
1

Business Computing and Operations Research 347

4 Scheduling

� In this section, we consider so-called “Scheduling
problems”

� I.e., if there are altogether M machines or
resources for each machine, a production
sequence of all N jobs has to be found as well as
the determination of the time tables

� Consequently, we have to decide on

� The sequence of the respective jobs on each
machine

� and its time table

Business Computing and Operations Research 348

Outline of the chapter

1. Preliminaries
1. Mathematical model
2. Objective functions

2. Single Machine Models
3. Sequencing problem with heads and tails
4. Multiple stages

1. Use of priority rules
2. Elaborated heuristics

1. The Shifting Bottleneck Procedure
2. Tabu Search by Nowicki-Smutnicki

5. Flow-shop problems
1. The procedure of Johnson
2. The multiple-stage case

Business Computing and Operations Research 349

4.1 Preliminaries

� Production program is given
� Lot sizes are given
� Process sequence of each job is given
� Operating times are given
� No operation can be processed simultaneously on more

than one machine
� At each point of time every machine can process at most

one job
� At the beginning of the planning horizon all N jobs and

their data are available (static problem)
� Transports and storage are never bottlenecks
� No maintenance and repair activities
� On each machine setup times are independent of the

realized operation sequence

2

Business Computing and Operations Research 350

Given and sought

� Given:

� MS: Machine sequence matrix

� PT: Matrix of processing times

� Sought:

� JS: Job sequence matrix

� TT: Timetable planning matrix with:

()

[]
, 1 ;1

Point of time where the processing of job at machine begins TU

m nt m M n N

n m

≤ ≤ ≤ ≤

Business Computing and Operations Research 351

4.1.1 Mathematical model

()

()







=

≤≤≤≤≤≤

≤≤≤≤

otherwise 0

 job before machineon processed is job if 1

i.e., jobs, of sequence

 thedefining iableBinary var:1;1;1

above see:1;1

,,

,,

,

kmn

y

NkNnMmy

MmNnt

knm

knm

nm

:Variables

Business Computing and Operations Research 352

Mathematical model

()

{ } { } [] [] []

[]

1

Machine sequence restrictions derived from the matrix :

1,..., 1 : 1,..., :

 defines in this connection the index of the machine

that executes the -th operation of

m ,n m ,n m ,n

MS

m M n N t p t

m

m

+
∀ ∈ − ∀ ∈ + ≤

Restrictions :

job n

3

Business Computing and Operations Research 353

Mathematical model

� In case of the job sequence restrictions, the formulation
depends on the structure of the found solution

� But, we have to ensure that there is no simultaneous
processing of two jobs on any machine, wherefore an
arbitrary sequence of those jobs has to be realized

()

()

()

()

, , ,

, , ,

Therefore, there are altogether two possible cases:

First case before :

1

Second case before :

2

Both possibilities have to be considered in the model!

m n m n m k

m k m k m n

n k

t p t

k n

t p t

+ ≤

+ ≤

⇒

Business Computing and Operations Research 354

Mathematical model

()

{ } { } ()

{ } { }

, ,

, ,

Job sequence restrictions depends on the chosen solution :

1,..., 1 : , 1,..., : 1

1,..., 1 : , 1,..., :

 defines a big number, which

m,n m,n m,k m n k

m,k m,k m,n m n k

m M n k N t p t y C

m M n k N t p t y C

C

∀ ∈ − ∀ ∈ + ≤ + − ⋅

∀ ∈ − ∀ ∈ + ≤ + ⋅

Restrictions :

,
1 1

is larger than each definition of

timetable variables , e.g.,
M N

m,n m n
m n

t C p
= =

=∑∑

Business Computing and Operations Research 355

Mathematical model

{ } { }() { }

{ } { } 0:,...,1:,...,1

1,0:,...,1,:,...,1

,

,,

≥∈∀∈∀

∈≠∈∀∈∀

nm

knm

tNnMm

yknNknMm

:nsRestrictio

4

Business Computing and Operations Research 356

4.1.2 Objective functions

� The model defined above can be regarded as a
general starting point for so-called job-shop
scheduling problems

� It abstains from the definition of a particular
objective function but can be extended by a
specific application-dependent one

� A huge set of different objective functions is
proposed in literature. These functions mainly
influence the efficiency of applied solution
procedures

� In the following, we will give some examples of
well-known objectives

Business Computing and Operations Research 357

Minimization of cycle time

� Here, we consider the duration of producing the
total production quantities

[] { }{ }

{ } []

1 max ,

,

Minimize max | 1,...,

with:

1,..., : : Point of time where the last

processing of job is finalized

M n

M n

Z t C n N

n N C

n

= = ∈

∀ ∈

Business Computing and Operations Research 358

Minimization of machine waiting times

� Sum of all machine waiting times throughout all
used resources

2 max ,

1 1

Unused capacity of machine

max ,

1 1

, 1 2

1 1

Minimize

Since and are constants, and are

equivalent

M N

m n

m n

m

M N

m n

m n

M N

m n

m n

Z C p

M C p

p M Z Z

= =

= =

= =

 
= − 

 

 
= ⋅ −  

 

 
 
 

∑ ∑

∑∑

∑∑

�������

5

Business Computing and Operations Research 359

Minimization of total completion (lead) time

� This objective intends to minimize the total sum of all
individual completion or lead times

� Therefore, we compute the sum of dwell times over all
jobs

[]

∑∑

∑

= =

=

=

=

N

n

M

m

nm

N

n

nM

wZ

CZ

1 1

,4

1

,3

 Minimize

jobs all of times waitingthe

 of sum theofon minimizati the toequivalent is objective This

 Minimize

Business Computing and Operations Research 360

Minimization of maximum lead time

� Here, we want to minimize the dwell time of the
job whose processing takes the longest time
among all N jobs

� This is the objective function Z1

Business Computing and Operations Research 361

Min. of the sum of due date deviations

� In this case completion time and due date of each job are
compared, while the difference is taken as the result and
summed up throughout all jobs to be processed

� As a consequence, an early completion gets a bonus
while each lateness is punished

[] []5 , ,
1 1 1

3
1

Minimize Z

with:

:Due date of job

Since is a constant, this objective is equivalent to

N N N

n nM n M n
n n n

n

N

n
n

C d C d

d n

d Z

= = =

=

= − = −∑ ∑ ∑

∑

6

Business Computing and Operations Research 362

Minimization of total lateness (or tardiness)

� Here, we want to minimize the total lateness over all N
jobs to be produced in the considered production system

� Consequently, there is no longer compensation between
early and late deliveries possible

[]{ }

nd

,dC

n

N

n

n,nM

 job of date Due:

:with

0max ZMinimize
1

6 ∑
=

−=

Business Computing and Operations Research 363

Minimization of maximum lateness

� By using this objective, we somehow want to
balance the lateness equally among the different
jobs in the found solution

� Thus, we try to minimize the maximum lateness
of a job in the found solution

[]{ } { }{ }7Minimize Z max max 0 | 1,...,

with:

: Due date of job

nM ,n

n

C d , n N

d n

= − ∈

Business Computing and Operations Research 364

Minimization of weighted sum of lead times

� Here, each job gets an individual weight rating
its dwelling time in the production system

� Altogether, by doing so we receive a combined
weighted sum of lead times

[]8 ,
1

Minimize

with:

: Weight for product

N

n M n
n

n

Z w C

w n

=

= ⋅∑

7

Business Computing and Operations Research 365

4.1.3 Schedule classes

� In the following, we introduce some basic terms for specific types of
schedules

� In scheduling, a distinction is frequently made between
� Sequence,
� Schedule and
� Scheduling policy

� Sequence
Corresponds to a specific permutation of jobs to be processed on a
given machine

� Schedule
Usually corresponds to an allocation of jobs within a more
complicated setting of machines, which could allow for preemptions
of jobs by other jobs that are released at later points in time.
Comprises time tables

� Scheduling policy
Often used in stochastic settings; a policy prescribes an appropriate
action for any of the states the system may be in. In deterministic
cases, usually only sequences or schedules are of importance but
can be extended by rule definitions

Business Computing and Operations Research 366

Non-delay schedules

4.1.3.1 Definition

A feasible schedule is called non-delay if no

machine is kept idle when there is an operation

available for processing

Business Computing and Operations Research 367

Active schedules

4.1.3.2 Definition

A feasible schedule is called active if no

operation can be completed earlier by starting

earlier or changing the process sequence on

machines without delaying any other operation

8

Business Computing and Operations Research 368

Attributes of active schedules

4.1.3.3 Lemma

A non-delay schedule is always active

Business Computing and Operations Research 369

Proof of the lemma

� Let us assume there is a non-delay schedule that is not
active

� Then, we know there is a machine where shifting an
operation i into an earlier position at point of time t results
in an earlier completion without delaying the other
operations

� But, if this is true, we know that during the processing of
the schedule on machine m there is a constellation at point
of time t where the considered machine is idle but can
process job i instead

� This is a contradiction to the assumption that the schedule
is non-delay

Business Computing and Operations Research 370

Attributes of active schedules

� Note that the reverse is not necessarily true

� i.e., there are some active schedules that are not non-
delay

� Example: Schedule is active but not non-delay

Machine 1

Machine 2

Machine 3

1

2

2 1

9

Business Computing and Operations Research 371

Semi-active schedules

4.1.3.4 Definition

A feasible schedule is called semi-active if no

operation can be completed earlier without

altering the processing sequence on any of the

machines

Business Computing and Operations Research 372

Consequences

4.1.3.5 Lemma

An active schedule is always semi-active

The proof is trivial and immediately results from
the definition

Business Computing and Operations Research 373

Attributes of semi-active schedules

� Note that the reverse is not necessarily true

� i.e., there are some semi-active schedules that are not
active

� Example: Schedule is semi-active but not active

Machine 1

Machine 2

Machine 3

1

2

2 1

10

Business Computing and Operations Research 374

Class of semi-active
schedules

Class of active
schedules

Schedule class hierarchy

Class of non-delay
schedules

Business Computing and Operations Research 375

4.2 Single-Stage Systems

� Now, we consider a single production stage only

� i.e., M=1, wherefore we have only one indexed
processing times p1,…,pN

� Now, the complexity of the models only depends
on the considered objective function

� There are some constellations that can be
optimally solved in O(N log N) time using a simple
priority rule as well as models that are already NP-
complete problems. And both happens despite the
fact that besides their objective function, both
problems are completely the same one-stage
problems

Business Computing and Operations Research 376

Minimization of cycle time

� Trivial problem

� Each solution leads to the same result

� Therefore, an arbitrary solution is already an
optimal one

11

Business Computing and Operations Research 377

Minimization of weighted sum of lead times

4.2.1 Theorem

The WSPT-rule leads to the optimal solution

Weighted Shortest Processing Time First Rule:

This rule processes all N jobs in the sequence of
non-increasing order of the value wj /pj

Business Computing and Operations Research 378

Proof of Theorem

� We will show the claim by contradiction

� Therefore, we assume that there is an optimal
sequence of the problem that does not fulfill all
the restrictions of the WSPT policy

� Consequently, there are two adjacent jobs, say

job j followed by job k, such that

wj /pj<wk /pk

Business Computing and Operations Research 379

Proof of Theorem

� Assume job j starts its processing at time t

� Let us perform an interchange of j and k

� Therefore, the modified schedule starts job k now
at t while all other jobs remain in their original
position

� Consequently, their weighted objective value is
not affected at all and, therefore, remains
unchanged

� Call the old schedule S and the new modified
one T

12

Business Computing and Operations Research 380

Proof of Theorem

� Under schedule S, the total weighted completion
of jobs j and k is rated by:

() () kkjjj wpptwpt ⋅+++⋅+

� Under schedule T, the total weighted completion
of jobs j and k is rated by:

() () jkjkk wpptwpt ⋅+++⋅+

Business Computing and Operations Research 381

Proof of Theorem IV

() () () ()()

0

//

>⋅−⋅⇒

⋅<⋅⇔<

⋅−⋅

=⋅−⋅−⋅−⋅−⋅−

⋅+⋅+⋅+⋅+⋅

=⋅+++⋅+−⋅+++⋅+

jkkj

jkkjkkjj

jkkj

jkjjjkkk

kkkjkjjj

jkjkkkkjjj

wpwp

pwpwpwpw

wpwp

wpwpwtwpwt

wpwpwtwpwt

wpptwptwpptwpt

:holds It

T solution of value function ObjectiveS solution of value function Objective

����� ������ ������� ������ ��

Business Computing and Operations Research 382

Proof of Theorem V

� Consequently, solution T is better and, therefore,
the proof is completed

13

Business Computing and Operations Research 383

Minimization of total lead time

4.2.2 Corollary

The SPT-rule leads to the optimal solution

Shortest Processing Time First Rule:

This rule processes all N jobs in the sequence of
non-decreasing processing times pj

Business Computing and Operations Research 384

Proof of the Corollary

� To prove the corollary, we may use again Theorem 4.2.1

� To do so, we easily derive that the objective function for
minimizing the total lead time Z3 is a special case of the
more general weighted sum of lead time Z8

� In this case all weights are set to 1

� By applying Theorem 4.2.1, we can derive that we receive
the optimal sequence by using the WSPT-policy, i.e., by
respecting this special setting, we sort all jobs in non-
increasing sequence of the wj/pj=1/pj values

� Consequently, the jobs are sorted in an non-decreasing
sequence of the pj-values as defined by the well-known
SPT-rule. This completes the proof of the corollary

Business Computing and Operations Research 385

Precedence constraints

� How is the result affected by precedence
constraints?

