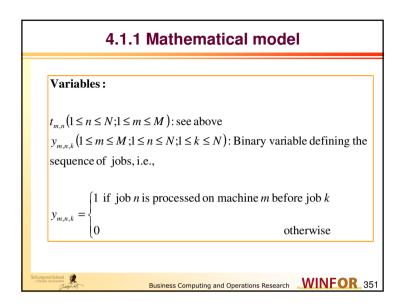
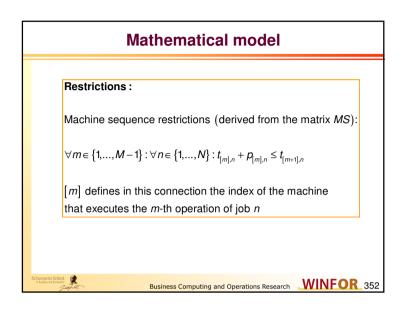
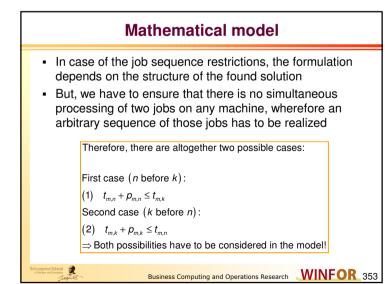


	4.1 Preliminaries	
 Production pr 	ogram is given	
 Lot sizes are 	given	
 Process sequ 	lence of each job is given	
 Operating tim 	nes are given	
 No operation than one made 	can be processed simultaneou	isly on more
 At each point one job 	of time every machine can pro	cess at most
 At the beginn their data are 	ing of the planning horizon all available (static problem)	N jobs and
 Transports ar 	nd storage are never bottleneck	٢S
 No maintenar 	nce and repair activities	
 On each mac realized oper 	hine setup times are independ ation sequence	ent of the
Schumpeter School	Business Computing and Operations Research	WINFOR 349

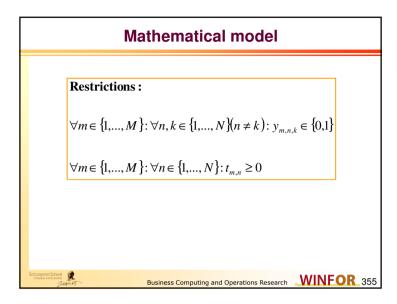
Given	and	sought
-------	-----	--------

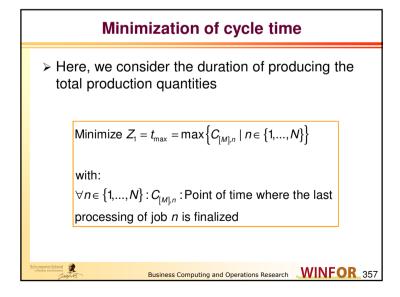

- Given:
 - MS: Machine sequence matrix
 - PT: Matrix of processing times
- Sought:

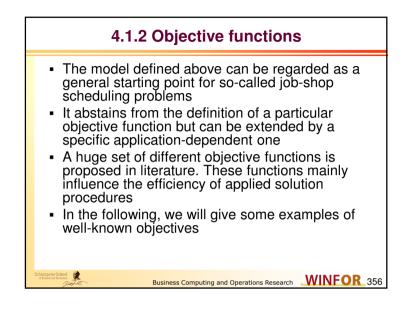

2

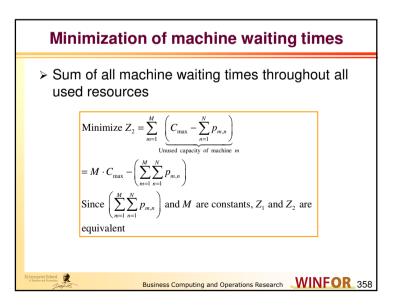

- JS: Job sequence matrix
- TT: Timetable planning matrix with:

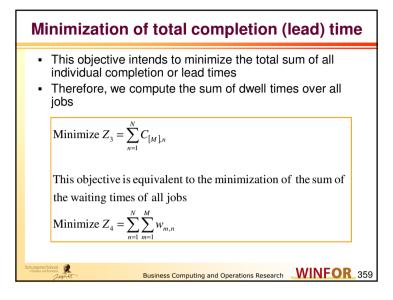

 $t_{mn} (1 \le m \le M; 1 \le n \le N)$

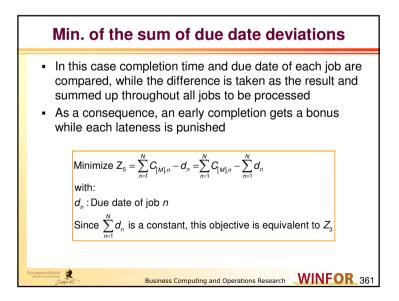

Point of time where the processing of job *n* at machine *m* begins [TU]

