
1

Business Computing and Operations Research 171

3 Lot-sizing problems

� A lot size is defined as the amount of a particular item that is ordered
from the plant or a supplier or issued as a standard quantity to the
production process,

� I.e., in what follows, we define the lot size as the number of items of
one product to be continuously produced without preemption on the
same machine

� As relevant costs we consider

� the lot size dependent setup costs and additionally
� the lot size dependent inventory costs.

� Note that there is always a tradeoff between these costs

� The larger the chosen lot size is, the larger is the inventory and,
consequently, the inventory costs

� The smaller the chosen lot size is, the more batches have to be
realized and, therefore, the more setup costs are increased

� In what follows, we consider different models computing efficient lot
sizes

� These models can be mainly distinguished by their assumptions
according to the dependencies between the scheduled products and
the occurring demands

Business Computing and Operations Research 172

Open vs. closed production

� An open production is characterized by the fact that the items of
the current batch that are already processed at stage x can be
further processed at the subsequent stage in spite of the fact that
the total batch is not completed

� In contrast to this, a closed production does not allow a
simultaneous processing of one batch at two neighboring stages.
Therefore, each item of a batch currently processed at stage x
cannot be processed at the subsequent one before this batch is not
completed

stage x stage x+1

Batch currently processed at stage x

Business Computing and Operations Research 173

Model characteristics

Degree of dependency
between the scheduled

products

Demand

stationary dynamic

independent EOQ model

(Andler model)

SLULSP (=WW)

SRP

SPLP

dependent ELSP MCLSP

MLCLSP

2

Business Computing and Operations Research 174

Outline of the chapter

1. The EOQ model

2. Extensions to multiple products

3. The SLULSP model (WW model)
1. Model definition

2. Dynamic programming approach

3. Heuristic approaches

4. The CLSP model
1. Problem definition

2. The Dixon and Silver heuristic

5. The CLSPL model
1. Basics

2. Tightening the model

3. Time-oriented decomposition heuristic

Business Computing and Operations Research 175

3.1 The EOQ model

� =Economic Order Quantity model: Most simple model in literature

� Main assumptions of the model
� Stationary demand

� Continuous production with a predefined constant velocity

� Continuous demand with a predefined constant velocity

� The production always has to fulfill the demands of the subsequent
distribution

� Only one stage and one product are considered

� Unlimited continuous planning horizon

� No capacity constraints are modeled

� Setup costs are independent of a given sequence

� Therefore, the EOQ is a single item model where the optimal solution
can be easily derived from

Production
continuous

production
with a

predefined rate

Demand
continuous

demand
with a predefined

but lower rate

demand must be

always fulfilled !

Business Computing and Operations Research 176

Parameters

[]
[] []

[]
[]

currency units
: Cost rate for inventory ;

quantity units planning horizon units

currency units
: Cost rate for each setup ;

batch

: Total production quantity to be produced in the consid

I

S

T

c

c

x

 
 

⋅  

 
 
  

[]
[]

[]
[]

[]
[]

quantity units
ered planning horizon ;

planning horizon units

quantity units
: Demand rate ;

time units

quantity units
: Production rate ;

time units

We assume: ;

: Time necessar

D

P

D P

S

v

v

v v

t

 
 
  

 
 
  

 
 
  

<

[]
[]

[]
[]

time units
y for the sale of a complete batch of size x i.e. ;

batch

time units
: Time necessary for the production of a complete batch of size x i.e. ;

batch

S

D

P P

P

x
t

v

x
t t

v

   
=   

    

   
=   

    

[]
[]

quantity units
: Lot size ;

batch
x

 
 
  

Sought :

3

Business Computing and Operations Research 177

Solution of the model

� In order to derive the optimal lot size, we first have to
define the cost function computing the total lot size
dependent costs

� In order to do so, we need an additional function telling us
what proportion of the used lot size is on the average on
stock during the total planning horizon

� Therefore, we analyze subsequently the inventory level
and generate a function ØI(x) defining the average
inventory level if the lot size x is used during the
execution of the production process

� In this connection, we have to distinguish between open
and closed production processes

Business Computing and Operations Research 178

Inventory (open production)

x

tP tS

= tP
. vD= tP

. vP

time

inventory

level

Business Computing and Operations Research 179

Computation of ØI(x) (open production)

� Inventory level always increases and decreases linearly

� This behavior is constant over the infinite planning horizon and is
repeated for each processed batch

� The maximum inventory level is defined by x-tP
.vD

� The minimum inventory level is defined by 0

� Therefore, we get for the average inventory level:

() ()()

�����

horizon planning in the
 average on thestock on be to

 x sizelot theof Proportion

1
2

1
1

2

1

2

1
0

2

1









−⋅⋅=








−⋅⋅=









⋅−⋅=+⋅−⋅=∅

P

D

P

D

D

P

DP

v

v
x

v

v
x

v
v

x
xvtxxI

4

Business Computing and Operations Research 180

Inventory (closed production)

x

tP tS

= tP
. vD

= tP
. vP

time

inventory

level

Safety stock (= tP
. vD)

x

+tP
.vD

Business Computing and Operations Research 181

Computation of ØI(x) (closed production)

� Inventory level always increases and decreases linearly

� This behavior is constant over the infinite planning horizon and is
repeated for each processed batch

� The maximum inventory level is defined by x

� The minimum inventory level is defined by tP
.vD

� Therefore, we get for the average inventory level:

() ()

�����

horizon planning in the
 average on thestock on be to

 x sizelot theof Proportion

1
2

1
1

2

1

2

1

2

1









+⋅⋅=








+⋅⋅=









⋅+⋅=⋅+⋅=∅

P

D

P

D

D

P

DP

v

v
x

v

v
x

v
v

x
xvtxxI

Business Computing and Operations Research 182

Finding the optimal lot size (open production)

� Now, we can define the total cost function
depending on the chosen lot size x:

() ()
I

P

D
S

T
IS

T
total c

v

v
xc

x

x
cxIc

x

x
xC ⋅








−⋅⋅+=⋅∅+= 1

2

1

� By using this function, we can easily derive the
optimal lot size

5

Business Computing and Operations Research 183

Finding the optimal lot size (open production)

()

()

()

()

I

P

D

ST

I

P

D

ST
STI

P

D

S
T

I

P

D
I

P

D
S

Ttotal

S
T

total

I

P

D
S

Ttotal

I

P

D
S

T
total

c
v

v

cx
x

c
v

v

cx
xcxc

v

v
x

c
x

x
c

v

v
c

v

v
c

x

x

x

xC

c
x

x

x

x

xC

c
v

v
c

x

x

x

xC

c
v

v
xc

x

x
xC

⋅







−

⋅⋅
=⇔

⋅







−

⋅⋅
=⋅⇔⋅=⋅








−⋅⋅⇔

⋅=⋅







−⋅⇔=⋅








−⋅+⋅

−
⇔=

∂

>⋅⋅=
∂
∂

⋅







−⋅+⋅

−
=

∂

⋅







−⋅⋅+⋅=

1

2

1

2
1

2

1

1
2

1
01

2

1
0

02

1
2

1

1
2

1

22

22

3

2

Business Computing and Operations Research 184

Finding the optimal lot size (closed production)

� Now, we can define the total cost function
depending on the chosen lot size x:

() () I

P

D
S

T
IS

T
total c

v

v
xc

x

x
cxIc

x

x
xC ⋅








+⋅⋅+=⋅∅+= 1

2

1

� By using this function, we can easily derive the
optimal lot size

Business Computing and Operations Research 185

Finding the optimal lot size (closed production)

()

()

()

()

I

P

D

ST

I

P

D

ST
STI

P

D

S
T

I

P

D
I

P

D
S

Ttotal

S
T

total

I

P

D
S

Ttotal

I

P

D
S

T
total

c
v

v

cx
x

c
v

v

cx
xcxc

v

v
x

c
x

x
c

v

v
c

v

v
c

x

x

x

xC

c
x

x

x

x

xC

c
v

v
c

x

x

x

xC

c
v

v
xc

x

x
xC

⋅







+

⋅⋅
=⇔

⋅







+

⋅⋅
=⋅⇔⋅=⋅








+⋅⋅⇔

⋅=⋅







+⋅⇔=⋅








+⋅+⋅

−
⇔=

∂

>⋅⋅=
∂
∂

⋅







+⋅+⋅

−
=

∂

⋅







+⋅⋅+⋅=

1

2

1

2
1

2

1

1
2

1
01

2

1
0

02

1
2

1

1
2

1

22

22

3

2

6

Business Computing and Operations Research 186

Observation

� By analyzing the computation of the optimal lot
size, it becomes obvious that for this lot size the
setup costs are identical with the occurring
inventory costs, i.e., it holds:

()

S
T

I

P

D
S

T
I

P

D

S
T

I

P

D
I

P

D
S

Ttotal

c
x

x
c

v

v
xc

x

x
xc

v

v
x

c
x

x
c

v

v
c

v

v
c

x

x

x

xC

⋅=⋅







+⋅⋅⇔⋅⋅=⋅








+⋅⋅⇔

⋅=⋅







+⋅⇔=⋅








+⋅+⋅

−
⇔=

∂

1
2

1
1

2

1

 i.e.

1
2

1
01

2

1
0

2

22

Business Computing and Operations Research 187

3.2 Extensions to multiple products cases

� The optimal individual lot sizes are frequently not
applicable if there is more than one product. This can be
illustrated by the following simple example

� Example:

� Two products A and B have to be produced

� Optimal individual lot sizes

� xA=1000 and xB=3000 [quantity units]/[batch]

� vDA=10 and vPA=20 [quantity units]/[minute]

� vDB=40 and vPB=100 [quantity units]/[minute]

� We can derive the respective time intervals:
– tPA=1000/20=50 [minutes]/[batch]

– tDA=1000/10=100 [minutes]/[batch]

– tPB=3000/100=30 [minutes]/[batch]

– tDB=3000/40=75 [minutes]/[batch]

Production

50 100 150 200

A

B

Sale Production Sale

Production

25 75 125 175

Sale Production Sale

Multiple allocation !!!

Production

50 100 150 200

A

B

Sale Production

Production

25 75 125 175

Sale Production Sale

Multiple allocation !!!

7

Business Computing and Operations Research 189

Consequence

� We cannot produce A and B in their optimal lot
sizes!

