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3 Lot-sizing problems

� A lot size is defined as the amount of a particular item that is ordered 
from the plant or a supplier or issued as a standard quantity to the 
production process, 

� I.e., in what follows, we define the lot size as the number of items of 
one product to be continuously produced without preemption on the 
same machine

� As relevant costs we consider 

� the lot size dependent setup costs and additionally 
� the lot size dependent inventory costs. 

� Note that there is always a tradeoff between these costs

� The larger the chosen lot size is, the larger is the inventory and, 
consequently, the inventory costs

� The smaller the chosen lot size is, the more batches have to be 
realized and, therefore, the more setup costs are increased

� In what follows, we consider different models computing efficient lot 
sizes

� These models can be mainly distinguished by their assumptions 
according to the dependencies between the scheduled products and 
the occurring demands
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Open vs. closed production

� An open production is characterized by the fact that the items of 
the current batch that are already processed at stage x can be 
further processed at the subsequent stage in spite of the fact that 
the total batch is not completed

� In contrast to this, a closed production does not allow a 
simultaneous processing of one batch at two neighboring stages. 
Therefore, each item of a batch currently processed at stage x 
cannot be processed at the subsequent one before this batch is not 
completed

stage x stage x+1

Batch currently processed at stage x
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Model characteristics

Degree of dependency 
between the scheduled 

products

Demand

stationary dynamic

independent EOQ model

(Andler model)

SLULSP (=WW)

SRP

SPLP

dependent ELSP MCLSP

MLCLSP
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Outline of the chapter

1. The EOQ model

2. Extensions to multiple products

3. The SLULSP model (WW model)
1. Model definition

2. Dynamic programming approach

3. Heuristic approaches

4. The CLSP model
1. Problem definition

2. The Dixon and Silver heuristic

5. The CLSPL model
1. Basics 

2. Tightening the model

3. Time-oriented decomposition heuristic
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3.1 The EOQ model

� =Economic Order Quantity model: Most simple model in literature

� Main assumptions of the model
� Stationary demand

� Continuous production with a predefined constant velocity

� Continuous demand with a predefined constant velocity

� The production always has to fulfill the demands of the subsequent 
distribution

� Only one stage and one product are considered

� Unlimited continuous planning horizon

� No capacity constraints are modeled

� Setup costs are independent of a given sequence

� Therefore, the EOQ is a single item model where the optimal solution 
can be easily derived from

Production
continuous 

production 
with a 

predefined rate

Demand
continuous 

demand 
with a predefined 

but lower rate

demand must be 

always fulfilled !
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Parameters

[ ]
[ ] [ ]

[ ]
[ ]

currency units
: Cost rate for inventory ;

quantity units planning horizon units

currency units
: Cost rate for each setup ;

batch

: Total production quantity to be produced in the consid

I

S

T

c

c

x

 
 

⋅  

 
 
  

[ ]
[ ]

[ ]
[ ]

[ ]
[ ]

quantity units
ered planning horizon ;

planning horizon units

quantity units
: Demand rate ;

time units

quantity units
: Production rate ;

time units

We assume: ;

: Time necessar

D

P

D P

S

v

v

v v

t

 
 
  

 
 
  

 
 
  

<

[ ]
[ ]

[ ]
[ ]

time units
y for the sale of a complete batch of size x    i.e. ;

batch

time units
: Time necessary for the production of a complete batch of size x    i.e. ;

batch

S

D

P P

P

x
t

v

x
t t

v

   
=   

    

   
=   

    

[ ]
[ ]

quantity units
: Lot size ;

batch
x

 
 
  

Sought :



3

Business Computing and Operations Research 177

Solution of the model

� In order to derive the optimal lot size, we first have to 
define the cost function computing the total lot size 
dependent costs

� In order to do so, we need an additional function telling us 
what proportion of the used lot size is on the average on 
stock during the total planning horizon

� Therefore, we analyze subsequently the inventory level 
and generate a function ØI(x) defining the average 
inventory level if the lot size x is used during the 
execution of the production process

� In this connection, we have to distinguish between open 
and closed production processes
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Inventory (open production)

x

tP tS

= tP 
. vD= tP 

. vP

time

inventory 

level
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Computation of ØI(x) (open production)

� Inventory level always increases and decreases linearly 

� This behavior is constant over the infinite planning horizon and is 
repeated for each processed batch

� The maximum inventory level is defined by x-tP
.vD

� The minimum inventory level is defined by 0

� Therefore, we get for the average inventory level:
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Inventory (closed production)

x

tP tS

= tP 
. vD
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. vP

time

inventory 

level

Safety stock (= tP 
. vD)

x

+tP
.vD
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Computation of ØI(x) (closed production)

� Inventory level always increases and decreases linearly 

� This behavior is constant over the infinite planning horizon and is 
repeated for each processed batch

� The maximum inventory level is defined by x

� The minimum inventory level is defined by tP
.vD

� Therefore, we get for the average inventory level:
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Finding the optimal lot size (open production)

� Now, we can define the total cost function 
depending on the chosen lot size x:
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� By using this function, we can easily derive the 
optimal lot size
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Finding the optimal lot size (open production)

( )

( )

( )

( )

I

P

D

ST

I

P

D

ST
STI

P

D

S
T

I

P

D
I

P

D
S

Ttotal

S
T

total

I

P

D
S

Ttotal

I

P

D
S

T
total

c
v

v

cx
x

c
v

v

cx
xcxc

v

v
x

c
x

x
c

v

v
c

v

v
c

x

x

x

xC

c
x

x

x

x

xC

c
v

v
c

x

x

x

xC

c
v

v
xc

x

x
xC

⋅







−

⋅⋅
=⇔

⋅







−

⋅⋅
=⋅⇔⋅=⋅








−⋅⋅⇔

⋅=⋅







−⋅⇔=⋅








−⋅+⋅

−
⇔=

∂

>⋅⋅=
∂
∂

⋅







−⋅+⋅

−
=

∂

⋅







−⋅⋅+⋅=

1

2

1

2
1

2

1

1
2

1
01

2

1
0

02

1
2

1

1
2

1

22

22

3

2

Business Computing and Operations Research 184

Finding the optimal lot size (closed production)

� Now, we can define the total cost function 
depending on the chosen lot size x:
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� By using this function, we can easily derive the 
optimal lot size
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Finding the optimal lot size (closed production)
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Observation

� By analyzing the computation of the optimal lot 
size, it becomes obvious that for this lot size the 
setup costs are identical with the occurring 
inventory costs, i.e., it holds:
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3.2 Extensions to multiple products cases

� The optimal individual lot sizes are frequently not 
applicable if there is more than one product. This can be 
illustrated by the following simple example

� Example:

� Two products A and B have to be produced

� Optimal individual lot sizes

� xA=1000 and xB=3000 [quantity units]/[batch]

� vDA=10 and vPA=20 [quantity units]/[minute]

� vDB=40 and vPB=100 [quantity units]/[minute]

� We can derive the respective time intervals:
– tPA=1000/20=50 [minutes]/[batch]

– tDA=1000/10=100 [minutes]/[batch]

– tPB=3000/100=30 [minutes]/[batch]

– tDB=3000/40=75 [minutes]/[batch]

Production

50 100 150 200

A

B

Sale Production Sale

Production

25 75 125 175

Sale Production Sale

Multiple allocation !!!

Production

50 100 150 200

A

B

Sale Production

Production

25 75 125 175

Sale Production Sale

Multiple allocation !!!
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Consequence

� We cannot produce A and B in their optimal lot 
sizes!