� In the following, we introduce additional
precedence constraints limiting the solution
space through the exclusion of some possible
solutions. These constraints are very simple and
can be described through parallel chains
defining which job has to be processed before
another one

� This is a situation that frequently occurs during
the processing of multi-stage systems

� First, we can process only entire chains. To
solve these problems optimally, we can use the
following extended Theorem 4.2.3

14

Business Computing and Operations Research 386

Parallel precedence chains

1 2 3 4

7 8 9

5 6

10 11 12 13 14 15

Chain 1

Chain 4

Chain 3

Chain 2

Business Computing and Operations Research 387

Entire chain problem

4.2.3 Theorem

The entire chain problem according to the
objective of total weighted lead time minimization
can be solved optimally by sorting the chains in
non-increasing order of the value:

1

1

 is the value for the chain comprising the jobs 1 2

k

j
j

k

j
j

w

, ,...,k

p

=

=

∑

∑

Business Computing and Operations Research 388

Proof of the Theorem

� Again, we show the claim by contradiction
� Therefore, we assume there is an optimal production plan

violating the rule definition
� Therefore, there are two neighbored chains (1,…,k) and

(k+1,…,l) where the defined priority rule is not fulfilled
� Again, we can derive that there is no impact on the

weighted lead time of the jobs not belonging to one of the
two chains

� Moreover, we derive schedule T from the current
schedule denoted S through the exchange of the two
neighboring chains, i.e., in T we process (k+1,…,l) before
(1,…,k) is processed

� In what follows, we compute the respective objective
values of the both chains for the two possible constellations
S and T

15

Business Computing and Operations Research 389

() ()
1

1 1 2 1 2 1
1 1

1 1 1 1

Objective function value under schedule :

...

...

k k

k j k j
j j

jl l l

l j j j i
j j j i

S

w t p w t p p w t p w t p

w t p t w w p

+

+

= =

= = = =

   
⋅ + + ⋅ + + + + ⋅ + + ⋅ + +   

   

     
+ ⋅ + = ⋅ + ⋅     

    

∑ ∑

∑ ∑ ∑ ∑

Schedule S – Objective function value

Business Computing and Operations Research 390

() ()1 1 2 1 2
1

1 1
1 1 1

1 1 1 1

Objective function value under schedule T:

...

...

l

k k k k k l j
j k

l l k

j k j j
j k j k j

jl l k

j j i j i
j j i i

w t p w t p p w t p

w t p p w t p p

t w w p w p

+ + + + +

= +

= + = + =

= = = =

 
⋅ + + ⋅ + + + + ⋅ + 

 

   
+ ⋅ + + + + ⋅ + +   

   

   
= ⋅ + ⋅ − ⋅   

  

∑

∑ ∑ ∑

∑ ∑ ∑
1 1 1

l k l

j i
j k j i k

w p
= + = = +

   
+ ⋅   

   
∑ ∑ ∑ ∑

Schedule T – Objective function value

Business Computing and Operations Research 391

1 1 1 1

1 1

1 1 1 1

1 1

1 1 1 1

We know:

Consequently: 0

k l l k

j i j i
j i k j k i

k l

j j k l l k
j j k

j j j jk l
j j k j k j

j j
j j k

k l l k

j i j i
j i k j k i

w p w p

w w

w p w p

p p

w p w p

= = + = + =

= = +

= = + = + =

= = +

= = + = + =

   
⋅ − ⋅   
   

< ⇔ ⋅ < ⋅

   
⋅ − ⋅ <   
   

∑ ∑ ∑ ∑

∑ ∑
∑ ∑ ∑ ∑

∑ ∑

∑ ∑ ∑ ∑

The gap between T and S

16

Business Computing and Operations Research 392

Consequence

� The objective value of schedule T is better than
the result under schedule S and, therefore, the
optimality of the rule defined above is shown

� This completes the proof

Business Computing and Operations Research 393

ρ-factor

4.2.4 Definition

Let us consider a chain of jobs (1,…,k). Then, the job k*
out of the chain is called the ρ-factor of the chain
(1,…,k) if

*

*

1 1

11

max |1

k l

i i
i i

lk

ii
ii

w w

l k

pp

= =

==

 
  

= ≤ ≤ 
 
  

∑ ∑

∑∑

Business Computing and Operations Research 394

Allowing preemption

� Assume now that the scheduler has the freedom to
process any number of jobs in a chain (while adhering to
the precedence constraints) without necessarily having to
complete all the jobs in the chain before switching to
another chain

� In what follows, we consider again the case of multiple
chains

� Moreover, total weighted lead time is assumed to be the
objective function

� Then, we may apply the result given in the following
Theorem 4.2.5 in order to derive an optimal production
plan

17

Business Computing and Operations Research 395

Subchain preemption

4.2.5 Lemma

If job l* is the ρ-factor of the chain (1,…,k), then

there exists an optimal sequence that processes

jobs 1,…,l* one after another without interruption

by jobs from other chains

Business Computing and Operations Research 396

Proof of the Theorem

� Again, we prove this claim by contradiction
� Suppose that under the optimal sequence, the

processing of the subsequence 1,…,l* is interrupted by a
job, say job v, from another chain that has to be
processed simultaneously

� Thus, the optimal sequence contains the subsequence
1,…,u,v,u+1,…,l*, say subsequence S

� It suffices to show that either with subsequence v,1,…,l*,
say S’ or with 1,…,l*,v, say S’’, the total weighted
completion time is less than with subsequence S

� We know that the lead time of all other jobs besides
1,…,l* and v is independent of the chosen subsequence
S, S’, and S’’

� In the following, we therefore assume S’>S as well as
S’’>S

Business Computing and Operations Research 397

Case 1: S’>S

� S=(1,…,u,v,u+1,…,l*); S’=(v,1,…,u,u+1,…,l*)

� Since S is better than S’, we can apply the proof of
Theorem 4.2.3 to derive that it holds:

u

u

v

v

pp

ww

p

w

++

++
<

...

...

1

1

� If this is not true, we do not worsen the solution by
applying the proof of Theorem 4.2.3 and process v
before the job sequence 1,…,u

� It is trivial that we can choose S’ instead of S if it holds
S’≤S

18

Business Computing and Operations Research 398

Case 2: S’’>S

� S=(1,…,u,v,u+1,…,l*); S’’=(1,…,u,u+1,…,l*,v)

� Since S is better than S’’, we can again apply the proof
of Theorem 4.2.3 to derive that it holds:

*

*

...

...

1

1

lu

lu

v

v

pp

ww

p

w

++

++
>

+

+

� If this is not true, we do not worsen the solution by
applying the proof of Theorem 4.2.3 and process v after
the job sequence u+1,…,l*

� It is trivial that we can again choose S’’ instead of S if it
holds S’’≤S

Business Computing and Operations Research 399

Consequences

� Therefore, we know:

*

*

...

...

...

...

1

1

1

1

lu

lu

v

v

u

u

v

v

pp

ww

p

w

pp

ww

p

w

++

++
>∧

++

++
<

+

+

� In addition, l* is the ρ-factor of (1,…,k). Therefore, it
holds:

u

u

lu

lu

u

u

l

l

pp

ww

pp

ww

pp

ww

pp

ww

++

++
>

++

++
⇒

++

++
>

++

++

+

+

...

...

...

...

...

...

...

...

1

1

1

1

1

1

1

1

*

*

*

*

Business Computing and Operations Research 400

Consequences

*

*

*

*

...

...
 :assumed But we

...

...

...

...

1

1

1

1

1

1

lu

lu

v

v

v

v

u

u

lu

lu

pp

ww

p

w

p

w

pp

ww

pp

ww

++

++
>

>
++

++
>

++

++
⇒

+

+

+

+

� Therefore, the assumptions of Case 1 and Case 2
together have derived a contradiction

� Therefore, both cases cannot apply simultaneously.

� This obviously completes the proof

19

Business Computing and Operations Research 401

Using the result

� The result derived above is intuitive. Its condition implies
that the ratios of the total weight divided by the total
processing time of the jobs in the string 1,…,l* must be
decreasing in some sense

� If one had decided to start processing a stream, it makes
sense to proceed until job l* is obtained

� By simultaneously using the result derived above, we can
use the following algorithm for solving our problem
optimally

Business Computing and Operations Research 402

Solution procedure

4.2.6 Algorithm

Whenever the machine is freed, select among the

remaining chains the one with the highest ρ-

factor and process this chain without interruption

up to the job that determines its ρ-factor. Note

that this includes this job itself.

Business Computing and Operations Research 403

Example

� Consider the following two chains

� 1 – 2 – 3 – 4

� 5 – 6 – 7

� The weights and processing times of the jobs are
given below

Jobs 1 2 3 4 5 6 7

Weight 6 18 12 8 8 17 18

Processing
time

3 6 6 5 4 8 10

20

Business Computing and Operations Research 404

Solving the example

� The ρ-factor of the first chain is (6+18)/(3+6)=24/9 and determined by
job 2

� The ρ-factor of the second chain is (8+17)/(4+8)=25/12 and determined
by job 6

� Therefore, we start processing the first chain (Schedule: 1 – 2)
� The ρ-factor of the remaining first chain is (12)/(6)=2 and determined by

job 3
� Therefore, we proceed with the second chain (Schedule: 1 – 2 – 5 – 6)
� The ρ-factor of the remaining second chain is (18)/(10)=1.8 and

determined by job 7
� Hence, we proceed with the first chain (Schedule: 1 – 2 – 5 – 6 – 3)
� The ρ-factor of the remaining first chain is (8)/(5) and determined by job

4
� Consequently, we proceed with the second chain (Schedule: 1 – 2 – 5

– 6 – 3 – 7)

Resulting schedule is 1 – 2 – 5 – 6 – 3 – 7 – 4

Business Computing and Operations Research 405

Maximum lateness

� In the following, we consider a general penalty function
individually defined for a delayed processing of each job

� This leads to a situation where each job j has an
individual penalty function hj(Cj) for a delayed processing
of Cj time units

� We assume that each penalty function is monotonous,
i.e., the resulting values for increasing completion times
are non-decreasing

� In addition, we consider again existing precedence
constraints between the different jobs

� Objective function is now:

Minimize max{h1(C1),…,hn(Cn)}

Business Computing and Operations Research 406

Due-date-related penalty functions

hj

Cj
dj

hj

Cj
dj

hj

Cj
dj

21

Business Computing and Operations Research 407

4.2.7 Algorithm

Step 1:

Set J=Ø; Jc={1,…,n}; J’ the set of all jobs with no
successors

Step 2:

Let j* be such that

Add j* to J;

Delete j* from Jc

In order to represent the new set of schedulable jobs,
modify J’ accordingly

Step 3:
If Jc=Ø, then stop; otherwise go to Step 2

Solution procedure

* min
c c

i j ij j J
i J i J

h p h p
′∈

∈ ∈

    
=     

    
∑ ∑

Business Computing and Operations Research 408

Consequences

4.2.8 Theorem

Algorithm 4.2.7 attains an optimal schedule for

the considered problem

Business Computing and Operations Research 409

Proof of the Theorem

� Suppose that there exists an iteration where job j** is
selected from J’ but does not have the minimum
completion cost

among the jobs belonging to J’ at this moment

� The minimum cost job j* must then be scheduled at a
later iteration, implying that the respective job j* appears
in the sequence before job j**. In addition, some jobs can
appear between the jobs j* and j**














∑
∈ cJj

jj
ph *

22

Business Computing and Operations Research 410

Proof of the Theorem

� In order to complete the proof, we move the sequence
position of job j* just behind job j**.

