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10 Matrix games

� In what, follows, we provide a brief introduction 
to Game Theory

� Specifically, we consider specific games that are 
definable as Linear Programs

� This will lead to specific games, in the following 
denoted as Matrix Games

� The matrix, the basic structure of the game, 
defines the payments resulting from the chosen 
policies of the players

� Player are, for instance, persons, companies, 
states (i.e., their governments) 
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10.1 Introducing examples

� In what follows, we introduce two possible 

applications that are representative for Matrix 

Games

� By means of these applications, we will derive 

optimal strategies

Typical applications are

� Well-known two-person game “paper-rock-

scissors”

� Location planning

� As mentioned above, these games are 

completely defined by their respective matrices
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10.1.1 Application: “rock-paper-scissors”

� In each move, two players may either select rock, 
paper, or scissors

� These selections are simultaneously executed 
and are completely independent of each other

� In order to prevent simple optimal strategies of 
the players, the following priority rules are applied

Priority rules:

� Rock beats scissors, but is defeated by paper

� Scissors beats paper, but is defeated by rock

� Paper beats rock, but is defeated by scissors
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Thus, we obtain the results

P2/P1 P1 selects rock P1 selects 
scissors

P1 selects 
paper

P2 selects 
rock

draw P2 wins P1 wins

P2 selects 
scissors

P1 wins draw P2 wins

P2 selects 
paper

P2 wins P1 wins draw
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Matrix of the game
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Moves of the players

{ } { }
3 3

0 1 1

With the matrix of results 1 0 1 ,  

1 1 0

which is defined from the point of view of player 1, we define 

0,1  as the choice of player 1, and 0,1  as the choice 

of player 2.  Since each 

A

x y

− 
 

= − 
 − 

∈ ∈

3 3

1 2 3 1 2 3

1 1

player has to provide a definite decision, 

we require:

1 1
i i

i i

x x x x y y y y
= =

= + + = ∧ = + + =∑ ∑
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The result of a move

( )

3

3

Thus,  determines the possible results player 1 will obtain 

by his choice depending on the choice of player 2.

Alternatively,  determines the possible results player 1 

will obtain by th

T
T

A x IR

y A IR

⋅ ∈

⋅ ∈

( )

e choice of player 2 depending on the choice of 

player 1.

Thus, we can calculate the resulting payment of player 1 depending 

on first player's choice i.e.,  as well as on second player's choice 

i.e., 

x

( )  by .T
y y A x⋅ ⋅
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10.1.2 Application: Bilateral monopole

� Two vendors, namely A and B, want to erect an 

additional store in a certain common sales area

� Depending on their choices, vendors A and B 

attain different profits

� Specifically, the area is separated in altogether 

four regions and again the vendors take their 

decisions independently

� Again, we consider the situation out of the 

position of player A

� Player B pursues a minimization of the profit 

attained by player A
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The attainable profits of vendor A

B/A A selects 
region 1

A selects 
region 2

A selects 
region 3

A selects 
region 4

B selects 
region 1

44 72 64 64

B selects 
region 2

68 58 60 65

B selects 
region 3

64 68 72 75

B selects 
region 4

56 64 61 59
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Possible strategies

� Vendor A may chose a max-min strategy

� I.e., A tries to maximize the profit that is minimally 

attainable, or, with other words, tries to optimize 

its profit in a worst case constellation

� Vendor B may chose a min-max strategy

� I.e., B tries to minimize the profit that is maximally 

reachable by A, or, with other words, tries to 

minimize the profit that A attains in its best case 

constellation
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Thus, the max-min strategy provides for A

� A with max-min

� Region 1: min{44,68,64,56}=44

� Region 2: min{72,58,68,64}=58

� Region 3: min{64,60,72,61}=60

� Region 4: min{64,65,75,59}=59

� Thus, we obtain max{44,58,60,59}=60

� Consequently, applying the max-min strategy, A 

would take region 3 with the minimum profit of 

60
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The resulting profits of vendor A

B/A A selects 
region 1

A selects 
region 2

A selects 
region 3

A selects 
region 4

B selects 
region 1

44 72 64 64

B selects 
region 2

68 58 60 65

B selects 
region 3

64 68 72 75

B selects 
region 4

56 64 61 59
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The min-max strategy provides for B

� B with min-max

� Region 1: max{44,72,64,64}=72

� Region 2: max{68,58,60,65}=68

� Region 3: max{64,68,72,75}=75

� Region 4: max{56,64,61,59}=64

� Thus, we obtain min{72,68,75,64}=64

� Consequently, applying the min-max policy, B 

would select region 4, which limits the maximum 

profit of A to 64
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Consequence