� Possible “work around”:

� Approximate solutions

�Try to generate a feasible solution as close as 
possible to the individual optimal lot sizes

� Computation of optimal cycle times

�Use lot sizes for the different products leading to an 
identical number of batches to be processed for all 
products

Business Computing and Operations Research 190

Approximate solution I

1. Generate the individual optimal lot sizes xopt,n (nє{1,…,N}) 
for N products by using the computation derived above

2. Calculate the resulting total costs of this optimal solution, 
i.e.,

( )∑
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=
N

n

noptnToptTopt xCC
1

,,,,

3. Define a fixed rate i as an upper bound for the percentage 
derivation of the resulting costs Cres,n in comparison to the 
theoretic ones, i.e.,

{ }
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xC

C
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,,,
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Business Computing and Operations Research 191

Approximate solution II

5. Check if there are possible constellations inside the computed 
windows for each product leading to feasible solutions

� If so, realize the best one

� Otherwise, continue with step 6

6. Increase i by a predefined percentage rate and proceed with 
step 4

4. Calculation of the lot size window of each product is 
depending on the costs rate
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Pros vs. Cons

Pros

+ High solution quality since the objective functions differ 
only slightly around the optimal lot size

+ Specific requirements of each product can be respected

+ Flexible adjustment

Cons

– No systematic approach

– Trial and error

– Can become extremely time consuming and, additionally, 
there is no guarantee for success
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Optimal cycle times

� This “work around” tries to generate a realizable 
solution by requiring an identical number of batches 
for each considered product in the planning horizon 

� To do so, we extend the model defined above by 
introducing an additional variable c as the sought 
optimal number of batches to be processed of each 
product, i.e., c=xT,n / xn

� Therefore, a new model arises with a single variable 
c while the lot size of each product can be derived 
from a defined value for c

� The optimal cycle time is defined as the cycle time 
leading to the minimal total costs of all products
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Deriving the optimal cycle time (open production)
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Deriving the optimal cycle time (closed production)
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Pros vs. Cons

+ Frequently a solution is generated that is feasible 
and quite efficient

+ Systematic approach

+ Fast solution generation

– Generates a rough compromise

– Neglects frequently many insights of the different 
considered products by a summarized 
simultaneous examination of all items
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3.3 The SLULSP model (WW model)

= Single-Level Uncapacitated Lot Sizing Problem 

Also called Wagner Whitin model (WW-model)

� Dynamic model (changing demand)

� Finite planning horizon which is subdivided into 
several discrete periods of predefined length

� Demand is given for each period but can vary 
from period to period

� Demand must be satisfied in each period

� Capacity restrictions are not considered

� Single item model
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3.3.1 Model definition – Parameters

( )

( )

( )

( )
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1 :  Interest charge per unit of inventory carried forward 
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Model definition – Variables

( )

( )

( )

t

t

1 :  Chosen lot size in period ;

1 :  Binary derived variable indication a setup operation 

in period ;

1 :  Inventory in period ;
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Restrictions

� We have to find a program (x1,…,xT) for all considered periods, 
so that all demands are met at minimal total costs

� In each period the current inventory level can be computed by 
the difference of production and demand added to the inventory 
of the preceding period

� Setup costs always occur in a period if there is a production 
quantity unequal to null

� We additionally assume that the initial as well as the final 
inventory is equal to null
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Objective function

An efficient production plan should minimize the 
resulting total sum of setup-, production-, and 
inventory costs, i.e., we can derive the following 
objective function:

( ) ( )∑
=

⋅+⋅+⋅=
T

t

ttttttTT xpIis,...,xxC
1

1 Minimize γ
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3.3.1.1 Theorem

There exists an optimal program fulfilling the following 
restrictions:
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=

∑ ∑ t

I

t

j

t

j

jj xdxITt

t

��� ���� ��

I.e., in each period, there is either an existing inventory or an 
additional order is generated. This means that the production 
of additional items is processed if and only if the inventory is 
totally consumed in the previous periods.

Main cognitions – First substantial Theorem
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Proof:

We assume there is an optimal program not fulfilling the 
itemized restriction for a minimally chosen period s. 
Therefore, it holds: 

Let Is-1 be the inventory brought into period s. Let r<s be the 
next preceding period where a production takes place 
(Note that r is well defined since at least period one fulfills this 
requirement). 

Note that xr≥Is-1 since Ir-1=0 (s was minimally chosen) and we 
have an inventory in period s. 

Proof of Theorem 3.3.1.1

000
1

1

1

1

0

1

1

1

1

0 >∧>−+⇒>⋅







−+ ∑ ∑∑ ∑

−

=

−

=

−

=

−

=

s

s

k

s

k

jks

s

k

s

k

jk xdxIxdxI
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If it holds cr,s>ps (cr,s are the total costs for producing one unit of 
demand of period s in period r and carry it over to period s), we 
produce the Is-1 items not until period s. Since this reduces the 
total costs, it contradicts the optimality of the solution found.

Thus, we know cr,s≤ps. Hence, we abstain from producing in 
period s and increase the production quantity in period r by xs

items. Owing to the optimality, it holds that cr,s=ps and we can 
transform the solution as intended without losing its optimality.  

Proof of Theorem 3.3.1.1
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3.3.1.2 Theorem

There exists an optimal program so that:

{ } TktkdxxTt
k

tj

jtt ≤≤=∨=∈∀ ∑
=

, somefor  0:,...,1

Proof:

We assume again that an optimal program does not fulfill the 
defined restriction. Since the occurring demand must be 
always satisfied by the production, there is a period t where it 
holds:

∑
=

+ <<>+=
k

tj

kjt Tkdcccdx  and   with 1,0

Second substantial Theorem
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Proof (continued):

Therefore, we know that there is a period s>t where it holds:

000
1

1

1

1

0

1

1

1

1

0 >∧>−+⇒>⋅







−+ ∑ ∑∑ ∑

−

=

−

=

−

=

−

=
s

s

k

s

k

jks

s

k

s

k

jk xdxIxdxI

Now, we can apply Theorem 3.3.1.1 to finish the proof
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Graph representation

� By using the two Theorems defined above, we can define an 
alternative problem definition

� This description transforms the problem into a shortest 
path problem

� In this graph for each considered period an additional node 
is inserted defining the isolated decision situation where in 
this period no inventory is left over

� Each edge represents a specific lot size leading to the 
subsequent period where a further production becomes 
necessary again

� With each edge a cost weight is associated representing the 
additional costs occurring in the realization of the respective 
lot size in the mapped constellation

� Finding a cost minimal production plan is equivalent to the 
computation of the shortest path in the defined graph
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Illustration

1 2 T-13 T

Costs for 

producing d1 in period 1

Costs for 

producing d1 and d2 in period 1

Costs for 

producing d2 in period 2

Costs for 

producing d1 up to dT-2 in period 1

( )
1 1 1

1

Additional costs incurred by a specific lot size represented by an 

edge leading from node r to t (t r):

t t a

r,t r r k b a
k r a r b r

w s p d i d
− − −

= = + =

⇒

≥

 
= + ⋅ + ⋅ 

 
∑ ∑ ∑

T+1
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SRP=Shortest Route Problem

{ } { }

{ } { }

,

,

1,..., : 1,..., 1 : : Costs for the satisfaction of the 

demand of the periods  through 1by the production in

: Total number of periods

0,..., : 1,..., 1 : :

i j

i j

i T j i T w

i j   i

T

i T j i T x

∀ ∈ ∀ ∈ + +

−

∀ ∈ ∀ ∈ + +

Parameters :

Variables :

1

, ,
1 1

Binary decision variable indicating 

whether the demand of the periods  through 1 is satisfied by the 

production in 

:

Minimize 
T T

r t r t
r t r

i j

i

Z w x
+

= = +

−

= ⋅∑∑

Objective function
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{ }

{ } { } { }

1

1,
2

1 1

, ,
1 1

,

1

2,..., : 0

0,..., 1 : 1,..., 1 : 0,1

T

t
t

t T

l t t l
l l t

s t

x

t T x x

s T t s T x

+

=

− +

= = +

=

∀ ∈ − + =

∀ ∈ − ∀ ∈ + + ∈

∑

∑ ∑

Restrictions :

SRP=Shortest Route Problem
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3.3.2 Dynamic programming approach

� Wagner and Whitin propose a dynamic programming algorithm working 
with the following recursive function

� Recursive function

� For periods i≤j pi,j defines a policy satisfying the demand of the 
periods i,…,j by a production in period i

� In this coherence, C(i,j) (or Ci,j) gives the respective total costs of 
policy pi,j

� By using these notations, we come to the following simple functional 
dependency for the calculation of the minimal costs fi to satisfy the 
demands d1,…,di

( ){ }

{ }( ) ( )

1
1

0

1

1

min ,  with

0

and

, 1,..., : ,

i l
l i

j j j

i k i r R

k i r i R r

f f C l i

f

i j T i j C i j p d s i d

−
≤ ≤

−

= = = +

= +

=

∀ ∈ ≤ = ⋅ + + ⋅∑ ∑ ∑
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Computational effort

� In the worst case, we have altogether T recursions

� In the recursion for fi, we have to consider altogether 

O(i) constellations

� Altogether, we need O(T2) parameters during the 

recursion

� Total effort: O(1+2+3+4+..+T)=O(T2)
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Example

� 6 periods

� Setup costs per batch: s1=s2=s3=s4=s5=s6=500

� Production costs are neglected

� Inventory costs per item and period i1=i2=i3=i4=i5=i6=1

� Demands:

t 1 2 3 4 5 6

dt 20 80 160 85 120 100

{ }( ) ( ) ( )
1

1 1

Owing to these simplifications we get:

1 , 500 500
j j j

R r
r i R r r i

i, j ,...,T i j : C i j d r i d
−

= = + = +

∀ ∈ ≤ = + = + − ⋅∑ ∑ ∑
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Preliminary work (C(i,j))

Last period where a consumption takes place

Last period 
where a 

production 
takes place

1 2 3 4 5 6

1 500 580 900 1155 1635 2135

2 500 660 830 1190 1590

3 500 585 825 1125

4 500 620 820

5 500 600

6 500
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Recursive computation

{ }

{ } { } { }

{ } { }

{ }

{ }
{ }
{ } 11551400,1165,1330,1155

500900,585580,830500,11550

cf,cf,cf,cfminf

9001080,1160,900

500580,660500,9000cf,cf,cfminf

5801000,580500500,5800cf,cfminf

500cfminf

0f

4,434,324,214,104

3,323,213,103

2,212,102

1,101

0

==

++++=

++++=

==

+++=+++=

==++=++=

=+=

=
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Recursive computation

{ }
{ }
{ }

{ }
{ }
{ } 17051905,1755,1720,1705,2090,2135

5001405,6001155,820900,1125580,1590500,21350

cf,cf,cf,cf,cf,cfminf

14051655,1520,1405,1690,1635

5001155,620900,825580,1190500,16350

cf,cf,cf,cf,cfminf

6,656,546,436,326,216,106

5,545,435,325,215,105

==

++++++=

++++++=

==

+++++=

+++++=
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Recursive construction of the solution

� Consider f6:

� Best solution f2+c(3,6), i.e., the demand of the periods 3,4,5, and 
6 is produced in period 3

� For the first two periods we have to go on with f2
� Consider f2:

� Best solution f0+c(1,2), i.e., the demand of the periods 1 and 2 is 
produced in period 1

� Therefore, altogether we have two batches produced in period 1 
and in period 3

� Summary:

� Period 1: Production of d1+d2=100

� Period 3: Production of d3+d4+d5+d6=160+85+120+100=465

� Total costs: 1,705
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Further improvements and observations

� The algorithm described above generates an optimal 
solution within O(T2) steps

� By using specific data structures, the computational effort 
for finding the optimal solution can be reduced to O(T 
log(T))

� For the special case characterized by constant production 
costs p=p1=p2=…=pT , this effort can be additionally 
reduced to O(T) (cf. Federgruen and Tzur (1991))

� This solution is only optimal if the starting and ending 
inventory is zero. However, this is not necessarily a valid 
assumption for a realistic application in a rolling time 
horizon
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3.3.3 Heuristic approaches

� In the following, we consider different heuristic 

approaches. These procedures can be applied for 

large problem instances as well as in a modified 

version for the multiple product constellations

� Described approaches

� Method of a “least-unit cost” approach 

� Silver-Meal procedure
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Least unit cost approach 

� Consider an arbitrary period t (1≤t≤T). If a batch satisfying 
the subsequent periods t to s (s≥t) is produced, we have 
the following average costs per item:

� In every period t the period s is sought which fulfills the 
following expression:

∑

∑ ∑∑

=

−

= =+=

⋅+⋅+

=
s

tc

c

s

tc

s

tc

ctb

s

cb

ct
unit

st

d

dpdis

c

1

1
,

{ } { }( ), 1 ,min | >  with 1
unit unit

t j t jj c c T j t T+ − ≥ ≥ ∪
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A heuristic approach

( )

unit

cp,j

unit

cp,j

unit unit

cp,j cp,j-1

1.   cp 1

2.   While cp T do

3.   Planning of batch in period cp

3.1 j cp;

3.2  c ;  ;

3.3   While it do

3.3.1     Compute c

3.3.2     if c c  then 

cp cp cp

cp

s p d
it true

d

it fal

=

<

=

+ ⋅
= =

> =  else 

3.3.3     if  then 1

3.3.4     od

se it true

it true j j

=

= = +
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Example

345

52,3
465

1635
:5:1

46,3
260

900
:3:1

8,5
100

580
:2:1

25
20

500
:1:1

1

5,1

3,1

2,1

1,1

=

====

====

====

====

====

q

cjt

cjt

cjt

cjt

unit

unit

unit

unit

3,35
345

1155
c:4j:1t unit

1,4
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Example

1755:Costs

220

17,4
120

500
:5:5

5

5,5

=

====

====

q

cjt
unit

2,72
220

600
c:6j:5t unit

5,6
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� The Silver-Meal procedure works quite similar to the least-unit cost 
procedure considered before

� The only difference results from a modified criteria to decide about the 
number of subsequent periods satisfied by the production of a period 
currently considered

� This criterion is given by the average costs per period occurring for the 
realization of a specific lot size

� To do so, consider an arbitrary period t (1≤t≤T). If a batch satisfying the 
subsequent periods t to s (s≥t) is produced, we have the following average 
costs per time period:

� Similar to the least-unit cost procedure in every period t, the period s is 
sought that fulfills the following expression

Silver-Meal procedure 

1

1

1

,
+−

⋅+







⋅+

=
∑ ∑∑

−

= =+=

ts

dpdis

c

s

tc

s

tc

ct

s

cb

bct

period

st

{ } { }( ), 1 ,min | >  with 1
period period

t j t jj c c T j t T+ − ≥ ≥ ∪
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The resulting procedure

( )1

1. 1

2. While  do

3.    Planning of batch in period 

3.1    ;