� What are the consequences for the objective value of the
solution?
� All jobs that are located between j* and j** in the old schedule S

are processed earlier, wherefore the objective function value is
not negatively affected

� What about job j*? This is the only job whose completion time is
increased through the applied modification

� But we know by assumption that this modified value leads to a
smaller penalty function value than the one caused by j** in
schedule S

� Finally, we can state that the value for j** in the new schedule is
not increased. Therefore, the maximum of all lateness values in
the new schedule is not larger than the objective value of S

� This completes the proof

Business Computing and Operations Research 411

Special case Z7

4.2.9 Corollary

For the special case hj=max{0,Cj-dj}, the

application of rule EDD (Earliest Due Date),

which schedules the different jobs in a non-

decreasing sequence of due dates, results in the

optimal solution.

Business Computing and Operations Research 412

Proof of the Corollary

� In order to prove the claim of the corollary, we
can apply Theorem 4.2.8 and Algorithm 4.2.7

� Hence, jobs are scheduled in the first iterations
and, therefore, at the end of the arising total
sequence with the lowest penalty value

� These values only depend on individual due
dates and, therefore, lead to a situation where
jobs with the highest due dates are preferred (at
the end of the schedule!)

� By preferring the highest due dates for an
inverted sequence, we apply the EDD-rule for the
original one

23

Business Computing and Operations Research 413

Total lateness

� This problem is proven to be NP-hard in the
ordinary sense, i.e., it exists a pseudo-polynomial
time algorithm based on dynamic programming

� However, this problem can be simplified by
scheduling jobs which are non-time-critical at the
end, i.e., the total processing time of all jobs is
lower or equal to their due date

Business Computing and Operations Research 414

4.3 Sequencing problem with heads and tails

� In what follows, we take a step towards multiple
stage problems

� Therefore, we consider a single stage where a
scheduling sequence has to be determined.
However, each job has preceding and
subsequent processes at other stages, which are
defined as head and tails

� Consequently, beside pi, the processing time of
the i-th job at the considered stage, there is a
head ai and a tail qi

� As the pursued objective we consider the
minimization of the makespan (lead time)

Business Computing and Operations Research 415

Deriving a simple lower bound

4.3.1 Lemma

For all subsets Il of the set of jobs to be processed

I, there exists the following lower bound on the

optimal cycle time

() { } { }
min, min,

min | min |
l

I Il l

l i l i i l
i I

a q

lb I a i I p q i I
∈

= ∈ + + ∈∑
������� �������

24

Business Computing and Operations Research 416

Proof of the Lemma

� Consider an arbitrary set of jobs I

� At least amin,I time units have to elapse before the
processing can start

� This processing takes altogether additional ptotal,I
time units

� Finally, there is always one job processed at the
last position at the considered stage whose tail
increases the total makespan of the processing.
And this tail is larger than or equal to qmin,I

� Thus, we have shown that the defined sum is a
lower bound for the cycle time

� This obviously completes the proof

Business Computing and Operations Research 417

Complexity of the problem

4.3.2 Lemma

The general scheduling problem with heads and

tails is NP-hard

In what follows, we propose the well-known
Branch&Bound approach of Carlier (1982) in
order to solve the problem optimally

Business Computing and Operations Research 418

Starting point: The Schrage algorithm

In this greedy approach, we always schedule
the ready job with the greatest tail

() { }

()

() { }
()

() { } { }

{ }

 Set min ; ; 1,..., ;

 At time t, schedule amongst the ready jobs

 of , job with =max |

or any one in the case of ties

 Set: ; \ ; ;

max ,min ;

If

i I i

i j i i

j

j j ii U

i t a U U n

ii i

a t U j q q i U a t

iii U U j U U j t t

t t p a

∈

∈

= = ∅ =

≤ ∈ ∧ ≤

= ∪ = =

= +

{ }

()

 is equal to 1,..., , the algorithm is finished;

otherwise proceed with step

U I n

ii

=

25

Business Computing and Operations Research 419

Critical path

� The critical path of a solution of the problem
always comprises, in the given sequence, the
following parts:

� a head of some job,

� a sequence of jobs that are iteratively processed –
without interruption – at the considered stage, and

� finally, a tail of some job that is processed at the last
position of the critical path

� In what follows, we derive the basic branching rule
of the B&B procedure of Schrage by analyzing the
critical path of the solution generated by the
Schrage procedure

Business Computing and Operations Research 420

Main result

4.3.3 Theorem

Let L be the makespan of the Schrage schedule

(a). If this schedule is not optimal, there is a critical job c
and a critical set J such that:

In an optimal schedule, either c is processed before all the

jobs of J, or c will be processed after all the jobs of J

(b). If this schedule is optimal, there exists J such that

LB(J)=L

() min min
i i i c

i J i J
i J

lb J a p q L p
∈ ∈

∈

= + + > −∑

Business Computing and Operations Research 421

Proof of the Theorem

� Let G be the disjunctive graph defining the
considered problem with source 0 and sink s

� In addition, z is a critical path passing through a
maximal number of jobs

� We modify the numbering of the jobs according to

the definition of this path

� Therefore, the jobs processed on this path are
numbered from 1 to p, i.e., the critical path is
(0,1,2,3,…,p,s)

26

Business Computing and Operations Research 422

Proof of the Theorem

� At first, we prove that there is no processing between the
times a1-1 and a1

� If there is a job processed in this interval, it would be finished at
a1 since the processing of the first job starts just at this point of
time

� If so and there is a job j processed there and we ask whether
aj=tj. If so, we can extend the critical path. Obviously, this is not
possible due to the assumption of a maximal path z

� However, if aj<tj we know due to the processing of the Schrage
procedure that there is an additional job processed just before j

� Clearly, because of that cognitions, we know that there is
always a final job k with ak=tk. Note that this is at least the job
firstly processed in the total schedule

� Hence, we have shown that there is no processing in the
interval between a1-1 and a1 due to the maximum choice
of z

Business Computing and Operations Research 423

Proof of the Theorem

� Secondly, we show a1=min{ ai | 1≤i≤p }

� The machine was idle just before job 1 was
processed

� Therefore, the Schrage procedure schedules no
job in this interval and job 1 was scheduled
subsequently

� I.e., all heads are larger than or equal to the head
of job 1

� Thus, we obviously obtain a1=min{ ai | 1≤i≤p }

Business Computing and Operations Research 424

Proof of the Theorem

� Thirdly, if qp is the minimal tail of all jobs 1,…,p,
the length of the critical path becomes

{ }{ } { }{ }

1
1

1

min | 1,..., min | 1,...,

p

i p
i

p

k i k
i

L a p q

a k p p q k p

=

=

= + +

= ∈ + + ∈

∑

∑

� Hence, the lower bound and the solution value
are equal, which immediately proves the
optimality of the generated solution

27

Business Computing and Operations Research 425

Proof of the Theorem

� But, if otherwise qp is not the smallest tail of the
jobs in {1,…,p}, there is always a job c with
largest index whose tail is smaller than qp

� Let J={c+1,…,p} be the set of subsequently

scheduled jobs on the critical path

� We know qc<qr for all r in J and additionally ar>tc
Why?

� If ar≤tc, then, owing to its larger tail, job r would be
scheduled before job c

� Hence, we derive ar>tc

Business Computing and Operations Research 426

Proof of the Theorem

{ }

{ }

{ } { }
()

−

−

+

∈

> = + + +

⇒ ∈ > + + +

= ∈

∈ + + + + ∈
������������������� �

1 1 1

1 1 1

1

lower bound of the makespan

Consequently, always implies

...

min | ... , and

min | additionally implies

min | ... min |

r c c

k c

p k

k c p k

lb J

r J

a t a p p

a k J a p p

q q k J

a k J p p q k J

− +
> + + + + + + + + −

= −

�

�������������������
1 1 1 1... ...c c c p p c

L

c

a p p p p p q p

L p

Business Computing and Operations Research 427

Proof of the Theorem

� Therefore, we have shown that the distance to the lower
bound is smaller than pc

� Thus, what can we learn from this constellation about the
searching process?

� Is it necessary to consider constellations where job c is
processed among set J?
� Answer is NO!

� Why? If we process c somewhere among the jobs of set J,
the solution considered before cannot be improved since job
c+1 cannot be processed until the point of time tc+1 (due to
ac+1!). Therefore, the solution is deteriorated by at least one
time unit since the position for p is optimal according to J

� Consequently, we have to decide about the scheduling
position of c either before or after the set J

28

Business Computing and Operations Research 428

Branching scheme

� This leads directly to the following branching scheme of the
algorithm

� Always proceed with the node resulting in the lowest bound
found so far. The Lower Bound of a node S f(S) is always
derived from the maximum of f(F) (F=Father node of S),
LB(J), and LB({c} U J)

� A new node is added to the tree only if its lower bound is less
than the upper bound f0 found so far

� Apply the Schrage procedure in each node
� If the solution is optimal, the procedure can be finished

and the optimal result is generated
� Otherwise, compute c and J

� Generate the two additional subsequent nodes “c
before J” (=Node 1) and “c after J” (=Node 2)

� This can be easily conducted through an aimed
modification of the considered instance

Business Computing and Operations Research 429

Node 1

After determining node and the subsequent set ,

we modify the tail of in the following way:

max ,

By doing so, the execution of the Schrage procedure

always results in a constella

c c r p
r J

c J

c

q q p q
∈

 
= + 

 
∑

tion where is processed

before all jobs placed in set .

Additionally, the algorithm "knows" the extended tail of

c to process this job potentially earlier

c

J

Business Computing and Operations Research 430

Node 2

{ }

After determining node and the subsequent set ,

we modify the head of in the following way:

max ,min |

By doing so, the execution of the Schrage procedure

always results in a co

c c r r
r J

c J

c

a a a r J p
∈

 
= ∈ + 

 
∑

nstellation where is processed

after all jobs placed in set .

Additionally, the algorithm "knows" the extended head of

c to process other jobs potentially earlier

c

J

29

Business Computing and Operations Research 431

Bound computation and Schrage procedure

� Carlier proposes a specific technique to be able to
execute the Schrage procedure in O(n.log n) time

� Upper bound computation: Every time the
Schrage procedure is applied, the generated
makespan is compared with the current upper
bound f0. Moreover, an alternative constellation
conserving the order of all jobs except for job c,
which is processed after J, is additionally
compared with this upper bound

� An additional lower bound is derived from the
application of the Schrage procedure with allowed
preemptions

Business Computing and Operations Research 432

Preemption

� The preemption version of the Schrage algorithm
makes use of the greedy rule of the original
Schrage procedure, but can additionally preempt
each processed job whenever another one
arrives with a larger tail

� It is trivial to show that the generated solution is
always optimal and is therefore a Lower Bound of
the original problem

� In addition, for example, by using heap data
structures, this procedure can be executed again
in O(n.log n) steps

Business Computing and Operations Research 433

Computational results

� This procedure was coded in FORTRAN on an IRIS 80
and initially tested on 1000 problems

� For each problem with n jobs, 3.n integers with uniform
distributions between 1 and amax, 1 and pmax as well as 1
and qmax were respectively drawn

� 20 different values for n were tested; n=50, 100, 150,
200,…, 1.000

� Further details can be found in Carlier (1982)
� 999 problems were solved optimally
� One problem with n=850 was not solved (but the distance

to bound was 2!). The lower bound was 29.800
(UB=29.802)

� In most cases the solution process takes only a small
amount of time (extreme small-sized solution trees)

30

Business Computing and Operations Research 434

Branch&Bound of Carlier – Example

� We consider the following example

Jobs i Job

1

Job

2

Job

3

Job

4

Job

5

Job

6

Job

7

Release dates ai 10 13 11 20 30 0 30

Processing times pi 5 6 7 4 3 6 2

Tails qi 7 26 24 21 8 17 0

Business Computing and Operations Research 435

Applying Schrage

Nr. Job Tail Start End Completed Av

1 6 17 0 6 23 None

2 1 7 10 15 22 2,3

3 2 26 15 21 47 3,4

4 3 24 21 28 52 4

5 4 21 28 32 53 5,7

6 5 8 32 35 43 7

7 7 0 35 37 37 None

Critical Path: 0-1-2-3-4-s

Business Computing and Operations Research 436

Analyzing the constellation

� c=1 and J={2,3,4}

� LB(J)=min{13,11,20}+6+7+4+min{26,24,21}=11+
17+21=49

� LB({1,2,3,4})=10+22+7=39

� UB=53

� Now, we have to branch

� c before J

� c after J

31

Business Computing and Operations Research 437

Enumeration tree

UB=53
LB=49

Business Computing and Operations Research 438

c before J

� New problem constellation

� New lower bound:

