60
= Region 4: min{64,65,75,59}=59
= Thus, we obtain max{44,58,60,59}=60
= Consequently, applying the max-min strategy, A
would take region 3 with the minimum profit of
60

L
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B

The resulting profits of vendor A

——)
B/A Aselects | Aselects | Aselects | Aselects
region 1 region 2 region 3 region 4
B selects 44 72 64 64
region 1
B selects 68 58 60 65
region 2
B selects 64 68 72 75
region 3
B selects 56 64 61 59
region 4

: 2 business Computing and operations researcn WWINFOR_ 014




The min-max strategy provides for B
——)

= B with min-max
= Region 1: max{44,72,64,64}=72
= Region 2: max{68,58,60,65}=68
= Region 3: max{64,68,72,75}=75
= Region 4: max{56,64,61,59}=64

= Thus, we obtain min{72,68,75,64}=64

= Consequently, applying the min-max policy, B
would select region 4, which limits the maximum
profit of A to 64
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Consequence
- |
B/A Aselects | Aselects | Aselects | Aselects
region 1 region 2 region 3 region 4
B selects 44 72 64 64
region 1
B selects 68 58 60 65
region 2
B selects 64 68 72 75
region 3
B selects 56 64 61 59
region 4
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Observations
T ——

Obviously, vendor A expects a minimum profit of

60, but eventually attains 61

= On the other hand, vendor B was willing to
“accept” a profit of A of “even 64”, or better
spoken, has already calculated it

= However, what can we learn from this example?

= What does the obtained result provide about the
quality of the max-min strategy applied by vendor
A?

= Are there any provable optimal strategies?
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10.2 Basic definitions
——)
10.2.1 Definition
A game is a private, economic, social, or political competition.
Components of such a game are
1. Players. These may be persons, companies, states,
nature, or coincidences
2. Moves. These are selected by players according to
predetermined rules of the game out of a finite set of
alternatives
3. Strategies. They either determine the selection of
activities entirely (pure strategy) or provide probabilities
by that an activity is selected (mixed strategies). For the
latter ones repetition is necessary
4. Payments. They define resulting yields or losses of the
opponents under specific moves

;,//,-} Business Computing and Operations Research WINFOR 918

Two-person zero-sum games
—

10.2.2 Definition

A game with two opponents, denoted as players, where
one person wins what the other loses. It is denoted as a
two-person zero-sum game or simpler just matrix
game.

Moreover, a two-person zero-sum game is denoted
as symmetric if both players select their moves out of
an identical reservoir of activities and if their roles are
exchangeable.

L

Business Computing and Operations Research WINFOR 919

B

Assumption

10.2.3 Definition

In what follows, the payment matrix is always defined out
of the view of player 1. In this connection, the ith column
gives the profits according to the choice of player 2 if
player 1 selects the ith alternative. Analogously, the jth
row gives the profits according to the choice of player 1 if
player 2 selects the jth alternative.
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Scope of strategies

S ——)
10.2.4 Definition:
Let S = {xe IR"1x20A1" - x= 1} be the set of strategies,
ie.,
x, and z, determine the probability of chosing the ith move
for
xe S" resp. we ™.
Furthermore, pure strategies are characterized by the fact

that probabilities are always 1.
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Consequences

s |
10.2.5 Lemma:
1. Assuming the players act independently, we know
Player 1 choses alternative no.i A
(Player 2 choses alternative no. j j s

2. The expected value of the payments is determined by :

n

E(x’”)=22m:xi Ty :i[iﬂj .ai,j]'xi =z’ -A-x
i=1 \_j=1

i=1 j=1
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Further definition
S ——)
10.2.6 Definition
In what follows, we define
a, =max{min{a, , 1i =1...,mf1 j=1,..,n}
a’ = min{max{ai»j lj= 1,...,n}| i= lm}
and
M, = max{min{E(x,n:) Ire S('”)}Ixe S(”)}
M= min{max{E(x,n') lxe S(")}Ine S(”’)}
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Fair games

10.2.7 Definition:

A game is denoted as fairif M, =0.