3.2   ;  ;
1

3.3   While  do

3.3.1     Compute 

3.3.2     if 

cp cp cpperiod

cp, j

period

cp, j

period period

cp, j cp, j -

cp

cp T

cp

j cp

s p d
c it true

j cp

it

c

c c

=

<

=

+ ⋅
= =

− +

>  then  else 

3.3.3     if  then 1

3.3     od

it false it true

it true j j

= =

= = +
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Example

1,1

1,3

1 4

1,5

1

500
1: 1: 500

1

900
1: 3 : 300

3

1155
1 4 288 75

4

1635
1: 5 : 327

5

100

period

period

period

,

period

t j c

t j c

t : j : c ,

t j c

q

= = = =

= = = =

= = = =

= = = =

= = = =

=

period

1,2

580
t 1: j 2 : c 290

2
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Example

365

25,281
4

1125
:6:3

5,292
2

585
:4:3

500
1

500
:3:3

3

6,3

4,3

3,3

=

====

====

====

====

q

cjt

cjt

cjt

period

period

period

275
3

825
c:5j:3t period

3,5
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Example

1905500825580 :costs Total =++

=

====

100

500
1

500
:6:6

6

6,6

q

cjt period
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Observations

� The SRP can be characterized as a pure shortest path 
problem where we have to find the shortest connection 
between source and sink comprising total costs for the 
production of the demanded quantities

� Unfortunately, the integration of additional existing 
restrictions frequently given in real applications cannot be 
handled

� In order to do so, a modified version SRPG of the SRP is 
proposed where we use continuous variables instead of 
integers

� In this model we can add arbitrary capacity restrictions 
often occurring in industrial applications
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3.4 The CLSP model

=Capacitated Lot-Sizing Problem

� Extension of the SLULSP model by integrating 
multiple products with dynamically changing 
demands

� The available capacities are limited and must be 
shared between the different products

� Big-bucket model, i.e., long periods, J jobs per 
bucket to be processed
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Big- vs. Small-bucket problems

� In literature, two main types of lot-sizing models are 
distinguished:

� Big-bucket models: The planning horizon is divided into 
larger sub-horizons (called buckets) which allow the 
processing of multiple products where different setup 
states are necessary. Consequently, the respective 
models characterized as big-bucket approaches are 
defined as multiple product concepts, where individual 
setup and processing times for each resource are present 
(cf. CLSP). Setup states between neighboring buckets 
are not preserved while it is assumed that, due to the 
time dominance of the bucket sizes in comparison to the 
setup times, the non-preservation of specific setup states 
between successive buckets causes only small and 
negligible errors
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Big- vs. Small-bucket problems

� Small-bucket models: Allow only at most one setup 
activity per bucket. Therefore, the model additionally 
comprises a sequence decision with respect to the jobs to 
be processed on the considered machines. As a 
consequence, a problem instance occurs which 
comprises frequently a large number of buckets by 
mapping realistic sized problems

� Trend towards the more accurate small-bucket models, 
especially for applications with larger lead times (inherent 
drawback of big-bucket models)
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Linked models

� To combine the advantages of the two types by 

preventing the respective disadvantages, the lot-
sizing models with linked lot sizes are 

proposed in new publications, 

� …namely the CLSPL as a big-bucket model with 

the additional attribute that existing setup states 
can be preserved between successive buckets
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Illustration

1 time2 3 4

Big-bucket

model

1 time2 3 4

Small-bucket

model

5 6 7 8

1 time2 3 4

CLSPL

Short periods;

≤2 products per bucket

Longer periods;

J products per bucket

Longer periods;

J products per bucket;

Linked lot sizes
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CLSP – Assumptions

� The planning horizon is fixed and divided into 
T time buckets, numbered from 1 to T

� Resource consumption to produce a product 
j on a specific resource m is fixed, and there 
exists a unique assignment of products to 
resources

� Setup processes incur setup costs and 
consume setup time, thereby reducing capacity 
in the respective period. Costs and consumed 
time occur sequence-independent

� No setup state can be preserved to the 
subsequent bucket
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[ ]

[ ]

[ ]

[ ]

( ) [ ]

( ),

:  Number of considered periods - ;

:  Number of available resources - ;

Number of products - ;

: Large number - ;

1 1 : Capacity of resource  in period  time units ;

1 ;1 :  Primary, 

j,t

k t

T

J

K : 

M

b j J; t T j t

P k K t T

≤ ≤ ≤ ≤

≤ ≤ ≤ ≤

[ ]

( )

[ ]

gross-demand for item  in 

period  product units ;

1 :  Holding cost for one unit of product  per period

currency units/product units ; 

k

k

t

h k K k≤ ≤

3.4.1 Mathematical definition – Parameters 
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( )

[ ]

( )

[ ]

( )

,

1 :  Ordering (or setup) costs for product  

currency units/product units ;

1 ;1 :  Production costs for product  in period  

currency units/product units ;

1 ;1 :  Operating time 

k

k t

j,k

s k K k

p k K t T k t

to j J k K

≤ ≤

≤ ≤ ≤ ≤

≤ ≤ ≤ ≤

[ ]

( )

[ ]

for each item of product  

on resource  time units/product units ;

1 ;1 :  Setup time for product k on resource  

time units/batches ;

j,k

k

j

ts j J k K j≤ ≤ ≤ ≤

3.4.1 Mathematical definition – Parameters 
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( )

( )

( )

, 1 ;1 : Lot size of product  in period ;

1 ;1 : Binary derived variable indicating a setup 

operation of product  in period ;  

1 0 :  Derived variable defining the inven

k t

k,t

k,t

X k K t T k t

k K t T

k t

y k K; t T

≤ ≤ ≤ ≤

γ ≤ ≤ ≤ ≤

≤ ≤ ≤ ≤

, , , ,
1 1

tory of 

product  at the end of period ;

Minimize Z  
K T

k k t k k t k t k t
k t

k t

s h y p X
= =

= ⋅ γ + ⋅ + ⋅∑∑

Objective function :

Mathematical definition – Variables 
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{ } { }

{ } { }

, 1 , , ,

, ,

1,..., : 1,..., : ;

The demand in every period of each product must be fulfilled by 

the inventory and additional production

1,..., : 1,..., : 0;

Derivation of the

k t k t k t k t

k t k t

k K t T y X y P

k K t T X M

−∀ ∈ ∀ ∈ + − =

∀ ∈ ∀ ∈ − ⋅ γ ≤

{ } { } ( ), , , , ,
1

 binary setup variables

1,..., : 1,..., :

Compliance with the time restriction of each available resource

K

j k k t j k k t j t
k

j J t T to X ts b
=

∀ ∈ ∀ ∈ ⋅ + ⋅ γ ≤∑

Mathematical definition – Restrictions I
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{ } { }

{ }

{ } { }

{ } { }

,

,0 ,

,

1,..., : 1,..., : 0      Non-negative lot 

sizes

1,..., : 0 0             Start and end inventory 

is zero

1,..., : 1,..., : 0  Non-negative 

inventories

1,..., : 1,..., :

k t

k k T

k t

k

k K t T X

k K y y

k K t T y

k K t T

∀ ∈ ∀ ∈ ≥

∀ ∈ = ∧ =

∀ ∈ ∀ ∈ ≥

∀ ∈ ∀ ∈ γ { }, 0,1   Possible values 

for the derived variable

t ∈

Mathematical definition – Restrictions II
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3.4.2 Solution methods

� The CLSP can be directly solved by using a standard 
solver 

� This, however, causes frequently an unacceptable 
computational effort

� Two different solution methods are frequently proposed to 
prevent this computational effort:

� Use of the Shortest Path Problem SRPG: 

� Integration of capacity restrictions

� Easier to solve due to its flow attitude

� Use of appropriate heuristics

� The procedure of Dixon and Silver

� The ABC-procedure of Maes
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The procedure of Dixon and Silver

� Heuristic approach

� The use of only one resource (one machine) is 
assumed

� Bases on (idea derived from) the Silver-Meal 
heuristic 
� In every iteration the procedure tries to minimize 

the average costs per period caused by each 
product

� But due to the simultaneous production of several 
products, capacity restrictions can prevent a 
sequence defined according to this criterion

� Therefore, the procedure has to define additionally 
some priority rules to decide about which product 
can be produced according to the decisions of the 
Silver-Meal procedure
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Preparing main instruments