� LB({1,2,3,4})=10+22+21=53

� Hence, this node can be fathomed

Jobs i Job 1 Job

2

Job

3

Job

4

Job

5

Job

6

Job

7

Release dates ai 10 13 11 20 30 0 30

Processing times pi 5 6 7 4 3 6 2

Tails qi 17+21=38 26 24 21 8 17 0

Business Computing and Operations Research 439

Enumeration tree

UB=53
LB=49

c before J

LB=53=UB
is fathomed

32

Business Computing and Operations Research 440

c after J

� New problem constellation

� New lower bound:

� LB({1,2,3,4})=11+22+7=40

� Hence, this node has to be explored

Jobs i Job 1 Job

2

Job

3

Job

4

Job

5

Job

6

Job

7

Release dates ai 11+17

=28

13 11 20 30 0 30

Processing times pi 5 6 7 4 3 6 2

Tails qi 7 26 24 21 8 17 0

Business Computing and Operations Research 441

c after J – Applying Schrage

Nr. Job Tail Start End Completed Av

1 6 17 0 6 23 None

2 3 24 11 18 42 2

3 2 26 18 24 50 4

4 4 21 24 28 49 1

5 1 7 28 33 40 5,7

6 5 8 33 36 44 7

7 7 0 36 38 38 None

Critical Path: 0-3-2-s

Business Computing and Operations Research 442

Analyzing the constellation

� c=3 and J={2}

� LB(J)=min{13}+6+min{26}=45

� LB({2,3})=11+6+7+24=48

� Therefore, we inherit the Lower Bound of the
father node. This is LB=49

� UB=50

� Now, we have to branch again

� c before J

� c after J

33

Business Computing and Operations Research 443

Enumeration tree

UB=53
LB=49

c before J

LB=53
is fathomed

UB=50
LB=49

Business Computing and Operations Research 444

c before J

� New problem constellation

� New lower bound:

� LB({2,3})=11+13+26=50=UB

� Hence, this node is fathomed

Jobs i Job

1

Job

2

Job

3

Job

4

Job

5

Job

6

Job

7

Release dates ai 28 13 11 20 30 0 30

Processing times pi 5 6 7 4 3 6 2

Tails qi 7 26 32 21 8 17 0

Business Computing and Operations Research 445

Enumeration tree

UB=53
LB=49

c before J

LB=53
is fathomed

UB=50
LB=49

LB=50=UB
is fathomed

34

Business Computing and Operations Research 446

c after J

� New problem constellation

� New lower bound:

� LB({2,3})=13+13+24=50=UB

� Hence, this node is fathomed

Jobs i Job

1

Job

2

Job

3

Job

4

Job

5

Job

6

Job

7

Release dates ai 28 13 19 20 30 0 30

Processing times pi 5 6 7 4 3 6 2

Tails qi 7 26 24 21 8 17 0

Business Computing and Operations Research 447

Enumeration tree

UB=53
LB=49

c before J

LB=53
is fathomed

UB=50

LB=49

LB=50=UB
is fathomed

LB=50=UB
is fathomed

Optimal solution

Business Computing and Operations Research 448

Optimal solution

� Therefore, we obtained an optimal solution

� This optimal solution is given by

� 6-3-2-4-1-5-7

� Makespan is: 50

35

Business Computing and Operations Research 449

4.4 Multiple stages

� If M>1, each objective function itemized in Section 4.2
leads to an NP-complete problem for the general job-shop
system case

� Therefore, a huge set of different heuristics can be found in
literature

� Owing to its simple representation in disjunctive graphs,
the minimization of the cycle time or the makespan is
frequently pursued

� In comparison to other NP-complete problems, the job-
shop problem belongs to the most complex ones. This
results from the fact that most efficient exact procedures
are not able to solve even small-sized problems in a
reasonable time (e.g., 10 jobs on 10 machines)

Business Computing and Operations Research 450

4.4.1 Use of priority rules

� A more intuitive approach can be the application of
dynamic rules deciding about the sequence on every
machine

� Therefore, in case of an idle machine, this rule decides
about the next job to be scheduled by selecting one of
the waiting jobs

� Note that this approach is very flexible since it can also
be applied to dynamic problems while its complexity only
depends on the defined computation of the integrated
priority rule

� Frequently, the SPT and its variants integrated into
specific hierarchies are applied

Business Computing and Operations Research 451

4.4.2 Elaborated heuristics

Well-known approaches are for example

� The Shifting Bottleneck Procedure (SBP) of
Adams, Balas and Zawack

� The Tabu Search procedure of Nowicki and
Smutnicki

36

Business Computing and Operations Research 452

4.4.2.1 The Shifting Bottleneck Procedure

� This procedure can be applied to arbitrary M-
staged job-shop systems to minimize the cycle
time

� It makes use of the Branch&Bound algorithm of
Carlier as a subroutine

� The problem description is defined as a disjunctive
graph

� The bottleneck machine of the total schedule is
considered to be planned more accurately in each
step

Business Computing and Operations Research 453

Basic attributes

� The machines are sequenced one at a time,
consecutively

� In order to do so, a one-machine scheduling
problem with head and tails is optimally solved
for each not yet sequenced machine

� This result is taken as rank of the machine to
decide about its necessity to sequence it
permanently. After sequencing the current
machine, all machines sequenced before are
resequenced optimally due to the modified
heads and tails

� The one-machine problems with head and tails
are constructed out of the modified disjunctive
graph

Business Computing and Operations Research 454

Deriving one-machine problems

() ()()

0

0 0 0

Let be the set of machines that have

already been sequenced by choosing selections

. For any \ , let ,

be the problem obtained from the original problem

definition replacing each dis

p

M M

S p M k M M P k M

⊂

∈ ∈

()

()

()

0

0

0

junctive arc set

by the corresponding selection and deleting

each disjunctive arc set \ ,

p

p

p

E p M

S p M

E p M M p k

∈

∈

∈ ≠

37

Business Computing and Operations Research 455

The procedure

1. M0=Ø (set of already sequenced machines)

2. Identify a bottleneck machine m among the
machines k in M\M0 and sequence it optimally
by applying the Carlier algorithm. Set
M0=M0U{m}

3. Reoptimize the sequence of each critical
machine k in M0 in turn while keeping the other
sequences fixed, i.e., set M0=M0\{k} and solve
P(k,M0). Then, if M0=M, stop; otherwise go to
step 2

Business Computing and Operations Research 456

Reoptimization processes

� The reoptimization process is repeated at most
three times for sets |M0|<|M| in every iteration

� Every time a full cycle is completed, the elements
of M0 are reordered according to the non-
increasing values of the solutions of the
respective one-machine problems with heads and
tails

� In the last step, when |M0|=|M|, we continue the
local reoptimization process to the point where no
more improvement for a full cycle occurs

Business Computing and Operations Research 457

Two versions

� Two different versions of the SBP are proposed
by Balas et al.

� The first version operates as described above

� The second one applies the SBP to the nodes of a
searching tree generating several solutions
simultaneously, i.e., in each branching step,
alternative constellations are generated to
increase algorithm diversification

38

Business Computing and Operations Research 458

The second SBP-version

� The process starts again with the node defined by M0=Ø
� In each branching step, in a node on level l=|M0|, the f(l)

machines with the largest respective machine objective
value out of M\M0 are processed as alternative child
nodes. Note that f is a monotonous decreasing function
reducing the branching degree in the levels that are
generated later.

� A second instrument for limiting the size of the branching
tree is a penalty function – defined for every node – that
penalizes the choices made at different levels in
generating the node in question, in proportion to their
deviation from the bottleneck, and with a weighting that is
heavier for the higher than for the lower levels of the tree.
Whenever the value of the penalty function for a node
exceeds a predetermined limit, the node is discarded

Business Computing and Operations Research 459

Combined breadth-first / depth-first

� For the first l*=M1/2 levels, the breadth first search is used
to produce all successors according to the function f, i.e.,
a full tree over l* is generated

� In the second part of the procedure, the nodes are
clustered into groups of size f(l*), containing the
successors of level l*. Subsequently, the depth-first
searching phase starts. In this phase, the highest ranking
member of one of the groups is chosen and explored
straight to the bottom of the search tree, or as far as the
penalty function permits

� The current best solution is always stored as an upper
bound. Hence, branches, which reach the upper bound,
are fathomed. After ending this exploration, the highest
rank member of another group of nodes is chosen

Business Computing and Operations Research 460

Example

















=
















=

132

423

333

;

313

132

221

PTMS

39

Business Computing and Operations Research 461

Disjunctive graph

0 s2

1

3

1

1

1

2

2

2

3

3

3

0

0

0

3 3

3

3

2

3

1

2

4

Operation 1 Operation 2 Operation 3

Job

Business Computing and Operations Research 462

One-machine problems

105Tail

333Processing time

450Head

Job 3Job 2Job 1

Machine 1

Business Computing and Operations Research 463

One-machine problems

462Tail

423Processing time

003Head

Job 3Job 2Job 1

Machine 2

40

Business Computing and Operations Research 464

One-machine problems

030Tail

132Processing time

726Head

Job 3Job 2Job 1

Machine 3

Business Computing and Operations Research 465

Scheduling Machine 1

� Schrage procedure

� Process job 1 first. Start:0; End:3; Tail:8

� Process job 3 next. Start:4; End:7; Tail:8

� Process job 2 at last. Start:7; End:10; Tail:10

� Objective function value:10

�Optimal solution since the lower bound is
min{5,4}+3+3+min{0,1}=4+6=10

Business Computing and Operations Research 466

Scheduling Machine 2

� Schrage procedure

� Process job 2 first. Start:0; End:2; Tail:8

� Process job 3 next. Start:2; End:6; Tail:10

� Process job 1 at last. Start:6; End:9; Tail:11

� Objective function value:11

� Optimal solution since the lower bound is
min{3,0,0}+3+2+4+min{2,6,4}=0+9+2=11

41

Business Computing and Operations Research 467

Scheduling Machine 3

� Schrage procedure

� Process job 2 first. Start:2; End:5; Tail:8

� Process job 1 next. Start:6; End:8; Tail:8

� Process job 3 at last. Start:8; End:9; Tail:9

� Objective function value:9

� Optimal solution since the lower bound is
min{6,7}+2+1+min{0,0}=6+3=9

Business Computing and Operations Research 468

Bottleneck machine

� Machine 1: Completion time is 10

� Machine 2: Completion time is 11

� Machine 3: Completion time is 9

Consequently, the bottleneck machine

… is Machine 2 with Z=11

� Therefore, we fix the sequence: 2 – 3 – 1 on this machine

Business Computing and Operations Research 469

Disjunctive graph

0 s2

1

3

1

1

1

2

2

2

3

3

3

0

0

0

3 3

3

3

2

3

1

2

4

2 4

Operation 1 Operation 2 Operation 3

Job

42

Business Computing and Operations Research 470

One-machine problems

105Tail

333Processing time

650Head

Job 3Job 2Job 1

Machine 1

Business Computing and Operations Research 471

One-machine problems

030Tail

132Processing time

929Head

Job 3Job 2Job 1

Machine 3

Business Computing and Operations Research 472

Scheduling Machine 1

� The Schrage procedure provides the following
schedule:

� Process job 1 first. Start:0; End:3; Tail:8

� Process job 2 next. Start:5; End:8; Tail:8

� Process job 3 at last. Start:8; End:11; Tail:12

� Objective function value:12

�Cannot be proven to be optimal since the lower
bound is min{5,6}+3+3+min{0,1}=5+6=11

� J={3}, c=2;

43

Business Computing and Operations Research 473

Modified Branching problem 1
(c before J)

Machine 1
(bold means modified value)

Job 1 Job 2

=c

Job 3

=J

Head 0 5 6

Processing time 3 3 3

Tail 5 4=3+1 1

Business Computing and Operations Research 474

Rescheduling Machine 1
c before J

� Schrage procedure

� Process job 1 first. Start:0; End:3; Tail:8

� Process job 2 next. Start:5; End:8; Tail:12

� Process job 3 at last. Start:8; End:11; Tail:11

� Objective function value:12

� Is the optimal solution in the considered sub-tree
since the lower
bound=min{5,6}+3+3+min{4,1}=5+6+1=12

�But already dominated by the solution considered
before

Business Computing and Operations Research 475

Modified Branching problem 1
c after J

Machine 1
(bold means modified value)

Job 1 Job 2

=c

Job 3

=J

Head 0 9=6+3 6

Processing time 3 3 3

Tail 5 0 1

44

Business Computing and Operations Research 476

Rescheduling Machine 1
c after J

� Schrage procedure

� Process job 1 first. Start:0; End:3; Tail:8

� Process job 3 next. Start:6; End:9; Tail:10

� Process job 2 at last. Start:9; End:12; Tail:12

� Objective function value:12

� Is the optimal solution in the considered sub-tree
since the lower bound amounts to
min{9,6}+3+3+min{0,1}=6+6+0=12