B/A A selects 
region 1

A selects 
region 2

A selects 
region 3

A selects 
region 4

B selects 
region 1

44 72 64 64

B selects 
region 2

68 58 60 65

B selects 
region 3

64 68 72 75

B selects 
region 4

56 64 61 59

Business Computing and Operations Research 917

Observations

� Obviously, vendor A expects a minimum profit of 

60, but eventually attains 61

� On the other hand, vendor B was willing to 

“accept” a profit of A of “even 64”, or better 

spoken, has already calculated it

� However, what can we learn from this example?

� What does the obtained result provide about the 

quality of the max-min strategy applied by vendor 

A?

� Are there any provable optimal strategies?
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10.2 Basic definitions

10.2.1 Definition
A game is a private, economic, social, or political competition.

Components of such a game are

1. Players.  These may be persons, companies, states, 
nature, or coincidences 

2. Moves.  These are selected by players according to 
predetermined rules of the game out of a finite set of 
alternatives

3. Strategies.  They either determine the selection of 
activities entirely (pure strategy) or provide probabilities 
by that an activity is selected (mixed strategies). For the 
latter ones repetition is necessary

4. Payments.  They define resulting yields or losses of the 
opponents under specific moves
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Two-person zero-sum games

10.2.2 Definition

A game with two opponents, denoted as players, where 

one person wins what the other loses. It is denoted as a 
two-person zero-sum game or simpler just matrix 

game.  

Moreover, a two-person zero-sum game is denoted 
as symmetric if both players select their moves out of 

an identical reservoir of activities and if their roles are 
exchangeable.
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Assumption

10.2.3 Definition

In what follows, the payment matrix is always defined out 

of the view of player 1. In this connection, the ith column 
gives the profits according to the choice of player 2 if 

player 1 selects the ith alternative. Analogously, the jth
row gives the profits according to the choice of player 1 if 
player 2 selects the jth alternative. 
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Scope of strategies

10.2.4 Definition:
( ) { }

( ) ( )

Let 0 1 1  be the set of strategies, 

i.e., 

and  determine the probability of chosing the th move 

for 

 resp.  .  

Furthermore, pure strategies are characterized by the fact 

that

n n T

i i

n m

S x IR | x x

x π i

x S π S

= ∈ ≥ ∧ ⋅ =

∈ ∈

 probabilities are always 1.
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Consequences

10.2.5 Lemma:
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Further definition

10.2.6 Definition

{ }{ }

{ }{ }

( ) ( ){ } ( ){ }
( ) ( ){ } ( ){ }mn
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Fair games

10.2.7 Definition:

( ) ( ){ }

( ) ( ){ }  .max

 if optimal as denoted is   this,oaddition tIn 

  .min

 if optimal as denoted is strategy  ingcorrespondA 

  .0 iffair  as denoted is gameA 
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00
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0

n

m
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π
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x

M

∈=
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=
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Observations

� An optimal strategy of player 1 attains at least the 
maximum of all expected minimum profits if 
player 2 plays optimally, i.e., if player 2 
implements a worst case scenario for player 1

� Other way round, player 2 plays optimally if he is 
able to at least minimize the expected maximum 
profit of player 1 if this player acts optimally

� However, if the competing player does not apply 
such a strategy, there may be better results

� Note that the optimal strategy is generated for the 
case in that the opponent plays optimally
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Applied to the two examples

{ }{ } { }

{ }{ } { }

{ }{ } { }

{ }{ } { } 11,1,1min,...,1|,...,1|maxmin
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Consequence

( ) ( )

( )

( ) ( ) ( )
1 1

1

Let  be a strategy of player 1 and let  be a 

strategy of player 2 . Then, with , it holds:

We know that 1. Thus, it holds:

n m

m n

T
m m

T
T T j j

j j

j j

m

j

j

x S π S
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E x,π π A x π A x π e A x π e A x

π
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∈
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∑

( ) ( ) ( ) { }{ }
1

 

min | 1,...,

Thus, there exists a pure strategy of player 2 that is optimal 

for a given mixed strategy of player 1.  

m
T T

j j

j

j

E x,π π e A x e A x j m
=

= ⋅ ⋅ ⋅ ≥ ⋅ ⋅ ∈∑
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Analogous consequence

( ) ( )

( )