� In each iteration the procedure tries to extend the 
production in the current period by integrating the 
demand of a following period of some product, i.e., all 
products compete for implementing its production in a 
subsequent period if this integration attains a reduction 
of the respective average costs per period

� But, owing to the fact that the available capacity defines 
the bottleneck of the planning process, all cost 
reductions are interpreted according to their capacity 
requirements, i.e., for each product k the integration of 
the demand of the j+1-th period in the production 
generated in period i is rated by the following priority ∆k,i:

[ ]
[ ]

jkd

dto

cc

jk

jkk

period

jik

period

jik
ik

 periodin  product  of demand  theas with 

 

,

1,

1,,,,
,

+

+

⋅
−

=∆
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Interpretation

� ∆k,i gives the relative reduction of average 
production costs per period of product k produced 
in period i by integrating the demand of period j+1
per capacity unit to be used for its realization

� By integrating the products in the sequence of 
non-increasing ∆-values, a solution arises 
optimally applying the Silver-Meal criterion 
according to the local minimization of total 
average costs per period

Business Computing and Operations Research 245

Pseudocode of the Dixon and Silver procedure

While current period i≤T do

Iteration i:

While capacity is available and costs per 
period reductions for some products are still 
possible, do

Enlarge production quantities by 
integrating subsequent periods of 
the product with largest ∆-value

Od (end while)
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Capacity requirements

� In order to respect the capacity requirements in the CLSP 
model, it may become necessary to advance some 
productions to earlier periods

� First of all, we therefore have to check whether a given 
instance is solvable at all. This can be checked by the 
following requirements:

{ }
�

,
1 1 1

Total available capacity up Total capacity demand up 
to period tto period t

1,..., :
t K t

k k j j
j k j

t T to d b
= = =

∀ ∈ ⋅ ≤∑∑ ∑
�������

� Note that average setup times are already subtracted 
from the capacities

� Note further that these times cannot be exactly computed 
beforehand since they depend on the found solution
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Consequences

� In order to guarantee a feasible solution 
generated in the computation of the procedure of 
Dixon and Silver, we have to introduce some 
additional shortcuts

� In what follows, we define:

{ } { }
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Definition of used parameters
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Observation

� A capacity shortage CRi,j>0 can be satisfied only if an 
additional production in the periods i,i+1,…,j-1 is 
established

� Therefore, a period i has to account for a production of 
the period j if the intermediate periods are not able to fulfill 
its capacity requirements

� Therefore, in order to guarantee the feasibility of a 
generated solution – if possible – a period i has to 
integrate the additional capacity requirements:

( ) { }




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Consequences

� By integrating these additional quantities in the i-

th period, the demand of all subsequent periods 

can be satisfied

� As a consequence, we fulfill the following 

necessary restrictions ensuring the feasibility:

{ } { } ∑ ∑
+= +=

≤+∈∀−∈∀
t

ij

t

ij

jiji CUCRTitTi
1 1

,,:,...,1:1,...,1
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The Dixon and Silver procedure

� As a consequence, the procedure of Dixon and 

Silver respects the advanced production of future 

deficits to prevent any violation of the defined 

capacity requirements

� Therefore, by considering each period and its 
production program only once, its determination 

always results in a program where it remains 

possible to fulfill the demand requirements of all 

subsequent periods
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� Step 1: Initialization of variables

� Check whether the entire problem is solvable. If

then the problem is solvable. Otherwise, stop with 
the output “Problem cannot be solved”

� Current period is i=1

The procedure of Dixon and Silver

{ }
�

,
1 1 1

Total available capacity up Total capacity demand up 
to period tto period t

1,..., :
t K t

k k j j
j k j

t T to d b
= = =

∀ ∈ ⋅ ≤∑∑ ∑
�������
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� Initialization of the product ranges

For all products k: rk,i=0

� Initialization of production quantities

For all products k: xk,i=dk,i

� Generate the respective remaining capacities in 
period i

Continuation of step 1

∑
=

⋅−=
K

k

ikkii dtobRC
1

,
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Step 2

Generate the earliest period where the current 

production program of period i is not able to 

guarantee a feasible execution of the demanded 

production quantities, i.e., we compute:



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



<∧>= ∑ ∑
+= +=

t
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t

ij

jijic CRCUittt
1 1
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� Consider the set M of products whose current 
range does not cover the period tc und whose 
subsequent demand can be integrated in the 
production of period i, i.e.,

� If M contains no products, go to step 4

� Otherwise, determine the product l in M with 
largest priority ∆l,i

� If ∆l,i≥0: Integrate the demand of the next period 
of product l and go to step 3 – integration (next 
slide)

� Otherwise, go to step 4

Step 3

{ }
,, , 1|

k ik i c k i r k iM k r t i d to RC+ += < − ∧ ⋅ ≤
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Step 3 – Integration

� The extension of the production quantity for 

product l to the next period is advantageous:

2 step to Go
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Step 4 – Feasibility check

� If tc>T, then the production plan for period i is 

already feasible and we can switch to the next 

iteration by setting i:=i+1

� Otherwise, we have to resume adapting the 

production program in period i by integrating the 
production of future demands

� This is done in step 5



30

Business Computing and Operations Research 258

� Compute with Q the additional production 

demand for attaining a feasible constellation after 

period i, i.e., 

Step 5 – Feasibility construction

, ,
1 1

max |
t t

i j i j c
j i j i
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Step 6 – Corrections

� Consider all products whose current range does 
not cover up to period tc. In case of the k-th
product we get:
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Step 6 – continuation 

� Integrate the period demand as described above 

for the product with the largest ∆-priority. Let W, 

the respective occurring capacity, demand for this 

integration. Then Q:=Q-W

� If Q>0, repeat step 6 – otherwise, go to the next 

(i:=i+1) iteration
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Example

� Two products, 4 periods to be considered

� Setup costs: s1=100; s2=50

� Holding costs: h1=4; h2=1

� Production times: to1=to2=1

� Capacities: b1=b2=b3=b4=160

t 1 2 3 4

d1,t 110 49 0 82

d2,t 48 75 15 120
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Iteration i=1

� Step 1:
� General feasibility check:

� t=1: 158<160 ok

� t=2: 282<320 ok
� t=3: 297<480 ok

� t=4: 499<640 ok

� r1,1=0; x1,1=110 product 1
� r2,1=0; x2,1=48 product 2

� RC1=2 Remaining capacity in period 1

t 1 2 3 4

q1,t 110 - - -

q2,t 48 - - -

CNi,t - 124 15 202

RCi 2 160 160 160
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Iteration i=1 – step 2

Now, we have to determine if there is a period where the 
feasibility is endangered by the current production plan
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Now, we try to enlarge the production quantities 

in order to reduce the costs per period

• Unfortunately, in this case the small remaining 

capacity of 2 in period 1 prevents any integration

• Demands:

• Product 1: d1,2
.to1=49>2

• Product 2: d2,2
.to2=75>2

• Iteration 1 ends

Iteration i=1 – step 3
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Iteration i=2

� Step 1:

� Initialization of product quantities:

� r1,2=0; x1,2=49 product 1

� r2,2=0; x2,2=75 product 2

� RC2=36 Remaining capacity in period 2

t 1 2 3 4

q1,t 110 49 - -

q2,t 48 75 - -

CNi,t - - 15 202

RCi 2 36 160 160
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Iteration i=2 – step 2

Now, we have to determine if there is a period 
where the feasibility is endangered by the 
current production plan
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Now, we try to enlarge the production quantities in order to 
reduce the costs per period

• Product 1 has no demand in period 3. Therefore, an 
enlargement yields always the highest priority and is 
executed, i.e., r1,2=1