Business Computing and Operations Research 477

Scheduling Machine 3

� Schrage procedure

� Process job 2 first. Start:2; End:5; Tail:8

� Process job 1 next. Start:9; End:11; Tail:11

� Process job 3 at last. Start:11; End:12; Tail:12

� Objective function value:12

� Optimal solution since the lower bound is
min{9,9}+2+1+min{0,0}=9+3=12

Business Computing and Operations Research 478

Bottleneck machine

� Machine 1: Completion time is 12

� Machine 3: Completion time is 12

Consequently, the bottleneck machine

… is machine 1 with Z=12

� Therefore, we fix the sequence: 1 – 2 – 3 on this
machine

45

Business Computing and Operations Research 479

Disjunctive graph

0 s2

1

3

1

1

1

2

2

2

3

3

3

0

0

0

3 3

3

3

2

3

1

2

4

2 4

Operation 1 Operation 2 Operation 3

Job

3

3

Business Computing and Operations Research 480

Rescheduling Machine 2

� Now, we have to reoptimize the sequence on
Machine 2 according to the potentially modified
head and tails

� Therefore, we erase the fixed disjunctive arcs in

the graph to derive the modified scheduling
problem with head and tails

Business Computing and Operations Research 481

Disjunctive graph

0 s2

1

3

1

1

1

2

2

2

3

3

3

0

0

0

3 3

3

3

2

3

1

2

4

Operation 1 Operation 2 Operation 3

Job

3

3

46

Business Computing and Operations Research 482

Modified one-machine problem

Machine 2
(bold means modified value)

Job 1 Job 2 Job 3

Head 3 0 0

Processing time 3 2 4

Tail 2 10 4

Business Computing and Operations Research 483

Rescheduling Machine 2

� Schrage procedure

� Process job 2 first. Start:0; End:2; Tail:12

� Process job 3 next. Start:2; End:6; Tail:10

� Process job 1 at last. Start:6; End:9; Tail:11

� Objective function value:12

� Optimal solution since the lower bound for set
s={2} is min{0}+2+min{10}=0+2+10=12

� The sequence on Machine 2 is kept unchanged!

Business Computing and Operations Research 484

Disjunctive graph

0 s2

1

3

1

1

1

2

2

2

3

3

3

0

0

0

3 3

3

3

2

3

1

2

4

2 4

Operation 1 Operation 2 Operation 3

Job

3

3

47

Business Computing and Operations Research 485

One-machine problems

Machine 3
(bold means modified value)

Job 1 Job 2 Job 3

Head 9 2 11

Processing time 2 3 1

Tail 0 7 0

Business Computing and Operations Research 486

Scheduling Machine 3

� Schrage procedure

� Process job 2 first. Start:2; End:5; Tail:12

� Process job 1 next. Start:9; End:11; Tail:11

� Process job 3 at last. Start:11; End:12; Tail:12

� Objective function value:12

� Optimal solution since the lower bound is
min{9,11}+2+1+min{0,0}=9+3=12

� Fixing sequence on Machine 3 to 2 – 1 – 3

Business Computing and Operations Research 487

Disjunctive graph

0 s2

1

3

1

1

1

2

2

2

3

3

3

0

0

0

3 3

3

3

2

3

1

2

4

2 4

Operation 1 Operation 2 Operation 3

Job

3

3

3

2

48

Business Computing and Operations Research 488

Resequencing

� Subsequently, we have to resequence the
already scheduled Machines 1 and 2

� The current objective values of these machines
are:

� Machine 1: 12

� Machine 2: 12

� We take Machine 2 as the first machine to be
rescheduled

Business Computing and Operations Research 489

Rescheduling Machine 2

� Now, we have to reoptimize the sequence on
Machine 2 according to the potentially modified
head and tails

� Therefore, we erase the fixed disjunctive arcs in

the graph to derive the modified scheduling
problem with head and tails

Business Computing and Operations Research 490

Disjunctive graph

0 s2

1

3

1

1

1

2

2

2

3

3

3

0

0

0

3 3

3

3

2

3

1

2

4

Operation 1 Operation 2 Operation 3

Job

3

3

3

2

49

Business Computing and Operations Research 491

Modified one-machine problem

Machine 2
(bold means modified value)

Job 1 Job 2 Job 3

Head 3 0 0

Processing time 3 2 4

Tail 3 10 4

Business Computing and Operations Research 492

Rescheduling Machine 2

� Schrage procedure

� Process job 2 first. Start:0; End:2; Tail:12

� Process job 3 next. Start:2; End:6; Tail:10

� Process job 1 at last. Start:6; End:9; Tail:12

� Objective function value:12

� Optimal solution since the lower bound for set
s={2} is min{0}+2+min{10}=0+2+10=12

� The sequence on Machine 2 is kept unchanged!

Business Computing and Operations Research 493

Disjunctive graph

0 s2

1

3

1

1

1

2

2

2

3

3

3

0

0

0

3 3

3

3

2

3

1

2

4

2 4

Operation 1 Operation 2 Operation 3

Job

3

3

3

2

50

Business Computing and Operations Research 494

Rescheduling Machine 1

� Now, we have to reoptimize the sequence on
Machine 1 according to the potentially modified
heads and tails

� Therefore, we erase the fixed disjunctive arcs in

the graph to derive the scheduling problem with
modified heads and tails

Business Computing and Operations Research 495

Disjunctive graph

0 s2

1

3

1

1

1

2

2

2

3

3

3

0

0

0

3 3

3

3

2

3

1

2

4

2 4

Operation 1 Operation 2 Operation 3

Job

3

2

Business Computing and Operations Research 496

One-machine problems

Machine 1
(bold means modified value)

Job 1 Job 2 Job 3

Head 0 5 6

Processing time 3 3 3

Tail 6 0 1

51

Business Computing and Operations Research 497

Rescheduling Machine 1

� Schrage procedure

� Process job 1 first. Start:0; End:3; Tail:9

� Process job 2 next. Start:5; End:8; Tail:8

� Process job 3 at last. Start:8; End:11; Tail:12

� Objective function value:12

�Cannot be proven to be optimal since the lower
bound is min{5,6}+3+3+min{0,1}=5+6=11

� J={3}, c=2;

Business Computing and Operations Research 498

Modified Branching Problem 1
c before J

Machine 1
(bold means modified value)

Job 1 Job 2

=c

Job 3

=J

Head 0 5 6

Processing time 3 3 3

Tail 6 4=3+1 1

Business Computing and Operations Research 499

Rescheduling Machine 1
c before J

� Schrage procedure

� Process job 1 first. Start:0; End:3; Tail:9

� Process job 2 next. Start:5; End:8; Tail:12

� Process job 3 at last. Start:8; End:11; Tail:11

� Objective function value:12

� Is the optimal solution in the considered sub-tree
since the lower
bound=min{5,6}+3+3+min{4,1}=5+6+1=12

�But already dominated by the solution considered
before

52

Business Computing and Operations Research 500

Modified Branching Problem 1
c after J

Machine 1
(bold means modified value)

Job 1 Job 2

=c

Job 3

=J

Head 0 9=6+3 6

Processing time 3 3 3

Tail 6 0 1

Business Computing and Operations Research 501

Rescheduling Machine 1
c after J

� Schrage procedure

� Process job 1 first. Start:0; End:3; Tail:9

� Process job 3 next. Start:6; End:9; Tail:10

� Process job 2 at last. Start:9; End:12; Tail:12

� Objective function value:12

� Is the optimal solution in the considered sub-tree
since the lower
bound=min{9,6}+3+3+min{0,1}=6+6+0=12

Business Computing and Operations Research 502

Rescheduling Machine 1

� The sequence of Machine 1 is kept unchanged!

� 1 – 2 – 3 is the chosen sequence!

53

Business Computing and Operations Research 503

Disjunctive graph of the final solution

0 s2

1

3

1

1

1

2

2

2

3

3

3

0

0

0

3 3

3

3

2

3

1

2

4

2 4

Operation 1 Operation 2 Operation 3

Job

3

3

3

2

Business Computing and Operations Research 504

Objective function value

� The resulting makespan is determined by the
length of the longest path from 0 to s

� This path has the total length of 12, which defines
the resulting cycle time

� This is illustrated by the final graph

Business Computing and Operations Research 505

Longest path

0 s2

1

3

1

1

1

2

2

2

3

3

3

0

0

0

3 3

3

3

2

3

1

2

4

2 4

Operation 1 Operation 2 Operation 3

Job

3

3

3

2

Length=0+2+3+3+3+1=12

54

Business Computing and Operations Research 506

Priority rule application

In order to rate the solution quality of the SBP versions,
different priority rules are applied in a specific constellation.
The applied rules are

� FCFS (=First Come First Serve)

� LST (=Late Start Time)

� EFT (=Early Finish Time)

� LFT (=Late Finish Time)

� MINSLK (=Minimum Slack)

� SPT (=Shortest Processing Time)

� LPT (=Longest Processing Time)

� MIS (=Most Immediate Successors)

� FA (=First Available)

� RANDOM

Business Computing and Operations Research 507

Computational results

� Procedures were implemented in FORTRAN on a
VAX 780/11 on 40 problems taken from well-
known benchmarks

� In what follows, we depict the results presented

by Balas et al.

� They tested the SBP in its both variants against
some simple priority rules

� The consumed CPU time is illustrated in the
tables beside the solution quality

Business Computing and Operations Research 508

Priority rule application

� First, the priority rule algorithms are applied in a
straightforward fashion

� Second, the priority rules are applied in a random
fashion by applying all rules

� The randomized rule is to select one of the available
operations to be processed next randomly

� This is done by applying a probability distribution which
makes the odds of being selected proportional to the
priority assigned to each operation by the given
dispatching rule

� The run is repeated until ten consecutive runs produce no
improvement, and the best result obtained is reported as
the procedure’s output

55

Business Computing and Operations Research 509

Performance results

2985---------7527.472985*500501019

2864---------9853.422864*500501018

2228---------22675.032228*400401017

2553---------6111.052553*400401016

1850---------16429.061850*300301015

1784---------21238.261784*300301014

123564837129143445.541325200201013

121862744122452548.541304200201012

9134441499429319.241040150151011

99525362108434321.891172150151010

61635131273584594.3275130020159

5973517757161105125.0277430020158

6503012697101057118.8773030020157

835343110194323512.6796210010106

1028352150312391815.70130610010105

116432801178713.5012901002054

808270851930*#24910.10101510010103

52---------821.5055*36662

13---------210.5013*20451

LBMacro-runsCPU SecValueMicro-runsCPU SecValueOperationsJobsMachinesInstance

SBIISBINumber of

Value: makespan of the best schedule obtained
Micro-runs: number of the one-machine problems solved
Macro-runs: number of times SBI was run

*: value known to be optimal
#: optimal value found after 320 seconds
LB: lower bound given by solution value for the

first bottleneck problem

Business Computing and Operations Research 510

Performance results with 5 machines

---8.14---------3.091207*327131415.74132015

---0---------0.941292*379129314.77129314

---0---------1.231150*409115114.17115113

---0---------0.871039*291104012.68104112

---0---------2.031222*364122315.24122311

5 machines, 20 jobs

---0958------0.81959*217959*8.40959*10

---0.14951------0.85951*2609528.319529

0.35-0.28634.52863*2.418682808668.288808

---3.26890------1.51890*1949208.579477

---0926------1.28926*2339278.209276

5 machines, 15 jobs

---0.2593------0.52593*1005943.585945

4.563.8656745.45932.795971396214.336704

4.571.7458831.86052.466231136344.226733

7.981.065512.56691.697201257274.037922

---1.91666------1.26666*1576794.116791

5 machines, 10 jobs

SBII %SBI %LBCPU SecValueCPU SecValue

CPU SecValueCPU SecValueProblem

RandomizedStraight

ImprovementSBIISBIPriority Dispatching Rule

Business Computing and Operations Research 511

Performance results with 10 machines

10.156.961355551**1355*37.81403816150826.7160430

10.356.371114892**123948.01294892138225.38153929

10.8410.411216901**125028.51256901140225.5147528

8.896.491235837**129145.51325837141725.79147227

10.855.031218744**122448.51304744137324.62137326

10 machines, 20 jobs

3.711.03894430**101727.91048430116014.70125925

6.874.58881434**97625.51000435104814.33114224

6.864.241023225**1032*24.61061417110814.22116323

9.06-0.2913419**94419.21040414103813.93108522

9.522.17995362**108421.91172362119814.71120821

10 machines, 15 jobs

2.971.91807289**91410.29242899427.8959420

4.242.56709240**8607.408752408987.4567019

4.240.67770225**85910.28912258976.5567318

8.177.12737192**7874.587961928576.8585717

5.601.45875240**9786.48102124010367.66103616

10 machines, 10 jobs

SBII %SBI %LBCPU SecValueCPU SecValue

CPU SecValueCPU SecValueProblem

RandomizedStraight

ImprovementSBIISBIPriority Dispatching Rule

56

Business Computing and Operations Research 512

Further performance results

8.244.121170899**126976.71326899138324,71147740

5.071.491221669**127371.81321669134124.40143639

9.587.7810771079**125557.712801079138824.43140538

8.254.261355837**142361.41485837155126.95167037

5.782.451224735**130546.91351735138526.20151736

15 machines, 15 jobs

---4.98---------21.31888*1537198756.61199735

---6.67---------27.61721*1559184455.65192634

---4.82---------25.61719*1313180654.13187133

---3.44---------29.11850*1889191657.48196932

---3.67---------38.31784*1786185255.42193531

10 machines, 30 jobs

SBII %SBI %LBCPU SecValueCPU SecValue

CPU SecValueCPU SecValueProblem

RandomizedStraight

ImprovementSBIISBIPriority Dispatching Rule

Value: makespan of the best schedule obtained

LB: lower bound given by solution value for the

first bottleneck problem

Improvement: improvement (in percent) in solution value over

that found by the randomized priority dispatching

rule

*: value proved to be optimal

**: time limit set to time required by randomized

priority dispatching rule.