� Possible “work around”:

� Approximate solutions

�Try to generate a feasible solution as close as
possible to the individual optimal lot sizes

� Computation of optimal cycle times

�Use lot sizes for the different products leading to an
identical number of batches to be processed for all
products

Business Computing and Operations Research 190

Approximate solution I

1. Generate the individual optimal lot sizes xopt,n (nє{1,…,N})
for N products by using the computation derived above

2. Calculate the resulting total costs of this optimal solution,
i.e.,

()∑
=

=
N

n

noptnToptTopt xCC
1

,,,,

3. Define a fixed rate i as an upper bound for the percentage
derivation of the resulting costs Cres,n in comparison to the
theoretic ones, i.e.,

{ }
()

qi
xC

C
Nn

noptnTopt

nres =+≤∈∀ 1:,...,1
,,,

,

Business Computing and Operations Research 191

Approximate solution II

5. Check if there are possible constellations inside the computed
windows for each product leading to feasible solutions

� If so, realize the best one

� Otherwise, continue with step 6

6. Increase i by a predefined percentage rate and proceed with
step 4

4. Calculation of the lot size window of each product is
depending on the costs rate

{ }
()
()

() ()
��� ���� ����� ���� ��

upper
nopt

lower
nopt x

noptn

x

nopt

noptnnoptn

noptnTopt

nnT

qqxxqqx

xxxqxqi
xC

xC
Nn

,,

11

021:,...,1

2

,

2

,

2

,,

2

,,,

,

−+⋅≤≤−−⋅⇔

≤+⋅⋅⋅−⇔=+≤∈∀

8

Business Computing and Operations Research 192

Pros vs. Cons

Pros

+ High solution quality since the objective functions differ
only slightly around the optimal lot size

+ Specific requirements of each product can be respected

+ Flexible adjustment

Cons

– No systematic approach

– Trial and error

– Can become extremely time consuming and, additionally,
there is no guarantee for success

Business Computing and Operations Research 193

Optimal cycle times

� This “work around” tries to generate a realizable
solution by requiring an identical number of batches
for each considered product in the planning horizon

� To do so, we extend the model defined above by
introducing an additional variable c as the sought
optimal number of batches to be processed of each
product, i.e., c=xT,n / xn

� Therefore, a new model arises with a single variable
c while the lot size of each product can be derived
from a defined value for c

� The optimal cycle time is defined as the cycle time
leading to the minimal total costs of all products

Business Computing and Operations Research 194

Deriving the optimal cycle time (open production)

()
()

()

, , , ,

, , , ,2
1 1, ,

, ,

,3
1 ,

Objective function:

1 1
1 ; 1

2 2

1 0;

Finding the optimal cycle time

N N
TT n D n T n D n

T S n I n S n I n
n nP n P n

T
N

T n D n

I n
n P n

C cx v x v
C c c c c c c

c v c c v

C c
x vc c

c c v

= =

=

   −
= ⋅ + ⋅ ⋅ − ⋅ = + ⋅ ⋅ − ⋅      ∂   

 ∂ = ⋅ − ⋅ ≥  ∂  

∑ ∑

∑

() , ,

, ,2
1 ,

, ,

, ,2
1 1 ,

, ,

, , , ,
1 1, ,2

, ,
1 1

1
0 1 0

2

1
1

2

1 1
1 1

2 2

N
T T n D n

S n I n
n P n

N N
T n D n

S n I n
n n P n

N N
D n D n

T n I n T n I n
n nP n P n

N N

S n S n
n n

C c x v
c c

c c v

x v
c c

c v

v v
x c x c

v v
c c

c c

=

= =

= =

= =

 
= ⇔ − ⋅ ⋅ − ⋅ =  ∂  

 
⇔ = ⋅ ⋅ − ⋅  

 

   
⋅ ⋅ − ⋅ ⋅ ⋅ − ⋅      

   ⇔ = ⇔ =

∑

∑ ∑

∑ ∑

∑ ∑

9

Business Computing and Operations Research 195

Deriving the optimal cycle time (closed production)

()
()

()

, , , ,

, , , ,2
1 1, ,

, ,

,3
1 ,

Objective function:

1 1
1 ; 1

2 2

1 0;

Finding the optimal cycle time

N N
TT n D n T n D n

T S n I n S n I n
n nP n P n

T
N

T n D n

I n
n P n

C cx v x v
C c c c c c c

c v c c v

C c
x vc c

c c v

= =

=

   −
= ⋅ + ⋅ ⋅ + ⋅ = + ⋅ ⋅ + ⋅      ∂   

 ∂ = ⋅ + ⋅ ≥  ∂  

∑ ∑

∑

() , ,

, ,2
1 ,

,

, ,
1 ,, , 2

, ,2
1 1 ,

,
1

,
, ,

1 ,

,
1

1
0 1 0

2

1
1

21
1

2

1
1

2

N
T T n D n

S n I n
n P n

N
D n

T n I n
N N

n P nT n D n

S n I n N
n n P n

S n
n

N
D n

T n I n
n P n

N

S n
n

C c x v
c c

c c v

v
x c

vx v
c c c

c v
c

v
x c

v
c

c

=

=

= =

=

=

=

 
= ⇔ − ⋅ ⋅ + ⋅ =  ∂  

 
⋅ ⋅ + ⋅     ⇔ = ⋅ ⋅ + ⋅ ⇔ =  

 

 
⋅ ⋅ + ⋅  

 ⇔ =

∑

∑
∑ ∑

∑

∑

∑

Business Computing and Operations Research 196

Pros vs. Cons

+ Frequently a solution is generated that is feasible
and quite efficient

+ Systematic approach

+ Fast solution generation

– Generates a rough compromise

– Neglects frequently many insights of the different
considered products by a summarized
simultaneous examination of all items

Business Computing and Operations Research 197

3.3 The SLULSP model (WW model)

= Single-Level Uncapacitated Lot Sizing Problem

Also called Wagner Whitin model (WW-model)

� Dynamic model (changing demand)

� Finite planning horizon which is subdivided into
several discrete periods of predefined length

� Demand is given for each period but can vary
from period to period

� Demand must be satisfied in each period

� Capacity restrictions are not considered

� Single item model

10

Business Computing and Operations Research 198

3.3.1 Model definition – Parameters

()

()

()

()

: Number of considered periods;

1 : Amount demanded in period ;

1 : Interest charge per unit of inventory carried forward

to period 1;

1 : Ordering (or setup) costs in period ;

1

t

t

t

t

T

d t T t

i t T

t

s t T t

p t T

≤ ≤

≤ ≤

+

≤ ≤

≤ ≤

0

: Production costs in period ;

: Initial inventory;

: Large number;

t

I

M

Business Computing and Operations Research 199

Model definition – Variables

()

()

()

t

t

1 : Chosen lot size in period ;

1 : Binary derived variable indication a setup operation

in period ;

1 : Inventory in period ;

t
x t T t

t T

t

I t T t

≤ ≤

γ ≤ ≤

≤ ≤

Business Computing and Operations Research 200

Restrictions

� We have to find a program (x1,…,xT) for all considered periods,
so that all demands are met at minimal total costs

� In each period the current inventory level can be computed by
the difference of production and demand added to the inventory
of the preceding period

� Setup costs always occur in a period if there is a production
quantity unequal to null

� We additionally assume that the initial as well as the final
inventory is equal to null

{ }

{ }
{ }
{ }

{ } { };1,0:,...,1

;0

0:,...,1

;0:,...,1

;:,...,1

;0:1,...,1

0

1

11

0

∈γ∈∀

==

≥∈∀

≤γ⋅−∈∀

=−+∈∀

≥−+−∈∀

−

==

∑∑

t

T

t

tt

tttt

t

j

j

t

j

j

Tt

II

xTt

MxTt

dIxITt

dxITt

11

Business Computing and Operations Research 201

Objective function

An efficient production plan should minimize the
resulting total sum of setup-, production-, and
inventory costs, i.e., we can derive the following
objective function:

() ()∑
=

⋅+⋅+⋅=
T

t

ttttttTT xpIis,...,xxC
1

1 Minimize γ

Business Computing and Operations Research 202

3.3.1.1 Theorem

There exists an optimal program fulfilling the following
restrictions:

{ } 0:,...,1

1

1

1

1

1

0 =⋅









−+∈∀

−=

−

=

−

=

∑ ∑ t

I

t

j

t

j

jj xdxITt

t

��� ���� ��

I.e., in each period, there is either an existing inventory or an
additional order is generated. This means that the production
of additional items is processed if and only if the inventory is
totally consumed in the previous periods.

Main cognitions – First substantial Theorem

Business Computing and Operations Research 203

Proof:

We assume there is an optimal program not fulfilling the
itemized restriction for a minimally chosen period s.
Therefore, it holds:

Let Is-1 be the inventory brought into period s. Let r<s be the
next preceding period where a production takes place
(Note that r is well defined since at least period one fulfills this
requirement).

Note that xr≥Is-1 since Ir-1=0 (s was minimally chosen) and we
have an inventory in period s.

Proof of Theorem 3.3.1.1

000
1

1

1

1

0

1

1

1

1

0 >∧>−+⇒>⋅







−+ ∑ ∑∑ ∑

−

=

−

=

−

=

−

=

s

s

k

s

k

jks

s

k

s

k

jk xdxIxdxI

12

Business Computing and Operations Research 204

If it holds cr,s>ps (cr,s are the total costs for producing one unit of
demand of period s in period r and carry it over to period s), we
produce the Is-1 items not until period s. Since this reduces the
total costs, it contradicts the optimality of the solution found.

Thus, we know cr,s≤ps. Hence, we abstain from producing in
period s and increase the production quantity in period r by xs

items. Owing to the optimality, it holds that cr,s=ps and we can
transform the solution as intended without losing its optimality.

Proof of Theorem 3.3.1.1

Business Computing and Operations Research 205

3.3.1.2 Theorem

There exists an optimal program so that:

{ } TktkdxxTt
k

tj

jtt ≤≤=∨=∈∀ ∑
=

, somefor 0:,...,1

Proof:

We assume again that an optimal program does not fulfill the
defined restriction. Since the occurring demand must be
always satisfied by the production, there is a period t where it
holds:

∑
=

+ <<>+=
k

tj

kjt Tkdcccdx and with 1,0

Second substantial Theorem

Business Computing and Operations Research 206

Proof (continued):

Therefore, we know that there is a period s>t where it holds:

000
1

1

1

1

0

1

1

1

1

0 >∧>−+⇒>⋅







−+ ∑ ∑∑ ∑

−

=

−

=

−

=

−

=
s

s

k

s

k

jks

s

k

s

k

jk xdxIxdxI

Now, we can apply Theorem 3.3.1.1 to finish the proof

13

Business Computing and Operations Research 207

Graph representation

� By using the two Theorems defined above, we can define an
alternative problem definition

� This description transforms the problem into a shortest
path problem

� In this graph for each considered period an additional node
is inserted defining the isolated decision situation where in
this period no inventory is left over

� Each edge represents a specific lot size leading to the
subsequent period where a further production becomes
necessary again

� With each edge a cost weight is associated representing the
additional costs occurring in the realization of the respective
lot size in the mapped constellation

� Finding a cost minimal production plan is equivalent to the
computation of the shortest path in the defined graph

Business Computing and Operations Research 208

Illustration

1 2 T-13 T

Costs for

producing d1 in period 1

Costs for

producing d1 and d2 in period 1

Costs for

producing d2 in period 2

Costs for

producing d1 up to dT-2 in period 1

()
1 1 1

1

Additional costs incurred by a specific lot size represented by an

edge leading from node r to t (t r):

t t a

r,t r r k b a
k r a r b r

w s p d i d
− − −

= = + =

⇒

≥

 
= + ⋅ + ⋅ 

 
∑ ∑ ∑

T+1

Business Computing and Operations Research 209

SRP=Shortest Route Problem

{ } { }

{ } { }

,

,

1,..., : 1,..., 1 : : Costs for the satisfaction of the

demand of the periods through 1by the production in

: Total number of periods

0,..., : 1,..., 1 : :

i j

i j

i T j i T w

i j i

T

i T j i T x

∀ ∈ ∀ ∈ + +

−

∀ ∈ ∀ ∈ + +

Parameters :

Variables :

