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4 Scheduling

� In this section, we consider so-called “Scheduling 
problems”

� I.e., if there are altogether M machines or 
resources for each machine, a production 
sequence of all N jobs has to be found as well as 
the determination of the time tables

� Consequently, we have to decide on

� The sequence of the respective jobs on each 
machine 

� and its time table

Business Computing and Operations Research 348
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4.1 Preliminaries

� Production program is given
� Lot sizes are given
� Process sequence of each job is given
� Operating times are given
� No operation can be processed simultaneously on more 

than one machine
� At each point of time every machine can process at most 

one job
� At the beginning of the planning horizon all N jobs and 

their data are available (static problem)
� Transports and storage are never bottlenecks
� No maintenance and repair activities 
� On each machine setup times are independent of the 

realized operation sequence
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Given and sought

� Given:

� MS: Machine sequence matrix

� PT: Matrix of processing times

� Sought:

� JS: Job sequence matrix

� TT: Timetable planning matrix with:
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4.1.1 Mathematical model
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Mathematical model
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Mathematical model

� In case of the job sequence restrictions, the formulation 
depends on the structure of the found solution

� But, we have to ensure that there is no simultaneous 
processing of two jobs on any machine, wherefore an 
arbitrary sequence of those jobs has to be realized

( )

( )

( )

( )

, , ,

, , ,

Therefore, there are altogether two possible cases:

First case  before :

1    

Second case  before :

2    

Both possibilities have to be considered in the model!
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Mathematical model
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Mathematical model
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4.1.2 Objective functions

� The model defined above can be regarded as a 
general starting point for so-called job-shop 
scheduling problems

� It abstains from the definition of a particular 
objective function but can be extended by a 
specific application-dependent one

� A huge set of different objective functions is 
proposed in literature. These functions mainly 
influence the efficiency of applied solution 
procedures

� In the following, we will give some examples of 
well-known objectives

Business Computing and Operations Research 357

Minimization of cycle time

� Here, we consider the duration of producing the 
total production quantities
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Minimization of machine waiting times

� Sum of all machine waiting times throughout all 
used resources
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Minimization of total completion (lead) time

� This objective intends to minimize the total sum of all 
individual completion or lead times

� Therefore, we compute the sum of dwell times over all 
jobs
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Minimization of maximum lead time

� Here, we want to minimize the dwell time of the 
job whose processing takes the longest time 
among all N jobs

� This is the objective function Z1
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Min. of the sum of due date deviations

� In this case completion time and due date of each job are 
compared, while the difference is taken as the result and 
summed up throughout all jobs to be processed

� As a consequence, an early completion gets a bonus 
while each lateness is punished
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Minimization of total lateness (or tardiness)

� Here, we want to minimize the total lateness over all N
jobs to be produced in the considered production system

� Consequently, there is no longer compensation between 
early and late deliveries possible

[ ]{ }

nd

,dC

n

N

n

n,nM

 job of date Due:

:with

0max ZMinimize
1

6 ∑
=

−=

Business Computing and Operations Research 363

Minimization of maximum lateness

� By using this objective, we somehow want to 
balance the lateness equally among the different 
jobs in the found solution 

� Thus, we try to minimize the maximum lateness 
of a job in the found solution
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Minimization of weighted sum of lead times

� Here, each job gets an individual weight rating 
its dwelling time in the production system

� Altogether, by doing so we receive a combined 
weighted sum of lead times
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4.1.3 Schedule classes

� In the following, we introduce some basic terms for specific types of 
schedules

� In scheduling, a distinction is frequently made between 
� Sequence,
� Schedule and 
� Scheduling policy

� Sequence
Corresponds to a specific permutation of jobs to be processed on a 
given machine

� Schedule
Usually corresponds to an allocation of jobs within a more 
complicated setting of machines, which could allow for preemptions 
of jobs by other jobs that are released at later points in time. 
Comprises time tables

� Scheduling policy
Often used in stochastic settings; a policy prescribes an appropriate 
action for any of the states the system may be in. In deterministic 
cases, usually only sequences or schedules are of importance but 
can be extended by rule definitions
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Non-delay schedules

4.1.3.1 Definition

A feasible schedule is called non-delay if no 

machine is kept idle when there is an operation 

available for processing      
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Active schedules

4.1.3.2 Definition

A feasible schedule is called active if no 

operation can be completed earlier by starting 

earlier or changing the process sequence on 

machines without delaying any other operation
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Attributes of active schedules

4.1.3.3 Lemma

A non-delay schedule is always active

Business Computing and Operations Research 369

Proof of the lemma

� Let us assume there is a non-delay schedule that is not 
active

� Then, we know there is a machine where shifting an 
operation i into an earlier position at point of time t results 
in an earlier completion without delaying the other 
operations

� But, if this is true, we know that during the processing of 
the schedule on machine m there is a constellation at point 
of time t where the considered machine is idle but can 
process job i instead

� This is a contradiction to the assumption that the schedule 
is non-delay
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Attributes of active schedules

� Note that the reverse is not necessarily true

� i.e., there are some active schedules that are not non-
delay

� Example: Schedule is active but not non-delay

Machine 1

Machine 2

Machine 3

1

2

2 1
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Semi-active schedules

4.1.3.4 Definition

A feasible schedule is called semi-active if no 

operation can be completed earlier without 

altering the processing sequence on any of the 

machines
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Consequences

4.1.3.5 Lemma

An active schedule is always semi-active

The proof is trivial and immediately results from 
the definition
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Attributes of semi-active schedules

� Note that the reverse is not necessarily true

� i.e., there are some semi-active schedules that are not 
active

� Example: Schedule is semi-active but not active

Machine 1

Machine 2

Machine 3

1

2

2 1
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Class of semi-active 
schedules

Class of active 
schedules

Schedule class hierarchy

Class of non-delay 
schedules
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4.2 Single-Stage Systems

� Now, we consider a single production stage only

� i.e., M=1, wherefore we have only one indexed 
processing times p1,…,pN

� Now, the complexity of the models only depends 
on the considered objective function

� There are some constellations that can be 
optimally solved in O(N log N) time using a simple 
priority rule as well as models that are already NP-
complete problems. And both happens despite the 
fact that besides their objective function, both 
problems are completely the same one-stage 
problems
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Minimization of cycle time

� Trivial problem

� Each solution leads to the same result

� Therefore, an arbitrary solution is already an 
optimal one
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Minimization of weighted sum of lead times

4.2.1 Theorem

The WSPT-rule leads to the optimal solution

Weighted Shortest Processing Time First Rule: 

This rule processes all N jobs in the sequence of 
non-increasing order of the value wj /pj
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Proof of Theorem

� We will show the claim by contradiction

� Therefore, we assume that there is an optimal 
sequence of the problem that does not fulfill all 
the restrictions of the WSPT policy

� Consequently, there are two adjacent jobs, say 

job j followed by job k, such that

wj /pj<wk /pk
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Proof of Theorem

� Assume job j starts its processing at time t

� Let us perform an interchange of j and k

� Therefore, the modified schedule starts job k now 
at t while all other jobs remain in their original 
position

� Consequently, their weighted objective value is 
not affected at all and, therefore, remains 
unchanged 

� Call the old schedule S and the new modified 
one T
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Proof of Theorem

� Under schedule S, the total weighted completion 
of jobs j and k is rated by:

( ) ( ) kkjjj wpptwpt ⋅+++⋅+

� Under schedule T, the total weighted completion 
of jobs j and k is rated by:

( ) ( ) jkjkk wpptwpt ⋅+++⋅+
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Proof of Theorem IV
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Proof of Theorem V

� Consequently, solution T is better and, therefore, 
the proof is completed
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Minimization of total lead time

4.2.2 Corollary

The SPT-rule leads to the optimal solution

Shortest Processing Time First Rule: 

This rule processes all N jobs in the sequence of 
non-decreasing processing times pj
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Proof of the Corollary

� To prove the corollary, we may use again Theorem 4.2.1

� To do so, we easily derive that the objective function for 
minimizing the total lead time Z3 is a special case of the 
more general weighted sum of lead time Z8

� In this case all weights are set to 1

� By applying Theorem 4.2.1, we can derive that we receive 
the optimal sequence by using the WSPT-policy, i.e., by 
respecting this special setting, we sort all jobs in non-
increasing sequence of the wj/pj=1/pj values

� Consequently, the jobs are sorted in an non-decreasing 
sequence of the pj-values as defined by the well-known 
SPT-rule. This completes the proof of the corollary
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Precedence constraints

� How is the result affected by precedence 
constraints?