( ) ( )
1 11

1

Let  be a strategy of player 1 and let  be a strategy of 

player 2 . Then, with , it holds:

We know that 1. Thus, it h

n m

m n
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T T T T i
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1
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max 1

Thus, there exists a pure strategy of player 1 that is optimal 

for a given mixed strategy of player 2.  

n
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i

i
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=
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Conclusion

10.2.8 Lemma:

It holds:

a0≤M0≤M0≤a0
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Proof of Lemma 10.2.8

{ }{ }
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Proof of Lemma 10.2.8

( )( ) ( )

0 0

0 0

0

0 0 0

0

0

0 0

0 0

Let  and  be optimal strategies. Then, we can conclude:

max min min

max

Altogether, we obtain:  

T T

x π π

T T

x

x π

M π A x π A x

π A x π A x M

M M

a M M a

= ⋅ ⋅ = ⋅ ⋅

≤ ⋅ ⋅ ≤ ⋅ ⋅ =

⇒ ≤

≤ ≤ ≤
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10.3 Games and Linear Programming

� In what follows, we provide methods that 

generate optimal strategies for two-person 

games

� These methods are based on the principles of 

Linear Programming

� Consequently, at first, we provide an LP-problem 

definition 
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Preliminary work I

10.3.1 Lemma
( )

( ) MxAπMxA

IRMSx

T

π

m

n

≥⋅⋅⇔⋅≥⋅

∈∈

min1,...,1:holdsit  Then,

: and  Assume

 times

���

Business Computing and Operations Research 934

Proof of Lemma 10.3.1
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( ) ( )
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Preliminary work II

10.3.2 Lemma:

( )
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T

x

n

T
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Proof of Lemma 10.3.2

( )
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Preliminary work III

( )

0

0 0

0 0

0

Assume that  is an optimal strategy for player 1. Then, we 

know that it holds: min

By making use of Lemma 10.3.1, we conclude that it holds: 

1

Additionally, if it holds 0,  we de

⋅ ⋅ =

⋅ ≥ ⋅

>
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π A x M

A x M

M

( )

0
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1 0 1

0
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1 .  Since 0 0.
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m
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x
A x A x x

M
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Preliminary work IV

( )

( ) ( )

0

0

0

0

0

0 0
1 0

Assume that  is an optimal strategy for player 2. Then, we 

know max

By making use of Lemma 10.3.2, we conclude that it holds: 

1
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The Linear Program

We introduce the following Linear Program (P)

Minimize 1 ,  s.t. 1 0

as the LP that corresponds to the game matrix 

T
x A x x

A

⋅ ⋅ ≥ ∧ ≥
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Observations

10.3.3 Lemma:

( )

( )
( )

( )
( )

( )

1
1.  Let  be feasible for  with ,  then 0 and 

1

for  it holds: min .

2.  Other way round, if min 0,  

then it holds that  is feasible for , with ,

m
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T

n T

π S
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π S

x P M M
x

x M x x S π A x M

x S M π A x

x
x P x

M

∈

∈

= >
⋅

= ⋅ ∈ ∧ ⋅ ⋅ ≥

∈ ∧ = ⋅ ⋅ >

=

ɶ ɶ ɶ

ɶ ɶ

ɶ
 

1
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x
M
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Proof of Lemma 10.3.3

( )

( )

1
1.  Let  be feasible for  with 0 1

1

1
1 0 0.  Let 

1

1.

Thus, we can apply Lemma 10.3.1 min .

1
Additionally, we calculate 1 1 1

1

∈

= ⇒ ≥ ∧ ⋅ ≥
⋅

⇒ ⋅ > ⇒ = > = ⋅ ⇒ ⋅ = ⋅ ⋅
⋅
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⇒ ⋅ ⋅ ≥
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⋅

ɶ ɶ
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ɶ
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T
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T
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T T T

T
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x

x M x M x A x A M x
x
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π A x M

x M x
x

( )

1

and obviously 0.  Thus, .

=

≥ ∈ɶ ɶ
n

x

x x S
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Proof of Lemma 10.3.3

( )
( )

( )

2.  Let min 0 0 1 1

Since Lemma 10.3.1, it additionally holds 1,...,1

We define 1 1

Since 0, it holds that 0.