A corresponding strategy x, is denoted as optimal if
M,= min{E(xo,n)Ine S(m)}

In addition to this, z° is denoted as optimal if
M° = max{E(xz")xe ™}
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Observations
———

= An optimal strategy of player 1 attains at least the
maximum of all expected minimum profits if
player 2 plays optimally, i.e., if player 2
implements a worst case scenario for player 1

= Other way round, player 2 plays optimally if he is
able to at least minimize the expected maximum
profit of player 1 if this player acts optimally

= However, if the competing player does not apply
such a strategy, there may be better results

= Note that the optimal strategy is generated for the
case in that the opponent plays optimally
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Applied to the two examples

44 72 64 64
4|68 58 60 65
64 68 72 75
56 64 61 59
a, = max{minfa, ; 1i = 1..om}l j=1,...n}= max{44,58,60.59} = 60
~a’ =minfmax{a, 1 j=1L...n}li =1...m}=min{72,68.75,64}= 64
0 -1 1
A=l1 0 -1
-1 1 0

ay =maxfmin{a, ; 1i = 1..om}l j = 1. nf= max{-1,-1,-1}= -1

~a® =min{max{a, ;| j=1,...n}li=1,...m}= min{LL1}=1
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Consequence

Let xe S™ be a strategy of player 1 and let 7 S be a
strategy of player 2 . Then, with Ae IR™" it holds:

m

T
E(x,ﬂ):nr-A-x:n"-(A-x)=[Z7z/-e’J -A-x:Zn,-(e’)T “A-x
=1 j=1

We know that Zn/ =1. Thus, it holds:

E(x,n'):i:‘n', -(ej)T -A-mein{(e’)T “A-xlje {1,...,m}}

Thus, there exists a pure strategy of player 2 that is optimal

for a given mixed strategy of player 1.
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Analogous consequence
———)

(m

Letxe S bea strategy of player 1 andlet we § ) be a strategy of

player 2 . Then, with Ae IR"™ it holds:

E(x,7r)=7rT-A-x=7rT-(A-x)=7rr-(2ajv,.-x,.j
)

.
=1y x-¢-A
i=1

1<j<m

We know that Zx,. =1. Thus, it holds:

i=1
E(x,n') =z -Zx, e A< max{n'T “A-élie {1,...,n}}
i=1
Thus, there exists a pure strategy of player 1 that is optimal

for a given mixed strategy of player 2.
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Conclusion

10.2.8 Lemma:
It holds:
a,sM=MP<a0
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Proof of Lemma 10.2.8
T ——

a, = max{min{ai'lli = l,...,m}lj = 1n}
=max, min_ ((e-’)r ~A)~ei

<max_min_ (7" A)x=M,

M° =min, max 7" -(A-x)< min, max, ((e-’)T AA)Ae"

= min{max{a,.vjlj = l,...,n}li = 1,...,m}: a’
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s

Proof of Lemma 10.2.8
——

Let x, and 7, be optimal strategies. Then, we can conclude:

M, =max, (min” (" -A)-x) =min, (7" - A)-x,

T T g0
<m, cA-x,<max, w, -A-x=M
>M, <M’

Altogether, we obtain: a, <M, <M’ <a’
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10.3 Games and Linear Programming

In what follows, we provide methods that
generate optimal strategies for two-person
games

= These methods are based on the principles of
Linear Programming

Consequently, at first, we provide an LP-problem
definition
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s

10



Preliminary work |
——)

10.3.1 Lemma
Assume xe S™ and M € IR:
Then,itholds: A-x>M -(I,...1) & min_z" -A-x>M
At/

m times
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Proof of Lemma 10.3.1

A-x>M-(1,...])
m times

o Vre ST A x2a" M -(1,...,1), with an =1

Jj=1

o Vre S™:n” 'A~x2M'Z7rj

1
evVreS"al A-x2M emin, 7’ A x=M
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Preliminary work Il
——)

10.3.2 Lemma:

Assume xe S and M € IR:
Then,itholds:z" -A<M -(,...1) @ max 7" -A-x<M
N

n times
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Proof of Lemma 10.3.2