� In the following, we introduce additional 
precedence constraints limiting the solution 
space through the exclusion of some possible 
solutions. These constraints are very simple and 
can be described through parallel chains 
defining which job has to be processed before 
another one

� This is a situation that frequently occurs during 
the processing of multi-stage systems

� First, we can process only entire chains. To 
solve these problems optimally, we can use the 
following extended Theorem 4.2.3
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Parallel precedence chains

1 2 3 4

7 8 9

5 6

10 11 12 13 14 15

Chain 1

Chain 4

Chain 3

Chain 2
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Entire chain problem

4.2.3 Theorem

The entire chain problem according to the 
objective of total weighted lead time minimization 
can be solved optimally by sorting the chains in 
non-increasing order of the value:

1

1

 is the value for the chain comprising the jobs 1 2

k

j
j

k

j
j

w

, ,...,k

p

=

=

∑

∑
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Proof of the Theorem

� Again, we show the claim by contradiction
� Therefore, we assume there is an optimal production plan 

violating the rule definition
� Therefore, there are two neighbored chains (1,…,k) and 

(k+1,…,l) where the defined priority rule is not fulfilled 
� Again, we can derive that there is no impact on the 

weighted lead time of the jobs not belonging to one of the 
two chains

� Moreover, we derive schedule T from the current 
schedule denoted S through the exchange of the two 
neighboring chains, i.e., in T we process (k+1,…,l) before 
(1,…,k) is processed

� In what follows, we compute the respective objective 
values of the both chains for the two possible constellations 
S and T
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1

1 1
1 1 1

1 1 1 1

Objective function value under schedule T:
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Consequence

� The objective value of schedule T is better than 
the result under schedule S and, therefore, the 
optimality of the rule defined above is shown

� This completes the proof
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ρ-factor

4.2.4 Definition

Let us consider a chain of jobs (1,…,k). Then, the job k* 
out of the chain is called the ρ-factor of the chain 
(1,…,k) if

*

*

1 1

11
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k l

i i
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ii

w w

l k

pp

= =

==

 
  

= ≤ ≤ 
 
  

∑ ∑

∑∑

Business Computing and Operations Research 394

Allowing preemption

� Assume now that the scheduler has the freedom to 
process any number of jobs in a chain (while adhering to 
the precedence constraints) without necessarily having to 
complete all the jobs in the chain before switching to 
another chain

� In what follows, we consider again the case of multiple 
chains

� Moreover, total weighted lead time is assumed to be the 
objective function

� Then, we may apply the result given in the following 
Theorem 4.2.5 in order to derive an optimal production 
plan
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Subchain preemption

4.2.5 Lemma

If job l* is the ρ-factor of the chain (1,…,k), then 

there exists an optimal sequence that processes 

jobs 1,…,l* one after another without interruption 

by jobs from other chains
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Proof of the Theorem

� Again, we prove this claim by contradiction
� Suppose that under the optimal sequence, the 

processing of the subsequence 1,…,l* is interrupted by a 
job, say job v, from another chain that has to be 
processed simultaneously

� Thus, the optimal sequence contains the subsequence 
1,…,u,v,u+1,…,l*, say subsequence S

� It suffices to show that either with subsequence v,1,…,l*, 
say S’ or with 1,…,l*,v, say S’’, the total weighted 
completion time is less than with subsequence S

� We know that the lead time of all other jobs besides 
1,…,l* and v is independent of the chosen subsequence 
S, S’, and S’’

� In the following, we therefore assume S’>S as well as 
S’’>S

Business Computing and Operations Research 397

Case 1: S’>S

� S=(1,…,u,v,u+1,…,l*); S’=(v,1,…,u,u+1,…,l*)

� Since S is better than S’, we can apply the proof of 
Theorem 4.2.3 to derive that it holds:

u

u

v

v

pp

ww

p

w

++

++
<

...

...

1

1

� If this is not true, we do not worsen the solution by 
applying the proof of Theorem 4.2.3 and process v 
before the job sequence 1,…,u

� It is trivial that we can choose S’ instead of S if it holds 
S’≤S
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Case 2: S’’>S

� S=(1,…,u,v,u+1,…,l*); S’’=(1,…,u,u+1,…,l*,v)

� Since S is better than S’’, we can again apply the proof 
of Theorem 4.2.3 to derive that it holds:

*

*
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1

1

lu

lu
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pp
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w
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++
>

+

+

� If this is not true, we do not worsen the solution by 
applying the proof of Theorem 4.2.3 and process v after 
the job sequence u+1,…,l*

� It is trivial that we can again choose S’’ instead of S if it 
holds S’’≤S
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Consequences

� Therefore, we know:
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� In addition, l* is the ρ-factor of (1,…,k). Therefore, it 
holds: 
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Consequences

*

*

*
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� Therefore, the assumptions of Case 1 and Case 2 
together have derived a contradiction

� Therefore, both cases cannot apply simultaneously. 

� This obviously completes the proof
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Using the result

� The result derived above is intuitive. Its condition implies 
that the ratios of the total weight divided by the total 
processing time of the jobs in the string 1,…,l* must be 
decreasing in some sense

� If one had decided to start processing a stream, it makes 
sense to proceed until job l* is obtained

� By simultaneously using the result derived above, we can 
use the following algorithm for solving our problem 
optimally
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Solution procedure

4.2.6 Algorithm

Whenever the machine is freed, select among the 

remaining chains the one with the highest ρ-

factor and process this chain without interruption 

up to the job that determines its ρ-factor. Note 

that this includes this job itself.  
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Example

� Consider the following two chains

� 1 – 2 – 3 – 4 

� 5 – 6 – 7 

� The weights and processing times of the jobs are 
given below

Jobs 1 2 3 4 5 6 7

Weight 6 18 12 8 8 17 18

Processing 
time

3 6 6 5 4 8 10
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Solving the example

� The ρ-factor of the first chain is (6+18)/(3+6)=24/9 and determined by 
job 2

� The ρ-factor of the second chain is (8+17)/(4+8)=25/12 and determined 
by job 6

� Therefore, we start processing the first chain (Schedule: 1 – 2)
� The ρ-factor of the remaining first chain is (12)/(6)=2 and determined by 

job 3
� Therefore, we proceed with the second chain (Schedule: 1 – 2 – 5 – 6)
� The ρ-factor of the remaining second chain is (18)/(10)=1.8 and 

determined by job 7
� Hence, we proceed with the first chain (Schedule: 1 – 2 – 5 – 6 – 3)
� The ρ-factor of the remaining first chain is (8)/(5) and determined by job 

4
� Consequently, we proceed with the second chain (Schedule: 1 – 2 – 5 

– 6 – 3 – 7)

Resulting schedule is 1 – 2 – 5 – 6 – 3 – 7 – 4
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Maximum lateness

� In the following, we consider a general penalty function 
individually defined for a delayed processing of each job

� This leads to a situation where each job j has an 
individual penalty function hj(Cj) for a delayed processing 
of Cj time units

� We assume that each penalty function is monotonous, 
i.e., the resulting values for increasing completion times 
are non-decreasing

� In addition, we consider again existing precedence 
constraints between the different jobs

� Objective function is now:

Minimize max{h1(C1),…,hn(Cn)}
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Due-date-related penalty functions

hj

Cj
dj

hj

Cj
dj

hj

Cj
dj
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4.2.7 Algorithm

Step 1:

Set J=Ø; Jc={1,…,n}; J’ the set of all jobs with no 
successors

Step 2:

Let j* be such that

Add j* to J;

Delete j* from Jc

In order to represent the new set of schedulable jobs, 
modify J’ accordingly

Step 3:
If Jc=Ø, then stop; otherwise go to Step 2

Solution procedure

* min
c c

i j ij j J
i J i J

h p h p
′∈

∈ ∈

    
=     

    
∑ ∑
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Consequences

4.2.8 Theorem

Algorithm 4.2.7 attains an optimal schedule for 

the considered problem
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Proof of the Theorem

� Suppose that there exists an iteration where job j** is 
selected from J’ but does not have the minimum 
completion cost

among the jobs belonging to J’ at this moment

� The minimum cost job j* must then be scheduled at a 
later iteration, implying that the respective job j* appears 
in the sequence before job j**. In addition, some jobs can 
appear between the jobs j* and j**














∑
∈ cJj

jj
ph *
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Proof of the Theorem

� In order to complete the proof, we move the sequence 
position of job j* just behind job j**.

� What are the consequences for the objective value of the 
solution?
� All jobs that are located between j* and j** in the old schedule S

are processed earlier, wherefore the objective function value is 
not negatively affected

� What about job j*? This is the only job whose completion time is 
increased through the applied modification

� But we know by assumption that this modified value leads to a 
smaller penalty function value than the one caused by j** in 
schedule S

� Finally, we can state that the value for j** in the new schedule is 
not increased. Therefore, the maximum of all lateness values in 
the new schedule is not larger than the objective value of S

� This completes the proof
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Special case Z7

4.2.9 Corollary

For the special case hj=max{0,Cj-dj}, the 

application of rule EDD (Earliest Due Date), 

which schedules the different jobs in a non-

decreasing sequence of due dates, results in the 

optimal solution.
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Proof of the Corollary

� In order to prove the claim of the corollary, we 
can apply Theorem 4.2.8 and Algorithm 4.2.7

� Hence, jobs are scheduled in the first iterations 
and, therefore, at the end of the arising total 
sequence with the lowest penalty value

� These values only depend on individual due 
dates and, therefore, lead to a situation where 
jobs with the highest due dates are preferred (at 
the end of the schedule!)