Consequently,  is feasible f

∈
∈ ∧ ⋅ ⋅ ≥ > ⇒ ≥ ∧ ⋅ =

⋅ ≥ ⋅

⋅
⇒ = ⇒ ⋅ = ≥ = ⇒ ⋅ ≥

> = ≥

ɶ ɶ ɶ ɶ

ɶ

ɶ ɶ

ɶ
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n T T
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x S π A x M x x

A x M

x A x M
x A x A x

M M M

x
M x

M

x ( )
1

or , with 1 1 .⋅ = ⋅ =
ɶT T x

P x
M M
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and for optimal solutions of the LP…

10.3.4 Lemma

0

0

0

1
1

:holdsit Then   LP. ofsolution  optimalan  be Let 

M
x

x

T
=⋅
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Proof of Lemma 10.3.4

( )

( )

0

1
At first, we show that  is a lower bound for the objective 

function 1  if the problem is solvable. Let  be some feasible 

solution for the LP. Furthermore, let ,  with 

1 . Thus, we conc
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x x

x
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Proof of Lemma 10.3.4

( ) ( )

0

0

0

Now, other way round, let  be an optimal solution to LP (P) as 

defined above.  

Consider now max min min ,  with 

. Thus, by making use of Lemma 10.3.3 2 , we know that 

1
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1
d  is a feasible solution to LP. Since  

is an optimal solution to LP, we obtain 1 1

1 1
1 .

1 1 1
Consequently, we get: 1 1 1 .
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Consequence

( )
( )

0

0
0

0

0 0

0 0 0

Obviously, if  is an optimal solution to the LP, we know that

 is a feasible strategy and we consider 
1

1,...,1
,..., .
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max min 0,  the problem is not solvable.  
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Main Cognition

10.3.5 Theorem:

0 0

0
0 0 0

0

Assuming 0. Then,  is an optimal solution to the LP

if and only if  is an optimal strategy for 
1
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Proof of Theorem 10.3.5

( )

�
0

0 0 0 0
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0
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Proof of Theorem 10.3.5
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optimal! is ~
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obtain  wely,Consequent

0

00

0000

n

T

π

T

π

T

π

Sx

MxAπ

MxAπMxAπ

∈⇒

=⋅⋅⇒

≥⋅⋅∧≤⋅⋅

⇒
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Proof of Theorem 10.3.5

( )
0 0 0

0
0 0 0

0

0 0
0

0 0

0

Let  be an optimal strategy. Then min .

Thus, we make use of Lemma 10.3.3, and obtain 

.  Consider .  

It holds: 1.  

Thus,  is feasible for LP. We ca

⇐

∈ ⋅ ⋅ =

⋅ ≥ =

⋅ = ⋅ ≥ =

ɶ ɶ

ɶ
ɶ

ɶ

n T

π
x S π A x M

x
A x M x

M

x M
A x A

M M

x

0 0
0

0 0 0

lculate 

1 1
1 1 .  

⋅
⋅ = ⋅ = =

ɶ ɶT

T T x x
x

M M M
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Proof of Theorem 10.3.5

0

0

1
We know that  is a lower bound for 1  

if  is a feasible solution for LP (P).

Consequently, we have shown that  is an optimal solution.

This completes the proof.

T
x

M

x

x

⋅
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The dual program

� The LP introduced above has the following dual 

( )

Maximize 1 ,

s.t.

1 0

Obviously, 0 is a feasible solution to 

T

T T

π

π A π

π D

⋅

⋅ ≤ ∧ ≥

⇒ =
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Further consequences

10.3.6 Corollary

The following propositions are equivalent

1. (P) has a feasible solution

2. (P) has an optimal solution 

3. (D) has an optimal solution

4. M0>0
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Proof of Corollary 10.3.6

( )

0

0

0 0 0 0 0

1 4 :

Let  be a feasible solution to . Then, we have 

1 and thus min 1

max min 0.  

Other way round, if max min 0.  

Thus, it exists : min .

We in

T

π

T

x π

T

x π

T

π

x LP

A x M π A x

M π A x M

M π A x

x M π A x A x M

⇔

⋅ ≥ = ⋅ ⋅ ≥ ⇒

= ⋅ ⋅ ≥ >

= ⋅ ⋅ >

= ⋅ ⋅ ⇒ ⋅ ≥ɶ ɶ ɶ

( )

0 0

0

0 0 0 0

0 0

1
troduce: 0

1 1
1  is feasible for .

x x
M

A x A x M x LP
M M

= ⋅ ≥

⇒ ⋅ = ⋅ ⋅ ≥ ⋅ = ⇒

ɶ

ɶ
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Proof of Corollary 10.3.6

( )

( )

1 2 3:

Obviously,  is always solvable, e.g., by making use of 

0,  we have at least one feasible solution.  