Business Computing and Operations Research 513

Main results

� Priority rules:
� No domination between the rules can be identified

� Eight of the ten rules showed best result on at least one problem

� Two rules (LPT and FA) never

� Priority rules vs. SBP I/II
� In 38 cases SBP I finds better solutions than the constellations

generated by the priority rule procedure whether in the straight or
randomized version

� Furthermore, Version 2 finds substantially improved solutions for
many constellations most of the time

� Altogether, it can be stated that SBP II is always – without exception
– at least as good as the randomized priority rule

� Moreover, in the vast majority of the considered cases, it is
considerably better

� Typical average improvement rates were between 4 and 10 percent

Business Computing and Operations Research 514

SBP – Pros and Cons

� Pros

� Elaborated procedure

� Despite the fact that the procedure uses a Branch&Bound
procedure to tackle an NP-hard problem as a frequently
called subroutine, it is quite fast in comparison to well-known
meta strategies, as for example, the Tabu Search procedure
of Nowicki and Smutnicki

� SBP I is frequently used as an initial procedure to generate a
first solution with quite good quality

� Cons

� Solution quality is poorer than known from elaborated meta
strategies

� Single priority rules are much faster

57

Business Computing and Operations Research 515

4.4.2.2 Tabu Search by Nowicki-Smutnicki

� Besides the SBP as well as various
Branch&Bound-procedures, meta heuristics have
recently been developed for the job-shop
scheduling problem with makespan objective

� A very efficient and relatively easy to implement
algorithm is the Tabu Search (TS) procedure
introduced by Nowicki and Smutnicki in 1996

� The algorithm bases on the disjunctive graph and
tries to reduce the problems makespan iteratively
by changing the job sequence within the critical
path

Business Computing and Operations Research 516

Neighborhood Search

� Tabu Search methods are based on
Neighborhood Search, a local search method.

� Given a solution s, a Neighborhood Search
creates out of a solution π a new solution π’ by
manipulating π; this operation is called a move.

� The set of moves applicable on a given solution s
is called the neighborhood N(π). Neighborhood
Search selects the best move in N(π) and applies
it.

� If a solution can be represented as a permutation
of numbers, common Neighborhood Search
moves are swaps and shifts within this
permutation.

Business Computing and Operations Research 517

Critical path

� Let u = (u1,…,uw) denote the critical path, with w the
number of operations on a longest path within the directed
disjunctive graph

� The path can be divided into blocks B1, …, Br with the
following attributes:

� Bi = (uai
, uai+1, …, ubi

) and

1=a1≤b1<b1+1=a2 ≤b2<b2+1=a3 ≤… ≤ar ≤br=w

� Bi contains all operations processed on the same
machine (i = 1, …, r)

� Two consecutive blocks contain operations processed
on different machines, i.e., µ(Bi) ≠ µ(Bi+1), i = 1, …, r-1

58

Business Computing and Operations Research 518

Critical path and block representation

0 s2

1

3

1

1

1

2

2

2

3

3

3

0

0

0

3 3

3

3

2

32

4

4

3

3

3

2

Critical path

Block

Business Computing and Operations Research 519

Idea

But how?

Permuting the
job sequence
within a block
can yield to a
schedule with

smaller
makespan!

Permuting the
job sequence
within a block
can yield to a
schedule with

smaller
makespan!

Business Computing and Operations Research 520

The applied neighborhood

� The size of the neighborhood plays an important
role.

� Thus, Nowicki and Smutnicki introduced a reduced
neighborhood with the following moves:

� In block B1 the last two operations are permutated

� In block B2 to Br-1 the first two operations and,

if ai<bi, the last two operations are permuted

� In block Br the first two operations are permutated

59

Business Computing and Operations Research 521

Mathematical representation of the moves

Let V(π) = (V1(π),…, Vr(π)) denote the set of moves that

are applicable to a given job sequence π.

1 11 1 1

1

1 1

1

{(,)} and 1
()

{(,), (,)}

()

{(,)} and 1
()

−

+ −

+

< >
= 

∅

<


= 
∅

< >
= 

∅

i i i i

r r

b b

a a b b i i

i

a a r r

r

u u if a b r
V

else

u u u u if a b

V

else

u u if a b r
V

else

π

π

π

Business Computing and Operations Research 522

Applied to our example

0 s2

1

3

1

1

1

2

2

2

3

3

3

0

0

0

3 3

3

3

2

32

4

4

3

3

3

2

Critical path

Block
Only the exchange of these two operations is examined

Business Computing and Operations Research 523

Remark to the critical path

One might argue that the critical path is not

well-defined. But numerical results showed

that the selection of one critical path has a minor

influence in regard to the solutions quality.

� An arbitrary critical path can be chosen.

60

Business Computing and Operations Research 524

Tabu List

� A major drawback of local search procedures, such as
hill-climbing, is cycling between two solutions and only
returning a local optimal solution

� In order to avoid cycling within the searching process,
Tabu Search algorithms use a short time memory of
blocked moves, called Tabu List

� If a move v=(x,y) is performed, the inverse move
v’=(y,x) is added to the Tabu List

� The Tabu List has a given size maxt, and it contains the
inverse moves of the moves applied in the last maxt

iterations

Business Computing and Operations Research 525

Aspiration criterion

� To secure that promising moves are not blocked,
Nowicki and Smutnicki divide the set operations in the
Tabu List into subsets UP and UNP

� UP contains all blocked moves leading to a better
solution than the ones visited in all past iterations
(profitable moves)

� UNP consists of all blocked non-profitable moves

� A criterion, called aspiration criterion, allows the search
to perform a profitable move although it belongs to the
Tabu List.

Business Computing and Operations Research 526

Long time memory

� If a solution possesses a good objective function value,
it is likely that its neighbors contain good objective
function values as well

� Since from a given solution with small objective function
value only the best move was chosen, the observation
of other neighbors was discarded although they could
guide into regions with good solutions, too

� To take this thought into account, Nowicki and
Smutnicki proposed to embed their procedure into a
guided super routine by storing the solutions with the
lowest objective function values within a list L

� The elements of L consist of the permutation π for the
given solution, a modified neighborhood N(π)\{v’} (v’ is
the already applied move), and the Tabu List T

61

Business Computing and Operations Research 527

Performance analysis – test sets

� Nowicki and Smutnicki tested their algorithms on groups
of well-known job-shop scheduling instances

� Group I: 45 instances with 36 to 100 operations

� Group II:

� 80 instances with 225 to 2000 operations

� 40 instances created by a random generator with 2500 to
10000 operations

Business Computing and Operations Research 528

Performance analysis - results

Test set

Number of
instances

C* better
than best-
known value

Optimality
proven

Group I 45 30
In 20 of 30
unknown
cases*

Group II

a) 80 33
In 10 of 61
unknown
cases*

b) 40
No

references
available

No
references
available

*Unknown up to Nowicki and Smutnicki (1996)

Business Computing and Operations Research 529

Nowicki and Smutnicki – Summary

� The procedure is a solution method for solving the job-
shop scheduling problem with makespan objective
which is relatively easy

� It substantially intensifies the searching process in
promising regions, evaluates the neighborhoods in the
single steps very fast, and the authors can improve the
best known makespan for difficult problem instances in
many cases

� In 2005, Nowicki and Smutnicki propose a further
advanced Tabu Search procedure with improved
diversification (long term behavior)

� Additionally, they propose an improved starting heuristic
in order to construct a suitable starting solution

62

Business Computing and Operations Research 530

4.5 Flow-shop problems

� In the following, we consider flow-shop problems as a
special case of job-shop systems

� In this special case, each job has an identical machine
sequence in which it is processed

� Therefore, we can define a definite numbering (1,…,M)
of the used resources that determine the processing
sequence of each job

� Despite the fact that the total solution space still consists
of altogether (N!)M constellations, this problem seems to
be somehow relaxed in comparison to the general job-
shop problem

Business Computing and Operations Research 531

The dominance criteria

The first dominance criterion:

In an M-staged flow-shop system, there is always

an optimal solution minimizing the makespan

where the scheduling on the first two machines is

identical. This is also true for the minimization of

the total lead time.

Business Computing and Operations Research 532

Proof of the first dominance criterion

� Let us assume there are unequal sequences that are
processed on the first two machines

� Let 1 – 2 – 3 – … – N be the job sequence applied to
machine 2

� We define t as the first (lowest numbered) position in this
job sequence where a difference between the sequences
on machine 1 and machine 2 arises

� Therefore, we have the sequence 1 – 2 – 3 – … – t-1 – l
with l>t at the first stage

� In what follows, we consider an alternative constellation by
exchanging t and l on machine 1

63

Business Computing and Operations Research 533

Illustration

c

1

2

1

2

p1,1 p1,2 p1,3 p1,l p1,t

p2,t p2,l

… …

…….

… …

Alternative processing

p1,1 p1,2 p1,3 p1,lp1,t

p2,t p2,l

… …

… …

Business Computing and Operations Research 534

Consequences for jobs

� Job t

� The exchange on machine 1 can improve only the
subsequent constellation by an earlier processing at stage 2

� Therefore, the remaining schedule is of better or at least of
an equal quality

� Job l

� Firstly, note that the end of processing of job l at stage 1 in
the modified constellation is equal to the point of time the
processing of job t ends at stage 1 in the original
constellation. Let c denote this point of time in both schedules

� Therefore, job l can not be processed at stage 2 before t is
processed. Note that this applies to both schedules
� Schedule 1: Reason: Processing of job t at stage 2 before

job l. In addition, job t at stage 2 has to wait for its processing
at stage 1, which is not ended before c

� Schedule 2: Reason: Processing of job l at stage 1. In detail,
job l at stage 2 has to wait for its processing at stage 1,
which is not ended before c

Business Computing and Operations Research 535

Conclusions

� The processing times of job t and job l at stage 2
are not influenced by the executed exchange

� No effect on the total makespan as well as on the
resulting cycle time

� This completes the proof

64

Business Computing and Operations Research 536

The dominance criteria

The second dominance criterion:

In an M-staged flow-shop system there is always

an optimal solution generating the minimal

makespan where the scheduling on the last two

machines is identical

Business Computing and Operations Research 537

Proof of the second dominance criterion

� Again, we assume that there is no equal
sequence at the last two stages

� In detail, we assume that the sequence 1 – 2 – 3
– … – N is processed on machine M-1

� Let t be the minimal number of a job where the
sequences at stages M-1 and M differ, i.e., 1 – 2
– 3 – … – l, with l>t is processed on machine M

� Now, we consider an alternative constellation
where we exchange job l and job t at the last
stage

Business Computing and Operations Research 538

Illustration

M-1

M

pM-1,1 pM-1,2 pM-1,3 pM-1,t pM-1,l

pM,t pM,l

… …

…….