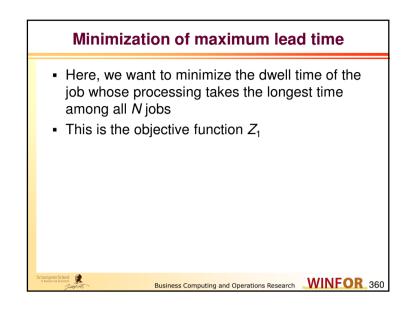


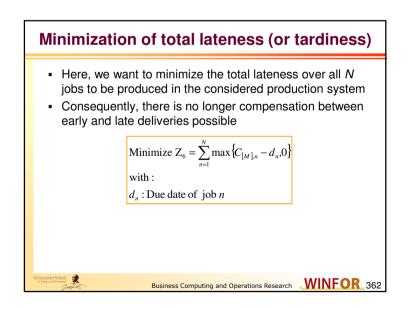


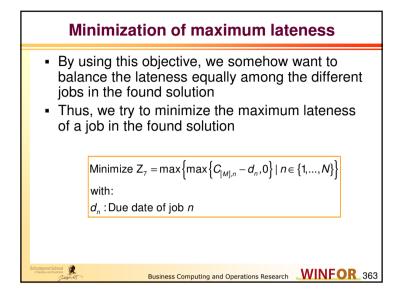


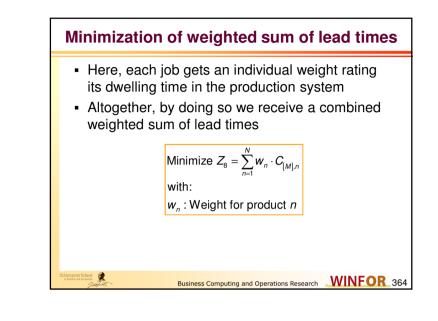


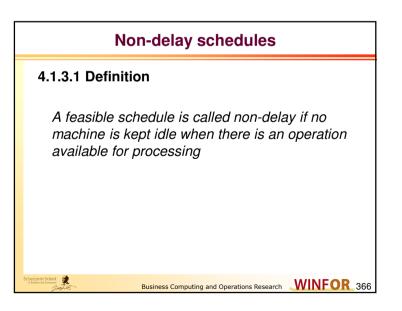


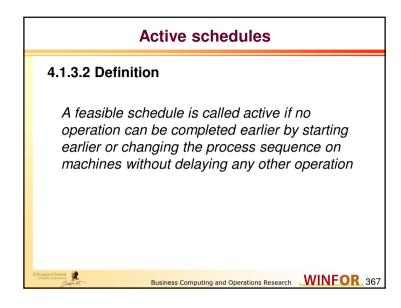


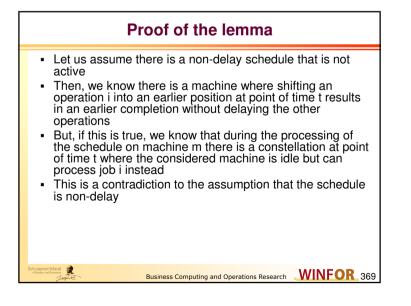


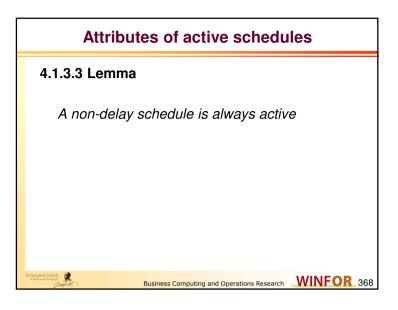


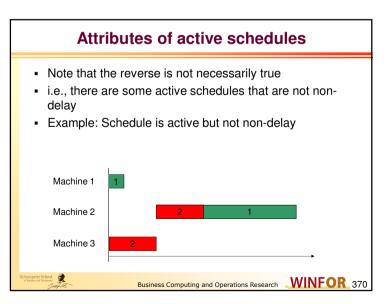


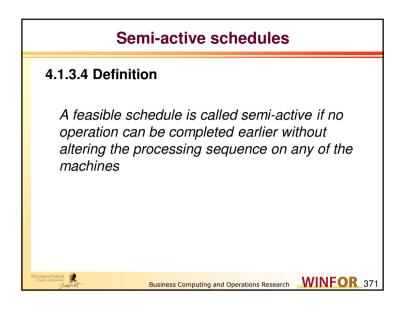


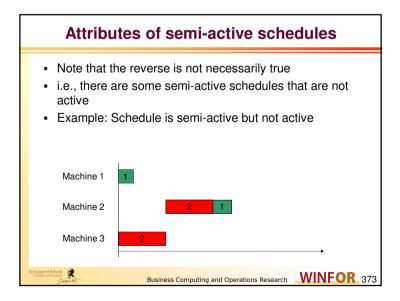


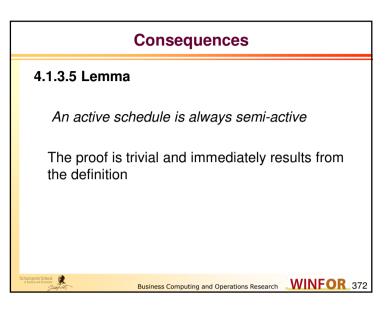


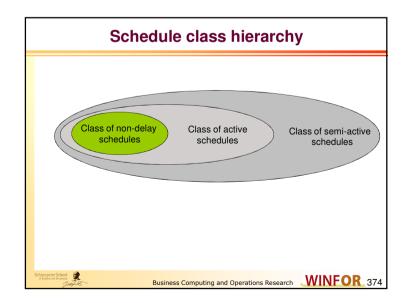

4.1.3	3 Schedule classes	
schedules In scheduling, a disi Sequence, Schedule and Scheduling polic Sequence Corresponds to 	introduce some basic terms for sp inction is frequently made betwee by a specific permutation of jobs to b	en
complicated set	onds to an allocation of jobs withir ing of machines, which could allo jobs that are released at later poir tables	w for preemptions
action for any of cases, usually o	ochastic settings; a policy prescrit the states the system may be in. Inly sequences or schedules are c I by rule definitions	In deterministic
Schumpeter School	Business Computing and Operations Research	WINFOR 365

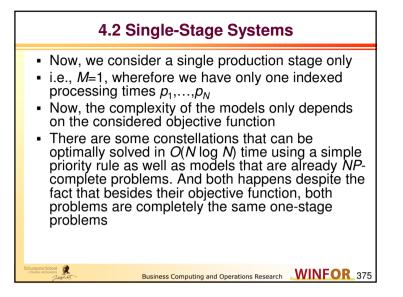








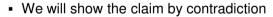




Minimization of weighted sum of lead times

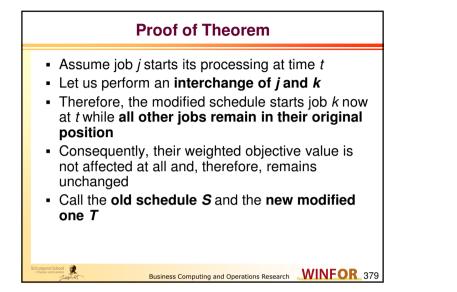
4.2.1 Theorem

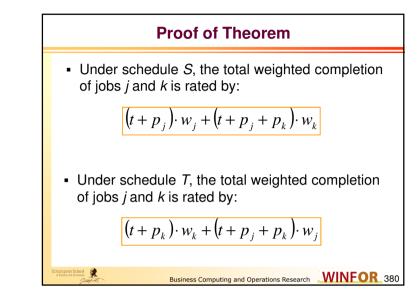
2

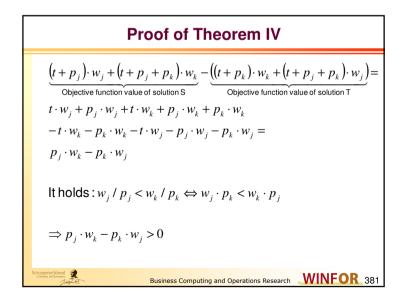

The WSPT-rule leads to the optimal solution

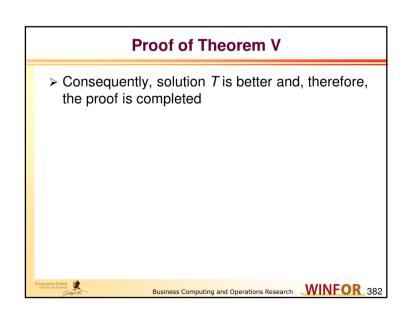
Weighted Shortest Processing Time First Rule: This rule processes all *N* jobs in the sequence of non-increasing order of the value w_i/p_i Minimization of cycle time
Trivial problem
Each solution leads to the same result
Therefore, an arbitrary solution is already an optimal one

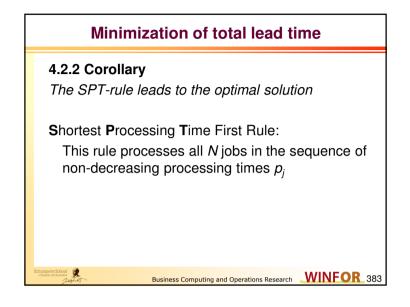
Proof of Theorem

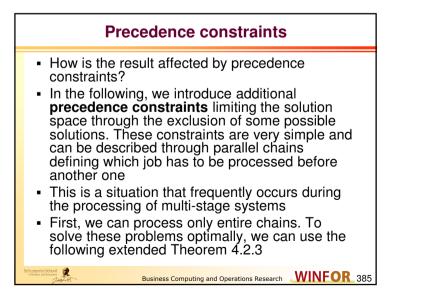

Business Computing and Operations Research WINFOR 376

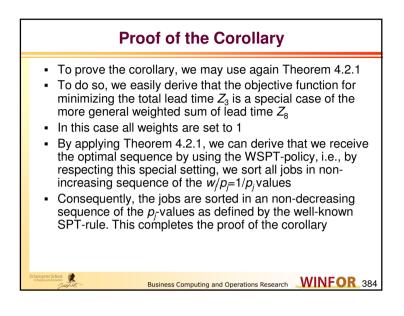

Business Computing and Operations Research WINFOR 378

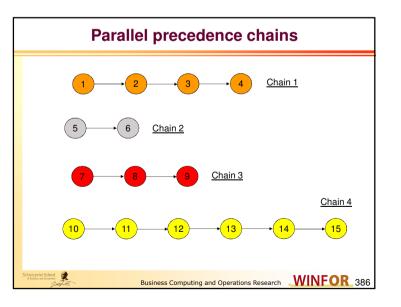


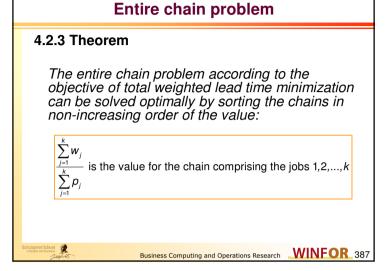

- Therefore, we assume that there is an optimal sequence of the problem that does not fulfill all the restrictions of the WSPT policy
- Consequently, there are two adjacent jobs, say job *j* followed by job *k*, such that

