## 10 Matrix games

- In what, follows, we provide a brief introduction to Game Theory
- Specifically, we consider specific games that are definable as Linear Programs
- This will lead to specific games, in the following denoted as Matrix Games
- The matrix, the basic structure of the game, defines the payments resulting from the chosen policies of the players
- Player are, for instance, persons, companies, states (i.e., their governments)



# 10.1.1 Application: "rock-paper-scissors"

- In each move, two players may either select rock, paper, or scissors
- These selections are simultaneously executed and are completely independent of each other
- In order to prevent simple optimal strategies of the players, the following priority rules are applied

## Priority rules:

- Rock beats scissors, but is defeated by paper
- Scissors beats paper, but is defeated by rock
- Paper beats rock, but is defeated by scissors





## 10.1 Introducing examples

- In what follows, we introduce two possible applications that are representative for Matrix Games
- By means of these applications, we will derive optimal strategies

Typical applications are

- Well-known two-person game "paper-rockscissors"
- Location planning
- As mentioned above, these games are completely defined by their respective matrices





# Thus, we obtain the results

| P <sub>2</sub> /P <sub>1</sub>  | P <sub>1</sub> selects rock | P <sub>1</sub> selects scissors | P <sub>1</sub> selects paper |
|---------------------------------|-----------------------------|---------------------------------|------------------------------|
| P <sub>2</sub> selects rock     | draw                        | P <sub>2</sub> wins             | P <sub>1</sub> wins          |
| P <sub>2</sub> selects scissors | P <sub>1</sub> wins         | draw                            | P <sub>2</sub> wins          |
| P <sub>2</sub> selects paper    | P <sub>2</sub> wins         | P <sub>1</sub> wins             | draw                         |





## Matrix of the game

Thus, we obtain the following matrix that determines the results of the first player.

Specifically, we define:

1 = Player 1 wins; 0 = draw; -1 = Player 2 wins

$$A = \begin{pmatrix} 0 & -1 & 1 \\ 1 & 0 & -1 \\ -1 & 1 & 0 \end{pmatrix}$$

Business Computing and Operations Research WINFOR 907

### The result of a move

Thus,  $A \cdot x \in IR^3$  determines the possible results player 1 will obtain by his choice depending on the choice of player 2.

Alternatively,  $(y^T \cdot A)^T \in IR^3$  determines the possible results player 1 will obtain by the choice of player 2 depending on the choice of player 1.

Thus, we can calculate the resulting payment of player 1 depending on first player's choice (i.e., x) as well as on second player's choice (i.e., y) by  $y^T \cdot A \cdot x$ .





# Moves of the players

With the matrix of results  $A = \begin{bmatrix} 1 & 0 & -1 \\ -1 & 1 & 0 \end{bmatrix}$ ,

which is defined from the point of view of player 1, we define  $x \in \{0,1\}^3$  as the choice of player 1, and  $y \in \{0,1\}^3$  as the choice of player 2. Since each player has to provide a definite decision, we require:

$$\sum_{i=1}^{3} x_i = x_1 + x_2 + x_3 = 1 \land \sum_{i=1}^{3} y_i = y_1 + y_2 + y_3 = 1$$





# 10.1.2 Application: Bilateral monopole

- Two vendors, namely A and B, want to erect an additional store in a certain common sales area
- Depending on their choices, vendors A and B attain different profits
- Specifically, the area is separated in altogether four regions and again the vendors take their decisions independently
- Again, we consider the situation out of the position of player A
- Player B pursues a minimization of the profit attained by player A





# The attainable profits of vendor A

| B selects          |    |    | region 3 | region 4 |
|--------------------|----|----|----------|----------|
| region 1           | 44 | 72 | 64       | 64       |
| B selects region 2 | 68 | 58 | 60       | 65       |
| B selects region 3 | 64 | 68 | 72       | 75       |
| B selects region 4 | 56 | 64 | 61       | 59       |

# Thus, the max-min strategy provides for A

Business Computing and Operations Research WINFOR 911

- A with max-min
  - Region 1: min{44,68,64,56}=44
  - Region 2: min{72,58,68,64}=58
  - Region 3: min{64,60,72,61}=60
  - Region 4: min{64,65,75,59}=59
- Thus, we obtain max{44,58,60,59}=60
- Consequently, applying the max-min strategy, A would take region 3 with the minimum profit of 60



Business Computing and Operations Research WINFOR 913

# **Possible strategies**

- Vendor A may chose a max-min strategy
- I.e., A tries to maximize the profit that is minimally attainable, or, with other words, tries to optimize its profit in a worst case constellation
- Vendor B may chose a min-max strategy
- I.e., B tries to minimize the profit that is maximally reachable by A, or, with other words, tries to minimize the profit that A attains in its best case constellation



Business Computing and Operations Research WINFOR 912



# The resulting profits of vendor A

| B/A                | A selects region 1 | A selects region 2 | A selects region 3 | A selects region 4 |
|--------------------|--------------------|--------------------|--------------------|--------------------|
| B selects region 1 | <u>44</u>          | 72                 | 64                 | 64                 |
| B selects region 2 | 68                 | <u>58</u>          | <u>60</u>          | 65                 |
| B selects region 3 | 64                 | 68                 | 72                 | 75                 |
| B selects region 4 | 56                 | 64                 | 61                 | <u>59</u>          |

## The min-max strategy provides for B

- B with min-max
  - Region 1: max{44,72,64,64}=72
  - Region 2: max{68,58,60,65}=68
  - Region 3: max{64,68,72,75}=75
  - Region 4: max{56,64,61,59}=64
- Thus, we obtain min{72,68,75,64}=64
- Consequently, applying the min-max policy, B would select region 4, which limits the maximum profit of A to 64

Business Computing and Operations Research WINFOR 915



### **Observations**

- Obviously, vendor A expects a minimum profit of 60, but eventually attains 61
- On the other hand, vendor B was willing to "accept" a profit of A of "even 64", or better spoken, has already calculated it
- However, what can we learn from this example?
- What does the obtained result provide about the quality of the max-min strategy applied by vendor Α?
- Are there any provable optimal strategies?