1

, ,
1 1

Binary decision variable indicating

whether the demand of the periods through 1 is satisfied by the

production in

:

Minimize
T T

r t r t
r t r

i j

i

Z w x
+

= = +

−

= ⋅∑∑

Objective function

14

Business Computing and Operations Research 210

{ }

{ } { } { }

1

1,
2

1 1

, ,
1 1

,

1

2,..., : 0

0,..., 1 : 1,..., 1 : 0,1

T

t
t

t T

l t t l
l l t

s t

x

t T x x

s T t s T x

+

=

− +

= = +

=

∀ ∈ − + =

∀ ∈ − ∀ ∈ + + ∈

∑

∑ ∑

Restrictions :

SRP=Shortest Route Problem

Business Computing and Operations Research 211

3.3.2 Dynamic programming approach

� Wagner and Whitin propose a dynamic programming algorithm working
with the following recursive function

� Recursive function

� For periods i≤j pi,j defines a policy satisfying the demand of the
periods i,…,j by a production in period i

� In this coherence, C(i,j) (or Ci,j) gives the respective total costs of
policy pi,j

� By using these notations, we come to the following simple functional
dependency for the calculation of the minimal costs fi to satisfy the
demands d1,…,di

(){ }

{ }() ()

1
1

0

1

1

min , with

0

and

, 1,..., : ,

i l
l i

j j j

i k i r R

k i r i R r

f f C l i

f

i j T i j C i j p d s i d

−
≤ ≤

−

= = = +

= +

=

∀ ∈ ≤ = ⋅ + + ⋅∑ ∑ ∑

Business Computing and Operations Research 212

Computational effort

� In the worst case, we have altogether T recursions

� In the recursion for fi, we have to consider altogether

O(i) constellations

� Altogether, we need O(T2) parameters during the

recursion

� Total effort: O(1+2+3+4+..+T)=O(T2)

15

Business Computing and Operations Research 213

Example

� 6 periods

� Setup costs per batch: s1=s2=s3=s4=s5=s6=500

� Production costs are neglected

� Inventory costs per item and period i1=i2=i3=i4=i5=i6=1

� Demands:

t 1 2 3 4 5 6

dt 20 80 160 85 120 100

{ }() () ()
1

1 1

Owing to these simplifications we get:

1 , 500 500
j j j

R r
r i R r r i

i, j ,...,T i j : C i j d r i d
−

= = + = +

∀ ∈ ≤ = + = + − ⋅∑ ∑ ∑

Business Computing and Operations Research 214

Preliminary work (C(i,j))

Last period where a consumption takes place

Last period
where a

production
takes place

1 2 3 4 5 6

1 500 580 900 1155 1635 2135

2 500 660 830 1190 1590

3 500 585 825 1125

4 500 620 820

5 500 600

6 500

Business Computing and Operations Research 215

Recursive computation

{ }

{ } { } { }

{ } { }

{ }

{ }
{ }
{ } 11551400,1165,1330,1155

500900,585580,830500,11550

cf,cf,cf,cfminf

9001080,1160,900

500580,660500,9000cf,cf,cfminf

5801000,580500500,5800cf,cfminf

500cfminf

0f

4,434,324,214,104

3,323,213,103

2,212,102

1,101

0

==

++++=

++++=

==

+++=+++=

==++=++=

=+=

=

16

Business Computing and Operations Research 216

Recursive computation

{ }
{ }
{ }

{ }
{ }
{ } 17051905,1755,1720,1705,2090,2135

5001405,6001155,820900,1125580,1590500,21350

cf,cf,cf,cf,cf,cfminf

14051655,1520,1405,1690,1635

5001155,620900,825580,1190500,16350

cf,cf,cf,cf,cfminf

6,656,546,436,326,216,106

5,545,435,325,215,105

==

++++++=

++++++=

==

+++++=

+++++=

Business Computing and Operations Research 217

Recursive construction of the solution

� Consider f6:

� Best solution f2+c(3,6), i.e., the demand of the periods 3,4,5, and
6 is produced in period 3

� For the first two periods we have to go on with f2
� Consider f2:

� Best solution f0+c(1,2), i.e., the demand of the periods 1 and 2 is
produced in period 1

� Therefore, altogether we have two batches produced in period 1
and in period 3

� Summary:

� Period 1: Production of d1+d2=100

� Period 3: Production of d3+d4+d5+d6=160+85+120+100=465

� Total costs: 1,705

Business Computing and Operations Research 218

Further improvements and observations

� The algorithm described above generates an optimal
solution within O(T2) steps

� By using specific data structures, the computational effort
for finding the optimal solution can be reduced to O(T
log(T))

� For the special case characterized by constant production
costs p=p1=p2=…=pT , this effort can be additionally
reduced to O(T) (cf. Federgruen and Tzur (1991))

� This solution is only optimal if the starting and ending
inventory is zero. However, this is not necessarily a valid
assumption for a realistic application in a rolling time
horizon

17

Business Computing and Operations Research 219

3.3.3 Heuristic approaches

� In the following, we consider different heuristic

approaches. These procedures can be applied for

large problem instances as well as in a modified

version for the multiple product constellations

� Described approaches

� Method of a “least-unit cost” approach

� Silver-Meal procedure

Business Computing and Operations Research 220

Least unit cost approach

� Consider an arbitrary period t (1≤t≤T). If a batch satisfying
the subsequent periods t to s (s≥t) is produced, we have
the following average costs per item:

� In every period t the period s is sought which fulfills the
following expression:

∑

∑ ∑∑

=

−

= =+=

⋅+⋅+

=
s

tc

c

s

tc

s

tc

ctb

s

cb

ct
unit

st

d

dpdis

c

1

1
,

{ } { }(), 1 ,min | > with 1
unit unit

t j t jj c c T j t T+ − ≥ ≥ ∪

Business Computing and Operations Research 221

A heuristic approach

()

unit

cp,j

unit

cp,j

unit unit

cp,j cp,j-1

1. cp 1

2. While cp T do

3. Planning of batch in period cp

3.1 j cp;

3.2 c ; ;

3.3 While it do

3.3.1 Compute c

3.3.2 if c c then

cp cp cp

cp

s p d
it true

d

it fal

=

<

=

+ ⋅
= =

> = else

3.3.3 if then 1

3.3.4 od

se it true

it true j j

=

= = +

18

Business Computing and Operations Research 222

Example

345

52,3
465

1635
:5:1

46,3
260

900
:3:1

8,5
100

580
:2:1

25
20

500
:1:1

1

5,1

3,1

2,1

1,1

=

====

====

====

====

====

q

cjt

cjt

cjt

cjt

unit

unit

unit

unit

3,35
345

1155
c:4j:1t unit

1,4

Business Computing and Operations Research 223

Example

1755:Costs

220

17,4
120

500
:5:5

5

5,5

=

====

====

q

cjt
unit

2,72
220

600
c:6j:5t unit

5,6

Business Computing and Operations Research 224

� The Silver-Meal procedure works quite similar to the least-unit cost
procedure considered before

� The only difference results from a modified criteria to decide about the
number of subsequent periods satisfied by the production of a period
currently considered

� This criterion is given by the average costs per period occurring for the
realization of a specific lot size

� To do so, consider an arbitrary period t (1≤t≤T). If a batch satisfying the
subsequent periods t to s (s≥t) is produced, we have the following average
costs per time period:

� Similar to the least-unit cost procedure in every period t, the period s is
sought that fulfills the following expression

Silver-Meal procedure

1

1

1

,
+−

⋅+







⋅+

=
∑ ∑∑

−

= =+=

ts

dpdis

c

s

tc

s

tc

ct

s

cb

bct

period

st

{ } { }(), 1 ,min | > with 1
period period

t j t jj c c T j t T+ − ≥ ≥ ∪

19

Business Computing and Operations Research 225

The resulting procedure

()1

1. 1

2. While do

3. Planning of batch in period

3.1 ;

3.2 ; ;
1

3.3 While do

3.3.1 Compute

3.3.2 if

cp cp cpperiod

cp, j

period

cp, j

period period

cp, j cp, j -

cp

cp T

cp

j cp

s p d
c it true

j cp

it

c

c c

=

<

=

+ ⋅
= =

− +

> then else

3.3.3 if then 1

3.3 od

it false it true

it true j j

= =

= = +

Business Computing and Operations Research 226

Example

1,1

1,3

1 4

1,5

1

500
1: 1: 500

1

900
1: 3 : 300

3

1155
1 4 288 75

4

1635
1: 5 : 327

5

100

period

period

period

,

period

t j c

t j c

t : j : c ,

t j c

q

= = = =

= = = =

= = = =

= = = =

= = = =

=

period

1,2

580
t 1: j 2 : c 290

2

Business Computing and Operations Research 227

Example

365

25,281
4

1125
:6:3

5,292
2

585
:4:3

500
1

500
:3:3

3

6,3

4,3

3,3

=

====

====

====

====

q

cjt

cjt

cjt

period

period

period

275
3

825
c:5j:3t period

3,5

20

Business Computing and Operations Research 228

Example

1905500825580 :costs Total =++

=

====

100

500
1

500
:6:6

6

6,6

q

cjt period

Business Computing and Operations Research 229

Observations

� The SRP can be characterized as a pure shortest path
problem where we have to find the shortest connection
between source and sink comprising total costs for the
production of the demanded quantities

� Unfortunately, the integration of additional existing
restrictions frequently given in real applications cannot be
handled

� In order to do so, a modified version SRPG of the SRP is
proposed where we use continuous variables instead of
integers

� In this model we can add arbitrary capacity restrictions
often occurring in industrial applications

Business Computing and Operations Research 230

3.4 The CLSP model

=Capacitated Lot-Sizing Problem

� Extension of the SLULSP model by integrating
multiple products with dynamically changing
demands

� The available capacities are limited and must be
shared between the different products

� Big-bucket model, i.e., long periods, J jobs per
bucket to be processed

21

Business Computing and Operations Research 231

Big- vs. Small-bucket problems

� In literature, two main types of lot-sizing models are
distinguished:

� Big-bucket models: The planning horizon is divided into
larger sub-horizons (called buckets) which allow the
processing of multiple products where different setup
states are necessary. Consequently, the respective
models characterized as big-bucket approaches are
defined as multiple product concepts, where individual
setup and processing times for each resource are present
(cf. CLSP). Setup states between neighboring buckets
are not preserved while it is assumed that, due to the
time dominance of the bucket sizes in comparison to the
setup times, the non-preservation of specific setup states
between successive buckets causes only small and
negligible errors

Business Computing and Operations Research 232

Big- vs. Small-bucket problems

� Small-bucket models: Allow only at most one setup
activity per bucket. Therefore, the model additionally
comprises a sequence decision with respect to the jobs to
be processed on the considered machines. As a
consequence, a problem instance occurs which
comprises frequently a large number of buckets by
mapping realistic sized problems

� Trend towards the more accurate small-bucket models,
especially for applications with larger lead times (inherent
drawback of big-bucket models)

Business Computing and Operations Research 233

Linked models

� To combine the advantages of the two types by

preventing the respective disadvantages, the lot-
sizing models with linked lot sizes are

proposed in new publications,

� …namely the CLSPL as a big-bucket model with

the additional attribute that existing setup states
can be preserved between successive buckets