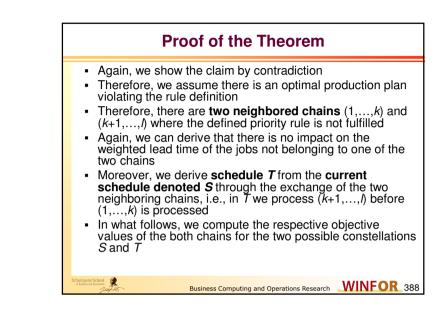

 $w_j/p_j < w_k/p_k$

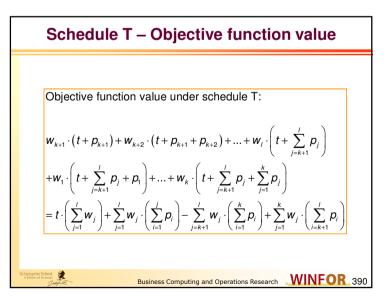


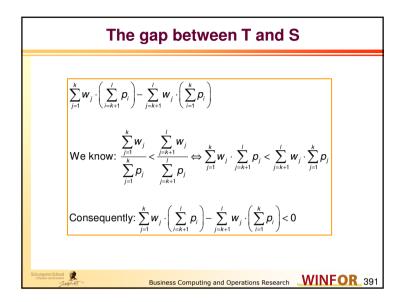


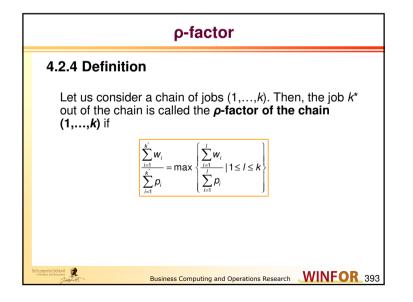


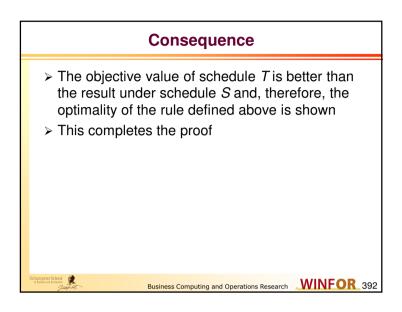


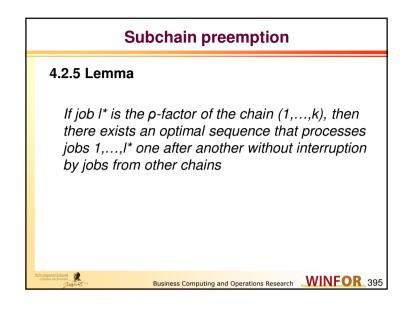


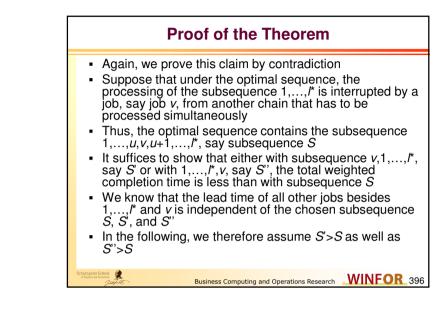


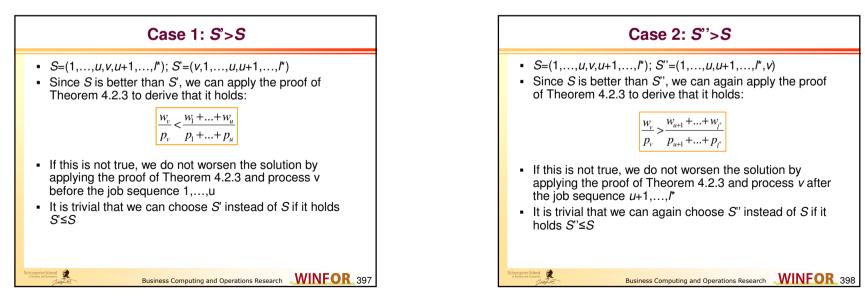


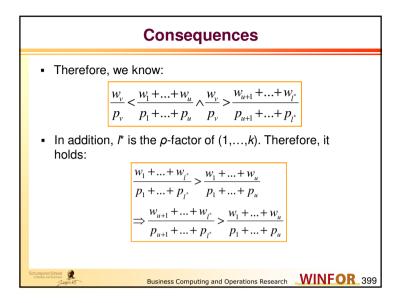


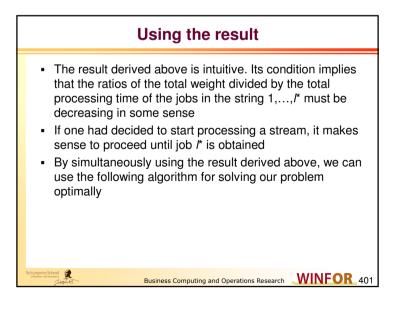

Schedule S – Objective function value
Objective function value under schedule S:
$w_1 \cdot (t + p_1) + w_2 \cdot (t + p_1 + p_2) + \dots + w_k \cdot \left(t + \sum_{i=1}^k p_i\right) + w_{k+1} \cdot \left(t + \sum_{i=1}^{k+1} p_i\right) + \dots + w_k \cdot \left(t + \sum_{i=1}^k p_i\right) + \dots + \dots + w_k \cdot \left(t + \sum_{i=1}^k p_i\right) + \dots + \dots + w_k \cdot \left(t + \sum_{i=1}^k p_i\right) + \dots + $
$\dots + \boldsymbol{w}_{l} \cdot \left(t + \sum_{j=1}^{l} \boldsymbol{p}_{j} \right) = t \cdot \left(\sum_{j=1}^{l} \boldsymbol{w}_{j} \right) + \sum_{j=1}^{l} \boldsymbol{w}_{j} \cdot \left(\sum_{i=1}^{j} \boldsymbol{p}_{i} \right)$
Schuppers School Business Computing and Operations Research WINFOR 389