# Consequence

| B/A                | A selects region 1 | A selects region 2 | A selects region 3 | A selects region 4 |
|--------------------|--------------------|--------------------|--------------------|--------------------|
| B selects region 1 | 44                 | 72                 | 64                 | 64                 |
| B selects region 2 | 68                 | 58                 | 60                 | 65                 |
| B selects region 3 | 64                 | 68                 | 72                 | 75                 |
| B selects region 4 | 56                 | 64                 | <u>61</u>          | 59                 |

# 10.2 Basic definitions

Business Computing and Operations Research WINFOR 916

#### 10.2.1 Definition

A game is a private, economic, social, or political competition. Components of such a game are

- 1. Players. These may be persons, companies, states, nature, or coincidences
- 2. Moves. These are selected by players according to predetermined rules of the game out of a finite set of . alternatives
- 3. Strategies. They either determine the selection of activities entirely (pure strategy) or provide probabilities by that an activity is selected (mixed strategies). For the latter ones repetition is necessary
- 4. Payments. They define resulting yields or losses of the opponents under specific moves





## Two-person zero-sum games

#### 10.2.2 Definition

A game with two opponents, denoted as players, where one person wins what the other loses. It is denoted as a two-person zero-sum game or simpler just matrix game.

Moreover, a two-person zero-sum game is denoted as symmetric if both players select their moves out of an identical reservoir of activities and if their roles are exchangeable.



Business Computing and Operations Research WINFOR 919



## Scope of strategies

#### 10.2.4 Definition:

Let  $S^{(n)} = \{x \in IR^n \mid x \ge 0 \land 1^T \cdot x = 1\}$  be the set of strategies, i.e.,

 $x_i$  and  $\pi_i$  determine the probability of chosing the *i*th move for

$$x \in S^{(n)}$$
 resp.  $\pi \in S^{(m)}$ .

Furthermore, pure strategies are characterized by the fact that probabilities are always 1.





## **Assumption**

#### 10.2.3 Definition

In what follows, the payment matrix is always defined out of the view of player 1. In this connection, the ith column gives the profits according to the choice of player 2 if player 1 selects the ith alternative. Analogously, the ith row gives the profits according to the choice of player 1 if player 2 selects the ith alternative.



Business Computing and Operations Research WINFOR 920

## Consequences

#### 10.2.5 Lemma:

- 1. Assuming the players act independently, we know  $P\left(\begin{array}{c} \text{Player 1 choses alternative no. } i \land \\ \text{Player 2 choses alternative no. } j \end{array}\right) = x_i \cdot \pi_j$
- 2. The expected value of the payments is determined by:

$$E(x,\pi) = \sum_{i=1}^{n} \sum_{j=1}^{m} x_{i} \cdot \pi_{j} \cdot a_{i,j} = \sum_{i=1}^{n} \left( \sum_{j=1}^{m} \pi_{j} \cdot a_{i,j} \right) \cdot x_{i} = \pi^{T} \cdot A \cdot x$$





## **Further definition**

#### 10.2.6 Definition

In what follows, we define  $a_0 = \max \{ \min \{ a_{i,j} \mid i = 1,..., m \} \mid j = 1,..., n \}$  $a^0 = \min\{\max\{a_{i,j} \mid j = 1,...,n\} \mid i = 1,...,m\}$ and  $M_0 = \max \{ \min \{ E(x, \pi) | \pi \in S^{(m)} \} | x \in S^{(n)} \}$  $M^{0} = \min \left\{ \max \left\{ E(x, \pi) \mid x \in S^{(n)} \right\} \mid \pi \in S^{(m)} \right\}$ 





#### Business Computing and Operations Research WINFOR 923

## **Observations**

- An optimal strategy of player 1 attains at least the maximum of all expected minimum profits if player 2 plays optimally, i.e., if player 2 implements a worst case scenario for player 1
- Other way round, player 2 plays optimally if he is able to at least minimize the expected maximum profit of player 1 if this player acts optimally
- However, if the competing player does not apply such a strategy, there may be better results
- Note that the optimal strategy is generated for the case in that the opponent plays optimally





# Fair games

#### 10.2.7 Definition:

A game is denoted as fair if  $M_0 = 0$ .

A corresponding strategy  $x_0$  is denoted as optimal if  $M_0 = \min \{ E(x_0, \pi) | \pi \in S^{(m)} \}.$ 

In addition to this,  $\pi^0$  is denoted as optimal if  $M^{0} = \max\{E(x,\pi^{0})|x \in S^{(n)}\}\$ 



Business Computing and Operations Research WINFOR 924

# Applied to the two examples

$$A = \begin{pmatrix} 44 & 72 & 64 & 64 \\ 68 & 58 & 60 & 65 \\ 64 & 68 & 72 & 75 \\ 56 & 64 & 61 & 59 \end{pmatrix}$$

$$a_0 = \max \{ \min\{a_{i,j} \mid i = 1, ..., m\} \mid j = 1, ..., n\} = \max\{44, 58, 60, 59\} = 60$$

$$\land a^0 = \min \{ \max\{a_{i,j} \mid j = 1, ..., n\} \mid i = 1, ..., m\} = \min\{72, 68, 75, 64\} = 64$$

$$A = \begin{pmatrix} 0 & -1 & 1 \\ 1 & 0 & -1 \\ -1 & 1 & 0 \end{pmatrix}$$

$$a_0 = \max \{ \min\{a_{i,j} \mid i = 1, ..., m\} \mid j = 1, ..., n\} = \max\{-1, -1, -1\} = -1$$

$$\land a^0 = \min \{ \max\{a_{i,j} \mid j = 1, ..., n\} \mid i = 1, ..., m\} = \min\{1, 1, 1\} = 1$$
Business Computing and Operations Research WINFOR 926

## Consequence

Let  $x \in S^{(n)}$  be a strategy of player 1 and let  $\pi \in S^{(m)}$  be a strategy of player 2. Then, with  $A \in IR^{(m \times n)}$ , it holds:

$$E(x,\pi) = \pi^T \cdot A \cdot x = \pi^T \cdot (A \cdot x) = \left(\sum_{j=1}^m \pi_j \cdot e^j\right)^T \cdot A \cdot x = \sum_{j=1}^m \pi_j \cdot \left(e^j\right)^T \cdot A \cdot x$$

We know that  $\sum_{j=1}^{m} \pi_{j} = 1$ . Thus, it holds:

$$E(x,\pi) = \sum_{j=1}^{m} \pi_{j} \cdot (e^{j})^{T} \cdot A \cdot x \ge \min\left\{ (e^{j})^{T} \cdot A \cdot x \mid j \in \{1,...,m\} \right\}$$

Thus, there exists a pure strategy of player 2 that is optimal for a given mixed strategy of player 1.