� By preferring the highest due dates for an 
inverted sequence, we apply the EDD-rule for the 
original one
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Total lateness

� This problem is proven to be NP-hard in the 
ordinary sense, i.e., it exists a pseudo-polynomial 
time algorithm based on dynamic programming

� However, this problem can be simplified by 
scheduling jobs which are non-time-critical at the 
end, i.e., the total processing time of all jobs is 
lower or equal to their due date
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4.3 Sequencing problem with heads and tails

� In what follows, we take a step towards multiple 
stage problems

� Therefore, we consider a single stage where a 
scheduling sequence has to be determined. 
However, each job has preceding and 
subsequent processes at other stages, which are 
defined as head and tails

� Consequently, beside pi, the processing time of 
the i-th job at the considered stage, there is a 
head ai and a tail qi

� As the pursued objective we consider the 
minimization of the makespan (lead time)

Business Computing and Operations Research 415

Deriving a simple lower bound

4.3.1 Lemma

For all subsets Il of the set of jobs to be processed 

I, there exists the following lower bound on the 

optimal cycle time

( ) { } { }
min, min,

min | min |
l

I Il l

l i l i i l
i I

a q

lb I a i I p q i I
∈

= ∈ + + ∈∑
������� �������
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Proof of the Lemma

� Consider an arbitrary set of jobs I

� At least amin,I time units have to elapse before the 
processing can start 

� This processing takes altogether additional ptotal,I
time units

� Finally, there is always one job processed at the 
last position at the considered stage whose tail 
increases the total makespan of the processing. 
And this tail is larger than or equal to qmin,I

� Thus, we have shown that the defined sum is a 
lower bound for the cycle time

� This obviously completes the proof
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Complexity of the problem

4.3.2 Lemma

The general scheduling problem with heads and 

tails is NP-hard

In what follows, we propose the well-known 
Branch&Bound approach of Carlier (1982) in 
order to solve the problem optimally
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Starting point: The Schrage algorithm

In this greedy approach, we always schedule 
the ready job with the greatest tail

( ) { }

( )

( ) { }
( )

( ) { } { }

{ }

   Set min ; ; 1,..., ;

  At time t, schedule amongst the ready jobs  

 of , job with =max |  

or any one in the case of ties

 Set: ; \ ; ;

max ,min ;

If

i I i

i j i i

j

j j ii U

i t a U U n

ii i

a t U j q q i U a t

iii U U j U U j t t

t t p a

∈

∈

= = ∅ =

≤ ∈ ∧ ≤

= ∪ = =

= +

{ }

( )

  is equal to 1,..., ,  the algorithm is finished; 

otherwise proceed with step 

U I n

ii
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Critical path

� The critical path of a solution of the problem 
always comprises, in the given sequence, the 
following parts:

� a head of some job, 

� a sequence of jobs that are iteratively processed –
without interruption – at the considered stage, and 

� finally, a tail of some job that is processed at the last 
position of the critical path

� In what follows, we derive the basic branching rule 
of the B&B procedure of Schrage by analyzing the 
critical path of the solution generated by the 
Schrage procedure
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Main result

4.3.3 Theorem

Let L be the makespan of the Schrage schedule

(a). If this schedule is not optimal, there is a critical job c 
and a critical set J such that:

In an optimal schedule, either c is processed before all the 

jobs of J, or c will be processed after all the jobs of J

(b). If this schedule is optimal, there exists J such that 

LB(J)=L

( ) min min
i i i c

i J i J
i J

lb J a p q L p
∈ ∈

∈

= + + > −∑
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Proof of the Theorem

� Let G be the disjunctive graph defining the 
considered problem with source 0 and sink s

� In addition, z is a critical path passing through a 
maximal number of jobs

� We modify the numbering of the jobs according to 

the definition of this path

� Therefore, the jobs processed on this path are 
numbered from 1 to p, i.e., the critical path is 
(0,1,2,3,…,p,s)
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Proof of the Theorem

� At first, we prove that there is no processing between the 
times a1-1 and a1

� If there is a job processed in this interval, it would be finished at 
a1 since the processing of the first job starts just at this point of 
time

� If so and there is a job j processed there and we ask whether 
aj=tj. If so, we can extend the critical path. Obviously, this is not 
possible due to the assumption of a maximal path z

� However, if aj<tj we know due to the processing of the Schrage 
procedure that there is an additional job processed just before j

� Clearly, because of that cognitions, we know that there is 
always a final job k with ak=tk. Note that this is at least the job 
firstly processed in the total schedule

� Hence, we have shown that there is no processing in the 
interval between a1-1 and a1 due to the maximum choice 
of z
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Proof of the Theorem

� Secondly, we show a1=min{ ai | 1≤i≤p }

� The machine was idle just before job 1 was 
processed 

� Therefore, the Schrage procedure schedules no 
job in this interval and job 1 was scheduled 
subsequently

� I.e., all heads are larger than or equal to the head 
of job 1

� Thus, we obviously obtain a1=min{ ai | 1≤i≤p }
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Proof of the Theorem

� Thirdly, if qp is the minimal tail of all jobs 1,…,p, 
the length of the critical path becomes

{ }{ } { }{ }

1
1

1

min | 1,..., min | 1,...,

p

i p
i

p

k i k
i

L a p q

a k p p q k p

=

=

= + +

= ∈ + + ∈

∑

∑

� Hence, the lower bound and the solution value 
are equal, which immediately proves the 
optimality of the generated solution
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Proof of the Theorem

� But, if otherwise qp is not the smallest tail of the 
jobs in {1,…,p}, there is always a job c with 
largest index whose tail is smaller than qp

� Let J={c+1,…,p} be the set of subsequently 

scheduled jobs on the critical path

� We know qc<qr for all r in J and additionally ar>tc
Why?

� If ar≤tc, then, owing to its larger tail, job r would be 
scheduled before job c

� Hence, we derive ar>tc

Business Computing and Operations Research 426

Proof of the Theorem

{ }
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Proof of the Theorem

� Therefore, we have shown that the distance to the lower 
bound is smaller than pc

� Thus, what can we learn from this constellation about the 
searching process?

� Is it necessary to consider constellations where job c is 
processed among set J?
� Answer is NO!

� Why? If we process c somewhere among the jobs of set J, 
the solution considered before cannot be improved since job 
c+1 cannot be processed until the point of time tc+1 (due to 
ac+1!). Therefore, the solution is deteriorated by at least one 
time unit since the position for p is optimal according to J

� Consequently, we have to decide about the scheduling 
position of c either before or after the set J
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Branching scheme

� This leads directly to the following branching scheme of the 
algorithm

� Always proceed with the node resulting in the lowest bound 
found so far. The Lower Bound of a node S f(S) is always 
derived from the maximum of f(F) (F=Father node of S), 
LB(J), and LB({c} U J)

� A new node is added to the tree only if its lower bound is less 
than the upper bound f0 found so far

� Apply the Schrage procedure in each node 
� If the solution is optimal, the procedure can be finished 

and the optimal result is generated
� Otherwise, compute c and J

� Generate the two additional subsequent nodes “c
before J” (=Node 1) and “c after J” (=Node 2)

� This can be easily conducted through an aimed 
modification of the considered instance
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Node 1

After determining node  and the subsequent set ,

we modify the tail of  in the following way:

max ,

By doing so, the execution of the Schrage procedure 

always results in a constella

c c r p
r J

c J

c

q q p q
∈

 
= + 

 
∑

tion where  is processed 

before all jobs placed in set .

Additionally, the algorithm "knows" the extended tail of 

c to process this job potentially earlier

c

J
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Node 2

{ }

After determining node  and the subsequent set ,

we modify the head of  in the following way:

max ,min |

By doing so, the execution of the Schrage procedure 

always results in a co

c c r r
r J

c J

c

a a a r J p
∈

 
= ∈ + 

 
∑

nstellation where  is processed 

after all jobs placed in set .

Additionally, the algorithm "knows" the extended head of 

c to process other jobs potentially earlier

c

J
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Bound computation and Schrage procedure

� Carlier proposes a specific technique to be able to 
execute the Schrage procedure in O(n.log n) time

� Upper bound computation: Every time the 
Schrage procedure is applied, the generated 
makespan is compared with the current upper 
bound f0. Moreover, an alternative constellation 
conserving the order of all jobs except for job c, 
which is processed after J, is additionally 
compared with this upper bound

� An additional lower bound is derived from the 
application of the Schrage procedure with allowed 
preemptions
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Preemption

� The preemption version of the Schrage algorithm 
makes use of the greedy rule of the original 
Schrage procedure, but can additionally preempt 
each processed job whenever another one 
arrives with a larger tail

� It is trivial to show that the generated solution is 
always optimal and is therefore a Lower Bound of 
the original problem

� In addition, for example, by using heap data 
structures, this procedure can be executed again 
in O(n.log n) steps
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Computational results

� This procedure was coded in FORTRAN on an IRIS 80 
and initially tested on 1000 problems

� For each problem with n jobs, 3.n integers with uniform 
distributions between 1 and amax, 1 and pmax as well as 1 
and qmax were respectively drawn 

� 20 different values for n were tested; n=50, 100, 150, 
200,…, 1.000

� Further details can be found in Carlier (1982)
� 999 problems were solved optimally
� One problem with n=850 was not solved (but the distance 

to bound was 2!). The lower bound was 29.800 
(UB=29.802)

� In most cases the solution process takes only a small 
amount of time (extreme small-sized solution trees)
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Branch&Bound of Carlier – Example 

� We consider the following example

Jobs i Job 

1

Job 

2

Job 

3

Job 

4

Job 

5

Job 

6

Job 

7

Release dates ai 10 13 11 20 30 0 30

Processing times pi 5 6 7 4 3 6 2

Tails qi 7 26 24 21 8 17 0
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Applying Schrage

Nr. Job Tail Start End Completed Av

1 6 17 0 6 23 None

2 1 7 10 15 22 2,3

3 2 26 15 21 47 3,4

4 3 24 21 28 52 4

5 4 21 28 32 53 5,7

6 5 8 32 35 43 7

7 7 0 35 37 37 None

Critical Path: 0-1-2-3-4-s
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Analyzing the constellation