• Product 2 has in period 3 the demand 15, i.e., it holds that 
d2,3

.to2=15<RC2=36

� ∆2,2=(50/1-(50+1.15)/2)/15=(50-32,5)/15=17,5/15=1,16667≥0, 
i.e., enlargement is implemented

� r2,2=1

� New solution:

Iteration i=2 – step 3

T 1 2 3 4

q1,t 110 49 - -

q2,t 48 90 - -

CNi,t - - - 202

RCi 2 21 160 160
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Iteration i=2 – step 2(2)

Now, we have to determine if there is a period 
where the feasibility is endangered by the 
current production plan
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Now, we again try to enlarge the production 

quantities in order to reduce the costs per period

• Unfortunately, in this case the small remaining 

capacity of 21 in period 2 prevents any further 
integration

• Demands:

• Product 1: d1,4
.to1=82>21

• Product 2: d2,4
.to2=120>21

• Iteration 2 ends

Iteration i=2 – step 3(2)
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Iteration i=3

� Step 1:

� Initialization of product quantities:

� r1,3=0; x1,3=0 product 1

� r2,3=0; x2,3=0 product 2

� RC3=160 Remaining capacity in period 3

t 1 2 3 4

q1,t 110 49 - -

q2,t 48 90 - -

CNi,t - - - 202

RCi 2 21 160 160
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Iteration i=3 – step 2

Now, we have to determine whether there is a 
period where the feasibility is endangered by the 
current production plan
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Now, we try to enlarge the production quantities 

in order to reduce the costs per period

• Product 1 has in period 4 the demand 82, i.e., it 

holds d2,4
.to2=82<RC3=160

∆1,3=(0/1-(100+4.82)/2)/82=(-214)/82=

-2,609, i.e., enlargement is not implemented

• Product 2 has in period 4 the demand 120, i.e., it 

holds d2,4
.to2=120<RC3=160

∆2,3=(0/1-(50+1.120)/2)/120=(-85)/120=

-0,708333<0, i.e., enlargement is not implemented

Iteration i=3 – step 3
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Iteration i=3 – step 4

Now, we have to determine if there is a period 
where the feasibility is endangered by the 
current production plan

3,4 3,4

4 4
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4 4
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Iteration i=3 – step 5

� Q=42: Minimal capacity to be integrated in period 

is 3 in order to guarantee a feasible production 

plan

� Respective ranges:

� Product 1: 42/82=0,51

∆1,3=(0/1-(100+4.42)/1,51)/42=-4,2258

� Product 2: 42/120=0,35

∆2,3=(0/1-(50+1.42)/1,35)/42=-1,6223, i.e., 
enlargement is implemented

r2,3=0,35; x2,3=42
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Iteration i=3 – step 5

t 1 2 3 4

q1,t 110 49 - -

q2,t 48 90 42 -

CNi,t - - - 160

RCi 2 21 118 160

• Iteration 3 ends
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Iteration i=4

� Step 1:

� Initialization of product quantities:

� r1,4=0; x1,4=82 product 1

� r2,4=0; x2,4=78 product 2

� RC4=0 Remaining capacity in period 4

t 1 2 3 4

q1,t 110 49 - 82

q2,t 48 90 42 78

CNi,t - - - -

RCi 2 21 118 0
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Now, we have to determine if there is a period where the 

feasibility is endangered by the current production plan

The algorithm stops! Solution generated!

Iteration i=4 – step 2

t 1 2 3 4

q1,t 110 49 - 82

q2,t 48 90 42 78

RCi 2 21 118 0

45 =≥=⇒ Ttc
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Can we improve the solution?

� Idea: It is always advantageous to produce all quantities 
in the last possible period

� This is not implemented for product 2 

� We can move the production of 15 units needed in 3 in 
this period to save holding costs of 15 currency units, i.e., 
we generate the solution:

t 1 2 3 4

q1,t 110 49 - 82

q2,t 48 75 57 78

RCi 2 36 103 0



37

Business Computing and Operations Research 279

Observation

� In literature, it is stated that the procedure of 

Dixon and Silver yields a high solution quality

� Consequently, this procedure is also used in 

multiple-stage problems as a subroutine
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3.5 The CLSPL Model

� All assumptions of the CLSP beside the carry-

over-prohibition of setup states are valid

� A setup state is not lost if there is no production 
on the resource within a bucket

� Single-item production is possible (i.e., the 

conservation of one setup state for the same 

product over two consecutive bucket 

boundaries)
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� The planning horizon T is fixed and divided into time buckets 
1,…,T

� Resource consumption to produce a product j on a specific 
resource m is fixed, and there exists an unique assignment of 
products to resources 

� Setups incur setup costs and consume setup time, thereby 
reducing capacity in periods where setups occur

� At most one setup state can be carried over on each resource 
to the next one, consequently no setup activity is necessary in 
this subsequent period

� Single-item production is possible (i.e. the conservation of one 
setup state for the same product over two consecutive bucket 
boundaries) 

� A setup state is not lost if there is no production on the 
respective resource within a bucket

� In the following, we give a detailed mathematical definition of 
the problem basing on the model proposed by Stadtler and 
Suerie (2003)

3.5.1 CLSPL – Attributes
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Computation of the net-demands

� In the CLSPL introduced here the chosen lot sizes are 
defined according to the net demands for product j in 
period t, i.e., we define the proportion of the net 
demand of a specific product in period t that is 
satisfied by the production in the considered period. 

� This is done in order to get a more strict and compact 
model definition which can be solved much easier

� To do so, we first have to introduce what we 
understand as the so called net demand of a specific 
product in a defined period
� Up to now we have modeled the inventory and gross 

demands directly within separated variables (derived 
variables)

� So far, we have neglected dependencies resulting from 
multiple-stage systems
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Computation of the net-demands

� Now, the relative definition requires a detailed 

handling of these interdependencies. Therefore, 

we have to derive the net demands instead. 

� Consequently, inventory and secondary 

demands have to be respected

� First of all, we have to map the product structure 
with all existing interdependencies

� Note that ending inventory is explicitly 
allowed
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Generating net demands – Parameters

{ } { }

{ } { }

 Number of products (or items)

Number of considered periods

1 1 Primary gross demand of product  in period 

1 1 Gross demand of product  in period 

j ,t

j ,t

J :

T :

j ,...,J : t ,...,T : P : j t

j ,...,J : t ,...,T : D : j t

j

∀ ∈ ∀ ∈

∀ ∈ ∀ ∈

∀ { } { }

{ } { }

1 1 Net demand of product  in period 

2 1 1 The number of units of product (item)  

required to produce one unit of product (item)  

In what follows, we 

n

j ,t

n

i , j

,...,J : t ,...,T : D : j t

i ,...,J : j ,...,i : r : i

j

∈ ∀ ∈

∀ ∈ ∀ ∈ −

assume that the products are ordered according to 

the adjacency graph, i.e., a lower numbered product is never necessary 

in order to produce a higher numbered one
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Generating net demands – Parameters
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CLSPL – Parameters 

( )

( )

1 : Product index or item index

1 Resource index

1 Index of periods

1 Set of products produced on resource 

1 1 Capacity needed on resource 
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CLSPL – Parameters 

( )

( )
( )

1 1 : Primary, gross demand for item  in period 

with  including final inventory - if given for the planning horizon 
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CLSPL – Variables 

( )
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1 1 Inventory of item or product at the end of the period 

1 1 Proportion of net demand of product  in period  

fulfilled by production in period 
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i.e., the setup state is linked from the preceding to the subsequent period
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CLSPL – Restrictions 
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CLSPL – Restrictions 
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CLSPL – Restrictions 
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CLSPL – Objective function 
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3.5.2 Tightening the model