Business Computing and Operations Research WINFOR 927



## Conclusion

#### 10.2.8 Lemma:

It holds:

$$a_0 \leq M_0 \leq M^0 \leq a^0$$



Business Computing and Operations Research WINFOR 929

## **Analogous consequence**

Let  $x \in S^{(n)}$  be a strategy of player 1 and let  $\pi \in S^{(m)}$  be a strategy of player 2. Then, with  $A \in IR^{(m \times n)}$ , it holds:

$$E(x,\pi) = \pi^T \cdot A \cdot x = \pi^T \cdot (A \cdot x) = \pi^T \cdot \left(\sum_{i=1}^n a_{j,i} \cdot x_i\right)_{1 \le i \le m} = \pi^T \cdot \sum_{i=1}^n x_i \cdot e^i \cdot A$$

We know that  $\sum_{i=1}^{n} x_i = 1$ . Thus, it holds:

$$E(x,\pi) = \pi^{T} \cdot \sum_{i=1}^{n} x_{i} \cdot e^{i} \cdot A \leq \max \left\{ \pi^{T} \cdot A \cdot e^{i} \mid i \in \{1,...,n\} \right\}$$

Thus, there exists a pure strategy of player 1 that is optimal for a given mixed strategy of player 2.



Business Computing and Operations Research WINFOR 928

### Proof of Lemma 10.2.8

$$a_0 = \max \left\{ \min \left\{ a_{i,j} | i = 1, ..., m \right\} | j = 1, ..., n \right\}$$

$$= \max_{i \in \{1, ..., n\}} \min_{j \in \{1, ..., m\}} \left( \left( e^j \right)^T \cdot A \right) \cdot e^i$$

$$= \max_{e_i} \min_{e_j} \left( \left( e^j \right)^T \cdot A \right) \cdot e^i$$

$$\leq \max_{e_i} \min_{e_j} \left( \left( e^j \right)^T \cdot A \right) \cdot x = M_0$$

$$M^{0} = \min_{\pi} \max_{x} \pi^{T} \cdot (A \cdot x) \leq \min_{e_{j}} \max_{e_{i}} ((e^{j})^{T} \cdot A) \cdot e^{i}$$

$$= \min_{j \in \{1, \dots, m\}} \max_{i \in \{1, \dots, n\}} ((e^{j})^{T} \cdot A) \cdot e^{i}$$

$$= \min_{x \in \{1, \dots, m\}} \max_{i \in \{1, \dots, m\}} |i = 1, \dots, m\} = a^{0}$$



### Proof of Lemma 10.2.8

Let  $x_0$  and  $\pi_0$  be optimal strategies. Then, we can conclude:

$$M_0 = \max_{x} \left( \min_{\pi} \left( \pi^T \cdot A \right) \cdot x \right) = \min_{\pi} \left( \pi^T \cdot A \right) \cdot x_0$$
  
$$\leq \pi_0^T \cdot A \cdot x_0 \leq \max_{x} \pi_0^T \cdot A \cdot x = M^0$$

$$\Rightarrow M_0 \leq M^0$$

Altogether, we obtain:  $a_0 \le M_0 \le M^0 \le a^0$ 

Business Computing and Operations Research WINFOR 931



## Preliminary work I

#### 10.3.1 Lemma

Assume  $x \in S^{(n)}$  and  $M \in IR$ :

Then, it holds:  $A \cdot x \ge M \cdot \underbrace{(1,...,1)}_{m \text{ times}} \Leftrightarrow \min_{\pi} \pi^T \cdot A \cdot x \ge M$ 





## 10.3 Games and Linear Programming

- In what follows, we provide methods that generate optimal strategies for two-person
- These methods are based on the principles of Linear Programming
- Consequently, at first, we provide an LP-problem definition



Business Computing and Operations Research WINFOR 932

## Proof of Lemma 10.3.1

$$A \cdot x \ge M \cdot \underbrace{\left(1, \dots, 1\right)}_{m \text{ times}}$$

$$\Leftrightarrow \forall \pi \in S^{(m)}: \pi^T \cdot A \cdot x \ge \pi^T \cdot M \cdot (1,...,1), \text{ with } \sum_{j=1}^m \pi_j = 1$$

$$\Leftrightarrow \forall \pi \in S^{(m)} : \pi^T \cdot A \cdot x \ge M \cdot \sum_{j=1}^m \pi_j$$

$$\Leftrightarrow \forall \pi \in S^{(m)} : \pi^T \cdot A \cdot x \ge M \iff \min_{\pi} \pi^T \cdot A \cdot x \ge M$$





## **Preliminary work II**

#### 10.3.2 Lemma:

Assume  $x \in S^{(n)}$  and  $M \in IR$ :

Then, it holds:  $\pi^T \cdot A \le M \cdot (\underbrace{1,...,1}) \iff \max_{x} \pi^T \cdot A \cdot x \le M$ 



Business Computing and Operations Research WINFOR 935



## **Preliminary work III**

Assume that  $x_0$  is an optimal strategy for player 1. Then, we know that it holds:  $\min_{\pi} \pi^T \cdot A \cdot x_0 = M_0$ 

By making use of Lemma 10.3.1, we conclude that it holds:

$$A \cdot x_0 \ge M_0 \cdot 1_{(m)}$$

Additionally, if it holds  $M_0 > 0$ , we define  $x_1 = \frac{x_0}{M_0}$  and obtain

$$A \cdot x_1 = A \cdot \frac{x_0}{M_0} \ge 1_{(m)}$$
. Since  $x_0 \ge 0 \Longrightarrow x_1 \ge 0$ .



Business Computing and Operations Research WINFOR 937



## Proof of Lemma 10.3.2

$$\pi^T \cdot A \leq M \cdot \underbrace{(1,...,1)}_{n \text{ times}}$$

$$\Leftrightarrow \forall x \in S^{(n)}: \pi^T \cdot A \cdot x \leq M \cdot (1,...,1) \cdot x$$
, with  $\sum_{i=1}^n x_i = 1$ 

$$\Leftrightarrow \forall x \in S^{(n)} : \pi^T \cdot A \cdot x \leq M \cdot \sum_{i=1}^n x_i$$

$$\Leftrightarrow \forall x \in S^{(n)} : \pi^T \cdot A \cdot x \le M \iff \max_{x} \pi^T \cdot A \cdot x \le M$$

Business Computing and Operations Research WINFOR 936

# **Preliminary work IV**

Assume that  $\pi_0$  is an optimal strategy for player 2. Then, we know max  $(\pi_0)^T \cdot A \cdot x = M^0$ 

By making use of Lemma 10.3.2, we conclude that it holds:

$$\left(\pi_{0}\right)^{T} \cdot A \leq M^{0} \cdot 1_{(n)}$$

Additionally, if it holds  $M^0 > 0$ , we define  $\pi_1 = \frac{\pi_0}{M^0}$  and obtain

$$(\pi_1)^T \cdot A = \left(\frac{\pi_0}{M^0}\right)^T \cdot A \le 1_{(n)}.$$
 Since  $\pi_0 \ge 0 \Rightarrow \pi_1 \ge 0$ .