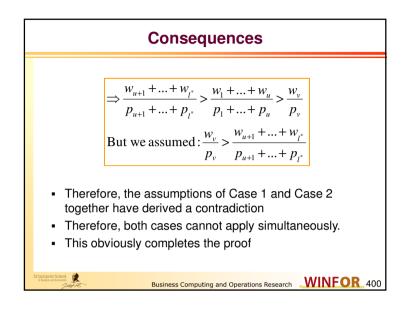


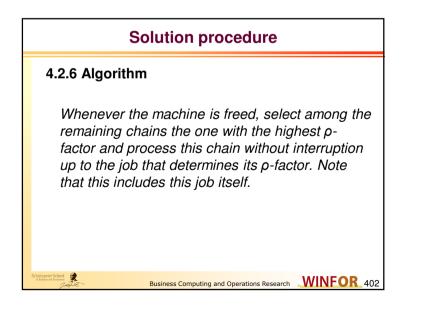


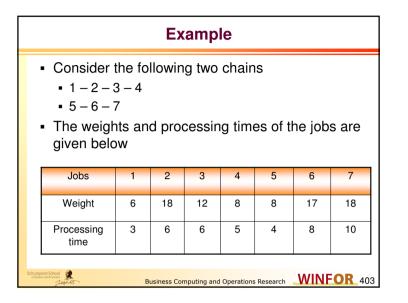


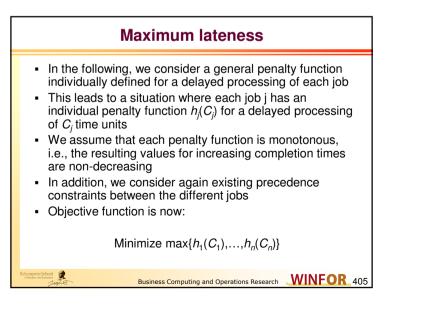


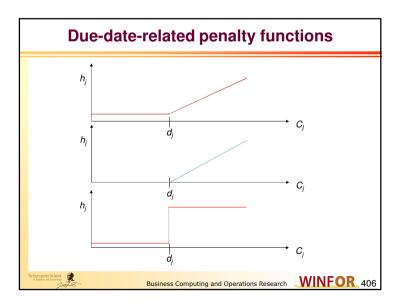

Allowing preemption
 Assume now that the scheduler has the freedom to process any number of jobs in a chain (while adhering to the precedence constraints) without necessarily having to complete all the jobs in the chain before switching to another chain
 In what follows, we consider again the case of multiple chains
 Moreover, total weighted lead time is assumed to be the objective function
 Then, we may apply the result given in the following Theorem 4.2.5 in order to derive an optimal production plan
Business Computing and Operations Research WINFOR 394

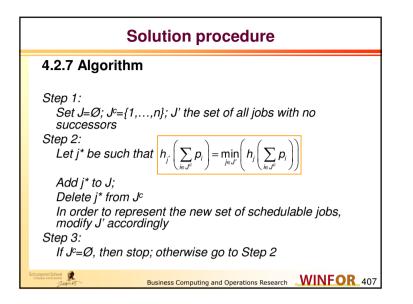


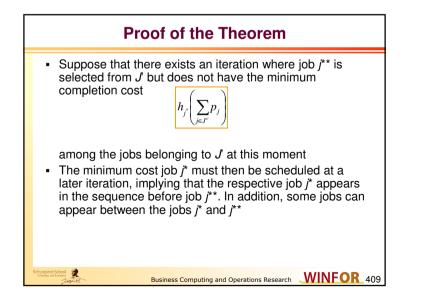


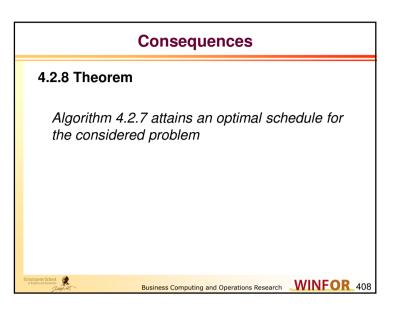


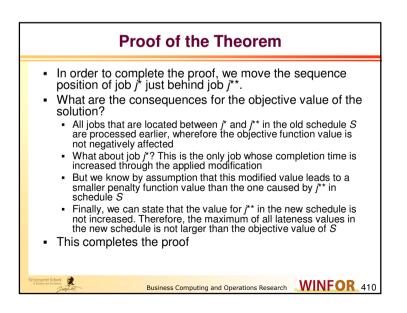


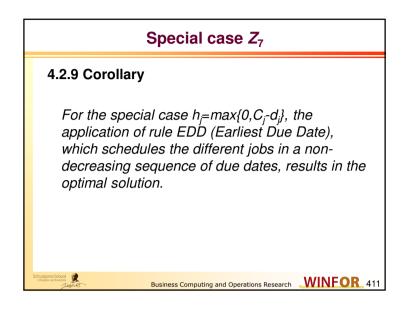


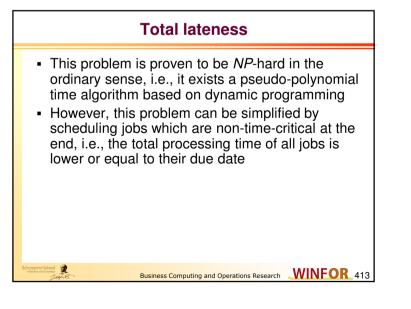


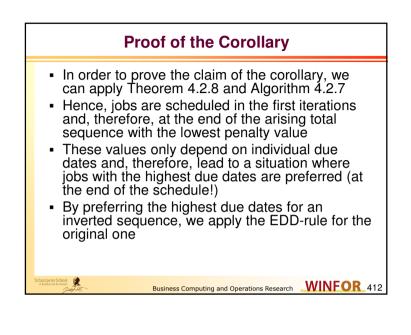


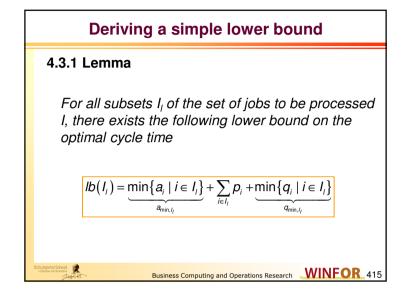


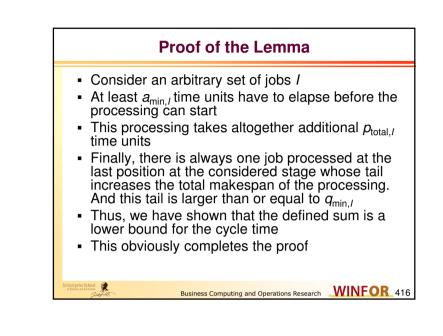












 In what for stage pro 	Ilows, we take a step towards multiple blems
schedulir However subseque	we consider a single stage where a g sequence has to be determined. each job has preceding and nt processes at other stages, which are s head and tails
the <i>i</i> -th jo	ently, beside p_i , the processing time of b at the considered stage, there is a nd a tail q_i
	rsued objective we consider the ion of the makespan (lead time)
Schumpeter School	Business Computing and Operations Research WINFOR 41

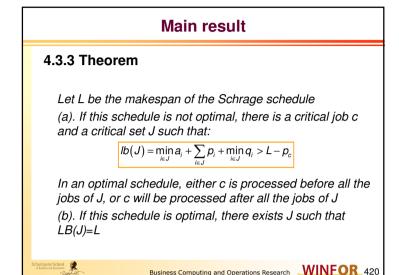
<section-header><section-header><section-header><section-header><text><text><text>

Starting point: The Sch	rage algorithm
In this greedy approach, we the ready job with the greate	-
(i) Set $t = \min_{i \in I} a_i; U = \emptyset; \overline{U} = \{1, \dots, N\}$, <i>n</i> };
(ii) At time t, schedule amongst	the ready jobs <i>i</i>
$(a_i \le t)$ of \overline{U} , job j with $q_j = \max\{c_i\}$	$\eta_i \mid i \in \overline{U} \land a_i \leq t \}$
(or any one in the case of ties)	
(<i>iii</i>) Set: $U = U \cup \{j\}; \overline{U} = \overline{U} \setminus \{j\};$	$t_j = t;$
$t = \max\{t_i + p_i, \min_{i \in \overline{U}} a_i\};$	
If U is equal to $I = \{1,, n\}$, the al	gorithm is finished;
otherwise proceed with step (ii)	
Business Computing and Op	erations Research WINFOR 418