� Suerie and Stadtler (2003) propose several 

extensions of the defined model in order to 

strengthen it significantly

� Strengthen means that it becomes possible to 

derive tighter LP bounds 

� In particular… 

� new variables are added

� and three groups of valid inequalities are 

introduced
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Added / exchanged variables

� The resource-dependent variables Qm,t are 

replaced by product-dependent ones termed as 

QQj,t

� By using these modified variables instead we can 

give a more precise definition of occurring setup 

states linked between subsequent periods

� In detail we define:

{ } { }1 1  Binary decision variable.  Is 

one iff the setup state is carried from period 1 through 1 

while product  is solely produced in period 

j ,tj ,...,J : t ,...,T : QQ :

t - t

j t

∀ ∈ ∀ ∈

+
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Erasing restriction 8
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Erasing restriction 6
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Range-restriction of values for QQ
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Restriction 7
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Restriction 7
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Observation

� Restriction 7 can be erased due to the 

combined application of restrictions 6 and 8

� By analyzing the transformations on the previous 

slide, it becomes obvious that the restrictions 6 

and 8 together form restrictions that are 

considerably tighter than the restriction 7
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Valid inequalities

� In the following, additional restrictions are 

introduced to achieve a further tightening of the 

model definition

� To do so, basic attributes of adequate solutions 

are elaborated and subsequently fixed by the 

integration of additional restrictions in the model 

definition
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Preprocessing – Inequalities

� Now attributes of the given test data are used to 
define additional restrictions

� In detail, the possible range of the new introduced 
QQ-variables is limited

� This can be done in a step called preprocessing
� Therefore, in this preprocessing step available 

capacities are computed and compared with the 
cumulative slack capacities summed up to the 
respective period

� Since there is no backlog allowed, impossible 
single item productions in some periods may be 
identified and, therefore, excluded
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Example

Item j am,j Net demand in 

period 1

Net demand in 

period 2

Net demand in 

period 3

1 1 20 20 20

2 1 30 40 40

3 1 20 20 20

Available capacity 100 100 100

Cumulative slack 

capacity

30 50
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Observations

� Period 2
Single item production is not possible at all

Why?
– Necessary is a capacity requirement shift of at least 40 

units to period 1 

– But: In period 1 there is a slack capacity of only 30 units

� Period 3
Single item production is not possible for products 1 

and 3
Why?

– Necessary is a capacity requirement shift of at least 60 
units to period 2 

– But: In period 2 there is a cumulative slack capacity of only 
50 units
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General speaking

� Let U denoting the length of the interval under 
consideration: 

“If cumulative slack capacity (up to period t-1) is 
less than the amount that has to be pre-produced 
to allow single-item production of just one product 
in the interval under consideration [t; t+U-1], then 
at least two products have to be produced in the 

interval [t; t+U-1]”

� This implies that at least one setup activity has to 
be performed, which implies that not all periods of 
the interval [t; t+U-1] can have single-item 
production
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Additional model restrictions – Type 1
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Additional model restrictions – Type 2 (ext)
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Inventory / Setup – Inequalities 

� If Yj,t=W j,t=0 for product j, there is no production in 

t for product j and therefore the stock has to 

satisfy the occurring demand

� These dependencies can be generalized to 

intervals of the periods t to t+p

� Therefore, we can add the following restrictions 

to the model
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Additional restrictions
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Capacity/Single-Item – Inequalities

� Now, additional restrictions are defined which 

map the capacity consequences of an occurred 

single item production

� Therefore, it is distinguished whether there is a 

single item production on a considered resource 

or not 

� In the first case we can significantly strengthen the 

existing capacity restriction

� In the latter case the original capacity restriction 

remains
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Additional restrictions
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New derived variables
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Solution approaches for the CLSPL

� Suerie and Stadtler use a standard MIP solver 
(XPRESS-MP, Release 12)

� They apply two different variants

� Branch & Cut:
� The additional restrictions are omitted in the initial model 

formulation which is solved in each node of the solution tree

� However, the restrictions are stored in a cut pool. If a found 
solution violates  such a restriction this restriction is 
subsequently added to the model

� Cut & Branch:
� All additional restrictions are inserted in the model and 

therefore respected in each node by the computed solutions

� By doing so the LP becomes more restrictive 

Business Computing and Operations Research 314

Observations

� Branch & Cut yields smaller matrices and faster 

solution times at each node at the price of some 

separation procedure

� On the other hand, both might require immense 

amounts of memory and time

� Therefore, a heuristic modified version of the 

procedures has been applied
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3.5.3 Time-oriented decomposition heuristic

� Stadtler has applied this version already to the 

MLCLSP (Stadtler (2003))

� Main characteristics

� The time horizon is separated into three parts

� The lot-sizing window,

� the time intervals preceding the window and finally

� the time intervals following the window

� In successive planning steps, the lot-sizing 

window is moved through the planning horizon
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Decisions in the parts …

� Lot-sizing window:
� Only in this part lot-sizing decisions dealing with binary 

variables are considered

� Preceding part:
� Binary setup variables are fixed and cannot be changed at 

all

� Following part:
� Only inventory balance and capacity constraints (without 

the inclusion of setup times) are included in the model 
definition to anticipate future capacity bottlenecks

Objective function:
� Minimization of setup- and inventory holding costs up to 

the end of the lot-sizing window
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Idea

� Finding of a tight model formulation inside a 
variable lot-sizing window, gathering their 
benefits without accepting the drawback of an 
inflated matrix, if such a model formulation is 
used for the whole planning horizon

� Parameters ((∆,Ψ,Φ)-setting)

�∆:  Length of the lot-sizing window

�Ψ: Overlap of two consecutive lot-sizing windows

�Φ: Number of periods at the end of the lot-sizing 
window with relaxed integrality constraints in 
respect of the setup variables

i.e. Φ≤Ψ≤∆
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(4/2/1) setting

1.Planning step

4.Planning step

3.Planning step

2.Planning step

1 2periods t 3 4 5 6 7 8=T

Lot-sizing window
Window preceding periods

Window following periods
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Planning horizon effect

� Due to the fact that the objective function measures costs 
to the end of the lot-sizing-window only, possible 
enlargements of the production quantities at the end of 
the window are quite unlikely, since 

� they cause additional setup- and production costs but do 
not result in 

� any savings …

� Therefore, in order to deal with this problem, Suerie and 
Stadtler propose a bonus concept rewarding productions 
at the end of the planning horizon. 

� Overlapping of lot-size windows also reduces the 
planning horizon effect
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Bonus computation

� First, i.e., as an offline processing step, we execute 
the Silver Meal heuristic on the non-capacitated version 
of the problem for each period. 