## **The Linear Program**

We introduce the following Linear Program (P)

Minimize  $1^T \cdot x$ , s.t.  $A \cdot x \ge 1 \land x \ge 0$ 

as the LP that corresponds to the game matrix A

Business Computing and Operations Research WINFOR 939

## Proof of Lemma 10.3.3

- 1. Let x be feasible for (P) with  $M = \frac{1}{1^T \cdot x} \Rightarrow x \ge 0 \land A \cdot x \ge 1$
- $\Rightarrow 1^T \cdot x > 0 \Rightarrow M = \frac{1}{1^T \cdot x} > 0.$  Let  $\tilde{x} = M \cdot x \Rightarrow A \cdot \tilde{x} = A \cdot M \cdot x$  $= M \cdot A \cdot x \ge M \cdot 1.$

Thus, we can apply Lemma 10.3.1  $\Rightarrow \min_{\pi \in S^{(m)}} \pi^T \cdot A \cdot \tilde{x} \geq M$ .

Additionally, we calculate  $1^T \cdot \tilde{x} = 1^T \cdot M \cdot x = 1^T \cdot \frac{1}{1^T \cdot x} \cdot x = 1$ and obviously  $\tilde{x} \ge 0$ . Thus,  $\tilde{x} \in S^{(n)}$ .



Business Computing and Operations Research WINFOR 941

### **Observations**

#### 10.3.3 Lemma:

- 1. Let x be feasible for (P) with  $M = \frac{1}{1^T \cdot x}$ , then M > 0 and for  $\tilde{x} = M \cdot x$  it holds:  $\tilde{x} \in S^{(n)} \wedge \min_{x \in S^{(n)}} \pi^T \cdot A \cdot \tilde{x} \ge M$ .
- 2. Other way round, if  $\tilde{x} \in S^{(n)} \wedge M = \min_{x \in S^{(m)}} \pi^T \cdot A \cdot \tilde{x} > 0$ , then it holds that x is feasible for (P), with  $x = \frac{x}{M}$ , and  $1^T \cdot x = \frac{1}{M}$ .



Business Computing and Operations Research WINFOR 940

### Proof of Lemma 10.3.3

2. Let  $\tilde{x} \in S^{(n)} \wedge \min_{\pi \in S^{(m)}} \pi^T \cdot A \cdot \tilde{x} \ge M > 0 \Longrightarrow \tilde{x} \ge 0 \wedge 1^T \cdot \tilde{x} = 1$ 

Since Lemma 10.3.1, it additionally holds  $A \cdot \tilde{x} \ge M \cdot (1,...,1)$ 

 $\Rightarrow$  We define  $x = \frac{\tilde{x}}{M} \Rightarrow A \cdot x = \frac{A \cdot \tilde{x}}{M} \ge \frac{M}{M} = 1 \Rightarrow A \cdot x \ge 1$ 

Since M > 0, it holds that  $x = \frac{\tilde{x}}{M} \ge 0$ .

Consequently, x is feasible for (P), with  $1^T \cdot x = 1^T \cdot \frac{\tilde{x}}{M} = \frac{1}{M}$ .



## and for optimal solutions of the LP...

#### 10.3.4 Lemma

Let  $x_0$  be an optimal solution of LP. Then it holds:

$$1^T \cdot x_0 = \frac{1}{M_0}$$

Business Computing and Operations Research WINFOR 943



## Proof of Lemma 10.3.4

Now, other way round, let  $x_0$  be an optimal solution to LP (P) as defined above.

Consider now  $M_0 = \max_x \min_{\pi} \pi^T \cdot A \cdot x = \min_{\pi} \pi^T \cdot A \cdot \tilde{x}$ , with  $\tilde{x} \in S^{(n)}$ . Thus, by making use of Lemma 10.3.3(2), we know that  $M_0 = \frac{1}{1^T \cdot \tilde{x}}$  and  $x_1 = \tilde{x} \cdot \frac{1}{M_0}$  is a feasible solution to LP. Since  $x_0$ 

is an optimal solution to LP, we obtain  $1^T \cdot x_0 \le 1^T \cdot x_1$ 

$$= \underbrace{1^T \cdot \tilde{\chi}}_{=1, \text{ since } \tilde{\chi} \in S^{(n)}} \cdot \frac{1}{M_0} = \frac{1}{M_0}.$$

Consequently, we get:  $1^T \cdot x_0 \le \frac{1}{M_0} \wedge 1^T \cdot x_0 \ge \frac{1}{M_0} \Rightarrow 1^T \cdot x_0 = \frac{1}{M_0}$ .



Business Computing and Operations Research WINFOR 945

### Proof of Lemma 10.3.4

At first, we show that  $\frac{1}{M_0}$  is a lower bound for the objective function  $1^T \cdot x$  if the problem is solvable. Let x be some feasible solution for the LP. Furthermore, let  $\tilde{x} = \frac{x}{M(x)}$ , with

$$M(x) = 1^{T} \cdot x$$
. Thus, we conclude  $A \cdot \tilde{x} = \frac{A \cdot x}{M(x)} \ge \frac{1}{M(x)}$ 

$$\Rightarrow \min_{\pi} \pi^{T} \cdot A \cdot \tilde{x} \ge \frac{1}{M(x)}$$
. It holds:  $M_{0} = \max_{x} \min_{\pi} \pi^{T} \cdot A \cdot x$ 

$$\Rightarrow \frac{1}{M(x)} = \frac{1}{1^T \cdot x} \le M_0 \iff 1^T \cdot x \ge \frac{1}{M_0}.$$

Business Computing and Operations Research WINFOR 944

## Consequence

Obviously, if  $x_0$  is an optimal solution to the LP, we know that

$$\tilde{x} = \frac{x_0}{1^T \cdot x_0} = x_0 \cdot M$$
 is a feasible strategy and we consider

$$A \cdot \tilde{x} = A \cdot \frac{x_0}{1^T \cdot x_0} = \frac{A \cdot x_0}{1^T \cdot x_0} \ge \frac{(1, ..., 1)}{1^T \cdot x_0} = (M, ..., M).$$

Since x is minimally chosen, we get a maximal M and therefore (M,...,M) is maximized. Consequently, we just maximize  $\min_{\pi} \pi^T \cdot A \cdot x$ . Unfortunately, if A is defined that way that  $M_0 = \max_x \min_{\pi} \pi^T \cdot A \cdot x \le 0$ , the problem is not solvable.