Thus, through Section 2.2, there remain two cases.  

Either  is unrestricted and, therefore,

⇔ ⇔

=

D

π

D ( )

( ) ( )

  not 

solvable or  and  have optimal solutions.  

This completes the proof.

LP

D LP
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What to do if it holds that M0≤0?

� Obviously, if M0>0, we have provided an instrument that 
generates optimal strategies

� But if M0≤0, nothing is won since LP (P) is obviously not 
solvable

� However, what can we do in such kind of situation?

� Obviously, it is matrix A that incorporates this problem.  
Thus, the question to be posed is how we can modify 

this matrix in order to ensure that M0>0
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Adding a constant to A

( ) ( )
1 1 1 1

1 1 1 1

1

Let us add a constant  to all matrix entries. We consider the 

result of a game, i.e., 

n m n m
T

i i, j j i i, j i j

j i j i

n m n m

j i i, j j i

j i j i

C

π A x π a C x π a C x

x π a C x

π

π

= = = =

= = = =

=

   
⋅ ⋅ = ⋅ + ⋅ = ⋅ + ⋅ ⋅   

   

= ⋅ ⋅ + ⋅ ⋅

∑ ∑ ∑ ∑

∑∑ ∑∑
����� 1 1

We obtain modified proceeds, but optimality is kept unchanged.

n m

j i i, j

j i

x π a C
= =

= ⋅ ⋅ +

⇒

∑∑
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Consequences

� By adding a constant, we may be able to obtain a 

matrix Amod that fulfills M0>0

� The game that corresponds to the modified 

matrix Amod has identical optimal strategies

� Consequently, we only have to retransform the 

resulting profits at the end of the calculation 

process

Business Computing and Operations Research 959

What to add?

� Fortunately, we know that M0 is just raised by the 

value/constant C that is added to A

� The problem is that M0 is unknown beforehand  

� Otherwise, we just would take -M0+ε, with ε>0

� Consequently, we may take -a0+ε (ε>0), which is 

a lower bound of M0
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Further bounds to add

( ) ( )

( ) ( )

{ } 0 with ,,minmax add  tohave We

!LPfor  feasible is 
1

11,...,1

1,...,1
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1 vector heConsider t
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:yPossibilit 2.
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0000
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Further bounds to add

( ) ( )

( ) ( )

0 with ,
1

min add  tohave We

!LPfor  feasible is 
1

11,...,1

1,...,1
1

1
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1
1
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:yPossibilit 3.

1

1

1

1111

1

1

>+























⋅−⇒

⋅⇒=

⋅⋅≥⋅⋅=







⋅⋅⇒⋅

>=

∑

∑

=

=

εεa
n

a

a
a

A
aa

A
a

a  a

n

j

i,ji

T

TTT

n

j

i,ji

Business Computing and Operations Research 962

Summary

We always add:













+























⋅−+−−+− ∑

=

εa
n

εaaεa
n

j

i,jiji

1

0

,0

1
min,,min,min

Note that if it holds M0>>0, the value above 

becomes negative and matrix A is reduced
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10.3.7 Example

� We now come back to our two introducing 

examples 10.1.1 and 10.1.2

� We start with example 10.1.1

� This was the simple game “rock, scissors, and 

paper”
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{ }

{ }

{ } { }
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We take C=1

 variablesslackness gintroducinby  problem dual  thesolve We

01
~

  w.r.t.,,1 Minimize1 Maximize
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~

011

101

110

matrix following obtain the  weThus,
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Calculation…

1001021

0102101

0010211

0001110 −−−

Business Computing and Operations Research 967

Calculation…

1021401

0102101

0010211

0011101

−−−

−
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Calculation…

1429003

0102101

0214011

0113000

−

−−−

−−
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Calculation…

9
1

9
4

9
2100

3
1

0102101

0214011

0113000

−

−−−

−−
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Calculation…

9
1

9
4

9
2100

3
1

9
2

9
1

9
4010

3
1

9
4

9
2

9
1001

3
1

0113000

−

−

−

−−
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Calculation…

9
1

9
4

9
2100

3
1

9
2

9
1

9
4010

3
1

9
4

9
2

9
1001

3
1

3
1

3
1

3
10001

−

−

−
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Result

( )

.0111

3
1

3
1

3
1  :rowFirst 

0

1

=−=−=

==⇒⋅⋅−
−

CM

π,,xEAcc
TT

B

T

B

T
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One can analogously show…

10.3.8 Observation:

( )

0 0

0
0 0 0

0

Assuming 0. Then,  is an optimal solution to the dual 

of  if and only if  is an optimal 
1

strategy for player 2.