� Therefore, we get myopic TBO (time between orders) 
tbot for every period t

� If a production quantity in period t is enlarged to cover up 
to period s, we charge the total costs C(t,s) defined 
below

� In this situation, we assume that there is a current lot-
sizing window starting at period Tfix and ending in period 
Tint

� Note that we assume that s is somewhere between the 
end of the window and the current tbot, i.e., we want to 
give a bonus only to enlargements likely to be prevented 
by the horizon effect
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Bonus computation
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Example

C_t,s

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1 2 3 4 5 6 7 8 9 10

s-T_int

C
_
t,

s

C_ts (t=11)

C_ts (t=12)

C_ts (t=13)

C_ts (t=14)

C_ts (t=15)

C_ts (t=16)

C_ts (t=17)

C_ts (t=18)

C_ts (t=19)

C_ts (t=20)

Tint=20; Tfix=10; Window size=10
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Example

Bonus-Computation
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-0,16

-0,14

-0,12

-0,1

-0,08

-0,06

-0,04

-0,02

0

1 2 3 4 5 6 7 8 9 10

s-T_int

BONUS (t=11)

BONUS (t=12)

BONUS (t=13)

BONUS (t=14)

BONUS (t=15)

BONUS (t=16)

BONUS (t=17)

BONUS (t=18)

BONUS (t=19)

BONUS (t=20)
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Feasibility of capacity demands

� By introducing the inventory balancing 
constraints for all periods Tint, …, T following the 
lot-sizing window the general feasibility of the 
generated sub-solution should be preserved

� In periods following the lot-sizing window only 
continuous production quantities can be chosen 
while the total capacity in each period can be 
extended by overtime that is charged by a 
predefined rate per time unit in the objective 
function
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Estimating setup times

� Unfortunately, setup activities in these periods 

following the lot-sizing window are not planned 

explicitly and therefore unknown in respect of 

there capacity requirements. We only model 

the balance restriction as specific flow 

requirements resulting in production quantities

� But to anticipate future capacity bottlenecks, 

different variants for estimating the occurring 
setup times are tested, itemized subsequently
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Estimating setup times - STMIN

� This version do not reduces the available 
capacity by any setup activity to be executed 

� I.e. this version neglects all capacity 
consumptions due to setup times in periods 
following the lot-sizing window

� I.e., somehow a “best case consideration”

� Problem: 

�Underestimation of capacity requirements
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Estimating setup times - STMAX

� This version assumes that all items have to be 
produced in every period, i.e. we have to setup 
all resources in each period

� I.e. in this version available capacity per period 
is reduced by the sum of setup times of item 
producible on the specific machine

� Consequently, if capacities are tight, infeasible 
problems for one or more planning steps will 
sometimes emerge, resulting in no solution for 
the complete problem

� I.e., somehow a “worst case consideration”

� Problem: 
�Overestimation of capacity requirements 
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Estimating setup times - STE

� This version lays somewhere between the 

extreme cases itemized above

� Capacity losses due to setups are estimated by 

their average consumption that is implemented in 

the periods preceding the lot-sizing window plus 

a predefined safety margin
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Computational results

� All following results are measured on a PC 

(Windows NT 4.0) with Pentium IV 1.7 GHz 

microprocessor, and 256 MB RAM.

� As a MIP solver, XPRESS-MP release 12 with 

standard setting is used
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Used approaches

1. Basic: Most simple version using the basic 

model definition without any extensions 

(extended formulation & valid inequalities)

2. Extended: Using the extended formulation but 

still omits the valid inequalities

3. C&B: Uses the valid inequalities additionally, 

Cut & Branch approach as described above

4. B&C: Uses the valid inequalities additionally, 

Branch & Cut approach as described above
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Single-Level Test Instances

� First experiments were done by testing the 

different approaches on famous benchmarks 

proposed in literature

� In the first phase the version STMAX was proven 

to be not advantageous and is therefore 

discarded for the rest of the evaluations
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Instances – Single Level 

Class #Products #Periods #Instances

1 6 15 116

2 6 30 5

3 12 15 5

4 12 30 5

5 24 15 5

6 24 30 5

7 10 20 180

8 20 20 180

9 30 20 180
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Results for class 1

� 10 seconds computational time per experiment

� Best solution found so far is taken as the result

� It can be observed, that the proposed model 
formulation with valid inequalities not only yields 
better solutions but also better lower bounds

� Independent from the version – B & C or C & B –
the yielded solution quality of these 
approaches was significantly higher than the 
solution of the results  of the standardized 
versions
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Results for class 1

Approach Gap to LB Avg. time first solution

Basic 6,26 % 0,11 sec

Extended 3,94 % 1,19 sec

C & B 2,72 % 2,66 sec.

B & C 2,62 % 2,34 sec.
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Branch & Cut

� Giving additionally at most 600 seconds per each 

of the 116 instances the performance of the best 

approach the Branch & Cut procedure is tested in 

more detail

� In 91 cases the optimality of the best found 

solution could be proven in the given time limit
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Parameters

� For the MIP formulations, the solution after 30 
seconds is taken for classes 1-3 and 5, whereas 
60 seconds of computational time are allowed for 
class 4 and 6-9

� For some experiments no solution was attained
� Therefore, the limit is enlarged until the first valid 

constellation could be generated
� Sometimes up to 20 minutes were necessary
� As LB the LP relaxation after automatic cut 

generation of the extended model with valid 
inequalities is chosen

� In contrast, the time-oriented decomposition 
heuristic provides excellent solutions in a very 
short time interval, which shows the effectiveness 
of the model decomposition
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All classes – Heuristic comparison

Branch & Cut Heuristic (6/2/2, STMIN)

Classes Gap to LB Avg. time Gap to LB Avg. time

1,2 2,18 % 22 sec 2,52 % 5,3 sec

3,4 1,12 % 45 sec 0,84 % 9 sec

5,6 0,36 % 52,4 sec 0,42 % 11,2 sec

7-9 1,64 % 142,9 sec 2,69 % 13,3 sec
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Observations

� Surie and Stadtler reports comparisons to the 
new Tabu Search procedure proposed by 
Gopalakrishnan et al. (2001) and conclude that 
their decomposition heuristic outperforms this 
approach according to solution quality as well as 
to computational time

� But the approach was not tested on the same 
computational system. However, they only 
report the results of this reference achieved on a 
Pentium III, 550 MHz system. This restricts the 
meaning of this conclusion significantly
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Modified Single-Level Test Instances

� In classes 7-9, the impact of the CLSPL is rather poor, 
since only a single from 30 setup states is carried over 
a period

� Feature to carry over one setup state over two consecutive 
bucket boundaries is never used

� One answer could be, the CLSPL should be applied if only 
a few items require one resource and/or some of them 
are long runners, whereas demand for the other items 
is rather low

� For its evaluation, further test instances were generated 
additionally

� Owing to executed aggregations these instances are 
characterized by significantly smaller sets of items to be 
produced on the resources

� Again, 60 seconds computational time are allowed per 
instance
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Main results

� It can be observed that the option to carry over a 
setup state over two consecutive periods is now 
used frequently

� In detail, there are 3.9 single-item production per 
periods on average

� The new test instances were more difficult to 
solve on the average due to a larger average gap 
to LB

� Again, B & C was the best approach, but the 
heuristic reaches nearly the same solution quality 
while consuming significantly less computational 
time
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Multiple-Level Test Instances

� Further multiple level instances were tested 

� Time limit 600 seconds for finding a solution

� 60 instances comprising the production of 10 

products on 3 resources over 24 periods each
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Results

Branch 

& Cut

(6/2/2)

Time limit 

60 seconds

(6/2/2)

Time limit

180 seconds

(4/2/2)

Time limit

60 seconds

Test 

set

Gap to 
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Gap to 

LB

Avg. 

time

Gap to 
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Avg. 

time

Gap to 

LB

Avg. time

B+ 37,5 % 32,2 % 53,2

sec

29,6 % 139,5

sec

29,1 % 38,7

sec
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Results

� The heuristic approaches now outperforms the Branch & 
Cut procedure

� Even enlarging its computational time to 24 hours(!) does 
not help. Using this additional time, the procedure 
reduces the gap significantly but cannot outperform the 
solution quality of the best heuristic using only 60 seconds

� Due to complexity, it becomes interesting to limit the 
length of the time window

� To do so, complexity remains controllable 

� Still, the time-oriented decomposition heuristic generates 
presumable good results in reasonable time
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Conclusions

� Under specific propositions the use of the CLSPL 
model seems to be advantageous

� The heuristic approach seems to be very efficient 
but needs the use of an appropriate MIP solver 
and its complex model definition

� Some drawn conclusions against the use of the 
Tabu Search approach have to be reevaluated by 
additional tests under equal conditions

� Future work:

� Parallel resources 

� Scheduling integration

� Real-time restrictions
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