# **Main Cognition**

### 10.3.5 Theorem:

Assuming  $M_0 > 0$ . Then,  $x_0$  is an optimal solution to the LP if and only if  $\tilde{x}_0 = x_0 \cdot M_0 = \frac{x_0}{1^T \cdot x_0}$  is an optimal strategy for player 1.



Business Computing and Operations Research WINFOR 947



## **Proof of Theorem 10.3.5**

Consequently, we obtain

$$\min_{\pi} \pi^T \cdot A \cdot \widetilde{x}_0 \le M_0 \wedge \min_{\pi} \pi^T \cdot A \cdot \widetilde{x}_0 \ge M_0$$

$$\Rightarrow \min_{\pi} \pi^T \cdot A \cdot \widetilde{x}_0 = M_0$$

$$\Rightarrow \tilde{x}_0 \in S^{(n)}$$
 is optimal!





## **Proof of Theorem 10.3.5**

Let  $x_0$  be an optimal solution to LP (P). Then,  $\tilde{x}_0 = x_0 \cdot M_0 \in S^{(n)}$ , with  $M_0 = \max_x \min_x \pi^T \cdot A \cdot x \ge \min_x \pi^T \cdot A \cdot \tilde{x}_0$ . Other way round, we

$$\min_{\pi} \pi^T \cdot A \cdot \tilde{x}_0 = \min_{\pi} \pi^T \cdot A \cdot x_0 \cdot M_0$$

$$= \min_{\pi} \pi^{T} \cdot \underbrace{A \cdot x_{0}}_{\geq 1, \text{ since } x_{n} \text{ is feasible for LP}} \cdot \frac{1}{1^{T} \cdot x_{0}}$$

$$\geq \min_{\pi} \pi^{T} \cdot \frac{(1,...,1)^{T}}{1^{T} \cdot x_{0}} = \underbrace{\pi^{T} \cdot (1,...,1)^{T}}_{=1, \text{ since } \pi \in S^{(m)}} \cdot \frac{1}{1^{T} \cdot x_{0}} = \frac{1}{1^{T} \cdot x_{0}} = M_{0}$$



Business Computing and Operations Research WINFOR 948

## **Proof of Theorem 10.3.5**

Let  $\tilde{x}_0 \in S^{(n)}$  be an optimal strategy. Then  $\min_{\pi} \pi^T \cdot A \cdot \tilde{x}_0 = M_0$ . Thus, we make use of Lemma 10.3.3, and obtain

$$A \cdot \tilde{x}_0 \ge M_0$$
. Consider  $x_0 = \frac{\tilde{x}_0}{M_0}$ .

It holds: 
$$A \cdot x_0 = A \cdot \frac{\tilde{x}_0}{M_0} \ge \frac{M_0}{M_0} = 1$$
.

Thus,  $x_0$  is feasible for LP. We calculate

$$1^T \cdot x_0 = 1^T \cdot \frac{\tilde{x}_0}{M_0} = \frac{1^T \cdot \tilde{x}_0}{M_0} = \frac{1}{M_0}.$$



## **Proof of Theorem 10.3.5**

We know that  $\frac{1}{M_0}$  is a lower bound for  $1^T \cdot x$ 

if x is a feasible solution for LP (P).

Consequently, we have shown that  $x_0$  is an optimal solution.

This completes the proof.





## **Further consequences**

## 10.3.6 Corollary

The following propositions are equivalent

- 1. (P) has a feasible solution
- 2. (P) has an optimal solution
- 3. (D) has an optimal solution
- 4.  $M_0 > 0$





# The dual program

> The LP introduced above has the following dual

Maximize  $1^T \cdot \pi$ ,

s.t.

$$\pi^T \cdot A \leq 1^T \wedge \pi \geq 0$$

 $\Rightarrow$  Obviously,  $\pi = 0$  is a feasible solution to (D)



Business Computing and Operations Research WINFOR 952



# **Proof of Corollary 10.3.6**

1⇔4:

Let x be a feasible solution to (LP). Then, we have

 $A \cdot x \ge 1$  and thus  $M = \min_{\pi} \pi^T \cdot A \cdot x \ge 1 \Longrightarrow$ 

$$M_0 = \max_{x} \min_{\pi} \pi^T \cdot A \cdot x \ge M > 0.$$

Other way round, if  $M_0 = \max_{x} \min_{x} \pi^T \cdot A \cdot x > 0$ .

Thus, it exists  $\tilde{x}_0 : M_0 = \min_{\pi} \pi^T \cdot A \cdot \tilde{x}_0 \Longrightarrow A \cdot \tilde{x}_0 \ge M_0$ .

We introduce: $x_0 = \tilde{x}_0 \cdot \frac{1}{M_0} \ge 0$ 

 $\Rightarrow A \cdot x_0 = A \cdot \tilde{x}_0 \cdot \frac{1}{M_0} \ge M_0 \cdot \frac{1}{M_0} = 1 \Rightarrow x_0 \text{ is feasible for } (LP).$ 



# **Proof of Corollary 10.3.6**

 $1 \Leftrightarrow 2 \Leftrightarrow 3$ :

Obviously, (D) is always solvable, e.g., by making use of  $\pi = 0$ , we have at least one feasible solution.

Thus, through Section 2.2, there remain two cases. Either (D) is unrestricted and, therefore, (LP) not solvable or (D) and (LP) have optimal solutions.

This completes the proof.



Business Computing and Operations Research WINFOR 955



# Adding a constant to A

Let us add a constant C to all matrix entries. We consider the result of a game, i.e.,

$$\pi^{T} \cdot A \cdot x = \sum_{j=1}^{n} \left( \sum_{i=1}^{m} \pi_{i} \cdot (a_{i,j} + C) \right) \cdot x_{j} = \sum_{j=1}^{n} \left( \sum_{i=1}^{m} \pi_{i} \cdot a_{i,j} + (\pi_{i} \cdot C) \right) \cdot x_{j}$$

$$= \sum_{j=1}^{n} \sum_{i=1}^{m} x_{j} \cdot \pi_{i} \cdot a_{i,j} + C \cdot \sum_{j=1}^{n} \sum_{i=1}^{m} x_{j} \cdot \pi_{i} = \sum_{j=1}^{n} \sum_{i=1}^{m} x_{j} \cdot \pi_{i} \cdot a_{i,j} + C$$

We obtain modified proceeds, but optimality is kept unchanged.