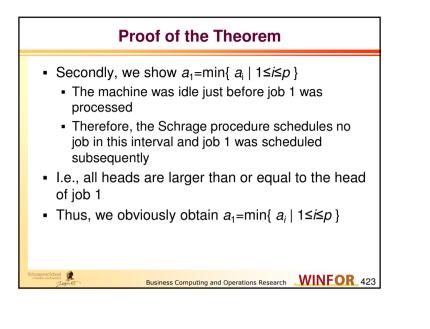
Critical path

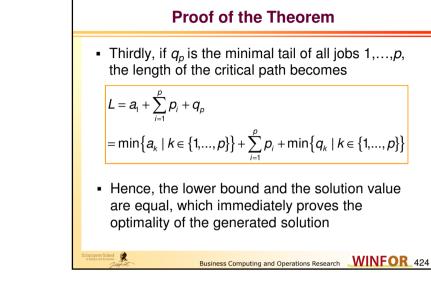
- The critical path of a solution of the problem always comprises, in the given sequence, the following parts:
 - a head of some job,

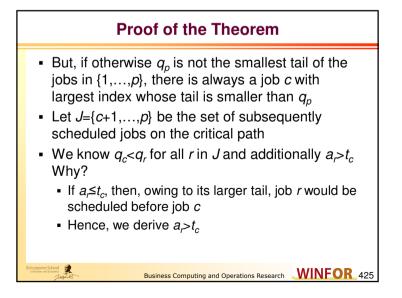
2

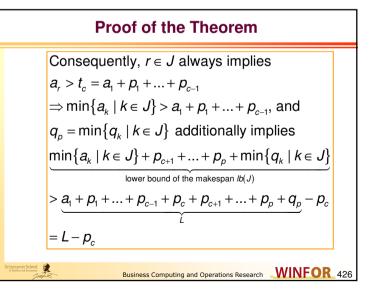

2

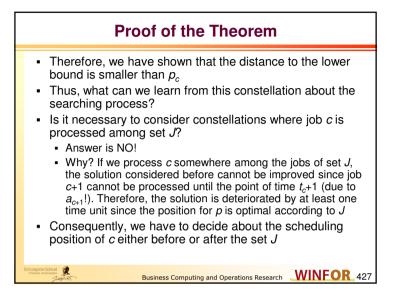
- a sequence of jobs that are iteratively processed without interruption – at the considered stage, and
- finally, a tail of some job that is processed at the last position of the critical path
- In what follows, we derive the basic branching rule of the B&B procedure of Schrage by analyzing the critical path of the solution generated by the Schrage procedure

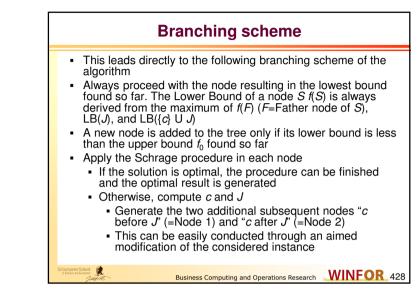

Business Computing and Operations Research WINFOR 419


Proof of the Theorem

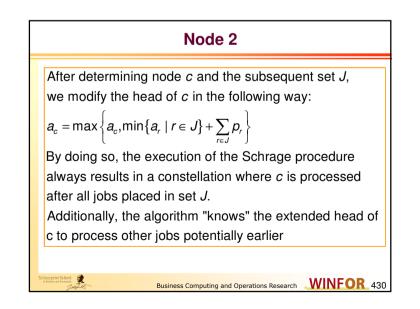

- Let *G* be the disjunctive graph defining the considered problem with source 0 and sink *s*
- In addition, z is a critical path passing through a maximal number of jobs
- We modify the numbering of the jobs according to the definition of this path
- Therefore, the jobs processed on this path are numbered from 1 to p, i.e., the critical path is (0,1,2,3,...,p,s)

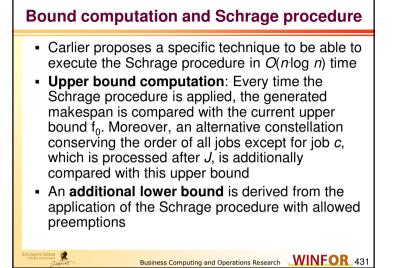



	Proof of the Theorem
•	At first, we prove that there is no processing between the times a_1 -1 and a_1
	 If there is a job processed in this interval, it would be finished at a₁ since the processing of the first job starts just at this point of time
	• If so and there is a job <i>j</i> processed there and we ask whether $a_j = t_j$. If so, we can extend the critical path. Obviously, this is not possible due to the assumption of a maximal path <i>z</i>
	 However, if a_i<t<sub>i we know due to the processing of the Schrage procedure that there is an additional job processed just before j</t<sub>
	 Clearly, because of that cognitions, we know that there is always a final job k with a_k=t_k. Note that this is at least the job firstly processed in the total schedule
•	Hence, we have shown that there is no processing in the interval between a_1 -1 and a_1 due to the maximum choice of <i>z</i>
ipeter	Business Computing and Operations Research WINFOR 422

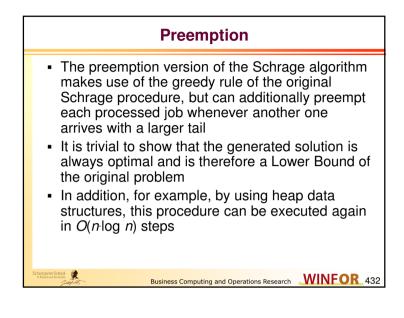


Node 1

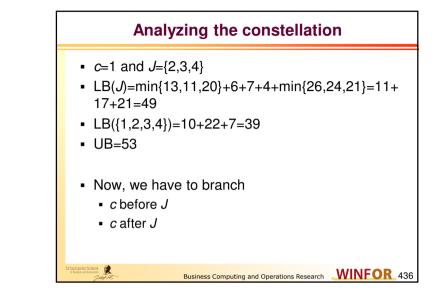

After determining node c and the subsequent set J, we modify the tail of c in the following way:

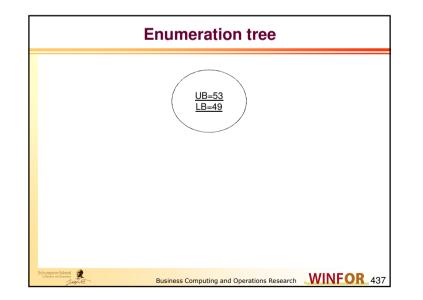

 $\boldsymbol{q}_{c} = \max\left\{\boldsymbol{q}_{c}, \sum_{r \in J} \boldsymbol{p}_{r} + \boldsymbol{q}_{p}\right\}$

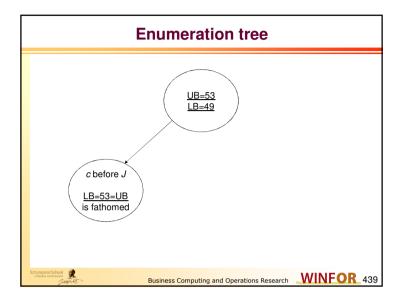
2


By doing so, the execution of the Schrage procedure always results in a constellation where c is processed before all jobs placed in set J.