� c=1 and J={2,3,4}

� LB(J)=min{13,11,20}+6+7+4+min{26,24,21}=11+
17+21=49

� LB({1,2,3,4})=10+22+7=39

� UB=53

� Now, we have to branch

� c before J

� c after J
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Enumeration tree

UB=53
LB=49
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c before J

� New problem constellation

� New lower bound:

� LB({1,2,3,4})=10+22+21=53

� Hence, this node can be fathomed

Jobs i Job 1 Job 

2

Job 

3

Job 

4

Job 

5

Job 

6

Job 

7

Release dates ai 10 13 11 20 30 0 30

Processing times pi 5 6 7 4 3 6 2

Tails qi 17+21=38 26 24 21 8 17 0
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Enumeration tree

UB=53
LB=49

c before J

LB=53=UB
is fathomed
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c after J

� New problem constellation

� New lower bound:

� LB({1,2,3,4})=11+22+7=40

� Hence, this node has to be explored

Jobs i Job 1 Job 

2

Job 

3

Job 

4

Job 

5

Job 

6

Job 

7

Release dates ai 11+17

=28

13 11 20 30 0 30

Processing times pi 5 6 7 4 3 6 2

Tails qi 7 26 24 21 8 17 0
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c after J – Applying Schrage

Nr. Job Tail Start End Completed Av

1 6 17 0 6 23 None

2 3 24 11 18 42 2

3 2 26 18 24 50 4

4 4 21 24 28 49 1

5 1 7 28 33 40 5,7

6 5 8 33 36 44 7

7 7 0 36 38 38 None

Critical Path: 0-3-2-s
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Analyzing the constellation

� c=3 and J={2}

� LB(J)=min{13}+6+min{26}=45

� LB({2,3})=11+6+7+24=48

� Therefore, we inherit the Lower Bound of the 
father node. This is LB=49

� UB=50

� Now, we have to branch again

� c before J

� c after J
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Enumeration tree

UB=53
LB=49

c before J

LB=53
is fathomed

UB=50
LB=49
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c before J

� New problem constellation

� New lower bound:

� LB({2,3})=11+13+26=50=UB

� Hence, this node is fathomed

Jobs i Job 

1

Job 

2

Job 

3

Job 

4

Job 

5

Job 

6

Job 

7

Release dates ai 28 13 11 20 30 0 30

Processing times pi 5 6 7 4 3 6 2

Tails qi 7 26 32 21 8 17 0
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Enumeration tree

UB=53
LB=49

c before J

LB=53
is fathomed

UB=50
LB=49

LB=50=UB
is fathomed
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c after J

� New problem constellation

� New lower bound:

� LB({2,3})=13+13+24=50=UB

� Hence, this node is fathomed

Jobs i Job 

1

Job 

2

Job 

3

Job 

4

Job 

5

Job 

6

Job 

7

Release dates ai 28 13 19 20 30 0 30

Processing times pi 5 6 7 4 3 6 2

Tails qi 7 26 24 21 8 17 0
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Enumeration tree

UB=53
LB=49

c before J

LB=53
is fathomed

UB=50

LB=49

LB=50=UB
is fathomed

LB=50=UB
is fathomed

Optimal solution
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Optimal solution

� Therefore, we obtained an optimal solution

� This optimal solution is given by

� 6-3-2-4-1-5-7

� Makespan is: 50
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4.4 Multiple stages

� If M>1, each objective function itemized in Section 4.2 
leads to an NP-complete problem for the general job-shop 
system case

� Therefore, a huge set of different heuristics can be found in 
literature

� Owing to its simple representation in disjunctive graphs, 
the minimization of the cycle time or the makespan is 
frequently pursued

� In comparison to other NP-complete problems, the job-
shop problem belongs to the most complex ones. This 
results from the fact that most efficient exact procedures 
are not able to solve even small-sized problems in a 
reasonable time (e.g., 10 jobs on 10 machines)
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4.4.1 Use of priority rules

� A more intuitive approach can be the application of 
dynamic rules deciding about the sequence on every 
machine

� Therefore, in case of an idle machine, this rule decides 
about the next job to be scheduled by selecting one of 
the waiting jobs

� Note that this approach is very flexible since it can also 
be applied to dynamic problems while its complexity only 
depends on the defined computation of the integrated 
priority rule

� Frequently, the SPT and its variants integrated into 
specific hierarchies are applied
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4.4.2 Elaborated heuristics

Well-known approaches are for example

� The Shifting Bottleneck Procedure (SBP) of 
Adams, Balas and Zawack

� The Tabu Search procedure of Nowicki and 
Smutnicki
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4.4.2.1 The Shifting Bottleneck Procedure

� This procedure can be applied to arbitrary M-
staged job-shop systems to minimize the cycle 
time

� It makes use of the Branch&Bound algorithm of 
Carlier as a subroutine

� The problem description is defined as a disjunctive 
graph

� The bottleneck machine of the total schedule is 
considered to be planned more accurately in each 
step
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Basic attributes

� The machines are sequenced one at a time, 
consecutively

� In order to do so, a one-machine scheduling 
problem with head and tails is optimally solved 
for each not yet sequenced machine

� This result is taken as rank of the machine to 
decide about its necessity to sequence it 
permanently. After sequencing the current 
machine, all machines sequenced before are 
resequenced optimally due to the modified 
heads and tails

� The one-machine problems with head and tails 
are constructed out of the modified disjunctive 
graph
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Deriving one-machine problems

( ) ( )( )

0

0 0 0

Let  be the set of machines that have 

already been sequenced by choosing selections 

. For any \ , let ,

be the problem obtained from the original problem 

definition replacing each dis
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M M
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by the corresponding selection  and deleting 
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The procedure

1. M0=Ø (set of already sequenced machines)

2. Identify a bottleneck machine m among the 
machines k in M\M0 and sequence it optimally 
by applying the Carlier algorithm. Set 
M0=M0U{m}

3. Reoptimize the sequence of each critical 
machine k in M0 in turn while keeping the other 
sequences fixed, i.e., set M0=M0\{k} and solve 
P(k,M0). Then, if M0=M, stop; otherwise go to 
step 2
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Reoptimization processes

� The reoptimization process is repeated at most 
three times for sets |M0|<|M| in every iteration

� Every time a full cycle is completed, the elements 
of M0 are reordered according to the non-
increasing values of the solutions of the 
respective one-machine problems with heads and 
tails

� In the last step, when |M0|=|M|, we continue the 
local reoptimization process to the point where no 
more improvement for a full cycle occurs
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Two versions

� Two different versions of the SBP are proposed 
by Balas et al.

� The first version operates as described above

� The second one applies the SBP to the nodes of a 
searching tree generating several solutions 
simultaneously, i.e., in each branching step, 
alternative constellations are generated to 
increase algorithm diversification
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The second SBP-version

� The process starts again with the node defined by M0=Ø
� In each branching step, in a node on level l=|M0|, the f(l) 

machines with the largest respective machine objective 
value out of M\M0 are processed as alternative child 
nodes. Note that f is a monotonous decreasing function 
reducing the branching degree in the levels that are 
generated later.

� A second instrument for limiting the size of the branching 
tree is a penalty function – defined for every node – that 
penalizes the choices made at different levels in 
generating the node in question, in proportion to their 
deviation from the bottleneck, and with a weighting that is 
heavier for the higher than for the lower levels of the tree. 
Whenever the value of the penalty function for a node 
exceeds a predetermined limit, the node is discarded
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Combined breadth-first / depth-first

� For the first l*=M1/2 levels, the breadth first search is used 
to produce all successors according to the function f, i.e., 
a full tree over l* is generated 

� In the second part of the procedure, the nodes are 
clustered into groups of size f(l*), containing the 
successors of level l*. Subsequently, the depth-first 
searching phase starts. In this phase, the highest ranking 
member of one of the groups is chosen and explored 
straight to the bottom of the search tree, or as far as the 
penalty function permits

� The current best solution is always stored as an upper 
bound. Hence, branches, which reach the upper bound, 
are fathomed. After ending this exploration, the highest 
rank member of another group of nodes is chosen
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Disjunctive graph
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One-machine problems

105Tail

333Processing time
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Machine 1
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One-machine problems

030Tail

132Processing time
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Machine 3
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Scheduling Machine 1

� Schrage procedure

� Process job 1 first. Start:0; End:3; Tail:8

� Process job 3 next. Start:4; End:7; Tail:8

� Process job 2 at last. Start:7; End:10; Tail:10

� Objective function value:10

�Optimal solution since the lower bound is 
min{5,4}+3+3+min{0,1}=4+6=10
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Scheduling Machine 2

� Schrage procedure

� Process job 2 first. Start:0; End:2; Tail:8

� Process job 3 next. Start:2; End:6; Tail:10

� Process job 1 at last. Start:6; End:9; Tail:11

� Objective function value:11

� Optimal solution since the lower bound is 
min{3,0,0}+3+2+4+min{2,6,4}=0+9+2=11



41

Business Computing and Operations Research 467

Scheduling Machine 3

� Schrage procedure

� Process job 2 first. Start:2; End:5; Tail:8

� Process job 1 next. Start:6; End:8; Tail:8

� Process job 3 at last. Start:8; End:9; Tail:9

� Objective function value:9

� Optimal solution since the lower bound is 
min{6,7}+2+1+min{0,0}=6+3=9
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Bottleneck machine