## What to do if it holds that $M_0 \le 0$ ?

- Obviously, if  $M_0 > 0$ , we have provided an instrument that generates optimal strategies
- But if  $M_0 \le 0$ , nothing is won since LP (P) is obviously not solvable
- However, what can we do in such kind of situation?
- Obviously, it is matrix A that incorporates this problem. Thus, the question to be posed is how we can modify this matrix in order to ensure that  $M_0>0$



Business Computing and Operations Research WINFOR 956



## Consequences

- By adding a constant, we may be able to obtain a matrix  $A_{mod}$  that fulfills  $M_0 > 0$
- The game that corresponds to the modified matrix  $A_{mod}$  has identical optimal strategies
- Consequently, we only have to retransform the resulting profits at the end of the calculation process





#### What to add?

- Fortunately, we know that  $M_0$  is just raised by the value/constant C that is added to A
- The problem is that  $M_0$  is unknown beforehand
- Otherwise, we just would take  $-M_0+\varepsilon$ , with  $\varepsilon>0$
- Consequently, we may take  $-a_0+\varepsilon$  ( $\varepsilon>0$ ), which is a lower bound of  $M_0$

Business Computing and Operations Research WINFOR 959

### Further bounds to add

3. Possibility:

Sufficient condition is:  $a_1 = \min_i \sum_{i=1}^n a_{i,j} > 0$ 

Consider the vector  $\mathbf{1}^T \cdot \frac{1}{a_1} \Rightarrow A \cdot \left( \mathbf{1}^T \cdot \frac{1}{a_1} \right) = \frac{1}{a_1} \cdot \left( A \cdot \mathbf{1}^T \right) \ge \frac{1}{a_1} \cdot a_1 \cdot \left( \mathbf{1}, \dots, \mathbf{1} \right)$ 

= (1,...,1)  $\Rightarrow$   $1^T \cdot \frac{1}{a_1}$  is feasible for (LP)!

 $\Rightarrow$  We have to add  $-\min_{i} \left( \frac{1}{n} \cdot \left( \sum_{i=1}^{n} a_{i,j} \right) \right) + \varepsilon$ , with  $\varepsilon > 0$ 





## Further bounds to add

2. Possibility:

Sufficient conditions are:  $A \ge 0 \land a^0 = \min_i \max_i a_{i,i} > 0$ 

Consider the vector  $\mathbf{1}^T \cdot \frac{1}{a^0} \Rightarrow A \cdot \left(\mathbf{1}^T \cdot \frac{1}{a^0}\right) = \frac{1}{a^0} \cdot \left(A \cdot \mathbf{1}^T\right) \ge \frac{1}{a^0} \cdot a^0 \cdot (1,...,1)$ 

= (1,...,1)  $\Rightarrow$   $1^T \cdot \frac{1}{a^0}$  is feasible for (LP)!

 $\Rightarrow$  We have to add max  $\{-\min a_{i,i}, -a^0 + \varepsilon\}$ , with  $\varepsilon > 0$ 



Business Computing and Operations Research WINFOR 960



## **Summary**

We always add:

$$\min \left\{ -a_0 + \varepsilon, -\min a_{i,j}, -a^0 + \varepsilon, -\min_i \left( \frac{1}{n} \cdot \left( \sum_{j=1}^n a_{i,j} \right) \right) + \varepsilon \right\}$$

Note that if it holds  $M_0 >> 0$ , the value above becomes negative and matrix A is reduced





## 10.3.7 Example

- We now come back to our two introducing examples 10.1.1 and 10.1.2
- We start with example 10.1.1
- This was the simple game "rock, scissors, and paper"

Business Computing and Operations Research WINFOR 963

## We take C=1

Thus, we obtain the following matrix

$$A = \begin{pmatrix} 0 & -1 & 1 \\ 1 & 0 & -1 \\ -1 & 1 & 0 \end{pmatrix} \Rightarrow \tilde{A} = \begin{pmatrix} 1 & 0 & 2 \\ 2 & 1 & 0 \\ 0 & 2 & 1 \end{pmatrix} \Rightarrow \tilde{A}^T = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & 2 \\ 2 & 0 & 1 \end{pmatrix}$$

Maximize  $1^T \cdot \pi \Leftrightarrow \text{Minimize} - 1^T \cdot \pi, \text{ w.r.t.}, \widetilde{A}^T \cdot \pi \leq 1 \land \pi \geq 0$ We solve the dual problem by introducing slackness variables



Business Computing and Operations Research WINFOR 965

# **Example**

$$A = \begin{pmatrix} 0 & -1 & 1 \\ 1 & 0 & -1 \\ -1 & 1 & 0 \end{pmatrix} \Rightarrow$$

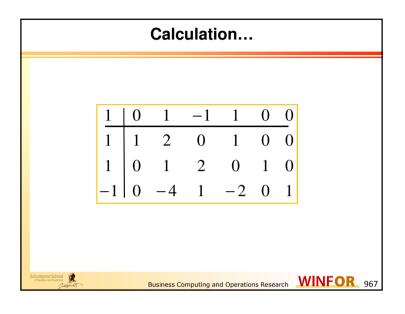
- 1.  $a_0 = \max_i \min_i a_{i,j} = \max\{-1,-1,-1\} = -1 \Rightarrow C = 1 + \varepsilon$
- 2.  $\min_{i,j} a_{i,j} = -1$  and  $a^0 = \min_i \max_j a_{i,j} = \min\{1,1,1\} = 1$
- $\Rightarrow C = \max\{-\min_{i,j} a_{i,j}, -a^0 + \varepsilon\} = \max\{1, -1 + \varepsilon\} = 1$
- 3.  $\min\left\{\frac{1}{3}\cdot 0, \frac{1}{3}\cdot 0, \frac{1}{3}\cdot 0\right\} = 0 \Rightarrow C = \varepsilon$

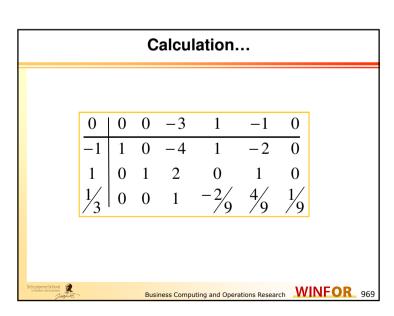
Business Computing and Operations Research WINFOR 964

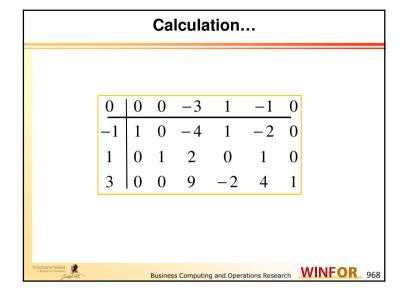
# Calculation...