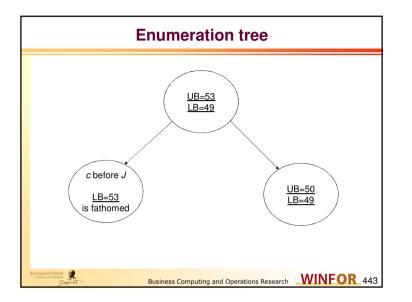
Additionally, the algorithm "knows" the extended tail of c to process this job potentially earlier

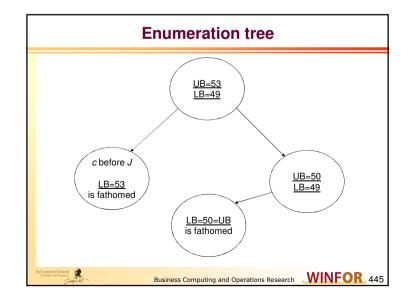



Computational results
 This procedure was coded in FORTRAN on an IRIS 80 and initially tested on 1000 problems For each problem with <i>n</i> jobs, 3 <i>n</i> integers with uniform distributions between 1 and a_{max}, 1 and p_{max} as well as 1 and q_{max} were respectively drawn 20 different values for <i>n</i> were tested; <i>n</i>=50, 100, 150, 200,, 1.000 Further details can be found in Carlier (1982) 999 problems were solved optimally One problem with <i>n</i>=850 was not solved (but the distance to bound was 2!). The lower bound was 29.800 (UB=29.802) In most cases the solution process takes only a small amount of time (extreme small-sized solution trees)
Struggere school Business Computing and Operations Research WINFOR 433

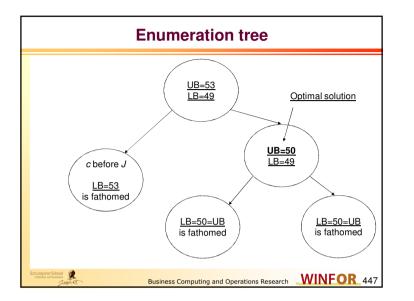

В	ranch&Bou	nd o	of C	Carl	ier	- E	xar	npl	е	
• We	e consider the	follo	wing	g ex	amp	ole				
	Jobs i	Job 1	Job 2	Job 3	Job 4	Job 5	Job 6	Job 7		
	Release dates a _i	10	13	11	20	30	0	30		
	Processing times p _i	5	6	7	4	3	6	2		
	Tails q _i	7	26	24	21	8	17	0		
Sumary Cong 2										
humpeter School 👷 et tastass ant Economics 🖉 Juitt-C	Busin	ess Corr	puting a	and Ope	rations	Researc	h 🚺	VINF	OR	434

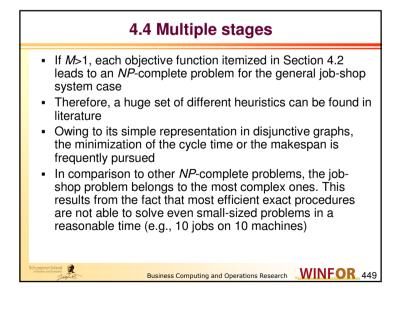
		Apply	ving S	chra	ge	
Nr.	Job	Tail	Start	End	Completed	Av
1	6	17	0	6	23	None
2	1	7	10	15	22	2,3
3	2	26	15	21	47	3,4
4	3	24	21	28	52	4
5	4	21	28	32	53	5,7
6	5	8	32	35	43	7
7	7	0	35	37	37	None
	I Path: C	-		37		FOR

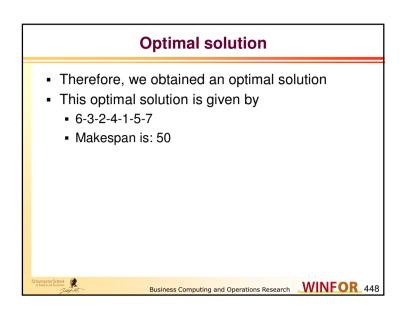

Jobs i	i J	lob 1	Job 2	Job 3	Job 4	Job 5	Job 6	Job 7
Release da	ites a _i	10	13	11	20	30	0	30
Processing t	imes p _i	5	6	7	4	3	6	2
Tails o	l _i 17+	+21=38	26	24	21	8	17	0
New lowe	r bound:							

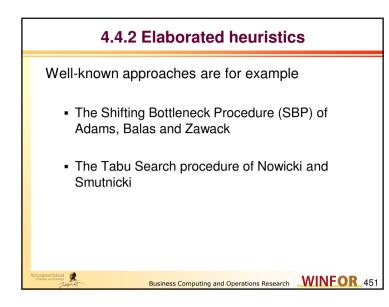

Nr.	Job	Tail	Start	End	Completed	Av
1	6	17	0	6	23	None
2	3	24	11	18	42	2
3	2	26	18	24	50	4
4	4	21	24	28	49	1
5	1	7	28	33	40	5,7
6	5	8	33	36	44	7
7	7	0	36	38	38	None

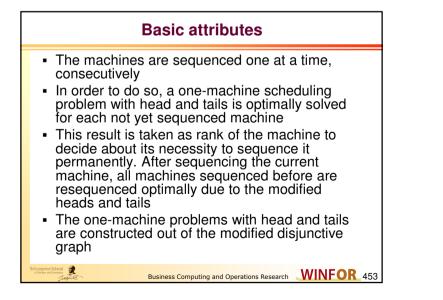
 ew problem cor	-	tion					
Jobs i	Job 1	Job 2	Job 3	Job 4	Job 5	Job 6	Job 7
Release dates a _i	11+17 =28	13	11	20	30	0	30
Processing times p _i	5	6	7	4	3	6	2
Tails q _i	7	26	24	21	8	17	0

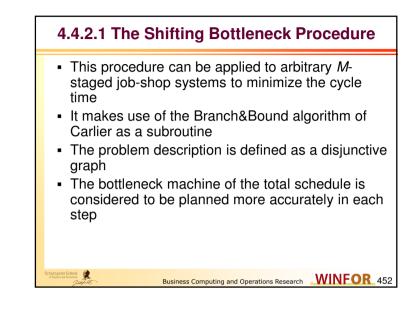

Ana	alyzing the constellation	on
 LB({2,3})= Therefore, 	={2} {13}+6+min{26}=45 11+6+7+24=48 we inherit the Lower Bound e. This is LB=49	d of the
 Now, we h c before c after J 	ave to branch again J	
Schumpeter School	Business Computing and Operations Research	WINFOR 442




problem cons	Job						
	1	2	3	4	5	6	7
 Release dates a _i	28	13	11	20	30	0	30
Processing times p _i	5	6	7	4	3	6	2
Tails q _i	7	26	32	21	8	17	0

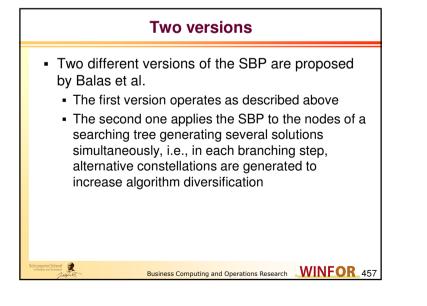

	Job 1	Job 2	Job 3	Job 4	Job 5	Job 6	Job 7
Release dates a _i	28	13	19	20	30	0	30
Processing times p _i	5	6	7	4	3	6	2
Tails q _i	7	26	24	21	8	17	0
	d:						