…

Alternative processing

pM,tpM,l

…

…

c

M-1

M

pM-1,1 pM-1,2 pM-1,3 pM-1,t pM-1,l… …

x

y

65

Business Computing and Operations Research 539

Consequences

� Optimal Schedule

� Let x be the beginning of the processing of job l at stage M
while y denotes the end of processing of job l at stage M-1

� We know x≥y

� We have cycle time C

� Alternative Schedule

� In order to compute the makespan for this schedule, we know
that nothing is lost due to the executed exchange of l and t

� Moreover, there is no side-effect on the jobs processed after
job t, wherefore the new cycle time C’ is lower than or equal
to c

� This completes the proof

Business Computing and Operations Research 540

4.5.1 The procedure of Johnson

� In what follows, we consider the special case of
the flow-shop problem where only production
stages are given

� Note that already this quite simple constellation is
an NP-complete problem for the general job-shop
case

� In contrast to this, we will present a very efficient
algorithm generating an optimal schedule for the
2-staged flow-shop problem in O(N log N) steps:
the so-called Johnson algorithm. This algorithm
determines the schedule with the minimal
makespan

Business Computing and Operations Research 541

Changing the sequence in 2/3-FS

4.5.1.1 Theorem

For the two- or three-staged flow-shop with the

objective of makespan minimization, there is

always an optimal solution that has equal

scheduling sequences on all machines

66

Business Computing and Operations Research 542

Proof of the Theorem

� Clearly, we may apply the two dominance criteria

� Thus, the claim of the Theorem follows
immediately as a corollary of both criteria

� This completes the proof

Business Computing and Operations Research 543

4.5.1.2 Algorithm (Johnson)

{ }

{ } { }

{ }

ˆ ˆ 1, 2,1, 2,

ˆ ˆ ˆ1, 1, 2,

Initialization: 1,2,3,..., is the list of all jobs to be

scheduled

ˆ1. Determine job by:

min , min , |1

2. If min , ,

ˆthen is placed on the next available posit

n nn n

n n n

R N

n

p p p p n N

p p p

n

=

= ≤ ≤

=

ion at the top

of the current schedule;

ˆotherwise is placed on the next available position at the

end of the current schedule

ˆ3. Delete from the list of jobs to be processed in the schedule

4. Pr

n

n

oceed with step 1 until the list of remaining jobs is emptyR

Business Computing and Operations Research 544

The proof of optimality

4.5.1.3 Theorem

Algorithm 4.5.1.2 generates an optimal solution

for the makespan minimization problem in a two-

staged flow-shop production system

67

Business Computing and Operations Research 545

Proof of the Theorem

� First of all, we have to introduce some additional parameters to
determine how the makespan is affected by the chosen schedule
� Since processing of the first machine is never a bottleneck, we

concentrate on the second one
� Idle times and the total processing time at this stage determine the

sought makespan
� Therefore, Ij should determine the amount of idle times on machine

2 before processing job j, i.e., if the machine was not idle, the
parameter is set to zero

� Note that these values depend on the generated solution while the
total processing time at stage 2 is always fixed

1

2

p1,1 p1,2 p1,3 p1,4 p1,5 p1,6

Machines

I1 p2,1

I6p2,2p2,3 p2,4 p1,5 p2,6

Business Computing and Operations Research 546

Calculation of the occurring idle times

{ }
{ }

{ }








−−=∈∀⇒

−−−−++=

−−+=

=

∑ ∑∑
=

−

=

−

=

j

i

j

i

i

j

i

iij pIpINj

ppIIpppI

pIppI

pI

1

1

1

,2

1

1

,1

2,21,2213,12,11,13

1,212,11,12

1,11

0,max:,...,1

...

0,max

0,max

Business Computing and Operations Research 547

The objective value

�

∑

∑∑

=

==

+=

N

i

i

N

i

i

N

i

i

I

IpZ

1

2 stageat timewaiting
dependent -solution Additional

1

2 stageat timeproductionConstant

1

,2

 i.e., times,waiting

 of sum total thecompute tohave weFirst,

���

68

Business Computing and Operations Research 548

Computing the total sum of waiting times









≤≤−=









−−=

∑∑∑

∑ ∑∑∑∑

−

===

=

−

=

−

===

NkppI

pIpI

k

i

i

k

i

i

N

i

i

N

i

i

k

k

i

k

k

i

k

k

N

i

i

1|max

0,max

1

1

,2

1

,1

1

1

1

1

,2

1

11

,1

1

:Lemma

Business Computing and Operations Research 549

{ }

1 1 1 1 1 0 0

1, 2, 1, 2,
1 1 1 1 1 1 1 1

1,1 1,1

1

1, 2,
1 1 1

We show the claim by induction:

Start: 1

max ,0 max ,0

max ,0

1

It holds: max |1

i i i

i k k k k k k
i i k k k k k k

N k k

i i i
i i i

N

I p I p p I p

p p

N N

I p p

− −

= = = = = = = =

−

= = =

=

   
= − − = − −   

   

= =

→ +

= − ≤

∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑

∑ ∑ ∑ k N
 

≤ 
 

Proof of the Lemma

Business Computing and Operations Research 550

1 1

1, 2,
1 1 1 1 1

1 1

1, 2, 1, 2,
1 1 1 1 1

We compute

max ,0

max |1 max ,0

N N N N N

i i i i i
i i i i i

k k N N N

i i i i i
i i i i i

I I p I p

p p k N p I p

+ +

= = = = =

− +

= = = = =

 
= + − − 

 

   
= − ≤ ≤ + − −   

   

∑ ∑ ∑ ∑ ∑

∑ ∑ ∑ ∑ ∑

Proof of the Lemma

69

Business Computing and Operations Research 551

1

1, 2,
1 1 1

1

1, 2,
1 1 1

1 1

1, 2, 1, 2,
1 1 1 1

Case 1:

The difference is added while the resulting

value is equal to max |1 1 since

is t

N N N

i i i
i i i

N N N

i i i
i i i

k k N N

i i i i
i i i i

p p I

p p I

p p k N p p

+

= = =

+

= = =

− +

= = = =

− >

⇒ − −

 
− ≤ ≤ + − 

 

∑ ∑ ∑

∑ ∑ ∑

∑ ∑ ∑ ∑

he new maximum. Therefore, the lemma gives

the correct calculation in this case.

Proof of the Lemma

Business Computing and Operations Research 552

1

1, 2,
1 1 1

1

1, 2,
1 1 1

1

1, 2, 1, 2
1 1 1

Case 2:

The difference is at most zero and, therefore,

zero is added to the sum. In addition, it holds:

max

N N N

i i i
i i i

N N N

i i i
i i i

N N k

i i i

i i i

p p I

p p I

p p p p

+

= = =

+

= = =

+

= = =

− ≤

⇒ − −

− ≤ −

∑ ∑ ∑

∑ ∑ ∑

∑ ∑ ∑
1

,
1

1

1, 2,
1 1

|1 , wherefore the

total sum is equal to max |1 1 .

Therefore, the lemma gives the correct calculation also

in this second case .

k

i

i

k k

i i
i i

k N

p p k N

−

=

−

= =

 
≤ ≤ 

 

 
− ≤ ≤ + 

 

∑

∑ ∑

Proof of the Lemma

Business Computing and Operations Research 553

Intermediate summary

� A found solution can only influence waiting times
on machine 2 to minimize the makespan

� We have generated a compact form for
computing all resulting waiting times on machine

2

70

Business Computing and Operations Research 554

Notation

In what follows, we make use of the following
additional parameters:

{ }

{ } { }∑

∑ ∑

=

=

−

=

≤≤=∈∀

⇒

−=∈∀

k

i

ti

k

i

k

i

iik

NtYINk

ppYNk

1

1

1

1

,2,1

1|max:,...,1

:,...,1

Business Computing and Operations Research 555

Transformation

� Now, the preliminary work is done to start the proof
of the theorem by transforming an optimal solution
into a new one respecting the claimed attributes

� Therefore, let us assume we have an optimal
schedule S found with sequence (1 – 2 – 3 – … –
N)

� Furthermore, let us assume we have a solution not
fulfilling the construction rules of the algorithm of
Johnson

� If so, there is a minimally chosen index i with:

{ } { }1, 2, 1 2, 1, 1min , min ,i i i ip p p p
+ +

>

Business Computing and Operations Research 556

Transformation

� Note that in the algorithm of Johnson it would
have been processed after i+1

� Now, we generate schedule T out of S by
exchanging the jobs i and i+1

� Owing to this simple modification, we can easily

derive the new updated objective function by
computing the new Yk-values

71

Business Computing and Operations Research 557

Comparing schedules S and T

()

()

1

1, 2,
1 1

1 1

1, 2, 2, 1
1 1

1

1 1, 2,
1

Let us consider as the value for job under schedule

 1 2 ... 1 1 ...

 1 2 ... 1 1 ...

T

k

i i

i k k
k k

i i
T

i k k i
k k

i

i k k
k

Y k T

Y p p i i i N

Y p p p i i i N

Y p p

−

= =

+ −

+

= =

+

+

=

= − → → → − → → + → →

= − − → → → − → + → → →

= −

∑ ∑

∑ ∑

∑
1

1 1

1 1, 1, 1 2,
1 1

All other values are not affected !

i

k

i i
T

i k i k
k k

Y p p p

=

− −

+ +

= =

= + −

∑

∑ ∑

Business Computing and Operations Research 558

Comparing schedules S and T

{ }

{ }

{ }

{ }

{ }

{ }
iii

i

k

k

i

k

k

iiii

i

k

k

i

k

k

i

k

k

i

k

k

i

k

k

i

k

kii

iii

i

k

k

i

k

k

iiii

i

k

k

i

k

k

i

k

k

i

k

iki

i

k

k

i

k

k

T

i

T

i

ppppp

pppppp

ppppYY

ppppp

pppppp

ppppppYY

,21,1,1

1

1

,2

1

1

,1

,21,1,1,1

1

1

,2

1

1

,1

1

,2

1

1

,1

1

1

,2

1

,11

1,2,11,1

1

1

,2

1

1

,1

1,11,21,1,1

1

1

,2

1

1

,1

1

1

,2

1

1

1,1,11,2

1

1

,2

1

1

,11

,0max

,max

,max,max

0,max

,max

,max,max

−++−=

−++−=









−−=⇒

−++−=

−++−=









−+−−=⇒

+

−

=

−

=

+

−

=

−

=

=

+

=

−

==

+

++

−

=

−

=

+++

−

=

−

=

−

=

−

=

++

−

=

+

=

+

∑∑

∑∑

∑∑∑∑

∑∑

∑∑

∑∑∑∑

Business Computing and Operations Research 559

{ }

{ }

{ } { }

{ } { }

1 1

1, 2, 1, 1 1, 2, 1
1 1

1 1

1, 2, 1, 1, 1 2,
1 1

1, 2, 1 2, 1, 1

2, 1 1, 2, 1 2, 1, 1

1

1, 2,
1 1

: max ,0

: max 0,

We know: min , min ,

Case 1: min , min ,

:

i i

k k i i i
k k

i i

k k i i i
k k

i i i i

i i i i i

i i

k k
k k

T p p p p p

S p p p p p

p p p p

p p p p p

T p p

− −

+ +

= =

− −

+

= =

+ +

+ + +

−

= =

− + + −

− + + −

>

= >

−

∑ ∑

∑ ∑

∑
1

1, 1 1, 2, 1

1 1

1, 2, 1, 1, 1 2, 1
1 1

i i i

i i

k k i i i
k k

p p p

p p p p p

−

+ +

− −

+ +

= =

+ + −

= − + + −

∑

∑ ∑

Comparing schedules S and T – Case 1

72

Business Computing and Operations Research 560

{ }

{ }

{ } { }
2, 1, 1 2, 1, 1

1, 1 2, 1, 1 2,

1 1

1, 2, 1, 1, 1 2,
1 1

1, 1 2, 1 1, 1 2,

1, 1 2, 1, 1 1, 1 2,

0 if 0, if
, otherwise

: max 0,

: max 0,

min , max 0,

i i i i

i i i

i i

k k i i i
k k

i i i i

i i i i i

p p p p

p p p p

S p p p p p

T S p p p p

p p p p p

+ +

+ +

− −

+

= =

+ + +

+ + +

= ≥ = ≥

= − = −

− + + −

⇒ − − − −

< − − −

∑ ∑

���������

, otherwise

0

i

=
���������

Comparing schedules S and T – Case 1

Business Computing and Operations Research 561

{ }

{ }

{ } { }

1 1

1, 2, 1, 1 1, 2, 1
1 1

1 1

1, 2, 1, 1, 1 2,
1 1

1, 2, 1 2, 1, 1

: max ,0

: max 0,

We know: min , min ,

i i

k k i i i
k k

i i

k k i i i
k k

i i i i

T p p p p p

S p p p p p

p p p p

− −

+ +

= =

− −

+

= =

+ +

− + + −

− + + −

>

∑ ∑

∑ ∑

Comparing schedules S and T

Business Computing and Operations Research 562

{ } { }

{ }

{ }

{ }
2, 1, 1

1,

1, 1, 2, 1 2, 1, 1

1 1

1, 2, 1, 1
1 1

1 1

1, 2, 1, 1, 1 2,
1 1

1, 1 1, 1, 1 2,

1, 1 2, 1, 1

0 if

Case 2: min , min ,

:

: max 0,

: max 0,

min ,

i i

i

i i i i i

i i

k k i
k k

i i

k k i i i
k k

i i i i

i i i

p p

p

p p p p p

T p p p

S p p p p p

T S p p p p

p p p

+

+

+ +

− −

+

= =

− −

+

= =

+ +

+ +

= ≥

=

= >

− +

− + + −

⇒ − − − −

< −

∑ ∑

∑ ∑

{ }
2, 1, 1

1 2, 1, 1 2,

1, 1 2,

0, if

, otherwise , otherwise

max 0, 0

i i

i i i

i i

p p

p p p

p p

+

+

+

= ≥

− = −

− − =
��������� ���������

Comparing schedules S and T – Case 2

73

Business Computing and Operations Research 563

Conclusion

� T is not worse than S in both cases

� As a consequence, each optimal schedule can be
transformed into a Johnson schedule without
losing its optimality

� This completes the proof

Business Computing and Operations Research 564

Example

� Given: 2 Machines A and B, and 5 jobs to be
processed

� Processing times

Machine Jobs

1 2 3 4 5

A 20 11 13 5 17

B 15 27 8 27 13

Business Computing and Operations Research 565

Steps of Johnson’s algorithm

1. Minimum is 4 on A

Consequence: First possible position

(4,-,-,-,-)

2. Minimum is 3 on B

Consequence: Last possible position

(4,-,-,-,3)

3. Minimum is 2 on A

Consequence: First possible position

(4,2,-,-,3)

4. Minimum is 5 on B

Consequence: Last possible position

(4,2,-,5,3)

5. Complete optimal schedule is (4,2,1,5,3)

74

Business Computing and Operations Research 566

4.5.2 The multiple-stage case

� Now, we consider the general case M>2

� Unfortunately, it was shown that these problems
are NP-hard

� Therefore, we introduce a simple heuristic
approach in the following

Business Computing and Operations Research 567

Palmer’s heuristic

� The guideline suggested by Palmer as a very
first heuristic for sequencing M-staged flow-shop
systems is as follows

� Give priority to jobs with the strongest tendency
to progress from short times to long times in
the sequence of operations

� In detail, Palmer proposes the following priority
calculation to measure this attribute in each job

Business Computing and Operations Research 568

Palmer’s heuristic

{ } ()()

() ()

() () ()

() () ()

, 1
1

,2 ,1 ,2 ,1

,3 ,2 ,1

,3 ,2 ,1

,4 ,3 ,2

1,..., : 2 1 1

2 :

2 2 0 1 2 2 1 1

3 :

3 2 0 1 3 2 1 1 3 2 2 1

2 0 2

4 :

4 2 0 1 4 2 1 1 4 2 2 1 4 2 3

M

j j M k
k

j j j j j

j j j j

j j j

j j j j

j N s M k t

M

s t t t t

M

s t t t

t t t

M

s t t t

− +

=

∀ ∈ = − ⋅ − − ⋅

⇒ =

= − ⋅ − ⋅ + − ⋅ − ⋅ = −

⇒ =

= − ⋅ − ⋅ + − ⋅ − ⋅ + − ⋅ − ⋅

= ⋅ + ⋅ − ⋅

⇒ =

= − ⋅ − ⋅ + − ⋅ − ⋅ + − ⋅ − ⋅ + − ⋅ −

∑

() ,1

,4 ,3 ,2 ,1

1

3 3

j

j j j j

t

t t t t

⋅

= ⋅ + − − ⋅

75

Business Computing and Operations Research 569

Solution

� The jobs are scheduled in sequence of non-
increasing priority

� Generates only solutions with an equal sequence
at all stages

Business Computing and Operations Research 570

Example

Processing

time of job j

on machine

Jobs

1 2 3 4

tj,1 3 11 7 10

tj,2 4 1 9 12

tj,3 10 5 13 2

Business Computing and Operations Research 571

Priorities

Processing

time of job j

on machine

Jobs

1 2 3 4

tj,1

-2

3

-6

11

-22

7

-14

10

-20

tj,2

0

4

0

1

0

9

0

12

0

tj,3

2

10

20

5

10

13

26

2

4

Priority 14 -12 12 -16

76

Business Computing and Operations Research 572

Solution

Is 1 – 3 – 2 – 4

Business Computing and Operations Research 573

CDS Heuristic

� CDS=“Cambel Dudek Smith”, the authors of the
respective paper

� Extension of the Johnson algorithm for multiple-stage
cases

� Considers only solutions with equal sequences at all
stages

� Note that it starts from at least four stages
� Generates artificial 2-staged problems out of the general

constellation and solves them optimally by the
application of the Johnson algorithm

� For M=2 the CDS procedure becomes the Johnson
algorithm generating an optimal solution

� Otherwise, the procedure generates M-1 iterations
representing an additional two-staged flow-shop problem

� Can be used for the minimization of cycle time or total
lead time

Business Computing and Operations Research 574

CDS procedure

1. Establish NxM-matrix of processing times tj,i,
where tj,i is the processing time of j-th job on
machine i

2. Establish number of auxiliary n-job, 2-machine
problems, p, to be calculated, where p≤M-1

3. Set k=1 for first auxiliary problem
4. Compute the processing time for all jobs

j=1,…,N on the two machines in the k-th
auxiliary problem:

∑
=

=θ
k

i

ij

k

j t
1

,1,

77

Business Computing and Operations Research 575

CDS Procedure

5. Compute the processing time for all jobs
j=1,…,N on the two machines in the k-th
auxiliary problem:

∑
+−=

=θ
M

kMi

ij

k

j t
1

,2,

6. Solve the problem with the Johnson algorithm

7. Check if k<p. If so, set k=k+1, go to step 3;
Otherwise proceed with step 8

8. Use the original problem to compute the
objective value of all p generated solutions

9. Select best result as the output of the
procedure

Business Computing and Operations Research 576

Example

� Given: 4 Machines A, B, C and D, as well as 5
jobs to be processed

� Processing times

Machine Jobs

1 2 3 4 5

A 3 6 10 4 7

B 12 4 1 1 9

C 1 2 6 7 4

D 6 1 2 8 1

Business Computing and Operations Research 577

First iteration

Machine Jobs

1 2 3 4 5

1 3 6 10 4 7

2 6 1 2 8 1

78

Business Computing and Operations Research 578

Steps of Johnson’s algorithm

1. Minimum is 2 on machine 2

Consequence: Last possible position

(-,-,-,-,2)

2. Minimum is 5 on machine 2

Consequence: Last possible position

(-,-,-,5,2)

3. Minimum is 3 on machine 2

Consequence: Last possible position

(-,-,3,5,2)

4. Minimum is 1 on machine 1

Consequence: Last possible position

(1,-,3,5,2)

5. Complete optimal schedule is (1,4,3,5,2)

Business Computing and Operations Research 579

Objective function value

Processing Job 1 Job 4 Job 3 Job 5 Job 2

S E S E S E S E S E

Machine A 0 3 3 7 7 17 17 24 24 30

Machine B 3 15 15 16 17 18 24 33 33 37

Machine C 15 16 16 23 23 29 33 37 37 39

Machine D 16 22 23 31 31 33 37 38 39 40

Business Computing and Operations Research 580

Objective function value

Processing Job 4 Job 1 Job 3 Job 5 Job 2

S E S E S E S E S E

Machine A 0 4 4 7 7 17 17 24 24 30

Machine B 4 5 7 19 19 20 24 33 33 37

Machine C 5 12 19 20 20 26 33 37 37 39

Machine D 12 20 20 26 26 28 37 38 39 40

79

Business Computing and Operations Research 581

Second iteration

Machine Jobs

1 2 3 4 5

1 15 10 11 5 16

2 7 3 8 15 5

Business Computing and Operations Research 582

Steps of Johnson’s algorithm

1. Minimum is 2 on machine 2

Consequence: Last possible position

(-,-,-,-,2)

2. Minimum is 5 on machine 2

Consequence: Last possible position

(-,-,-,5,2)

3. Minimum is 4 on machine 1

Consequence: Last possible position

(4,-,-,5,2)

4. Minimum is 1 on machine 2

Consequence: Last possible position

(4,-,1,5,2)

4. Complete optimal schedule is (4,3,1,5,2)

Business Computing and Operations Research 583

Objective function value

Processing Job 4 Job 3 Job 1 Job 5 Job 2

S E S E S E S E S E

Machine A 0 4 4 14 14 17 17 24 24 30

Machine B 4 5 7 8 17 29 29 38 38 42

Machine C 5 12 12 18 29 30 38 42 42 44

Machine D 12 20 20 22 30 36 42 43 44 45

80

Business Computing and Operations Research 584

Third iteration

Machine Jobs

1 2 3 4 5

1 16 12 17 12 20

2 19 7 9 16 14

Business Computing and Operations Research 585

Steps of Johnson’s algorithm

1. Minimum is 2 on machine 2

Consequence: Last possible position

(-,-,-,-,2)

2. Minimum is 3 on machine 2

Consequence: Last possible position

(-,-,-,3,2)

3. Minimum is 4 on machine 1

Consequence: Last possible position

(4,-,-,3,2)

4. Minimum is 5 on machine 2

Consequence: Last possible position

(4,-,5,3,2)

4. Complete optimal schedule is (4,1,5,3,2)

Business Computing and Operations Research 586

Objective function value

Processing Job 4 Job 1 Job 5 Job 3 Job 2

S E S E S E S E S E

Machine A 0 4 4 7 7 14 14 24 24 30

Machine B 4 5 7 19 19 28 28 29 30 34

Machine C 5 12 19 20 28 32 32 38 38 40

Machine D 12 20 20 26 32 33 38 40 40 41

81

Business Computing and Operations Research 587

Output

� Best found solution was (4,1,3,5,2)

� Objective value: 40

Business Computing and Operations Research 588

Applying Palmer’s procedure

Machine Jobs

1 2 3 4 5

A

-3

3

-9

6

-18

10

-30

4

-12

7

-21

B

-1

12

-12

4

-4

1

-1

1

-1

9

-9

C

1

1

1

2

2

6

6

7

7

4

4

D

3

6

18

1

3

2

6

8

24

1

3

Priority -2 -17 -19 18 -23

Business Computing and Operations Research 589

Result of Palmer’s procedure

� 4 – 1 – 2 – 3 – 5

82

Business Computing and Operations Research 590

Objective function value

Processing Job 4 Job 1 Job 2 Job 3 Job 5

S E S E S E S E S E

Machine A 0 4 4 7 7 13 13 23 23 30

Machine B 4 5 7 19 19 23 23 24 30 39

Machine C 5 12 19 20 23 25 25 31 39 43

Machine D 12 20 20 26 26 27 31 33 43 44

Business Computing and Operations Research 591

Result of Palmer’s procedure

Source: Palmer (1964)

Business Computing and Operations Research 592

Comparison with Palmer heuristic

83

Business Computing and Operations Research 593

Business Computing and Operations Research 594

Computational time

Business Computing and Operations Research 595

Pros and Cons

� Pros

� CDS/Palmer are fast to compute

� CDS generates quite good solutions

� Cons

� Poor results in comparison to elaborated meta
strategies

� Used for finding an initial solution but not for the
final result

84

Business Computing and Operations Research 596

Some additional references to Section 4

� Adams, J.; Balas, E.; Zawack, D.: The Shifting Bottleneck Procedure
for Job Shop Scheduling. Management Science, Vol.34, No.3, 1988.

� Baker, K.R.: Introduction to Sequencing and Scheduling. John
Wiley&Sons, New York et al., 1974. (ISBN-10: 0-4710-4555-1)

� Brucker, P.: Scheduling Algorithms. Springer, Berlin et al., 5th
edition, 2007. (ISBN-10: 3-5406-9515-X)

� Carlier, J.: The one-machine sequencing problem. European
Journal of Operational Research, 11, pp.42-47, 1982.

� Campbell, H.G.; Dudek, R.A.; Smith, M.L.: A Heuristic Algorithm for
the n Job m Machine Sequencing Problem. Management Science,
Vol.16, No.10, 1970.

� Nowicki, E.; Smutnicki, C.: A Fast Taboo Search Algorithm for the
Job Shop Problem. Management Science Vol.42, No.6, 1996.

� Palmer, D.S.: Sequencing Jobs Through a Multi-Stage Process in
the Minimum Total Time – A Quick Method of Obtaining a Near
Optimum. Operational Research Quarterly, Vol.16, No.1, 1964.

� Pinedo, M.L.: Scheduling: Theory, Algorithms and Systems. 4th
edition, Prentice Hall, New Jersey, 2012. (ISBN-10: 1-4614-1986-7)