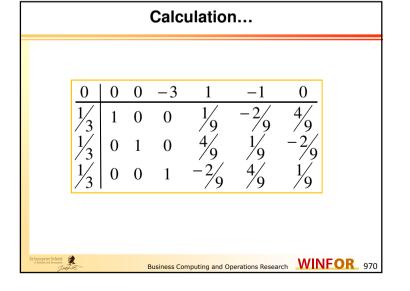
| 0 | -1 | -1                | -1 | 0 | 0 | 0 |
|---|----|-------------------|----|---|---|---|
| 1 | 1  | 2                 | 0  | 1 | 0 | 0 |
| 1 | 0  | 1                 | 2  | 0 | 1 | 0 |
| 1 | 2  | -1<br>2<br>1<br>0 | 1  | 0 | 0 | 1 |

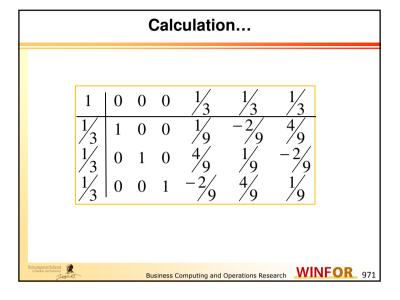












# One can analogously show...

#### 10.3.8 Observation:

Assuming  $M^0 > 0$ . Then,  $\pi^0$  is an optimal solution to the dual of (LP) if and only if  $\tilde{\pi}^0 = \pi^0 \cdot M^0 = \frac{\pi^0}{1^T \cdot \pi^0}$  is an optimal strategy for player 2.

Business Computing and Operations Research WINFOR 973

## Result

First row:  $c^{T} - c_{B}^{T} \cdot A_{B}^{-1} \cdot E \Rightarrow x^{T} = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3}) = \pi^{T}$ 

 $M_0 = 1 - C = 1 - 1 = 0.$ 

Business Computing and Operations Research WINFOR 972

# **Fundamental Theorem of matrix games**

#### 10.3.9 Theorem:

- 1. There are always optimal strategies and for each pair of optimal strategies  $x_0$  and  $\pi^0$  it holds:  $M_0 = \pi^{0T} \cdot A \cdot x_0 = M^0$ .
- 2. Optimal strategies  $x_0$  and  $\pi^0$  always fulfill  $\min_{i} e^{iT} \cdot A \cdot x_0 = M_0 = M^0 = \max_{i} \pi^{0T} \cdot A \cdot e^{j}.$

### **Proof of Theorem 10.3.9**

ad 1.

By adding the value C, we obtain an optimally solvable LP, whose optimal solution always corresponds to an optimal strategy. Thus, we conclude the general solvability of matrix games.

We assume we have a pair of optimal strategies  $x_0$  and  $\pi^0$ . Then, we know that  $\frac{1}{M_0}$  and  $\frac{1}{M_0}$  are objective function values of the primal and dual program, respectively. Thus, we conclude  $M_0 = M^0$ .

Additionally, we know:

$$\begin{aligned} \boldsymbol{M}_0 &= \min_{\pi} \boldsymbol{\pi}^T \cdot \boldsymbol{A} \cdot \boldsymbol{x}_0 \leq \boldsymbol{\pi}^{0T} \cdot \boldsymbol{A} \cdot \boldsymbol{x}_0 \leq \max_{x} \boldsymbol{\pi}^{0T} \cdot \boldsymbol{A} \cdot \boldsymbol{x} = \boldsymbol{M}^0 \\ \Rightarrow \boldsymbol{M}_0 &= \min_{\pi} \boldsymbol{\pi}^T \cdot \boldsymbol{A} \cdot \boldsymbol{x}_0 = \boldsymbol{\pi}^{0T} \cdot \boldsymbol{A} \cdot \boldsymbol{x}_0 = \max_{x} \boldsymbol{\pi}^{0T} \cdot \boldsymbol{A} \cdot \boldsymbol{x} = \boldsymbol{M}^0 \end{aligned}$$



Business Computing and Operations Research WINFOR 975



## **Proof of Theorem 10.3.9**

Hence, we can conclude:

$$\begin{aligned} & \min_{e^i \in S^{(m)}} e^{iT} \cdot A \cdot x_0 = \min_{\pi} \pi^T \cdot A \cdot x_0 = M_0 = M^0 = \max_{\pi} \pi^{0T} \cdot A \cdot x \\ &= \max_{e^j \in S^{(n)}} \pi^{0T} \cdot A \cdot e^j \end{aligned}$$

Other way round, if  $\min_{e^i \in S^{(m)}} e^{iT} \cdot A \cdot x_1 = \max_{e^j \in S^{(n)}} \pi^{1T} \cdot A \cdot e^j$ for a pair of strategies  $x_1$  and  $\pi^1$ , we obtain

$$M_0 = \min_{\pi} \max_{x} \pi^T \cdot A \cdot x \le \max_{x} \pi^{1T} \cdot A \cdot x = \max_{e^j \in S^{(n)}} \pi^{1T} \cdot A \cdot e^j$$
$$= \min_{\pi^{1T} \in S^{(n)}} e^{iT} \cdot A \cdot x_1 \le \min_{\pi} \pi^T \cdot A \cdot x_1 \le \max_{x} \min_{\pi} \pi^T \cdot A \cdot x = M^0$$





### **Proof of Theorem 10.3.9**

ad 2.

Let  $x_0$  and  $\pi^0$  be optimal strategies. Then, we know  $M_0 = \min_{x} \pi^T \cdot A \cdot x_0 = \max_{x} \pi_0^T \cdot A \cdot x = M^0$ . In addition, we have  $\min_{\pi} \pi^T \cdot A \cdot x_0 \le \min_{i=e^{(m)}} e^{iT} \cdot A \cdot x_0$ .

Obviously, we have  $\forall \pi \in S^{(m)} : \pi = \sum_{i=1}^{m} \pi_i \cdot e^i$ . Thus, we obtain:

$$\min_{\pi} \pi^T \cdot A \cdot x_0 = \pi^{0T} \cdot A \cdot x_0 = \left(\sum_{i=1}^m \pi_i^0 \cdot e^i\right)^T \cdot A \cdot x_0 = \sum_{i=1}^m \pi_i^0 \cdot \left(e^{iT} \cdot A\right) \cdot x_0$$

 $\geq \min_{i=c^{(m)}} e^{iT} \cdot A \cdot x_0 \Rightarrow \min_{\pi} \pi^T \cdot A \cdot x_0 = \min_{i=c^{(m)}} e^{iT} \cdot A \cdot x_0$ 

Analogously, one can show  $\max_{x} \pi_0^T \cdot A \cdot x = \max_{i=x^{(n)}} \pi_0^T \cdot A \cdot e^j$ .