' A<M -(1,....])
n times

& Vxe S A-x<M-(1,...1) x, with ixl. =1

i=1
& Vxe S™ea’ -A-xSM-Zx,.
i=1

& VxeS"a" A-x<M o max, 1 -A-x<M
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Preliminary work Il
= |

Assume that x, is an optimal strategy for player 1. Then, we
know that it holds: min_z"-A-x, =M,
By making use of Lemma 10.3.1, we conclude that it holds:

A-X, 2Il/lo'l(m)

Additionally, if it holds M, >0, we define x, = % and obtain

0

Ax=A=%>1 . Sincex, 20=> x >0,
MO
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Preliminary work IV

_—
Assume that 7, is an optimal strategy for player 2. Then, we

know max  (z,) -A-x=M"
By making use of Lemma 10.3.2, we conclude that it holds:

(ﬂo)T'ASMO'l(n)

Additionally, if it holds M° > 0, we define 7, = 1;—0 and obtain

0

0

T
(z,) ,A:(%) ‘A<l Sincem,20=>m, 20.
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The Linear Program

We introduce the following Linear Program (P)

Minimize 1" - x, s.t. A-x=1A x>0

as the LP that corresponds to the game matrix A
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Observations

10.3.3 Lemma:
1. Let x be feasible for (P) with M = ITL’ then M >0 and
X

for ¥= M - x it holds: ¥ S A min_, - A-X=M.

2. Other way round, if ¥ S") AM =min _, " A-%>0,

then it holds that x is feasible for (P), with x = e
1
and 1" - x=—.
M
4@2‘/ Business Computing and Operations Research WINFOR 940

Proof of Lemma 10.3.3

1. Let x be feasible for (P) with M = =S x20AA x21

1"-x

>0. Letx=M -x=>A-X=A-M-x

=1 x>0=>M= Tl
1" -x

=M-A-x=2M-1.

Thus, we can apply Lemma 10.3.1=> min s - AXZM.

.. - 1
Additionally, we calculate 1" -¥=1"-M -x=1"- e 1
-X
and obviously ¥ >0. Thus, e S".
t ﬂ/,y:% Business Computing and Operations Research WINFOR 941
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Proof of Lemma 10.3.3

——)
2. Letie " amin_ 7" -A-F2M >0=%20A1" %=1

Since Lemma 10.3.1, it additionally holds A-¥ 2> M -(1,...,1)

= We define x= = A x=2 > M 1 415
M M M
Since M >0, it holds that x = ﬁ >0.
Consequently, x is feasible for (P), with 1" - x=1"-—— = €
M M
t ﬂ/,y:% Business Computing and Operations Research WINFOR 942
and for optimal solutions of the LP...
———)
10.3.4 Lemma
Let x,, be an optimal solution of LP. Then it holds:
1" x,= 1
0
4@2‘/ Business Computing and Operations Research WINFOR 943
Proof of Lemma 10.3.4
———)

) 1 . L
At first, we show that — is a lower bound for the objective
0

function 1” - x if the problem is solvable. Let x be some feasible

solution for the LP. Furthermore, let x = L, with
M (x)

M (x)=1"-x. Thus, we conclude A- =A% > 1
M(x) M (x)

.Itholds: M, =max min_z" -A-x

:>min”7rT-A-)~c2 !
M (x)
1 1

1
S>——=—<M, o1 x2—.
M(x) 1"-x ! g M,

t n/,y:% Business Computing and Operations Research WINFOR 944
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Proof of Lemma 10.3.4

L
Now, other way round, let x, be an optimal solution to LP (P) as

defined above.
Consider now M, =max min, 7z’ - A-x=min_z' -A-¥, with
7€ S™ Thus, by making use of Lemma 10.3.3(2), we know that

1 .1 . . .
M, =—— and x; = X-—— is a feasible solution to LP. Since x,
1-x M,

is an optimal solution to LP, we obtain 1" - x, <1" - x,

1 1
= "5 —=—.
v M M
=1, since fe ") 0 0

Consequently, we get: 1 - x, < Lo X 2 Loy - X, -
MU MU MU
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Consequence

Obviously, if x, is an optimal solution to the LP, we know that

X= lTxo = x,-M is a feasible strategy and we consider
X,
A- L...1
Aioat Al ):(M,...,M).