� Machine 1: Completion time is 10

� Machine 2: Completion time is 11

� Machine 3: Completion time is 9

Consequently, the bottleneck machine

… is Machine 2 with Z=11

� Therefore, we fix the sequence: 2 – 3 – 1 on this machine
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Disjunctive graph
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One-machine problems

105Tail

333Processing time

650Head

Job 3Job 2Job 1

Machine 1

Business Computing and Operations Research 471

One-machine problems

030Tail

132Processing time
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Scheduling Machine 1

� The Schrage procedure provides the following 
schedule:

� Process job 1 first. Start:0; End:3; Tail:8

� Process job 2 next. Start:5; End:8; Tail:8

� Process job 3 at last. Start:8; End:11; Tail:12

� Objective function value:12

�Cannot be proven to be optimal since the lower 
bound is min{5,6}+3+3+min{0,1}=5+6=11

� J={3}, c=2; 
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Modified Branching problem 1
(c before J)

Machine 1
(bold means modified value)

Job 1 Job 2

=c

Job 3

=J

Head 0 5 6

Processing time 3 3 3

Tail 5 4=3+1 1
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Rescheduling Machine 1
c before J

� Schrage procedure

� Process job 1 first. Start:0; End:3; Tail:8

� Process job 2 next. Start:5; End:8; Tail:12

� Process job 3 at last. Start:8; End:11; Tail:11

� Objective function value:12

� Is the optimal solution in the considered sub-tree 
since the lower 
bound=min{5,6}+3+3+min{4,1}=5+6+1=12

�But already dominated by the solution considered 
before
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Modified Branching problem 1
c after J

Machine 1
(bold means modified value)

Job 1 Job 2

=c

Job 3

=J

Head 0 9=6+3 6

Processing time 3 3 3

Tail 5 0 1
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Rescheduling Machine 1
c after J

� Schrage procedure

� Process job 1 first. Start:0; End:3; Tail:8

� Process job 3 next. Start:6; End:9; Tail:10

� Process job 2 at last. Start:9; End:12; Tail:12

� Objective function value:12

� Is the optimal solution in the considered sub-tree 
since the lower bound amounts to 
min{9,6}+3+3+min{0,1}=6+6+0=12
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Scheduling Machine 3

� Schrage procedure

� Process job 2 first. Start:2; End:5; Tail:8

� Process job 1 next. Start:9; End:11; Tail:11

� Process job 3 at last. Start:11; End:12; Tail:12

� Objective function value:12

� Optimal solution since the lower bound is 
min{9,9}+2+1+min{0,0}=9+3=12
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Bottleneck machine

� Machine 1: Completion time is 12

� Machine 3: Completion time is 12

Consequently, the bottleneck machine

… is machine 1 with Z=12

� Therefore, we fix the sequence: 1 – 2 – 3 on this 
machine
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Disjunctive graph
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Rescheduling Machine 2

� Now, we have to reoptimize the sequence on 
Machine 2 according to the potentially modified 
head and tails

� Therefore, we erase the fixed disjunctive arcs in 

the graph to derive the modified scheduling 
problem with head and tails
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Modified one-machine problem

Machine 2
(bold means modified value)

Job 1 Job 2 Job 3

Head 3 0 0

Processing time 3 2 4

Tail 2 10 4
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Rescheduling Machine 2

� Schrage procedure

� Process job 2 first. Start:0; End:2; Tail:12

� Process job 3 next. Start:2; End:6; Tail:10

� Process job 1 at last. Start:6; End:9; Tail:11

� Objective function value:12

� Optimal solution since the lower bound for set 
s={2} is min{0}+2+min{10}=0+2+10=12

� The sequence on Machine 2 is kept unchanged!
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One-machine problems

Machine 3
(bold means modified value)

Job 1 Job 2 Job 3

Head 9 2 11

Processing time 2 3 1

Tail 0 7 0
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Scheduling Machine 3

� Schrage procedure

� Process job 2 first. Start:2; End:5; Tail:12

� Process job 1 next. Start:9; End:11; Tail:11

� Process job 3 at last. Start:11; End:12; Tail:12

� Objective function value:12

� Optimal solution since the lower bound is 
min{9,11}+2+1+min{0,0}=9+3=12

� Fixing sequence on Machine 3 to 2 – 1 – 3 

Business Computing and Operations Research 487
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Resequencing

� Subsequently, we have to resequence the 
already scheduled Machines 1 and 2

� The current objective values of these machines 
are:

� Machine 1: 12

� Machine 2: 12

� We take Machine 2 as the first machine to be 
rescheduled
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Rescheduling Machine 2

� Now, we have to reoptimize the sequence on 
Machine 2 according to the potentially modified 
head and tails

� Therefore, we erase the fixed disjunctive arcs in 

the graph to derive the modified scheduling 
problem with head and tails
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Disjunctive graph
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Modified one-machine problem

Machine 2
(bold means modified value)

Job 1 Job 2 Job 3

Head 3 0 0

Processing time 3 2 4

Tail 3 10 4

Business Computing and Operations Research 492

Rescheduling Machine 2

� Schrage procedure

� Process job 2 first. Start:0; End:2; Tail:12

� Process job 3 next. Start:2; End:6; Tail:10

� Process job 1 at last. Start:6; End:9; Tail:12

� Objective function value:12

� Optimal solution since the lower bound for set 
s={2} is min{0}+2+min{10}=0+2+10=12

� The sequence on Machine 2 is kept unchanged!
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Rescheduling Machine 1

� Now, we have to reoptimize the sequence on 
Machine 1 according to the potentially modified 
heads and tails

� Therefore, we erase the fixed disjunctive arcs in 

the graph to derive the scheduling problem with 
modified heads and tails
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Disjunctive graph
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One-machine problems

Machine 1
(bold means modified value)

Job 1 Job 2 Job 3

Head 0 5 6

Processing time 3 3 3

Tail 6 0 1
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Rescheduling Machine 1

� Schrage procedure

� Process job 1 first. Start:0; End:3; Tail:9

� Process job 2 next. Start:5; End:8; Tail:8

� Process job 3 at last. Start:8; End:11; Tail:12

� Objective function value:12

�Cannot be proven to be optimal since the lower 
bound is min{5,6}+3+3+min{0,1}=5+6=11

� J={3}, c=2; 
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Modified Branching Problem 1
c before J

Machine 1
(bold means modified value)

Job 1 Job 2

=c

Job 3

=J

Head 0 5 6

Processing time 3 3 3

Tail 6 4=3+1 1
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Rescheduling Machine 1
c before J

� Schrage procedure

� Process job 1 first. Start:0; End:3; Tail:9

� Process job 2 next. Start:5; End:8; Tail:12

� Process job 3 at last. Start:8; End:11; Tail:11

� Objective function value:12

� Is the optimal solution in the considered sub-tree 
since the lower 
bound=min{5,6}+3+3+min{4,1}=5+6+1=12

�But already dominated by the solution considered 
before
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Modified Branching Problem 1
c after J

Machine 1
(bold means modified value)

Job 1 Job 2

=c

Job 3

=J

Head 0 9=6+3 6

Processing time 3 3 3

Tail 6 0 1
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Rescheduling Machine 1
c after J

� Schrage procedure

� Process job 1 first. Start:0; End:3; Tail:9

� Process job 3 next. Start:6; End:9; Tail:10

� Process job 2 at last. Start:9; End:12; Tail:12

� Objective function value:12

� Is the optimal solution in the considered sub-tree 
since the lower 
bound=min{9,6}+3+3+min{0,1}=6+6+0=12
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Rescheduling Machine 1

� The sequence of Machine 1 is kept unchanged!

� 1 – 2 – 3 is the chosen sequence!
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Disjunctive graph of the final solution
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Objective function value

� The resulting makespan is determined by the 
length of the longest path from 0 to s

� This path has the total length of 12, which defines 
the resulting cycle time

� This is illustrated by the final graph
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Priority rule application

In order to rate the solution quality of the SBP versions, 
different priority rules are applied in a specific constellation.  
The applied rules are

� FCFS (=First Come First Serve)

� LST (=Late Start Time)

� EFT (=Early Finish Time)

� LFT (=Late Finish Time)

� MINSLK (=Minimum Slack)

� SPT (=Shortest Processing Time)

� LPT (=Longest Processing Time)

� MIS (=Most Immediate Successors)

� FA (=First Available)

� RANDOM
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Computational results

� Procedures were implemented in FORTRAN on a 
VAX 780/11 on 40 problems taken from well-
known benchmarks

� In what follows, we depict the results presented 

by Balas et al. 