22

Business Computing and Operations Research 234

Illustration

1 time2 3 4

Big-bucket

model

1 time2 3 4

Small-bucket

model

5 6 7 8

1 time2 3 4

CLSPL

Short periods;

≤2 products per bucket

Longer periods;

J products per bucket

Longer periods;

J products per bucket;

Linked lot sizes

Business Computing and Operations Research 235

CLSP – Assumptions

� The planning horizon is fixed and divided into
T time buckets, numbered from 1 to T

� Resource consumption to produce a product
j on a specific resource m is fixed, and there
exists a unique assignment of products to
resources

� Setup processes incur setup costs and
consume setup time, thereby reducing capacity
in the respective period. Costs and consumed
time occur sequence-independent

� No setup state can be preserved to the
subsequent bucket

Business Computing and Operations Research 236

[]

[]

[]

[]

() []

(),

: Number of considered periods - ;

: Number of available resources - ;

Number of products - ;

: Large number - ;

1 1 : Capacity of resource in period time units ;

1 ;1 : Primary,

j,t

k t

T

J

K :

M

b j J; t T j t

P k K t T

≤ ≤ ≤ ≤

≤ ≤ ≤ ≤

[]

()

[]

gross-demand for item in

period product units ;

1 : Holding cost for one unit of product per period

currency units/product units ;

k

k

t

h k K k≤ ≤

3.4.1 Mathematical definition – Parameters

23

Business Computing and Operations Research 237

()

[]

()

[]

()

,

1 : Ordering (or setup) costs for product

currency units/product units ;

1 ;1 : Production costs for product in period

currency units/product units ;

1 ;1 : Operating time

k

k t

j,k

s k K k

p k K t T k t

to j J k K

≤ ≤

≤ ≤ ≤ ≤

≤ ≤ ≤ ≤

[]

()

[]

for each item of product

on resource time units/product units ;

1 ;1 : Setup time for product k on resource

time units/batches ;

j,k

k

j

ts j J k K j≤ ≤ ≤ ≤

3.4.1 Mathematical definition – Parameters

Business Computing and Operations Research 238

()

()

()

, 1 ;1 : Lot size of product in period ;

1 ;1 : Binary derived variable indicating a setup

operation of product in period ;

1 0 : Derived variable defining the inven

k t

k,t

k,t

X k K t T k t

k K t T

k t

y k K; t T

≤ ≤ ≤ ≤

γ ≤ ≤ ≤ ≤

≤ ≤ ≤ ≤

, , , ,
1 1

tory of

product at the end of period ;

Minimize Z
K T

k k t k k t k t k t
k t

k t

s h y p X
= =

= ⋅ γ + ⋅ + ⋅∑∑

Objective function :

Mathematical definition – Variables

Business Computing and Operations Research 239

{ } { }

{ } { }

, 1 , , ,

, ,

1,..., : 1,..., : ;

The demand in every period of each product must be fulfilled by

the inventory and additional production

1,..., : 1,..., : 0;

Derivation of the

k t k t k t k t

k t k t

k K t T y X y P

k K t T X M

−∀ ∈ ∀ ∈ + − =

∀ ∈ ∀ ∈ − ⋅ γ ≤

{ } { } (), , , , ,
1

 binary setup variables

1,..., : 1,..., :

Compliance with the time restriction of each available resource

K

j k k t j k k t j t
k

j J t T to X ts b
=

∀ ∈ ∀ ∈ ⋅ + ⋅ γ ≤∑

Mathematical definition – Restrictions I

24

Business Computing and Operations Research 240

{ } { }

{ }

{ } { }

{ } { }

,

,0 ,

,

1,..., : 1,..., : 0 Non-negative lot

sizes

1,..., : 0 0 Start and end inventory

is zero

1,..., : 1,..., : 0 Non-negative

inventories

1,..., : 1,..., :

k t

k k T

k t

k

k K t T X

k K y y

k K t T y

k K t T

∀ ∈ ∀ ∈ ≥

∀ ∈ = ∧ =

∀ ∈ ∀ ∈ ≥

∀ ∈ ∀ ∈ γ { }, 0,1 Possible values

for the derived variable

t ∈

Mathematical definition – Restrictions II

Business Computing and Operations Research 241

3.4.2 Solution methods

� The CLSP can be directly solved by using a standard
solver

� This, however, causes frequently an unacceptable
computational effort

� Two different solution methods are frequently proposed to
prevent this computational effort:

� Use of the Shortest Path Problem SRPG:

� Integration of capacity restrictions

� Easier to solve due to its flow attitude

� Use of appropriate heuristics

� The procedure of Dixon and Silver

� The ABC-procedure of Maes

Business Computing and Operations Research 242

The procedure of Dixon and Silver

� Heuristic approach

� The use of only one resource (one machine) is
assumed

� Bases on (idea derived from) the Silver-Meal
heuristic
� In every iteration the procedure tries to minimize

the average costs per period caused by each
product

� But due to the simultaneous production of several
products, capacity restrictions can prevent a
sequence defined according to this criterion

� Therefore, the procedure has to define additionally
some priority rules to decide about which product
can be produced according to the decisions of the
Silver-Meal procedure

25

Business Computing and Operations Research 243

Preparing main instruments

� In each iteration the procedure tries to extend the
production in the current period by integrating the
demand of a following period of some product, i.e., all
products compete for implementing its production in a
subsequent period if this integration attains a reduction
of the respective average costs per period

� But, owing to the fact that the available capacity defines
the bottleneck of the planning process, all cost
reductions are interpreted according to their capacity
requirements, i.e., for each product k the integration of
the demand of the j+1-th period in the production
generated in period i is rated by the following priority ∆k,i:

[]
[]

jkd

dto

cc

jk

jkk

period

jik

period

jik
ik

 periodin product of demand theas with

,

1,

1,,,,
,

+

+

⋅
−

=∆

Business Computing and Operations Research 244

Interpretation

� ∆k,i gives the relative reduction of average
production costs per period of product k produced
in period i by integrating the demand of period j+1
per capacity unit to be used for its realization

� By integrating the products in the sequence of
non-increasing ∆-values, a solution arises
optimally applying the Silver-Meal criterion
according to the local minimization of total
average costs per period

Business Computing and Operations Research 245

Pseudocode of the Dixon and Silver procedure

While current period i≤T do

Iteration i:

While capacity is available and costs per
period reductions for some products are still
possible, do

Enlarge production quantities by
integrating subsequent periods of
the product with largest ∆-value

Od (end while)

26

Business Computing and Operations Research 246

Capacity requirements

� In order to respect the capacity requirements in the CLSP
model, it may become necessary to advance some
productions to earlier periods

� First of all, we therefore have to check whether a given
instance is solvable at all. This can be checked by the
following requirements:

{ }
�

,
1 1 1

Total available capacity up Total capacity demand up
to period tto period t

1,..., :
t K t

k k j j
j k j

t T to d b
= = =

∀ ∈ ⋅ ≤∑∑ ∑
�������

� Note that average setup times are already subtracted
from the capacities

� Note further that these times cannot be exactly computed
beforehand since they depend on the found solution

Business Computing and Operations Research 247

Consequences

� In order to guarantee a feasible solution
generated in the computation of the procedure of
Dixon and Silver, we have to introduce some
additional shortcuts

� In what follows, we define:

{ } { }

j

k

i

nTiijTi kji

 periodin

 needed product of demand theof

quantity produced periodin Already

 ::,...,1,:,...,1 ,,+∈∀∈∀

Business Computing and Operations Research 248

Definition of used parameters

{ } { }

{ }

{ }

, , ,
1

,

,
1

-Capacity usage in for : 1,..., : ,..., :

-Total capacity usage in : 1,..., :

-Total capacity demand of period : 1,..., :

-Total net-de

K

i j k i j k
k

T

i i j
j i

K

j k k j
k

i j i T j i T CU to n

i i T CU CU

j j T CD to d

=

=

=

∀ ∈ ∀ ∈ = ⋅

∀ ∈ =

∀ ∈ = ⋅

∑

∑

∑

{ } { }

{ } { }

1

, , ,
1 1

, ,

mand of period in period : 1,..., : ,..., :

-Needed capacity in remaining for : 1,..., : ,..., :

i K

i j j k t j k
t k

i j i j j

j i i T j i T

CN CD to n

j i i T j i T

CR CN b

−

= =

∀ ∈ ∀ ∈

= − ⋅

∀ ∈ ∀ ∈

= −

∑∑

27

Business Computing and Operations Research 249

Observation

� A capacity shortage CRi,j>0 can be satisfied only if an
additional production in the periods i,i+1,…,j-1 is
established

� Therefore, a period i has to account for a production of
the period j if the intermediate periods are not able to fulfill
its capacity requirements

� Therefore, in order to guarantee the feasibility of a
generated solution – if possible – a period i has to
integrate the additional capacity requirements:

() { }




















≤<∧−∈−∑
+=

TtiTiCUCR
t

ij

jiji 1,...,1|max,0max
1

,,

Business Computing and Operations Research 250

Consequences

� By integrating these additional quantities in the i-

th period, the demand of all subsequent periods

can be satisfied

� As a consequence, we fulfill the following

necessary restrictions ensuring the feasibility:

{ } { } ∑ ∑
+= +=

≤+∈∀−∈∀
t

ij

t

ij

jiji CUCRTitTi
1 1

,,:,...,1:1,...,1

Business Computing and Operations Research 251

The Dixon and Silver procedure

� As a consequence, the procedure of Dixon and

Silver respects the advanced production of future

deficits to prevent any violation of the defined

capacity requirements

� Therefore, by considering each period and its
production program only once, its determination

always results in a program where it remains

possible to fulfill the demand requirements of all

subsequent periods

28

Business Computing and Operations Research 252

� Step 1: Initialization of variables

� Check whether the entire problem is solvable. If

then the problem is solvable. Otherwise, stop with
the output “Problem cannot be solved”

� Current period is i=1

The procedure of Dixon and Silver

{ }
�

,
1 1 1

Total available capacity up Total capacity demand up
to period tto period t

1,..., :
t K t

k k j j
j k j

t T to d b
= = =

∀ ∈ ⋅ ≤∑∑ ∑
�������

Business Computing and Operations Research 253

� Initialization of the product ranges

For all products k: rk,i=0

� Initialization of production quantities

For all products k: xk,i=dk,i

� Generate the respective remaining capacities in
period i

Continuation of step 1

∑
=

⋅−=
K

k

ikkii dtobRC
1

,

Business Computing and Operations Research 254

Step 2

Generate the earliest period where the current

production program of period i is not able to

guarantee a feasible execution of the demanded

production quantities, i.e., we compute:









<∧>= ∑ ∑
+= +=

t

ij

t

ij

jijic CRCUittt
1 1

,,|min

29

Business Computing and Operations Research 255

� Consider the set M of products whose current
range does not cover the period tc und whose
subsequent demand can be integrated in the
production of period i, i.e.,

� If M contains no products, go to step 4

� Otherwise, determine the product l in M with
largest priority ∆l,i

� If ∆l,i≥0: Integrate the demand of the next period
of product l and go to step 3 – integration (next
slide)

� Otherwise, go to step 4

Step 3

{ }
,, , 1|

k ik i c k i r k iM k r t i d to RC+ += < − ∧ ⋅ ≤

Business Computing and Operations Research 256

Step 3 – Integration

� The extension of the production quantity for

product l to the next period is advantageous:

2 step to Go

0

1

,

,

,

,

,

,,,

,,

=

⋅−=

+=

+=

+

+

+

il

il

il

ril

rillii

rililil

ilil

d

dtoRCRC

dxx

rr

Business Computing and Operations Research 257

Step 4 – Feasibility check

� If tc>T, then the production plan for period i is

already feasible and we can switch to the next

iteration by setting i:=i+1

� Otherwise, we have to resume adapting the

production program in period i by integrating the
production of future demands

� This is done in step 5

30

Business Computing and Operations Research 258

� Compute with Q the additional production

demand for attaining a feasible constellation after

period i, i.e.,

Step 5 – Feasibility construction

, ,
1 1

max |
t t

i j i j c
j i j i

Q CR CU t t T
= + = +

 
= − ≤ ≤ 

 
∑ ∑

Business Computing and Operations Research 259

Step 6 – Corrections

� Consider all products whose current range does
not cover up to period tc. In case of the k-th
product we get:

,

, ,

,

,

, , ,

, 1

,

, , , ,

,

,

, ,

,

min 1,

If is an integer define the priority as follows:

Otherwise:

k i

new
k i k i

new
k i

k i

new

k i k i k i

k k i r

new

k i

period period

k i i r k i i r

k i

k k i r

period

k i i r

k i

Q
r r r

to d

r

c c

to d

c

+ +

+ +

+

+

  
= + + 

⋅  

 −
 ∆ =

⋅

∆ =
,, , new

k i

period

k i i r
c

Q

+
 −
 

Business Computing and Operations Research 260

Step 6 – continuation

� Integrate the period demand as described above

for the product with the largest ∆-priority. Let W,

the respective occurring capacity, demand for this

integration. Then Q:=Q-W

� If Q>0, repeat step 6 – otherwise, go to the next

(i:=i+1) iteration

31

Business Computing and Operations Research 261

Example

� Two products, 4 periods to be considered

� Setup costs: s1=100; s2=50

� Holding costs: h1=4; h2=1

� Production times: to1=to2=1

� Capacities: b1=b2=b3=b4=160

t 1 2 3 4

d1,t 110 49 0 82

d2,t 48 75 15 120

Business Computing and Operations Research 262

Iteration i=1

� Step 1:
� General feasibility check:

� t=1: 158<160 ok

� t=2: 282<320 ok
� t=3: 297<480 ok

� t=4: 499<640 ok

� r1,1=0; x1,1=110 product 1
� r2,1=0; x2,1=48 product 2

� RC1=2 Remaining capacity in period 1

t 1 2 3 4

q1,t 110 - - -

q2,t 48 - - -

CNi,t - 124 15 202

RCi 2 160 160 160

Business Computing and Operations Research 263

Iteration i=1 – step 2

Now, we have to determine if there is a period where the
feasibility is endangered by the current production plan

45

13942145360

4216020220212082 :4

181145360

1451601515150 :3

360

361601241247549 :2

4

2

,1

4

2

,1

4,14,1

3

2

,1

3

2

,1

3,13,1

2

2

,1

2

2

,1

2,12,1

=>=⇒

−=+−−=≥=⇒

=−=⇒=+==

−=−−=≥=⇒

−=−=⇒=+==

−=≥=⇒

−=−=⇒=+==

∑∑

∑∑

∑∑

==

==

==

Tt

okCRCU

CRCNt

okCRCU

CRCNt

okCRCU

CRCNt

c

j

j

j

j

j

j

j

j

j

j

j

j

32

Business Computing and Operations Research 264

Now, we try to enlarge the production quantities

in order to reduce the costs per period

• Unfortunately, in this case the small remaining

capacity of 2 in period 1 prevents any integration

• Demands:

• Product 1: d1,2
.to1=49>2

• Product 2: d2,2
.to2=75>2

• Iteration 1 ends

Iteration i=1 – step 3

Business Computing and Operations Research 265

Iteration i=2

� Step 1:

� Initialization of product quantities:

� r1,2=0; x1,2=49 product 1

� r2,2=0; x2,2=75 product 2

� RC2=36 Remaining capacity in period 2

t 1 2 3 4

q1,t 110 49 - -

q2,t 48 75 - -

CNi,t - - 15 202

RCi 2 36 160 160

Business Computing and Operations Research 266

Iteration i=2 – step 2

Now, we have to determine if there is a period
where the feasibility is endangered by the
current production plan

45

103421450

4216020220212082 :4

1450

1451601515150 :3

4

3

,2

4

3

,2

4,24,2

3

3

,2

3

3

,2

3,23,2

=>=⇒

−=+−=≥=⇒

=−=⇒=+==

−=≥=⇒

−=−=⇒=+==

∑∑

∑∑

==

==

Tt

okCRCU

CRCNt

okCRCU

CRCNt

c

j

j

j

j

j

j

j

j

33

Business Computing and Operations Research 267

Now, we try to enlarge the production quantities in order to
reduce the costs per period

• Product 1 has no demand in period 3. Therefore, an
enlargement yields always the highest priority and is
executed, i.e., r1,2=1

• Product 2 has in period 3 the demand 15, i.e., it holds that
d2,3

.to2=15<RC2=36

� ∆2,2=(50/1-(50+1.15)/2)/15=(50-32,5)/15=17,5/15=1,16667≥0,
i.e., enlargement is implemented

� r2,2=1

� New solution:

Iteration i=2 – step 3

T 1 2 3 4

q1,t 110 49 - -

q2,t 48 90 - -

CNi,t - - - 202

RCi 2 21 160 160

Business Computing and Operations Research 268

Iteration i=2 – step 2(2)

Now, we have to determine if there is a period
where the feasibility is endangered by the
current production plan

45

1184216015

4216020220212082 :4

16015

1600 :3

4

3

,2

4

3

,2

4,24,2

3

3

,2

3

3

,2

3,23,2

=>=⇒

−=+−=≥=⇒

=−=⇒=+==

−=≥=⇒

−=⇒==

∑∑

∑∑

==

==

Tt

okCRCU

CRCNt

okCRCU

CRCNt

c

j

j

j

j

j

j

j

j

Business Computing and Operations Research 269

Now, we again try to enlarge the production

quantities in order to reduce the costs per period

• Unfortunately, in this case the small remaining

capacity of 21 in period 2 prevents any further
integration

• Demands:

• Product 1: d1,4
.to1=82>21

• Product 2: d2,4
.to2=120>21

• Iteration 2 ends

Iteration i=2 – step 3(2)

34

Business Computing and Operations Research 270

Iteration i=3

� Step 1:

� Initialization of product quantities:

� r1,3=0; x1,3=0 product 1

� r2,3=0; x2,3=0 product 2

� RC3=160 Remaining capacity in period 3

t 1 2 3 4

q1,t 110 49 - -

q2,t 48 90 - -

CNi,t - - - 202

RCi 2 21 160 160

Business Computing and Operations Research 271

Iteration i=3 – step 2

Now, we have to determine whether there is a
period where the feasibility is endangered by the
current production plan

plan!current adapt the tohave We

4

!Bottleneck420

4216020220212082 :4

4

4

,3

4

4

,3

4,34,3

⇒

=⇒

=<=⇒

=−=⇒=+==

∑∑
==

c

j

j

j

j

t

CRCU

CRCNt

Business Computing and Operations Research 272

Now, we try to enlarge the production quantities

in order to reduce the costs per period

• Product 1 has in period 4 the demand 82, i.e., it

holds d2,4
.to2=82<RC3=160

∆1,3=(0/1-(100+4.82)/2)/82=(-214)/82=

-2,609, i.e., enlargement is not implemented

• Product 2 has in period 4 the demand 120, i.e., it

holds d2,4
.to2=120<RC3=160

∆2,3=(0/1-(50+1.120)/2)/120=(-85)/120=

-0,708333<0, i.e., enlargement is not implemented

Iteration i=3 – step 3

35

Business Computing and Operations Research 273

Iteration i=3 – step 4

Now, we have to determine if there is a period
where the feasibility is endangered by the
current production plan

3,4 3,4

4 4

3, 3,
4 4

4 : 82 120 202 202 160 42

0 42 Bottleneck!

4

We have to adapt the current plan!

j j
j j

c

t CN CR

CU CR

t

= =

= = + = ⇒ = − =

⇒ = < =

⇒ =

⇒

∑ ∑

Business Computing and Operations Research 274

Iteration i=3 – step 5

� Q=42: Minimal capacity to be integrated in period

is 3 in order to guarantee a feasible production

plan

� Respective ranges:

� Product 1: 42/82=0,51

∆1,3=(0/1-(100+4.42)/1,51)/42=-4,2258

� Product 2: 42/120=0,35

∆2,3=(0/1-(50+1.42)/1,35)/42=-1,6223, i.e.,
enlargement is implemented

r2,3=0,35; x2,3=42

Business Computing and Operations Research 275

Iteration i=3 – step 5

t 1 2 3 4

q1,t 110 49 - -

q2,t 48 90 42 -

CNi,t - - - 160

RCi 2 21 118 160

• Iteration 3 ends

36

Business Computing and Operations Research 276

Iteration i=4

� Step 1:

� Initialization of product quantities:

� r1,4=0; x1,4=82 product 1

� r2,4=0; x2,4=78 product 2

� RC4=0 Remaining capacity in period 4

t 1 2 3 4

q1,t 110 49 - 82

q2,t 48 90 42 78

CNi,t - - - -

RCi 2 21 118 0

Business Computing and Operations Research 277

Now, we have to determine if there is a period where the

feasibility is endangered by the current production plan

The algorithm stops! Solution generated!

Iteration i=4 – step 2

t 1 2 3 4

q1,t 110 49 - 82

q2,t 48 90 42 78

RCi 2 21 118 0

45 =≥=⇒ Ttc

Business Computing and Operations Research 278

Can we improve the solution?

� Idea: It is always advantageous to produce all quantities
in the last possible period

� This is not implemented for product 2

� We can move the production of 15 units needed in 3 in
this period to save holding costs of 15 currency units, i.e.,
we generate the solution:

t 1 2 3 4

q1,t 110 49 - 82

q2,t 48 75 57 78

RCi 2 36 103 0

37

Business Computing and Operations Research 279

Observation

� In literature, it is stated that the procedure of

Dixon and Silver yields a high solution quality

� Consequently, this procedure is also used in

multiple-stage problems as a subroutine

Business Computing and Operations Research 280

3.5 The CLSPL Model

� All assumptions of the CLSP beside the carry-

over-prohibition of setup states are valid

� A setup state is not lost if there is no production
on the resource within a bucket

� Single-item production is possible (i.e., the

conservation of one setup state for the same

product over two consecutive bucket

boundaries)

Business Computing and Operations Research 281

� The planning horizon T is fixed and divided into time buckets
1,…,T

� Resource consumption to produce a product j on a specific
resource m is fixed, and there exists an unique assignment of
products to resources

� Setups incur setup costs and consume setup time, thereby
reducing capacity in periods where setups occur

� At most one setup state can be carried over on each resource
to the next one, consequently no setup activity is necessary in
this subsequent period

� Single-item production is possible (i.e. the conservation of one
setup state for the same product over two consecutive bucket
boundaries)

� A setup state is not lost if there is no production on the
respective resource within a bucket

� In the following, we give a detailed mathematical definition of
the problem basing on the model proposed by Stadtler and
Suerie (2003)

3.5.1 CLSPL – Attributes

38

Business Computing and Operations Research 282

Computation of the net-demands

� In the CLSPL introduced here the chosen lot sizes are
defined according to the net demands for product j in
period t, i.e., we define the proportion of the net
demand of a specific product in period t that is
satisfied by the production in the considered period.