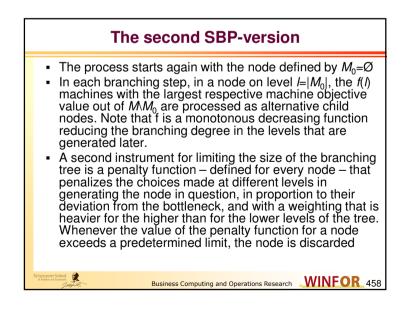


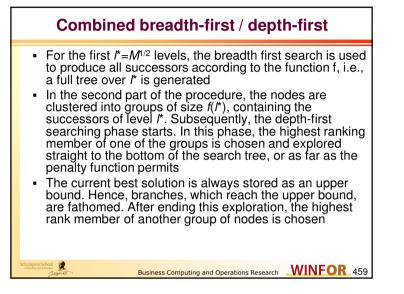
4.	4.1 Use of priority rules
	tive approach can be the application of es deciding about the sequence on every
,	n case of an idle machine, this rule decides ext job to be scheduled by selecting one of obs
be applied to	is approach is very flexible since it can also o dynamic problems while its complexity only the defined computation of the integrated
	the SPT and its variants integrated into archies are applied
Schumpeter School	Business Computing and Operations Research WINFOR

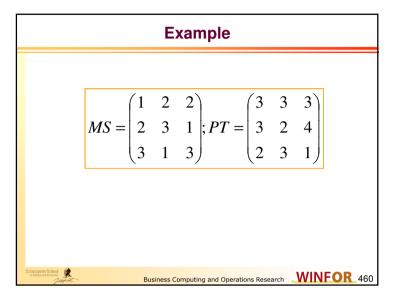

Deriving one-machine problems

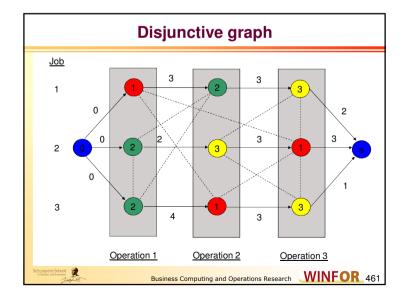

Let $M_0 \subset M$ be the set of machines that have already been sequenced by choosing selections $S_p(p \in M_0)$. For any $k \in M \setminus M_0$, let $(P(k, M_0))$ be the problem obtained from the original problem definition replacing each disjunctive arc set $E_p(p \in M_0)$ by the corresponding selection $S_p(p \in M_0)$ and deleting each disjunctive arc set $E_p(p \in M \setminus M_0, p \neq k)$

Business Computing and Operations Research WINFOR 454


2


27

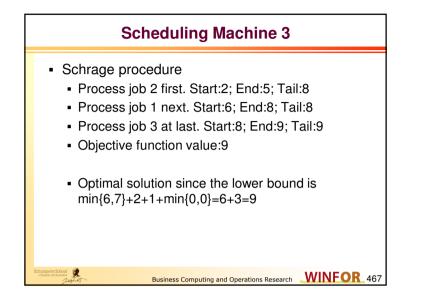


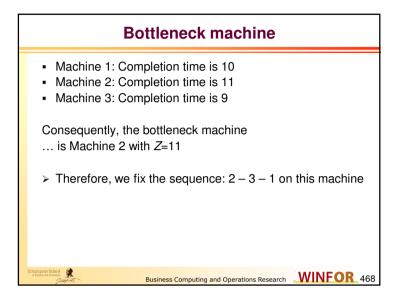


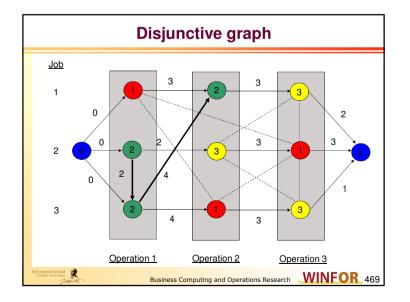
One-n	nachine	problem	າຣ
	Machine	e 1	
	Job 1	Job 2	Job 3
Head	0	5	4
Processing time	3	3	3
Tail	5	0	1
		1	· · · · · · · · · · · · · · · · · · ·
Schumpeter School	siness Computing a	nd Operations Resea	

One-n	nachine	problem	າຣ				
		_					
	Machine 2						
	Job 1	Job 2	Job 3				
Head	3	0	0				
Processing time	3	2	4				
Tail	2	6	4				
L		1	1				
School Leoners Janet Bus	siness Computing a	nd Operations Resea					

Scheduling M	lachine 1
--------------	-----------

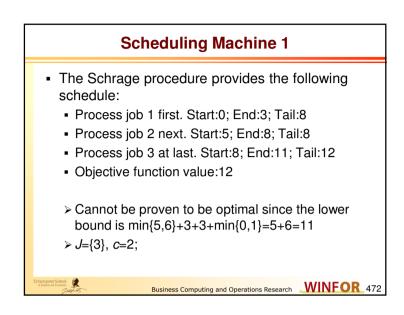

Schrage procedure


- Process job 1 first. Start:0; End:3; Tail:8
- Process job 3 next. Start:4; End:7; Tail:8
- Process job 2 at last. Start:7; End:10; Tail:10


- Objective function value:10
- > Optimal solution since the lower bound is min{5,4}+3+3+min{0,1}=4+6=10

	One-m	nachine	problem	ıs	
		Machine	. 2		
		Machine	3		
		Job 1	Job 2	Job 3	
	Head	6	2	7	
	Processing time	2	3	1	
	Tail	0	3	0	
Schumpeter Scho of Bastess and Booses		siness Computing a	nd Operations Resea		DR 464

	Scheduling Machine 2	
 Pro Pro Pro Obj Opi 	age procedure bcess job 2 first. Start:0; End:2; Tail bcess job 3 next. Start:2; End:6; Tai bcess job 1 at last. Start:6; End:9; T ijective function value:11 timal solution since the lower bound h{3,0,0}+3+2+4+min{2,6,4}=0+9+2=	l:10 ail:11 d is
Schumpeter School	Business Computing and Operations Research	WINFOR

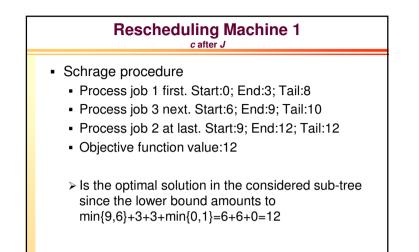


One-m	nachine	problem	IS			
Machine 1						
	Job 1	Job 2	Job 3			
Head	0	5	6			
Processing time	3	3	3			
Tail	5	0	1			

	One-machine problems					
			- 0			
		Machine	3			
		Job 1	Job 2	Job 3		
	Head	9	2	9		
	Processing time	2	3	1		
	Tail	0	3	0		
EnhumentosEchool						
Schumpeter School of Batters and Economy	Bus	siness Computing a	d Operations Resea		4	

Modified Branching problem 1 (c before J)						
	(bolc	Machine I means modi	-			
		Job 1	Job 2 = <i>c</i>	Job 3 <i>=J</i>		
	Head	0	5	6		
	Processing time	3	3	3		
	Tail	5	4=3+1	1		
Schumpeter Schot of Backson and Boorenia	Bus	iness Computing an	d Operations Resea	rch WINF	DR 473	

Rescheduling Machine 1
 Schrage procedure Process job 1 first. Start:0; End:3; Tail:8 Process job 2 next. Start:5; End:8; Tail:12 Process job 3 at last. Start:8; End:11; Tail:11 Objective function value:12
 Is the optimal solution in the considered sub-tree since the lower bound=min{5,6}+3+3+min{4,1}=5+6+1=12 But already dominated by the solution considered before
Schappere School & Business Computing and Operations Research