� They tested the SBP in its both variants against 
some simple priority rules

� The consumed CPU time is illustrated in the 
tables beside the solution quality
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Priority rule application

� First, the priority rule algorithms are applied in a 
straightforward fashion

� Second, the priority rules are applied in a random 
fashion by applying all rules

� The randomized rule is to select one of the available 
operations to be processed next randomly

� This is done by applying a probability distribution which 
makes the odds of being selected proportional to the 
priority assigned to each operation by the given 
dispatching rule

� The run is repeated until ten consecutive runs produce no 
improvement, and the best result obtained is reported as 
the procedure’s output
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Performance results

2985---------7527.472985*500501019

2864---------9853.422864*500501018

2228---------22675.032228*400401017

2553---------6111.052553*400401016

1850---------16429.061850*300301015

1784---------21238.261784*300301014

123564837129143445.541325200201013

121862744122452548.541304200201012

9134441499429319.241040150151011

99525362108434321.891172150151010

61635131273584594.3275130020159

5973517757161105125.0277430020158

6503012697101057118.8773030020157

835343110194323512.6796210010106

1028352150312391815.70130610010105

116432801178713.5012901002054

808270851930*#24910.10101510010103

52---------821.5055*36662

13---------210.5013*20451

LBMacro-runsCPU SecValueMicro-runsCPU SecValueOperationsJobsMachinesInstance

SBIISBINumber of

Value: makespan of the best schedule obtained
Micro-runs: number of the one-machine problems solved
Macro-runs: number of times SBI was run

*: value known to be optimal
#: optimal value found after 320 seconds
LB: lower bound given by solution value for the 

first bottleneck problem
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Performance results with 5 machines

---8.14---------3.091207*327131415.74132015

---0---------0.941292*379129314.77129314

---0---------1.231150*409115114.17115113

---0---------0.871039*291104012.68104112

---0---------2.031222*364122315.24122311

5 machines, 20 jobs

---0958------0.81959*217959*8.40959*10

---0.14951------0.85951*2609528.319529

0.35-0.28634.52863*2.418682808668.288808

---3.26890------1.51890*1949208.579477

---0926------1.28926*2339278.209276

5 machines, 15 jobs

---0.2593------0.52593*1005943.585945

4.563.8656745.45932.795971396214.336704

4.571.7458831.86052.466231136344.226733

7.981.065512.56691.697201257274.037922

---1.91666------1.26666*1576794.116791

5 machines, 10 jobs

SBII %SBI %LBCPU SecValueCPU SecValue

CPU SecValueCPU SecValueProblem

RandomizedStraight

ImprovementSBIISBIPriority Dispatching Rule
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Performance results with 10 machines

10.156.961355551**1355*37.81403816150826.7160430

10.356.371114892**123948.01294892138225.38153929

10.8410.411216901**125028.51256901140225.5147528

8.896.491235837**129145.51325837141725.79147227

10.855.031218744**122448.51304744137324.62137326

10 machines, 20 jobs

3.711.03894430**101727.91048430116014.70125925

6.874.58881434**97625.51000435104814.33114224

6.864.241023225**1032*24.61061417110814.22116323

9.06-0.2913419**94419.21040414103813.93108522

9.522.17995362**108421.91172362119814.71120821

10 machines, 15 jobs

2.971.91807289**91410.29242899427.8959420

4.242.56709240**8607.408752408987.4567019

4.240.67770225**85910.28912258976.5567318

8.177.12737192**7874.587961928576.8585717

5.601.45875240**9786.48102124010367.66103616

10 machines, 10 jobs

SBII %SBI %LBCPU SecValueCPU SecValue

CPU SecValueCPU SecValueProblem

RandomizedStraight

ImprovementSBIISBIPriority Dispatching Rule
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Further performance results

8.244.121170899**126976.71326899138324,71147740

5.071.491221669**127371.81321669134124.40143639

9.587.7810771079**125557.712801079138824.43140538

8.254.261355837**142361.41485837155126.95167037

5.782.451224735**130546.91351735138526.20151736

15 machines, 15 jobs

---4.98---------21.31888*1537198756.61199735

---6.67---------27.61721*1559184455.65192634

---4.82---------25.61719*1313180654.13187133

---3.44---------29.11850*1889191657.48196932

---3.67---------38.31784*1786185255.42193531

10 machines, 30 jobs

SBII %SBI %LBCPU SecValueCPU SecValue

CPU SecValueCPU SecValueProblem

RandomizedStraight

ImprovementSBIISBIPriority Dispatching Rule

Value: makespan of the best schedule obtained

LB: lower bound given by solution value for the 

first bottleneck problem

Improvement: improvement (in percent) in solution value over 

that found by the randomized priority dispatching 

rule

*: value proved to be optimal

**: time limit set to time required by randomized 

priority dispatching rule.
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Main results

� Priority rules:
� No domination between the rules can be identified

� Eight of the ten rules showed best result on at least one problem

� Two rules (LPT and FA) never

� Priority rules vs. SBP I/II
� In 38 cases SBP I finds better solutions than the constellations 

generated by the priority rule procedure whether in the straight or 
randomized version

� Furthermore, Version 2 finds substantially improved solutions for 
many constellations most of the time 

� Altogether, it can be stated that SBP II is always – without exception 
– at least as good as the randomized priority rule 

� Moreover, in the vast majority of the considered cases, it is 
considerably better

� Typical average improvement rates were between 4 and 10 percent
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SBP – Pros and Cons

� Pros

� Elaborated procedure

� Despite the fact that the procedure uses a Branch&Bound
procedure to tackle an NP-hard problem as a frequently 
called subroutine, it is quite fast in comparison to well-known 
meta strategies, as for example, the Tabu Search procedure 
of Nowicki and Smutnicki

� SBP I is frequently used as an initial procedure to generate a 
first solution with quite good quality

� Cons

� Solution quality is poorer than known from elaborated meta 
strategies

� Single priority rules are much faster
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4.4.2.2 Tabu Search by Nowicki-Smutnicki

� Besides the SBP as well as various 
Branch&Bound-procedures, meta heuristics have 
recently been developed for the job-shop 
scheduling problem with makespan objective

� A very efficient and relatively easy to implement 
algorithm is the Tabu Search (TS) procedure 
introduced by Nowicki and Smutnicki in 1996

� The algorithm bases on the disjunctive graph and 
tries to reduce the problems makespan iteratively 
by changing the job sequence within the critical 
path
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Neighborhood Search

� Tabu Search methods are based on 
Neighborhood Search, a local search method.

� Given a solution s, a Neighborhood Search 
creates out of a solution π a new solution π’ by 
manipulating π; this operation is called a move.

� The set of moves applicable on a given solution s 
is called the neighborhood N(π). Neighborhood 
Search selects the best move in N(π) and applies 
it. 

� If a solution can be represented as a permutation 
of numbers, common Neighborhood Search 
moves are swaps and shifts within this 
permutation.  
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Critical path

� Let u = (u1,…,uw) denote the critical path, with w the 
number of operations on a longest path within the directed 
disjunctive graph

� The path can be divided into blocks B1, …, Br with the 
following attributes:

� Bi = (uai
, uai+1, …, ubi

) and

1=a1≤b1<b1+1=a2 ≤b2<b2+1=a3 ≤… ≤ar ≤br=w

� Bi contains all operations processed on the same 
machine (i = 1, …, r)

� Two consecutive blocks contain operations processed 
on different machines, i.e., µ(Bi) ≠ µ(Bi+1), i = 1, …, r-1
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Critical path and block representation
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Idea

But how?

Permuting the 
job sequence 
within a block 
can yield to a 
schedule with 

smaller 
makespan!

Permuting the 
job sequence 
within a block 
can yield to a 
schedule with 

smaller 
makespan!

Business Computing and Operations Research 520

The applied neighborhood

� The size of the neighborhood plays an important 
role. 

� Thus, Nowicki and Smutnicki introduced a reduced 
neighborhood with the following moves:

� In block B1 the last two operations are permutated

� In block B2 to Br-1 the first two operations and, 

if ai<bi, the last two operations are permuted 

� In block Br the first two operations are permutated
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Mathematical representation of the moves

Let V(π) = (V1(π),…, Vr(π)) denote the set of moves that

are applicable to a given job sequence π.
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Applied to our example
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Only the exchange of these two operations is examined
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Remark to the critical path

One might argue that the critical path is not 

well-defined. But numerical results showed

that the selection of one critical path has a minor

influence in regard to the solutions quality.

� An arbitrary critical path can be chosen.
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Tabu List

� A major drawback of local search procedures, such as 
hill-climbing, is cycling between two solutions and only 
returning a local optimal solution

� In order to avoid cycling within the searching process, 
Tabu Search algorithms use a short time memory of 
blocked moves, called Tabu List

� If a move v=(x,y) is performed, the inverse move 
v’=(y,x) is added to the Tabu List

� The Tabu List has a given size maxt, and it contains the 
inverse moves of the moves applied in the last maxt

iterations
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Aspiration criterion

� To secure that promising moves are not blocked, 
Nowicki and Smutnicki divide the set operations in the 
Tabu List into subsets UP and UNP

� UP contains all blocked moves leading to a better 
solution than the ones visited in all past iterations 
(profitable moves)

� UNP consists of all blocked non-profitable moves

� A criterion, called aspiration criterion, allows the search 
to perform a profitable move although it belongs to the 
Tabu List.
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Long time memory

� If a solution possesses a good objective function value, 
it is likely that its neighbors contain good objective 
function values as well

� Since from a given solution with small objective function 
value only the best move was chosen, the observation 
of other neighbors was discarded although they could 
guide into regions with good solutions, too

� To take this thought into account, Nowicki and 
Smutnicki proposed to embed their procedure into a 
guided super routine by storing the solutions with the 
lowest objective function values within a list L

� The elements of L consist of the permutation π for the 
given solution, a modified neighborhood N(π )\{v’} (v’ is 
the already applied move), and the Tabu List T
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Performance analysis – test sets

� Nowicki and Smutnicki tested their algorithms on groups 
of well-known job-shop scheduling instances

� Group I: 45 instances with 36 to 100 operations

� Group II: 

� 80 instances with 225 to 2000 operations

� 40 instances created by a random generator with 2500 to 
10000 operations 
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Performance analysis - results