� This is done in order to get a more strict and compact
model definition which can be solved much easier

� To do so, we first have to introduce what we
understand as the so called net demand of a specific
product in a defined period
� Up to now we have modeled the inventory and gross

demands directly within separated variables (derived
variables)

� So far, we have neglected dependencies resulting from
multiple-stage systems

Business Computing and Operations Research 283

Computation of the net-demands

� Now, the relative definition requires a detailed

handling of these interdependencies. Therefore,

we have to derive the net demands instead.

� Consequently, inventory and secondary

demands have to be respected

� First of all, we have to map the product structure
with all existing interdependencies

� Note that ending inventory is explicitly
allowed

Business Computing and Operations Research 284

Generating net demands – Parameters

{ } { }

{ } { }

 Number of products (or items)

Number of considered periods

1 1 Primary gross demand of product in period

1 1 Gross demand of product in period

j ,t

j ,t

J :

T :

j ,...,J : t ,...,T : P : j t

j ,...,J : t ,...,T : D : j t

j

∀ ∈ ∀ ∈

∀ ∈ ∀ ∈

∀ { } { }

{ } { }

1 1 Net demand of product in period

2 1 1 The number of units of product (item)

required to produce one unit of product (item)

In what follows, we

n

j ,t

n

i , j

,...,J : t ,...,T : D : j t

i ,...,J : j ,...,i : r : i

j

∈ ∀ ∈

∀ ∈ ∀ ∈ −

assume that the products are ordered according to

the adjacency graph, i.e., a lower numbered product is never necessary

in order to produce a higher numbered one

39

Business Computing and Operations Research 285

Generating net demands – Parameters

{ } { }

� �

1

, , , ,

1
Gross demand Primary demand

Gross demand

Therefore, we can generate the net demands starting with the lowest

numbered product which has no successor, i.e.

1,..., : 1,..., :

j
d

j t j t j k k t

k

j J t T

D P r D
−

=

∀ ∈ ∀ ∈

= + ⋅∑

{ } { }

 of successors

,0

1 1

, , , , , , ,

1 1

New inventory of product in period

and

1,..., : 1,..., : :

max 0, with max 0,

j

j j
n d n d n

j t j t j k k t j t j k k t

k k

j t

j J t T I

D P r D P r D

δ

δ δ δ
− −

= =

∀ ∈ ∀ ∈ =

   
= + ⋅ − = − − ⋅   

   
∑ ∑

�����

���������������

Business Computing and Operations Research 286

CLSPL – Parameters

()

()

1 : Product index or item index

1 Resource index

1 Index of periods

1 Set of products produced on resource

1 1 Capacity needed on resource

 to produce one unit

m

m, j

j ,...,J

m ,...,M :

t ,...,T :

R m M : m

a m M ; j J :

m

=

=

=

≤ ≤

≤ ≤ ≤ ≤

()

()

()

of item

1 1 Large number, not limiting feasible lot sizes of

product in period

1 1 Available capacity of resource in period

1 Holding cost for one unit of product

j ,t

m,t

j

j

B j J ; t T :

j t

C m M ; t T : m t

h j J :

≤ ≤ ≤ ≤

≤ ≤ ≤ ≤

≤ ≤ unit per periodj

Business Computing and Operations Research 287

CLSPL – Parameters

()

()
()

1 1 : Primary, gross demand for item in period

with including final inventory - if given for the planning horizon

1 1 Gross demand for item in period

1 1

j ,t

j ,T

j ,t

n

j ,t

P j J ; t T j t

P T

D j J ; t T : j t

D j J ; t

≤ ≤ ≤ ≤

≤ ≤ ≤ ≤

≤ ≤ ≤ ≤()

()

()

()

()

Net demand for item in period

1 Setup cost for product

1 Setup time for product

1 Set of direct successors of product in the multilevel

product structure

1 1 1

j

j

j

d

j ,k

T : j t

sc j J : j

st j J : j

S j J : j

r j J ; k j

≤ ≤

≤ ≤

≤ ≤

≤ ≤ ≤ ≤ −

()

Units of items necessary to produce one unit

of the direct successor item

Lead time offset in the following assumed to be 0

: j

k

l :

40

Business Computing and Operations Research 288

CLSPL – Variables

()

()

()

1 1 Inventory of item or product at the end of the period

1 1 Proportion of net demand of product in period

fulfilled by production in period

1 1 Pr

j ,t

j ,t ,s

j ,t

I j J ; t T : j t

Z j J ; t T ;t s T : j s

t

X j J ; t T :

≤ ≤ ≤ ≤

≤ ≤ ≤ ≤ ≤ ≤

≤ ≤ ≤ ≤

() { } { }

()

oduction amount of item or product in period

sought lot size 1 1

1 1 Derived binary setup variable

1: if a setup for item is performed in pe

T
n

j ,t j ,s j ,t ,s

s t

j ,t

j t

j ,...,J : t ,...,T : X D Z

Y j J ; t T :

j

=

⇒∀ ∈ ∀ ∈ = ⋅

≤ ≤ ≤ ≤

=

∑

()

()

riod ;

0:otherwise

1 1 Binary linkage variable indicating that a setup state

for product is carried over from period 1 to period

1 1 Binary variable indicating that prod

j ,t

m,t

t

W j J ; t T :

j t t

Q m M ; t T :





≤ ≤ ≤ ≤

−

≤ ≤ ≤ ≤ uction on resource

 in period is limited to a single product, and there is no setup activity necessary,

i.e., the setup state is linked from the preceding to the subsequent period

m t

Business Computing and Operations Research 289

CLSPL – Restrictions

{ } { } ()

()

{ } { } { } ()

()

{ } { } { } { } ()

()definitiondomain -Co

31,00:,...,:,...,1:,...,1

states linkage and setup and productionbetween Dependency

2:,...,:,...,1:,...,1

nsrestrictioCapacity

1:,...,1:,...,1

,,,

,,,,

,,,,,,

∈∧≥∈∀∈∀∈∀

+≤∈∀∈∀∈∀

≤⋅+⋅⋅∈∀∈∀ ∑∑ ∑
∈ = ∈

tjstj

tjtjstj

Rj

T

ts Rj

tmtjjstj

n

sjjm

YZTtsTtJj

WYZTtsTtJj

CYstZDaTtMm
m m

Business Computing and Operations Research 290

CLSPL – Restrictions

{ } { } () ()

()

{ } { } ()

()

{ } { }

, , ,

1

,

, , 1 ,

1,..., : 1,..., : 0 : 1 4

Demand fulfillment

1,..., : 2,..., : 1 5

At most one setup state can be linked per time period and resource

1,..., : 2,..., :

m

t
n

j t j s t

s

j t

j R

j t j t j t

j J t T D Z

m M t T W

j J t T W Y W

=

∈

−

∀ ∈ ∀ ∈ > =

∀ ∈ ∀ ∈ ≤

∀ ∈ ∀ ∈ ≤ +

∑

∑

()

()
1

6

Dependencies between setup activities and linkage variables

−

41

Business Computing and Operations Research 291

CLSPL – Restrictions

{ } { } ()

()

{ } { } ()

1
1 1 1 1 7

Dependencies between different sets of linkage variables

1 1 1 8

Dependencies between different sets of linkage variable

m j ,t j ,t m,t

m j ,t m,t

m ,...,M : j R : t ,...,T :W W Q

m ,...,M : j R : t ,...,T :Y Q

+∀ ∈ ∀ ∈ ∀ ∈ − + ≤ +

∀ ∈ ∀ ∈ ∀ ∈ + ≤

()

{ } { } ()

()

{ } { } { } ()

()

1

1

s

1 1 1 0 0 0 9

Co-domains of variable

1 1 0 1 0 10

Co-domains of linkage variable

m,t m, m,T

j ,t j ,

m ,...,M : t ,...,T : Q Q Q

j ,...,J : t ,...,T :W , W

∀ ∈ ∀ ∈ − ≥ ∧ = ∧ =

∀ ∈ ∀ ∈ ∈ ∧ =

Business Computing and Operations Research 292

CLSPL – Objective function

()
������������ ������ ��

costs Setup

1 1

,

costs Holding

1

1

1

,,, Minimize ∑∑∑∑∑
= ==

−

= =

⋅+⋅⋅−⋅=
J

j

T

t

tjj

J

j

T

s

T

st

tsj

n

tjj YscZDsthZ

Business Computing and Operations Research 293

3.5.2 Tightening the model

� Suerie and Stadtler (2003) propose several

extensions of the defined model in order to

strengthen it significantly

� Strengthen means that it becomes possible to

derive tighter LP bounds

� In particular…

� new variables are added

� and three groups of valid inequalities are

introduced

42

Business Computing and Operations Research 294

Added / exchanged variables

� The resource-dependent variables Qm,t are

replaced by product-dependent ones termed as

QQj,t

� By using these modified variables instead we can

give a more precise definition of occurring setup

states linked between subsequent periods

� In detail we define:

{ } { }1 1 Binary decision variable. Is

one iff the setup state is carried from period 1 through 1

while product is solely produced in period

j ,tj ,...,J : t ,...,T : QQ :

t - t

j t

∀ ∈ ∀ ∈

+

Business Computing and Operations Research 295

Erasing restriction 8

{ } { } ()

()

{ } { } ()

()
()

usly.simultaneo them

 of never twobut options, three thoseof noneor , periodin itemany

for production item single a ,1 period into itemfor link a

 ,1 periodin itemfor activity setup aeither becan e that therNote

8a1:,...,1::,...,1

by replaced is

 variableslinkage of setsdifferent between esDependenci

81:,...,1::,...,1

,,,

,,

tjk

Wtj

Ytj

QQWYTtRjMm

QYTtRjMm

j,t

j,t

jk
Rk

tktjtjm

tmtjm

m

≠

=

=

≤++∈∀∈∀∈∀

≤+∈∀∈∀∈∀

∑
≠
∈

Business Computing and Operations Research 296

Erasing restriction 6

{ } { } ()

{ } { } ()

()

().1

 1 periodin production item single a is thereand 1 to2 period from

over carriedalready is state setup or the 1 1 periodin upset was

 j itemeither ifonly t periodin over carried state setup becan thereNote

6a:,...,2:,...,1

by replaced is

6:,...,2:,...,1

1,

1

1,1,,

1,1,,

=

=

+≤∈∀∈∀

+≤∈∀∈∀

−

−

−−

−−

tj

j,t

tjtjtj

tjtjtj

QQ

t-t-t-

Yt-

QQYWTtJj

WYWTtJj

43

Business Computing and Operations Research 297

Range-restriction of values for QQ

{ } { } { }
()

{ } { }

() ()1000

0:1,...,1:,...,1

9

:1,:1,...,2:,...,1

,1,

,

,,

=∧=

≥−∈∀∈∀

∧

≤

+∈∀−∈∀∈∀

Tjj

tj

sjtj

QQQQ

QQTtJj

WQQ

ttsTtJj

Business Computing and Operations Research 298

Restriction 7

{ } { } ()