T

M π

π
LP π π M

π

>

= ⋅ =
⋅

ɶ
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Fundamental Theorem of matrix games

10.3.9 Theorem:

0 0 0

0 0 0

0

0

0 0

0 0

1.  There are always optimal strategies and for each pair of optimal 

strategies  and  it holds: .

2.  Optimal strategies  and  always fulfill 

min max .

T

iT T j

i j

x π M π A x M

x π

e A x M M π A e

= ⋅ ⋅ =

⋅ ⋅ = = = ⋅ ⋅
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Proof of Theorem 10.3.9

ad 1.  

By adding the value , we obtain an optimally solvable LP, whose optimal 

solution always corresponds to an optimal strategy. Thus, we conclude 

the general solvability of matrix games.  

We assum

C

0

0

0

0

0

0

e we have a pair of optimal strategies  and . Then, we know 

1 1
that  and  are objective function values of the primal and dual 

program, respectively. Thus, we conclude .  

Additionally, we 

x π

M M

M M=

0 0 0

0 0 0

0 0 0

0 0 0

know: 

min max

min max

T T T

π x

T T T

π x

M π A x π A x π A x M

M π A x π A x π A x M

= ⋅ ⋅ ≤ ⋅ ⋅ ≤ ⋅ ⋅ =

⇒ = ⋅ ⋅ = ⋅ ⋅ = ⋅ ⋅ =
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Proof of Theorem 10.3.9

( )

( )

0

0

0

0 0 0

0 0

1

ad 2.  

Let  and  be optimal strategies. Then, we know 

min max . In addition, 

we have min min .

Obviously, we have : . Thus, we obtain:

min

mi

T T

x

T iT

e S

m
m i

i

i

T

π

x

M A x A x M

A x e A x

S e

π

π

π

π

π π

π

π π π

∈

=

= ⋅ ⋅ = ⋅ ⋅ =

⋅ ⋅ ≤ ⋅ ⋅

∀ ∈ = ⋅∑

( )

( ) ( )

( )

0 0 0

0 0 0 0

1 1

0 0 0

0 0

min min min

Analogously, one can show max max .

m mi i

nj

T
m m

T i iT

i i

i i

iT T iT

πe S e S

T T j

x e S

A x π A x e A x e A x

e A x π A x e A x

A x A e

π π

π π

= =

∈ ∈

∈

 
⋅ ⋅ = ⋅ ⋅ = ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ 

 

≥ ⋅ ⋅ ⇒ ⋅ ⋅ = ⋅ ⋅

⋅ ⋅ = ⋅ ⋅

∑ ∑
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Proof of Theorem 10.3.9

( )

( )

( ) ( )

0 0

0 0 0

0

1

1

1

1

0

Hence, we can conclude:

min min max

max

Other way round, if min max

for a pair of strategies  and , we obtain 

min max

mi

nj

m ni j

iT T T

π xe S

T j

e S

iT T j

e S e S

T

x

e A x π A x M M π A x

π A e

e A x π A e

x π

M Aπ π

∈

∈

∈ ∈

⋅ ⋅ = ⋅ ⋅ = = = ⋅ ⋅

= ⋅ ⋅
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= ⋅ ( )

( )

1 1

0

1 1

max max

min min max min
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Proof of Theorem 10.3.9

( )

( )
0

11

11

0

0

0

minmaxminmin

maxmaxmaxmin

 Since

MxAxAxAe

eAπxAπxAM
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10.3.10 Example

{ }

{ }

{ } { }

0 ,

0

,

0

Example 9.1.2:

44 72 64 64

68 58 60 65

64 68 72 75

56 64 61 59

1.  max min max 44,58,60,59 60 60

2.  min 44 and min max min 72,68,75,64 64

max min , max 44, 64 4

i j i j

i, j i, j i j i j

i, j i, j

A

a a C

a a a

C a a

ε

ε ε

 
 
 = ⇒
 
 
 

= = = ⇒ = − +

= = = =

⇒ = − − + = − − + = − 4

1 1 1 1
3.  min 244, 251, 279, 240 60 60

4 4 4 4

We take 59

C

C

ε
 

− ⋅ − ⋅ − ⋅ − ⋅ = − ⇒ = − + 
 

= −
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The resulting program
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Optimal solution

Business Computing and Operations Research 982
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