Test set

Number of 
instances

C* better 
than best-
known value

Optimality 
proven

Group I 45 30
In 20 of 30 
unknown 
cases*

Group II

a) 80 33
In 10 of 61 
unknown 
cases*

b) 40
No 

references 
available

No 
references 
available

*Unknown up to Nowicki and Smutnicki (1996) 
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Nowicki and Smutnicki – Summary

� The procedure is a solution method for solving the job-
shop scheduling problem with makespan objective 
which is relatively easy

� It substantially intensifies the searching process in 
promising regions, evaluates the neighborhoods in the 
single steps very fast, and the authors can improve the 
best known makespan for difficult problem instances in 
many cases

� In 2005, Nowicki and Smutnicki propose a further 
advanced Tabu Search procedure with improved 
diversification (long term behavior)

� Additionally, they propose an improved starting heuristic 
in order to construct a suitable starting solution 
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4.5 Flow-shop problems

� In the following, we consider flow-shop problems as a 
special case of job-shop systems

� In this special case, each job has an identical machine 
sequence in which it is processed

� Therefore, we can define a definite numbering (1,…,M) 
of the used resources that determine the processing 
sequence of each job

� Despite the fact that the total solution space still consists 
of altogether (N!)M constellations, this problem seems to 
be somehow relaxed in comparison to the general job-
shop problem

Business Computing and Operations Research 531

The dominance criteria

The first dominance criterion:

In an M-staged flow-shop system, there is always 

an optimal solution minimizing the makespan 

where the scheduling on the first two machines is 

identical. This is also true for the minimization of 

the total lead time. 
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Proof of the first dominance criterion

� Let us assume there are unequal sequences that are 
processed on the first two machines

� Let 1 – 2 – 3 – … – N be the job sequence applied to 
machine 2

� We define t as the first (lowest numbered) position in this 
job sequence where a difference between the sequences 
on machine 1 and machine 2 arises

� Therefore, we have the sequence 1 – 2 – 3 – … – t-1 – l
with l>t at the first stage 

� In what follows, we consider an alternative constellation by 
exchanging t and l on machine 1
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Illustration

c

1

2

1

2

p1,1 p1,2 p1,3 p1,l p1,t

p2,t p2,l

… …

…….

… …

Alternative processing

p1,1 p1,2 p1,3 p1,lp1,t

p2,t p2,l

… …

… …
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Consequences for jobs

� Job t

� The exchange on machine 1 can improve only the 
subsequent constellation by an earlier processing at stage 2

� Therefore, the remaining schedule is of better or at least of 
an equal quality 

� Job l

� Firstly, note that the end of processing of job l at stage 1 in 
the modified constellation is equal to the point of time the 
processing of job t ends at stage 1 in the original 
constellation. Let c denote this point of time in both schedules

� Therefore, job l can not be processed at stage 2 before t is 
processed. Note that this applies to both schedules
� Schedule 1: Reason: Processing of job t at stage 2 before

job l. In addition, job t at stage 2 has to wait for its processing
at stage 1, which is not ended before c

� Schedule 2: Reason: Processing of job l at stage 1. In detail, 
job l at  stage 2 has to wait for its processing at stage 1, 
which is not ended before c
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Conclusions

� The processing times of job t and job l at stage 2 
are not influenced by the executed exchange

� No effect on the total makespan as well as on the 
resulting cycle time

� This completes the proof
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The dominance criteria

The second dominance criterion:

In an M-staged flow-shop system there is always 

an optimal solution generating the minimal 

makespan where the scheduling on the last two 

machines is identical
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Proof of the second dominance criterion

� Again, we assume that there is no equal 
sequence at the last two stages

� In detail, we assume that the sequence 1 – 2 – 3 
– … – N is processed on machine M-1

� Let t be the minimal number of a job where the 
sequences at stages M-1 and M differ, i.e., 1 – 2 
– 3 – … – l, with l>t is processed on machine M

� Now, we consider an alternative constellation 
where we exchange job l and job t at the last 
stage
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Illustration

M-1

M

pM-1,1 pM-1,2 pM-1,3 pM-1,t pM-1,l

pM,t pM,l

… …

…….

…

Alternative processing

pM,tpM,l

…

…

c

M-1

M

pM-1,1 pM-1,2 pM-1,3 pM-1,t pM-1,l… …

x

y
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Consequences

� Optimal Schedule

� Let x be the beginning of the processing of job l at stage M 
while y denotes the end of processing of job l at stage M-1

� We know x≥y

� We have cycle time C

� Alternative Schedule

� In order to compute the makespan for this schedule, we know 
that nothing is lost due to the executed exchange of l and t

� Moreover, there is no side-effect on the jobs processed after 
job t, wherefore the new cycle time C’ is lower than or equal 
to c

� This completes the proof
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4.5.1 The procedure of Johnson

� In what follows, we consider the special case of 
the flow-shop problem where only production 
stages are given

� Note that already this quite simple constellation is 
an NP-complete problem for the general job-shop 
case

� In contrast to this, we will present a very efficient 
algorithm generating an optimal schedule for the 
2-staged flow-shop problem in O(N log N) steps: 
the so-called Johnson algorithm. This algorithm 
determines the schedule with the minimal 
makespan
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Changing the sequence in 2/3-FS

4.5.1.1 Theorem

For the two- or three-staged flow-shop with the 

objective of makespan minimization, there is 

always an optimal solution that has equal 

scheduling sequences on all machines
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Proof of the Theorem

� Clearly, we may apply the two dominance criteria

� Thus, the claim of the Theorem follows 
immediately as a corollary of both criteria

� This completes the proof
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4.5.1.2 Algorithm (Johnson)

{ }

{ } { }

{ }

ˆ ˆ 1, 2,1, 2,

ˆ ˆ ˆ1, 1, 2,

Initialization: 1,2,3,...,  is the list of all jobs to be 

scheduled

ˆ1.  Determine job   by:

min , min , |1

2.  If min , ,

ˆthen  is placed on the next available posit

n nn n

n n n

R N

n

p p p p n N

p p p

n

=

= ≤ ≤

=

ion at the top 

of the current schedule;

ˆotherwise  is placed on the next available position at the 

end of the current schedule

ˆ3.  Delete  from the list of jobs to be processed in the schedule

4.  Pr

n

n

oceed with step 1 until the list of remaining jobs  is emptyR
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The proof of optimality

4.5.1.3 Theorem

Algorithm 4.5.1.2 generates an optimal solution 

for the makespan minimization problem in a two-

staged flow-shop production system



67

Business Computing and Operations Research 545

Proof of the Theorem

� First of all, we have to introduce some additional parameters to 
determine how the makespan is affected by the chosen schedule
� Since processing of the first machine is never a bottleneck, we 

concentrate on the second one
� Idle times and the total processing time at this stage determine the 

sought makespan
� Therefore, Ij should determine the amount of idle times on machine 

2 before processing job j, i.e., if the machine was not idle, the 
parameter is set to zero

� Note that these values depend on the generated solution while the 
total processing time at stage 2 is always fixed

1

2

p1,1 p1,2 p1,3 p1,4 p1,5 p1,6

Machines

I1 p2,1

I6p2,2p2,3 p2,4 p1,5 p2,6
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Calculation of the occurring idle times

{ }
{ }

{ }
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The objective value
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Computing the total sum of waiting times
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{ }

1 1 1 1 1 0 0

1, 2, 1, 2,
1 1 1 1 1 1 1 1

1,1 1,1

1

1, 2,
1 1 1

We show the claim by induction:

Start: 1

max ,0 max ,0

max ,0

1

It holds: max |1
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Proof of the Lemma
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1 1

1, 2,
1 1 1 1 1

1 1

1, 2, 1, 2,
1 1 1 1 1

We compute 
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max |1 max ,0

N N N N N
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1

1, 2,
1 1 1

1

1, 2,
1 1 1

1 1

1, 2, 1, 2,
1 1 1 1

Case 1:

The difference  is added while the resulting 

value is equal to max |1 1  since  

is t
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the correct calculation in this case.

Proof of the Lemma
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Case 2:

The difference  is at most zero and, therefore, 

zero is added to the sum. In addition, it holds: 
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Therefore, the lemma gives the correct calculation also 

in this second case .
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Intermediate summary

� A found solution can only influence waiting times 
on machine 2 to minimize the makespan

� We have generated a compact form for 
computing all resulting waiting times on machine 

2
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Notation

In what follows, we make use of the following 
additional parameters:

{ }

{ } { }∑

∑ ∑

=

=

−

=

≤≤=∈∀
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k

i
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1

1

1

1

,2,1

1|max:,...,1

:,...,1
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Transformation

� Now, the preliminary work is done to start the proof 
of the theorem by transforming an optimal solution 
into a new one respecting the claimed attributes

� Therefore, let us assume we have an optimal 
schedule S found with sequence (1 – 2 – 3 – … –
N)

� Furthermore, let us assume we have a solution not 
fulfilling the construction rules of the algorithm of 
Johnson

� If so, there is a minimally chosen index i with:

{ } { }1, 2, 1 2, 1, 1min , min ,i i i ip p p p
+ +

>
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Transformation

� Note that in the algorithm of Johnson it would 
have been processed after i+1

� Now, we generate schedule T out of S by 
exchanging the jobs i and i+1

� Owing to this simple modification, we can easily 

derive the new updated objective function by 
computing the new Yk-values
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Comparing schedules S and T
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Comparing schedules S and T
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Conclusion

� T is not worse than S in both cases 

� As a consequence, each optimal schedule can be 
transformed into a Johnson schedule without 
losing its optimality