{ } { } ()

model? thedefine tonecessary really n restrictio thisIs

:BUT

7a1:1,...,1:,...,1

by replaced is

71:1,...,1::,...,1

,,1,

,,1,

tjtjtj

tmtjtjm

QQWWTtJj

QWWTtRjMm

+≤+−∈∀∈∀

+≤+−∈∀∈∀∈∀

+

+

Business Computing and Operations Research 299

Restriction 7

{ } { }

()()

()

()7a1

11

1

1:8a :using

:6a :using

:1,...,1:,...,1

,,1,

,,,

,,,

,,,

,,,

1,1,,,1,

tjtjtj

tj

jk
Rk

tktj

jk
Rk

tktjtj

jk
Rk

tktjtj

tjtjtj

tjtjtjtjtj

QQWW

QQQQQQ

QQWY

QQWY

WQQY

QQYWWW

TtJj

m

m

m

+≤+⇒

+≤−+≤





















−≤+⇒

≤++

++≤

+≤+

−∈∀∈∀

+

≠
∈

≠
∈

≠
∈

−−+

∑

∑

∑

44

Business Computing and Operations Research 300

Observation

� Restriction 7 can be erased due to the

combined application of restrictions 6 and 8

� By analyzing the transformations on the previous

slide, it becomes obvious that the restrictions 6

and 8 together form restrictions that are

considerably tighter than the restriction 7

Business Computing and Operations Research 301

Valid inequalities

� In the following, additional restrictions are

introduced to achieve a further tightening of the

model definition

� To do so, basic attributes of adequate solutions

are elaborated and subsequently fixed by the

integration of additional restrictions in the model

definition

Business Computing and Operations Research 302

Preprocessing – Inequalities

� Now attributes of the given test data are used to
define additional restrictions

� In detail, the possible range of the new introduced
QQ-variables is limited

� This can be done in a step called preprocessing
� Therefore, in this preprocessing step available

capacities are computed and compared with the
cumulative slack capacities summed up to the
respective period

� Since there is no backlog allowed, impossible
single item productions in some periods may be
identified and, therefore, excluded

45

Business Computing and Operations Research 303

Example

Item j am,j Net demand in

period 1

Net demand in

period 2

Net demand in

period 3

1 1 20 20 20

2 1 30 40 40

3 1 20 20 20

Available capacity 100 100 100

Cumulative slack

capacity

30 50

Business Computing and Operations Research 304

Observations

� Period 2
Single item production is not possible at all

Why?
– Necessary is a capacity requirement shift of at least 40

units to period 1

– But: In period 1 there is a slack capacity of only 30 units

� Period 3
Single item production is not possible for products 1

and 3
Why?

– Necessary is a capacity requirement shift of at least 60
units to period 2

– But: In period 2 there is a cumulative slack capacity of only
50 units

Business Computing and Operations Research 305

General speaking

� Let U denoting the length of the interval under
consideration:

“If cumulative slack capacity (up to period t-1) is
less than the amount that has to be pre-produced
to allow single-item production of just one product
in the interval under consideration [t; t+U-1], then
at least two products have to be produced in the

interval [t; t+U-1]”

� This implies that at least one setup activity has to
be performed, which implies that not all periods of
the interval [t; t+U-1] can have single-item
production

46

Business Computing and Operations Research 306

Additional model restrictions – Type 1

{ } { } { }

()111

:0

:1,...,2:3,2,1::,...,1

1

,

1
11

1

,

,,

11

1

1
0

,,

1

1

,
1

1
,,

∑

∑ ∑

∑∑ ∑∑

−+

=

+

−+

= ≠∈

−

= ∈
∑ >∈

−

=

−≤

<⋅−

−⋅−

+−∈∀∈∀∈∀∈∀

−

=

Ut

ts

sj

U-tt
t-

Ut

ts jkRk

n

skkm

t-

t

s Rk
DRk

k

n

skkm

t

s

sm

m

UQQ

Da

stDaC

UTtURjMm

m

m
t

s

n
skm

��� ���� ��

������� �������� ��

 ..., , periods in j type product of production
 item single for to incapacity Necessary

 to periods incapacity Slack

 : with

 :if

Business Computing and Operations Research 307

Additional model restrictions – Type 2 (ext)

{ } { } { }

()121

:0max

:1,...,2:3,2,1:,...,1

1

,

1

1

,,

1
11

1

,,

11

1

1
0

,,

1

1

,
1

1
,,

∑∑

∑∑∑

∑∑ ∑∑

−+

= ∈

+

−+

=
∈

+

−+

= ∈

−

= ∈
∑ >∈

−

=

−≤

<







⋅+⋅−

−⋅−

+−∈∀∈∀∈∀

−

=

Vt

ts Rj

sj

V-tt

Vt

ts

n

sjjm
Rj

V-tt
t-

Vt

ts Rj

n

sjjm

t-

t

s Rk
DRk

k

n

skkm

t

s

sm

m

m
m

m
t

s

n
skm

VQQ

DaDa

stDaC

VTtVMm

��� ���� ���� ��� ��

������� �������� ��

 to periods in
 remainingcapacity Maximal

 ..., , periods subsequent the in items all
 of production the for to incapacity Necessary

 to periods incapacity Slack

 : with

 :if

Business Computing and Operations Research 308

Inventory / Setup – Inequalities

� If Yj,t=W j,t=0 for product j, there is no production in

t for product j and therefore the stock has to

satisfy the occurring demand

� These dependencies can be generalized to

intervals of the periods t to t+p

� Therefore, we can add the following restrictions

to the model

47

Business Computing and Operations Research 309

Additional restrictions

{ } { } { }
1

, 1 , , 1 , , ,

Total net demand in Total quantities of already in stock in 1
 the interval to 1

1,..., : 1,..., 1 : 1,..., :

1
j

t p s
n

j t j k k t j s j t j r

k S s t r t

j t-
t t p

j J t T p T t

I r I D W Y
+ −

− −
∈ = =

+ −

∀ ∈ ∀ ∈ − ∀ ∈ −

 
+ ⋅ ≥ ⋅ − −

 
∑ ∑ ∑

�����
���������

()

1 iff, no linking or setup operation
 takes place for product type
 in the periods to

with:

:Set of successor items direct or indirect of

item

j
t s

jS

j


���������

Business Computing and Operations Research 310

Capacity/Single-Item – Inequalities

� Now, additional restrictions are defined which

map the capacity consequences of an occurred

single item production

� Therefore, it is distinguished whether there is a

single item production on a considered resource

or not

� In the first case we can significantly strengthen the

existing capacity restriction

� In the latter case the original capacity restriction

remains

Business Computing and Operations Research 311

Additional restrictions

{ } { }

()

��������� ��� ��

���� ����� ��

m

Rj

tjjm

m

Rj

tjtm

Rj

tjjtjjm

mm

m

XQaQQC

YstXa

TtMm

 resourceon production item single theof Demand

,,

 resource of production item single no is thereiff 1

,,

m resourceon demandcapacity Total

,,,

1

:1,...,2:,...,1

∑∑

∑

∈

=

∈

∈

⋅+









−⋅≤

⋅+⋅

−∈∀∈∀

48

Business Computing and Operations Research 312

New derived variables

{ } { }

{ } { }

,

, ,

1,..., : 2,..., 1 : :

Production quantity of item j in period t, if this is a single-item

production period, i.e., we have to add the following restrictions:

1,..., : 2,..., 1 :

j t

j t j t

j J t T XQ

j J t T XQ X

∀ ∈ ∀ ∈ −

∀ ∈ ∀ ∈ − ≤

∀ { } { }
�

,

, , ,

,

Maximal demand in Capacity of resource

1,..., : 2,..., 1 : min ,
T

m t n

j t j s j t

s tm j

tm

C
j J t T XQ D QQ

a =

 
 

∈ ∀ ∈ − ≤ ⋅ 
 
 
 

∑
���

Business Computing and Operations Research 313

Solution approaches for the CLSPL

� Suerie and Stadtler use a standard MIP solver
(XPRESS-MP, Release 12)

� They apply two different variants

� Branch & Cut:
� The additional restrictions are omitted in the initial model

formulation which is solved in each node of the solution tree

� However, the restrictions are stored in a cut pool. If a found
solution violates such a restriction this restriction is
subsequently added to the model

� Cut & Branch:
� All additional restrictions are inserted in the model and

therefore respected in each node by the computed solutions

� By doing so the LP becomes more restrictive

Business Computing and Operations Research 314

Observations

� Branch & Cut yields smaller matrices and faster

solution times at each node at the price of some

separation procedure

� On the other hand, both might require immense

amounts of memory and time

� Therefore, a heuristic modified version of the

procedures has been applied

49

Business Computing and Operations Research 315

3.5.3 Time-oriented decomposition heuristic

� Stadtler has applied this version already to the

MLCLSP (Stadtler (2003))

� Main characteristics

� The time horizon is separated into three parts

� The lot-sizing window,

� the time intervals preceding the window and finally

� the time intervals following the window

� In successive planning steps, the lot-sizing

window is moved through the planning horizon

Business Computing and Operations Research 316

Decisions in the parts …

� Lot-sizing window:
� Only in this part lot-sizing decisions dealing with binary

variables are considered

� Preceding part:
� Binary setup variables are fixed and cannot be changed at

all

� Following part:
� Only inventory balance and capacity constraints (without

the inclusion of setup times) are included in the model
definition to anticipate future capacity bottlenecks

Objective function:
� Minimization of setup- and inventory holding costs up to

the end of the lot-sizing window

Business Computing and Operations Research 317

Idea

� Finding of a tight model formulation inside a
variable lot-sizing window, gathering their
benefits without accepting the drawback of an
inflated matrix, if such a model formulation is
used for the whole planning horizon

� Parameters ((∆,Ψ,Φ)-setting)

�∆: Length of the lot-sizing window

�Ψ: Overlap of two consecutive lot-sizing windows

�Φ: Number of periods at the end of the lot-sizing
window with relaxed integrality constraints in
respect of the setup variables

i.e. Φ≤Ψ≤∆

50

Business Computing and Operations Research 318

(4/2/1) setting

1.Planning step

4.Planning step

3.Planning step

2.Planning step

1 2periods t 3 4 5 6 7 8=T

Lot-sizing window
Window preceding periods

Window following periods

Business Computing and Operations Research 319

Planning horizon effect

� Due to the fact that the objective function measures costs
to the end of the lot-sizing-window only, possible
enlargements of the production quantities at the end of
the window are quite unlikely, since

� they cause additional setup- and production costs but do
not result in

� any savings …

� Therefore, in order to deal with this problem, Suerie and
Stadtler propose a bonus concept rewarding productions
at the end of the planning horizon.

� Overlapping of lot-size windows also reduces the
planning horizon effect

Business Computing and Operations Research 320

Bonus computation

� First, i.e., as an offline processing step, we execute
the Silver Meal heuristic on the non-capacitated version
of the problem for each period.