Mx, 1Mx, 1x,
Since x is minimally chosen, we get a maximal M and therefore
(M,...M) is maximized. Consequently, we just maximize
min_z" - A- x. Unfortunately, if A is defined that way that

M, =max, min, 7" - A-x<0, the problem is not solvable.
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Main Cognition

10.3.5 Theorem:

Assuming M > 0. Then, x, is an optimal solution to the LP

X,
. o R .
if and only if X, = x,- M, =— is an optimal strategy for

1" x,
player 1.
=2 Busiess Computing and operations esearcn WINFOR' 947
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Proof of Theorem 10.3.5

—
=
Let x, be an optimal solution to LP (P). Then, X, = x,-M,€ S ™ with

M,=max_ min_z' -A-x>min_z"-A-¥,. Other way round, we

get:
min, 7z’ -A %, =min_z’-A-x,-M,
B b
. 1
=min_ 7" - A-x, =
1 x,
>1, since x; is feasible for LP
T
L,...,1 r 1 1
>min_ 7" u =z -(1..,1) ——=——=M
3 T T T 0
rxy, ——1:x I'-x
=1, since re 5"
ﬂ/,y:%’ Business Computing and Operations Research WINFOR 948

Proof of Theorem 10.3.5

=
Consequently, we obtain
min, 7" - A-X, <M, Amin z" -A-%, 2 M,

S~
=min 7' -A-X, =M,

=X, € $™ is optimal!
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Proof of Theorem 10.3.5

——)
=

LetX e 5 be an optimal strategy. Then min_ 7’ -A %, =M,

Thus, we make use of Lemma 10.3.3, and obtain

. . X
A-%,2M,. Consider x, =—>-

M,
Itholds:A-x,=A-—2>>—0=1]
0 MO
Thus, x,, is feasible for LP. We calculate
1" x, :lT.ﬁ I -% i
M\l M() M()
t ﬂ/,y:% Business Computing and Operations Research WINFOR 950
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Proof of Theorem 10.3.5

We know that L is a lower bound for 1" - x
0

if x is a feasible solution for LP (P).
Consequently, we have shown that x, is an optimal solution.

This completes the proof.
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The dual program
= |

> The LP introduced above has the following dual

Maximize 1" - x,
S.t.

7 AL1I" Az 20

= Obviously, 7 =0 is a feasible solution to (D)
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Further consequences
———)|

10.3.6 Corollary
The following propositions are equivalent
1. (P) has a feasible solution
2. (P) has an optimal solution
3. (D) has an optimal solution
4. My>0

t n/,y:% Business Computing and Operations Research WINFOR 953
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Proof of Corollary 10.3.6

L
1 4:

Let x be a feasible solution to (LP). Then, we have
A-x>1land thus M =min_ 7" -A-x>1=

M,=max min_z'-A-x2M >0.

Other way round, if M, = max_min_z"-A-x>0.

Thus, it exists ¥, : M, =min, 7’ -A-%, = A %, 2 M,,.

; .1
We introduce:x, = X, — =0
MO

.1 1 . .
S Ax, =A% —2M,— =1=> x, is feasible for (LP).
MO MO
i ;//,-f% Business Computing and Operations Research WINFOR 954

Proof of Corollary 10.3.6

|
le2s3:

Obviously, (D) is always solvable, e.g., by making use of

7 =0, we have at least one feasible solution.

Thus, through Section 2.2, there remain two cases.
Either (D) is unrestricted and, therefore, (LP) not
solvable or (D) and (LP) have optimal solutions.

This completes the proof.
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What to do if it holds that M,<0?