Business Computing and Operations Research WINFOR 976

### **Proof of Theorem 10.3.9**

 $\Rightarrow$  Since  $M_0 = M^0 \Rightarrow$ 

$$\begin{aligned} \boldsymbol{M}_{0} &= \min_{\pi} \max_{x} \boldsymbol{\pi}^{T} \cdot \boldsymbol{A} \cdot \boldsymbol{x} = \max_{x} \boldsymbol{\pi}^{1^{T}} \cdot \boldsymbol{A} \cdot \boldsymbol{x} = \max_{e^{i} \in S^{(n)}} \boldsymbol{\pi}^{1^{T}} \cdot \boldsymbol{A} \cdot e^{j} \\ &= \min_{e^{i} \in S^{(m)}} e^{i^{T}} \cdot \boldsymbol{A} \cdot \boldsymbol{x}_{1} = \min_{\pi} \boldsymbol{\pi}^{T} \cdot \boldsymbol{A} \cdot \boldsymbol{x}_{1} = \max_{x} \min_{\pi} \boldsymbol{\pi}^{T} \cdot \boldsymbol{A} \cdot \boldsymbol{x} = \boldsymbol{M}^{0} \end{aligned}$$



## 10.3.10 Example

Example 9.1.2:

$$A = \begin{pmatrix} 44 & 72 & 64 & 64 \\ 68 & 58 & 60 & 65 \\ 64 & 68 & 72 & 75 \\ 56 & 64 & 61 & 59 \end{pmatrix} \Rightarrow$$

- 1.  $a_0 = \max_i \min_i a_{i,i} = \max\{44,58,60,59\} = 60 \Rightarrow C = -60 + \varepsilon$
- 2.  $\min_{i,j} a_{i,j} = 44$  and  $a^0 = \min_{i} \max_{j} a_{i,j} = \min\{72, 68, 75, 64\} = 64$
- $\Rightarrow C = \max\{-\min_{i,j} a_{i,j}, -a^0 + \varepsilon\} = \max\{-44, -64 + \varepsilon\} = -44$
- 3.  $\min \left\{ -\frac{1}{4} \cdot 244, -\frac{1}{4} \cdot 251, -\frac{1}{4} \cdot 279, -\frac{1}{4} \cdot 240 \right\} = -60 \Rightarrow C = -60 + \varepsilon$

We take C = -59

Business Computing and Operations Research WINFOR 979

## The resulting program

$$A - 59 = \begin{pmatrix} 44 & 72 & 64 & 64 \\ 68 & 58 & 60 & 65 \\ 64 & 68 & 72 & 75 \\ 56 & 64 & 61 & 59 \end{pmatrix} - 59 = \begin{pmatrix} -15 & 13 & 5 & 5 \\ 9 & -1 & 1 & 6 \\ 5 & 9 & 13 & 16 \\ -3 & 5 & 2 & 0 \end{pmatrix} = \widetilde{A}$$

$$\widetilde{A}^T = \begin{pmatrix} -15 & 9 & 5 & -3 \\ 13 & -1 & 9 & 5 \\ 5 & 1 & 13 & 2 \\ 5 & 6 & 16 & 0 \end{pmatrix}$$

Business Computing and Operations Research WINFOR 980

# **Optimal solution**

By using 
$$\tilde{A}^T = \begin{pmatrix} -15 & 9 & 5 & -3 \\ 13 & -1 & 9 & 5 \\ 5 & 1 & 13 & 2 \\ 5 & 6 & 16 & 0 \end{pmatrix}$$
,

we obtain the optimal solution

$$\widetilde{x} = \left(0, \frac{1}{5}, 0, \frac{1}{5}\right)^T \wedge \widetilde{\pi} = \left(0, \frac{1}{6}, 0, \frac{7}{30}\right)^T$$

Business Computing and Operations Research WINFOR 981

# Optimal solution - objective function value

$$\Rightarrow \tilde{\pi}^T \cdot \tilde{A} \cdot x = \left(0, \frac{1}{6}, 0, \frac{7}{30}\right) \cdot \begin{pmatrix} -15 & 13 & 5 & 5 \\ 9 & -1 & 1 & 6 \\ 5 & 9 & 13 & 16 \\ -3 & 5 & 2 & 0 \end{pmatrix} \cdot \begin{pmatrix} \frac{0}{15} \\ \frac{1}{5} \\ 0 \\$$

## Results

$$\tilde{M}_{0} = \frac{1}{\frac{2}{5}} = \frac{5}{2} = \frac{1}{(1 \ 1 \ 1 \ 1)^{T} \cdot \tilde{x}} = \frac{1}{\frac{1}{5} + \frac{1}{5}}$$

$$\tilde{M}^{0} = \frac{1}{\frac{2}{5}} = \frac{5}{2} = \frac{1}{(1 \ 1 \ 1 \ 1)^{T} \cdot \tilde{\pi}} = \frac{1}{\frac{1}{6} + \frac{7}{30}} = \frac{1}{\frac{12}{30}} = \frac{1}{\frac{2}{5}}$$

Business Computing and Operations Research WINFOR 983

## **Transformation**

With 
$$\tilde{M}_0 = \frac{5}{2}$$
 we get

$$\tilde{x}_0 = \tilde{x} \cdot \frac{5}{2} = \begin{pmatrix} 0 & \frac{1}{5} & 0 & \frac{1}{5} \end{pmatrix}^T \cdot \frac{5}{2} = \begin{pmatrix} 0 & \frac{1}{2} & 0 & \frac{1}{2} \end{pmatrix}^T \wedge$$

$$\tilde{\boldsymbol{\pi}}^{0} = \tilde{\boldsymbol{\pi}} \cdot \frac{5}{2} = \begin{pmatrix} 0 & \frac{1}{6} & 0 & \frac{7}{30} \end{pmatrix}^{T} \cdot \frac{5}{2} = \begin{pmatrix} 0 & \frac{5}{12} & 0 & \frac{7}{12} \end{pmatrix}^{T}$$

$$\Rightarrow M_0 = M^0 = \frac{5}{2} + 59 = 61.5$$

$$\Rightarrow a_0 = 60 < M_0 = 61.5 = M^0 < a^0 = 64$$

$$\Rightarrow a_0 = 60 < M_0 = 61.5 = M^0 < a^0 = 64$$