� Therefore, we get myopic TBO (time between orders)
tbot for every period t

� If a production quantity in period t is enlarged to cover up
to period s, we charge the total costs C(t,s) defined
below

� In this situation, we assume that there is a current lot-
sizing window starting at period Tfix and ending in period
Tint

� Note that we assume that s is somewhere between the
end of the window and the current tbot, i.e., we want to
give a bonus only to enlargements likely to be prevented
by the horizon effect

51

Business Computing and Operations Research 321

Bonus computation

Current planning step

t tbot=4

s

{ } { }
()

() ()

() ()1,,BONUS

 enlargingfor Bonus

holding and setupfor Costs
1t-s

1

,

: if

:1,...,1:,...,1

st,

 and between Periods

 window theof end the toPeriods

int

int

intint

−−=

⋅
+

+−

=

>+

−++∈∀+∈∀

stCstC

tT

stC

Ttbot

tbotTsTTt

st

t

t

fix

���

�����

Business Computing and Operations Research 322

Example

C_t,s

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1 2 3 4 5 6 7 8 9 10

s-T_int

C
_
t,

s

C_ts (t=11)

C_ts (t=12)

C_ts (t=13)

C_ts (t=14)

C_ts (t=15)

C_ts (t=16)

C_ts (t=17)

C_ts (t=18)

C_ts (t=19)

C_ts (t=20)

Tint=20; Tfix=10; Window size=10

Business Computing and Operations Research 323

Example

Bonus-Computation

-0,18

-0,16

-0,14

-0,12

-0,1

-0,08

-0,06

-0,04

-0,02

0

1 2 3 4 5 6 7 8 9 10

s-T_int

BONUS (t=11)

BONUS (t=12)

BONUS (t=13)

BONUS (t=14)

BONUS (t=15)

BONUS (t=16)

BONUS (t=17)

BONUS (t=18)

BONUS (t=19)

BONUS (t=20)

52

Business Computing and Operations Research 324

Feasibility of capacity demands

� By introducing the inventory balancing
constraints for all periods Tint, …, T following the
lot-sizing window the general feasibility of the
generated sub-solution should be preserved

� In periods following the lot-sizing window only
continuous production quantities can be chosen
while the total capacity in each period can be
extended by overtime that is charged by a
predefined rate per time unit in the objective
function

Business Computing and Operations Research 325

Estimating setup times

� Unfortunately, setup activities in these periods

following the lot-sizing window are not planned

explicitly and therefore unknown in respect of

there capacity requirements. We only model

the balance restriction as specific flow

requirements resulting in production quantities

� But to anticipate future capacity bottlenecks,

different variants for estimating the occurring
setup times are tested, itemized subsequently

Business Computing and Operations Research 326

Estimating setup times - STMIN

� This version do not reduces the available
capacity by any setup activity to be executed

� I.e. this version neglects all capacity
consumptions due to setup times in periods
following the lot-sizing window

� I.e., somehow a “best case consideration”

� Problem:

�Underestimation of capacity requirements

53

Business Computing and Operations Research 327

Estimating setup times - STMAX

� This version assumes that all items have to be
produced in every period, i.e. we have to setup
all resources in each period

� I.e. in this version available capacity per period
is reduced by the sum of setup times of item
producible on the specific machine

� Consequently, if capacities are tight, infeasible
problems for one or more planning steps will
sometimes emerge, resulting in no solution for
the complete problem

� I.e., somehow a “worst case consideration”

� Problem:
�Overestimation of capacity requirements

Business Computing and Operations Research 328

Estimating setup times - STE

� This version lays somewhere between the

extreme cases itemized above

� Capacity losses due to setups are estimated by

their average consumption that is implemented in

the periods preceding the lot-sizing window plus

a predefined safety margin

Business Computing and Operations Research 329

Computational results

� All following results are measured on a PC

(Windows NT 4.0) with Pentium IV 1.7 GHz

microprocessor, and 256 MB RAM.

� As a MIP solver, XPRESS-MP release 12 with

standard setting is used

54

Business Computing and Operations Research 330

Used approaches

1. Basic: Most simple version using the basic

model definition without any extensions

(extended formulation & valid inequalities)

2. Extended: Using the extended formulation but

still omits the valid inequalities

3. C&B: Uses the valid inequalities additionally,

Cut & Branch approach as described above

4. B&C: Uses the valid inequalities additionally,

Branch & Cut approach as described above

Business Computing and Operations Research 331

Single-Level Test Instances

� First experiments were done by testing the

different approaches on famous benchmarks

proposed in literature

� In the first phase the version STMAX was proven

to be not advantageous and is therefore

discarded for the rest of the evaluations

Business Computing and Operations Research 332

Instances – Single Level

Class #Products #Periods #Instances

1 6 15 116

2 6 30 5

3 12 15 5

4 12 30 5

5 24 15 5

6 24 30 5

7 10 20 180

8 20 20 180

9 30 20 180

55

Business Computing and Operations Research 333

Results for class 1

� 10 seconds computational time per experiment

� Best solution found so far is taken as the result

� It can be observed, that the proposed model
formulation with valid inequalities not only yields
better solutions but also better lower bounds

� Independent from the version – B & C or C & B –
the yielded solution quality of these
approaches was significantly higher than the
solution of the results of the standardized
versions

Business Computing and Operations Research 334

Results for class 1

Approach Gap to LB Avg. time first solution

Basic 6,26 % 0,11 sec

Extended 3,94 % 1,19 sec

C & B 2,72 % 2,66 sec.

B & C 2,62 % 2,34 sec.

Business Computing and Operations Research 335

Branch & Cut

� Giving additionally at most 600 seconds per each

of the 116 instances the performance of the best

approach the Branch & Cut procedure is tested in

more detail

� In 91 cases the optimality of the best found

solution could be proven in the given time limit

56

Business Computing and Operations Research 336

Parameters

� For the MIP formulations, the solution after 30
seconds is taken for classes 1-3 and 5, whereas
60 seconds of computational time are allowed for
class 4 and 6-9

� For some experiments no solution was attained
� Therefore, the limit is enlarged until the first valid

constellation could be generated
� Sometimes up to 20 minutes were necessary
� As LB the LP relaxation after automatic cut

generation of the extended model with valid
inequalities is chosen

� In contrast, the time-oriented decomposition
heuristic provides excellent solutions in a very
short time interval, which shows the effectiveness
of the model decomposition

Business Computing and Operations Research 337

All classes – Heuristic comparison

Branch & Cut Heuristic (6/2/2, STMIN)

Classes Gap to LB Avg. time Gap to LB Avg. time

1,2 2,18 % 22 sec 2,52 % 5,3 sec

3,4 1,12 % 45 sec 0,84 % 9 sec

5,6 0,36 % 52,4 sec 0,42 % 11,2 sec

7-9 1,64 % 142,9 sec 2,69 % 13,3 sec

Business Computing and Operations Research 338

Observations

� Surie and Stadtler reports comparisons to the
new Tabu Search procedure proposed by
Gopalakrishnan et al. (2001) and conclude that
their decomposition heuristic outperforms this
approach according to solution quality as well as
to computational time

� But the approach was not tested on the same
computational system. However, they only
report the results of this reference achieved on a
Pentium III, 550 MHz system. This restricts the
meaning of this conclusion significantly

57

Business Computing and Operations Research 339

Modified Single-Level Test Instances

� In classes 7-9, the impact of the CLSPL is rather poor,
since only a single from 30 setup states is carried over
a period

� Feature to carry over one setup state over two consecutive
bucket boundaries is never used

� One answer could be, the CLSPL should be applied if only
a few items require one resource and/or some of them
are long runners, whereas demand for the other items
is rather low

� For its evaluation, further test instances were generated
additionally

� Owing to executed aggregations these instances are
characterized by significantly smaller sets of items to be
produced on the resources

� Again, 60 seconds computational time are allowed per
instance

Business Computing and Operations Research 340

Main results

� It can be observed that the option to carry over a
setup state over two consecutive periods is now
used frequently

� In detail, there are 3.9 single-item production per
periods on average

� The new test instances were more difficult to
solve on the average due to a larger average gap
to LB

� Again, B & C was the best approach, but the
heuristic reaches nearly the same solution quality
while consuming significantly less computational
time

Business Computing and Operations Research 341

Multiple-Level Test Instances

� Further multiple level instances were tested

� Time limit 600 seconds for finding a solution

� 60 instances comprising the production of 10

products on 3 resources over 24 periods each

58

Business Computing and Operations Research 342

Results

Branch

& Cut

(6/2/2)

Time limit

60 seconds

(6/2/2)

Time limit

180 seconds

(4/2/2)

Time limit

60 seconds

Test

set

Gap to

LB

Gap to

LB

Avg.

time

Gap to

LB

Avg.

time

Gap to

LB

Avg. time

B+ 37,5 % 32,2 % 53,2

sec

29,6 % 139,5

sec

29,1 % 38,7

sec

Business Computing and Operations Research 343

Results

� The heuristic approaches now outperforms the Branch &
Cut procedure

� Even enlarging its computational time to 24 hours(!) does
not help. Using this additional time, the procedure
reduces the gap significantly but cannot outperform the
solution quality of the best heuristic using only 60 seconds

� Due to complexity, it becomes interesting to limit the
length of the time window

� To do so, complexity remains controllable

� Still, the time-oriented decomposition heuristic generates
presumable good results in reasonable time

Business Computing and Operations Research 344

Conclusions

� Under specific propositions the use of the CLSPL
model seems to be advantageous

� The heuristic approach seems to be very efficient
but needs the use of an appropriate MIP solver
and its complex model definition

� Some drawn conclusions against the use of the
Tabu Search approach have to be reevaluated by
additional tests under equal conditions

� Future work:

� Parallel resources

� Scheduling integration

� Real-time restrictions

59

Business Computing and Operations Research 345

Literature for section 3

� Dixon, P. S. and Silver, E. A., “A heuristic solution procedure for the
multi-item, single-level, limited capacity, lot-sizing problem,” Journal of
Operations Management Vol. 1, 1981, pp. 23-38

� Federgruen, A.; Tzur, M.: A simple forward algorithm to solve general
dynamic lot sizing models with n periods in O(n log(n)) or O(n) time.
Management Science 37, pp.909-925, 1991.

� Haase, K.: Lotsizing and Scheduling for Production Planning. Springer,
Berlin, 1994. (ISBN-10: 0-3875-7833-1)

� Kimms, A.: Multi-Level Lot Sizing and Scheduling. Physica, Heidelberg,
1997. (ISBN-10: 3-7908-0967-5)

� Stadtler, H.: Mixed integer programming model formulations for
dynamic multi-item multi-level capacitated lotsizing. European Journal
of Operational Research, Vol.94, pp.561-581, 1996.

� Stadtler, H.: Improved rolling schedules for the dynamic single-level lot-
sizing problem. Management Science 46, pp.318-326, 2000.

� Stadtler, H.: Multilevel Lot sizing with setup times and multiple
constrained resources: Internally rolling schedules with lot-sizing
windows. Operations Research, Vol.51, No.3, pp.487-502, 2003.

Business Computing and Operations Research 346

Literature for section 3

� Suerie, C.; Stadtler, H.: The Capacitated Lot-Sizing Problem with
Linked Lot Sizes. Management Science 49, No.8, pp.1039-1054, 2003.

� Tempelmeier, H.: Material-Logistik. 7th edition. Springer, (in German)
2008. (ISBN-10: 3-5407-0906-1)

� Wagner, H.M.; Whithin, T.M.: Dynamic version of the economic lot size
model. Management Science 5, pp.145-156, 1958.