� This completes the proof
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Example

� Given: 2 Machines A and B, and 5 jobs to be 
processed

� Processing times

Machine Jobs

1 2 3 4 5

A 20 11 13 5 17

B 15 27 8 27 13
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Steps of Johnson’s algorithm

1. Minimum is 4 on A

Consequence: First possible position

(4,-,-,-,-)

2. Minimum is 3 on B

Consequence: Last possible position

(4,-,-,-,3)

3. Minimum is 2 on A

Consequence: First possible position

(4,2,-,-,3)

4. Minimum is 5 on B

Consequence: Last possible position

(4,2,-,5,3)

5. Complete optimal schedule is (4,2,1,5,3)
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4.5.2 The multiple-stage case

� Now, we consider the general case M>2

� Unfortunately, it was shown that these problems 
are NP-hard

� Therefore, we introduce a simple heuristic 
approach in the following 
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Palmer’s heuristic

� The guideline suggested by Palmer as a very 
first heuristic for sequencing M-staged flow-shop 
systems is as follows

� Give priority to jobs with the strongest tendency 
to progress from short times to long times in 
the sequence of operations

� In detail, Palmer proposes the following priority 
calculation to measure this attribute in each job
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Palmer’s heuristic

{ } ( )( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

, 1
1

,2 ,1 ,2 ,1

,3 ,2 ,1

,3 ,2 ,1

,4 ,3 ,2

1,..., : 2 1 1

2 :

2 2 0 1 2 2 1 1

3 :

3 2 0 1 3 2 1 1 3 2 2 1

2 0 2

4 :

4 2 0 1 4 2 1 1 4 2 2 1 4 2 3

M

j j M k
k

j j j j j

j j j j

j j j

j j j j

j N s M k t

M

s t t t t

M

s t t t

t t t

M

s t t t

− +

=

∀ ∈ = − ⋅ − − ⋅

⇒ =

= − ⋅ − ⋅ + − ⋅ − ⋅ = −

⇒ =

= − ⋅ − ⋅ + − ⋅ − ⋅ + − ⋅ − ⋅

= ⋅ + ⋅ − ⋅

⇒ =

= − ⋅ − ⋅ + − ⋅ − ⋅ + − ⋅ − ⋅ + − ⋅ −

∑

( ) ,1

,4 ,3 ,2 ,1

1

3 3

j

j j j j

t

t t t t

⋅

= ⋅ + − − ⋅



75

Business Computing and Operations Research 569

Solution

� The jobs are scheduled in sequence of non-
increasing priority

� Generates only solutions with an equal sequence 
at all stages
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Example

Processing

time of job j

on machine

Jobs

1 2 3 4

tj,1 3 11 7 10

tj,2 4 1 9 12

tj,3 10 5 13 2
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Priorities

Processing

time of job j

on machine

Jobs

1 2 3 4

tj,1

-2

3

-6

11

-22

7

-14

10

-20

tj,2

0

4

0

1

0

9

0

12

0

tj,3

2

10

20

5

10

13

26

2

4

Priority 14 -12 12 -16
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Solution

Is 1 – 3 – 2 – 4  
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CDS Heuristic

� CDS=“Cambel Dudek Smith”, the authors of the 
respective paper

� Extension of the Johnson algorithm for multiple-stage 
cases

� Considers only solutions with equal sequences at all 
stages

� Note that it starts from at least four stages 
� Generates artificial 2-staged problems out of the general 

constellation and solves them optimally by the 
application of the Johnson algorithm

� For M=2 the CDS procedure becomes the Johnson 
algorithm generating an optimal solution

� Otherwise, the procedure generates M-1 iterations 
representing an additional two-staged flow-shop problem

� Can be used for the minimization of cycle time or total 
lead time
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CDS procedure

1. Establish NxM-matrix of processing times tj,i, 
where tj,i is the processing time of j-th job on 
machine i

2. Establish number of auxiliary n-job, 2-machine 
problems, p, to be calculated, where p≤M-1

3. Set k=1 for first auxiliary problem
4. Compute the processing time for all jobs 

j=1,…,N on the two machines in the k-th
auxiliary problem:

∑
=

=θ
k

i

ij

k

j t
1

,1,
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CDS Procedure

5. Compute the processing time for all jobs 
j=1,…,N on the two machines in the k-th 
auxiliary problem:

∑
+−=

=θ
M

kMi

ij

k

j t
1

,2,

6. Solve the problem with the Johnson algorithm

7. Check if k<p. If so, set k=k+1, go to step 3; 
Otherwise proceed with step 8

8. Use the original problem to compute the 
objective value of all p generated solutions

9. Select best result as the output of the 
procedure
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Example

� Given: 4 Machines A, B, C and D, as well as 5 
jobs to be processed

� Processing times

Machine Jobs

1 2 3 4 5

A 3 6 10 4 7

B 12 4 1 1 9

C 1 2 6 7 4

D 6 1 2 8 1
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First iteration

Machine Jobs

1 2 3 4 5

1 3 6 10 4 7

2 6 1 2 8 1
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Steps of Johnson’s algorithm

1. Minimum is 2 on machine 2

Consequence: Last possible position

(-,-,-,-,2)

2. Minimum is 5 on machine 2

Consequence: Last possible position

(-,-,-,5,2)

3. Minimum is 3 on machine 2

Consequence: Last possible position

(-,-,3,5,2)

4. Minimum is 1 on machine 1

Consequence: Last possible position

(1,-,3,5,2)

5. Complete optimal schedule is (1,4,3,5,2)
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Objective function value

Processing Job 1 Job 4 Job 3 Job 5 Job 2

S E S E S E S E S E

Machine A 0 3 3 7 7 17 17 24 24 30

Machine B 3 15 15 16 17 18 24 33 33 37

Machine C 15 16 16 23 23 29 33 37 37 39

Machine D 16 22 23 31 31 33 37 38 39 40
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Objective function value

Processing Job 4 Job 1 Job 3 Job 5 Job 2

S E S E S E S E S E

Machine A 0 4 4 7 7 17 17 24 24 30

Machine B 4 5 7 19 19 20 24 33 33 37

Machine C 5 12 19 20 20 26 33 37 37 39

Machine D 12 20 20 26 26 28 37 38 39 40
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Second iteration

Machine Jobs

1 2 3 4 5

1 15 10 11 5 16

2 7 3 8 15 5
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Steps of Johnson’s algorithm

1. Minimum is 2 on machine 2

Consequence: Last possible position

(-,-,-,-,2)

2. Minimum is 5 on machine 2

Consequence: Last possible position

(-,-,-,5,2)

3. Minimum is 4 on machine 1

Consequence: Last possible position

(4,-,-,5,2)

4. Minimum is 1 on machine 2

Consequence: Last possible position

(4,-,1,5,2)

4. Complete optimal schedule is (4,3,1,5,2)
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Objective function value

Processing Job 4 Job 3 Job 1 Job 5 Job 2

S E S E S E S E S E

Machine A 0 4 4 14 14 17 17 24 24 30

Machine B 4 5 7 8 17 29 29 38 38 42

Machine C 5 12 12 18 29 30 38 42 42 44

Machine D 12 20 20 22 30 36 42 43 44 45
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Third iteration

Machine Jobs

1 2 3 4 5

1 16 12 17 12 20

2 19 7 9 16 14
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Steps of Johnson’s algorithm

1. Minimum is 2 on machine 2

Consequence: Last possible position

(-,-,-,-,2)

2. Minimum is 3 on machine 2

Consequence: Last possible position

(-,-,-,3,2)

3. Minimum is 4 on machine 1

Consequence: Last possible position

(4,-,-,3,2)

4. Minimum is 5 on machine 2

Consequence: Last possible position

(4,-,5,3,2)

4. Complete optimal schedule is (4,1,5,3,2)
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Objective function value

Processing Job 4 Job 1 Job 5 Job 3 Job 2

S E S E S E S E S E

Machine A 0 4 4 7 7 14 14 24 24 30

Machine B 4 5 7 19 19 28 28 29 30 34

Machine C 5 12 19 20 28 32 32 38 38 40

Machine D 12 20 20 26 32 33 38 40 40 41
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Output

� Best found solution was (4,1,3,5,2)

� Objective value: 40

Business Computing and Operations Research 588

Applying Palmer’s procedure

Machine Jobs

1 2 3 4 5

A

-3

3

-9

6

-18

10

-30

4

-12

7

-21

B

-1

12

-12

4

-4

1

-1

1

-1

9

-9

C

1

1

1

2

2

6

6

7

7

4

4

D

3

6

18

1

3

2

6

8

24

1

3

Priority -2 -17 -19 18 -23

Business Computing and Operations Research 589

Result of Palmer’s procedure

� 4 – 1 – 2 – 3 – 5
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Objective function value

Processing Job 4 Job 1 Job 2 Job 3 Job 5

S E S E S E S E S E

Machine A 0 4 4 7 7 13 13 23 23 30

Machine B 4 5 7 19 19 23 23 24 30 39

Machine C 5 12 19 20 23 25 25 31 39 43

Machine D 12 20 20 26 26 27 31 33 43 44
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Result of Palmer’s procedure

Source: Palmer (1964)
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Comparison with Palmer heuristic
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Computational time
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Pros and Cons

� Pros

� CDS/Palmer are fast to compute

� CDS generates quite good solutions

� Cons

� Poor results in comparison to elaborated meta 
strategies

� Used for finding an initial solution but not for the 
final result
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