Obviously, if M,>0, we have provided an instrument that
generates optimal strategies

But if M,<0, nothing is won since LP (P) is obviously not
solvable

However, what can we do in such kind of situation?
Obviously, it is matrix A that incorporates this problem.
Thus, the question to be posed is how we can modify
this matrix in order to ensure that M,>0

t n/,y:% Business Computing and Operations Research WINFOR 956
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Let

result of a game, i.e.,

T
T
n
J=

=
We

ZZixj-n'i-ai}j+C-Zij-7ri :Zij-n'i-aiyj+C

Adding a constant to A

us add a constant C to all matrix entries. We consider the

A.x:i[ini-(aw+c))-xj :i(im.aﬁﬁ(ﬂi.c))xj

j=l \i=l j=1 \i=l
n_m n_m
1 i=l j=1 i=l j=1 i=l

=1

obtain modified proceeds, but optimality is kept unchanged.
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Consequences
.
By adding a constant, we may be able to obtain a
matrix A,,,, that fulfills M,>0
The game that corresponds to the modified
matrix A, has identical optimal strategies

Consequently, we only have to retransform the
resulting profits at the end of the calculation
process
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What to add?

Fortunately, we know that M, is just raised by the
value/constant C that is added to A

The problem is that M, is unknown beforehand
Otherwise, we just would take -M+¢, with €50

Consequently, we may take -a,+¢ (¢>0), which is
a lower bound of M,
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Further bounds to add
——
2. Possibility :
Sufficient conditions are: A > 0 Aa” = min, max;a,; >0
a - ? ‘ a

ConsiderthevectorlT-LO:A-[IT-LOJ 1 (A-lT)ZiO-aﬂ-(l,...,l)
a

=(1,..1)=>1" iﬂ is feasible for (LP)!
a

= We have to add max{— ming, ; —a’+ s}, with >0
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Further bounds to add
——
3.Possibility :

n
Sufficient conditionis: g, =min; Zah ;>0
Jj=1

Consider the vector I -—- = A-(IT i] :L-(A-IT)Zi-al (1,....1)

al al 1

=(1,..1)=>1" L is feasible for (LpP)

a4

= We have to add 7min,[l -(Zau D+ g, withe >0

n o
4@2‘/ Business Computing and Operations Research WINFOR 961
Summary
——)

We always add:

. . 0 I B
ming —a, +S,—Il'11n£l[ L—a +eg—min;| —- Z[l S |t+e
] 1 n )
J=1

Note that if it holds M,>>0, the value above
becomes negative and matrix A is reduced
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10.3.7 Example

——)
= We now come back to our two introducing
examples 10.1.1 and 10.1.2

= We start with example 10.1.1

= This was the simple game “rock, scissors, and
paper”
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Example
= |
0o -1 1
A=|1 0 -1|=
-1 1 0
1. a, =max, min; q, ; = max{-1,-1-1}=-1=C=1+¢
2. min,; a,;; =—1and a” = min, max ; a; ; = min{l,1,1}=1

=C= max{—minu aij,—ao +£}= max{l,—1+8}= 1

3. min 1-0,1-0,1~0 =0=>C=¢
33 3

2
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We take C=1

Thus, we obtain the following matrix

0 -1 1 102 1 20
A=|1 0 -1|=A=[2 1 0|=>4"=|0 1 2
-1 1 0 02 1 2.0 1

Maximize 1" - 7 < Minimize —1" -7, wrt, AT -z <1Az >0

We solve the dual problem by introducing slackness variables
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Calculation...
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Calculation...

\S]
e
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S = OO

- o O 'O

e
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Calculation...

-3 1 -1
-4 1 =2

|

—_

—_
S = OO
- O O O
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-1
-2
-1

/5

1
1

Calculation...
Calculation...
Calculation...

1 0 -4

1‘000%

00 0 -3
0l0 0 -3

-1

RSN
o O
oS - O

—_ o O

ST
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Result

Firstrow: ¢’ —c} - A} E = x" =(%,%,%):;TT

M,=1-C=1-1=0.
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One can analogously show...

———)
10.3.8 Observation:

Assuming M° > 0. Then, z° is an optimal solution to the dual
0

of (LP) ifand only if #° =z°-M° = o is an optimal
T

strategy for player 2.
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Fundamental Theorem of matrix games
———)

10.3.9 Theorem:

1. There are always optimal strategies and for each pair of optimal
strategies x, and z° it holds: M, =z"" - A-x,=M".
2. Optimal strategies x, and z° always fulfill

min, e’ - A-x,=M,=M"=max,z" - A-¢’.
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Proof of Theorem 10.3.9
e ——
ad 1.
By adding the value C, we obtain an optimally solvable LP, whose optimal
solution always corresponds to an optimal strategy. Thus, we conclude
the general solvability of matrix games.
We assume we have a pair of optimal strategies x, and z°. Then, we know
that <L and ﬁ are objective function values of the primal and dual
0
program, respectively. Thus, we conclude M, =M".
Additionally, we know:
My=min, 7" A x, <7 A-x,<max 7" -A-x=M"

=>M,=min, 7" -A-x,=7""-A-x,=max 7" -A-x=M"
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Proof of Theorem 10.3.9

——
ad 2.
Let x, and 7° be optimal strategies. Then, we know
M,=min, 7" -A-x,=max_ 7," -A-x=M". In addition,

. T . ir
we have min_ 7" -A-x,<min,_ . e" -A-x,.
eles™

Obviously, we have V7 e sz = Zﬂ'[ -¢'. Thus, we obtain:
i=1

m

T
"
. T __orT _ 0 i _ 0 iT
min, 7 -A-x,=m 'A'xn—(Zﬂ', 'e] 'A'xn—Zﬂ', '(e ~A)~x0
i=l i=l

>min, e’ A-x,>min z'-A-x;=min, " A x
ees! T ces
Analogously, one can show max, 7, -A-x=max , , 7, -A-e’.
B ees
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Proof of Theorem 10.3.9

Hence, we can conclude:
min, ., €’ -A-x,=min_x"-A-x,=M,=M"=max 7" -A-x
e T x

= max 7 A-el
.

st
Other way round, if min , , e¢”-A-x,=max _ 7" -A-¢’
s ] s
for a pair of strategies x, and 7', we obtain
M,=min, max 7" -A-x<max 7" -A-x=max , , 7" A€
b eles
e Ax <min, 77 A-x, <max min, 77 - A-x=M"

=min,
feSs'

t n/,y:% Business Computing and Operations Research WINFOR 977

25



Proof of Theorem 10.3.9

= Since M, =M"° =

. T I \r i
M,=min, max 7 -A-x=max, 7 -A-x=max , T -A-e’

elestn

. T . .
=min, (,e" A-x,=min, 7" -A-x, =max, min, 7" -A-x=M"
e'es z x z
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10.3.10 Example

—

Example 9.1.2:

44 72 64 64

68 58 60 65

= =

64 68 72 175

56 64 61 59
1. a, =max, min, a, ; = max{44,58,60,59} = 60 = C =—60+¢&
2. min,;a,; =44 and ¢’ = min, max ; ¢, ; = min{72,68,75,64} = 64
= C=max{-min,; a,,,—a"+ £} = max{-44,~64 + £} =44
3. mind 12441251~ L o709~ Losol = 60— c =60+ ¢

4 4 4 4

We take C =-59
: /,az‘/ Business Computing and Operations Research WINFOR 979

The resulting program
——)
44 72 64 64 -15 13 5 5
68 58 60 65 9 -1 1 6| -
A-59= -59= =A
64 68 72 75 S 9 13 16
56 64 61 59 -3 5 2 0
-15 9 5 -3
g |13 -1 9
5 1 13 2
5 6 16 0
i //,y:% Business Computing and Operations Research WINFOR 980
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Optimal solution

——)
-15 9 5 -3
~ 13 -1 9 5
Byusing A" = )
5 1 13 2
5 6 16 0

we obtain the optimal solution
T
X= 0,1,0,l AT = 0,1,0,1
55 6 30
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T

s

Optimal solution — objective function value

——)
-5 135 5[0
:>7?T<A<x=[01()l]< oo 6)ls
'6°7°30)| 5 9 13 16 (1)
=305 2 0|5
0
1
=(%’2%0 ~Y6+3%0 Vet 1)'(5)
1
5

:(% 1 1% 1)

wl—ou|—o
v
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Results

- 1 5 1 1
Moziz—: T~= A
% 2 1)y 11
goo Ll S_ v 111
22 (rryys 1,7 1202
6 30 30 5
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Transformation

:M0=M°=§+59=615

=a,=60<M,=615=M"<3a’ =64

s
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