Modified Branching problem 1							
	(bolc	Machine means mod	-				
		Job 1	Job 2	Job 3			
			=C	=J			
	Head	0	9=6+3	6			
	Processing time	3	3	3			
	Tail	5	0	1			
Schumpeter Schor of Business and Economic	Bus	siness Computing a	nd Operations Resea	rch WINF	OR 475		

Schrage procedure

2

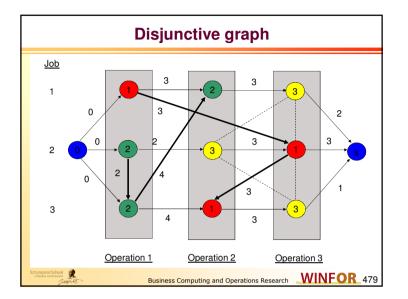
- Process job 2 first. Start:2; End:5; Tail:8
- Process job 1 next. Start:9; End:11; Tail:11
- Process job 3 at last. Start:11; End:12; Tail:12
- Objective function value:12
- Optimal solution since the lower bound is min{9,9}+2+1+min{0,0}=9+3=12

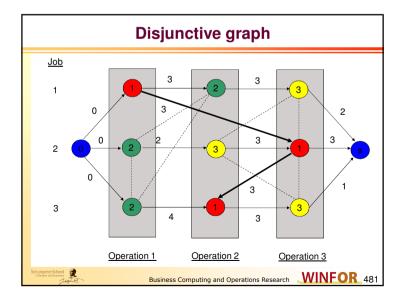
Bottleneck machine

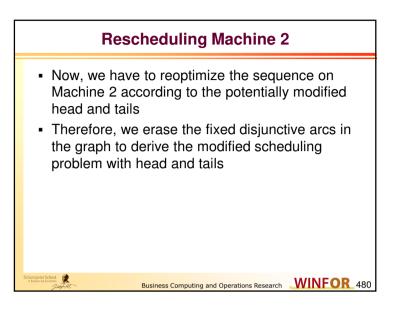
Business Computing and Operations Research WINFOR 476

Business Computing and Operations Research WINFOR 478

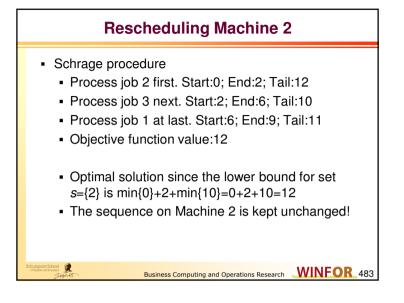
- Machine 1: Completion time is 12
- Machine 3: Completion time is 12

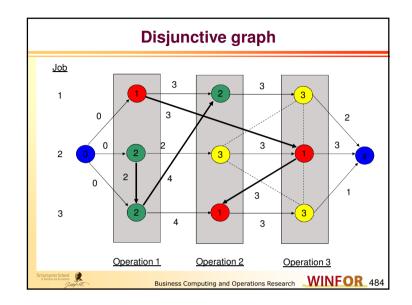

2

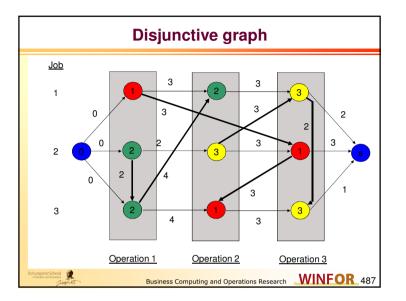

Consequently, the bottleneck machine ... is machine 1 with Z=12

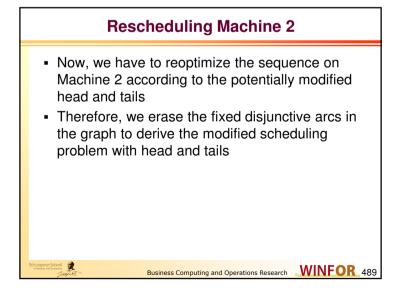

Therefore, we fix the sequence: 1 – 2 – 3 on this machine

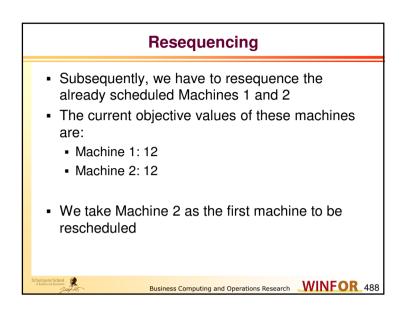
Business Computing and Operations Research WINFOR 477

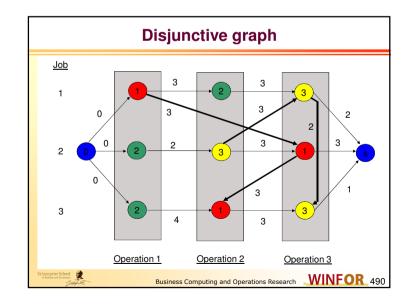

33



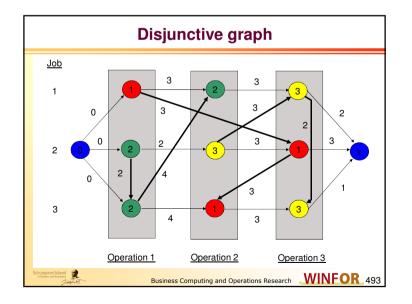

	Modified one-machine problem					
	Machine 2 (bold means modified value)					
		Job 1	Job 2	Job 3		
	Head	3	0	0		
	Processing time	3	2	4		
	Tail	2	10	4		
		1	1			
Schumpeter Schoo of Basiness and Economic	Business Computing and Operations Research					

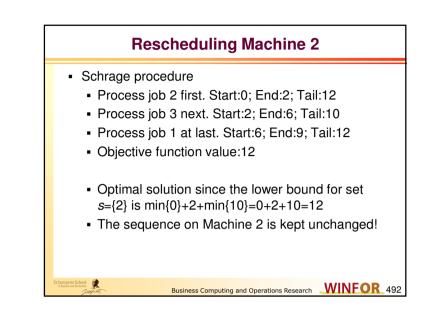


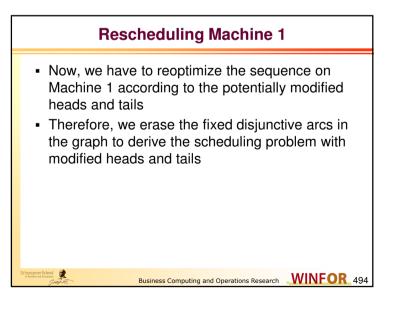

One-machine problems					
Machine 3 (bold means modified value)					
	Job 1	Job 2	Job 3		
Head	9	2	11		
Processing time	2	3	1		
Tail	0	7	0		
		1			
Bu:	siness Computing a	nd Operations Resea	arch WINF		

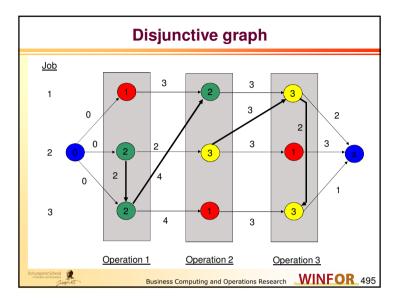


	Scheduling Machine 3
• P • P • C • C	rage procedure rocess job 2 first. Start:2; End:5; Tail:12 rocess job 1 next. Start:9; End:11; Tail:11 rocess job 3 at last. Start:11; End:12; Tail:12 objective function value:12 optimal solution since the lower bound is $in{9,11}+2+1+min{0,0}=9+3=12$ ixing sequence on Machine 3 to 2 – 1 – 3
Schumpeter School	Business Computing and Operations Research WINFOR 486

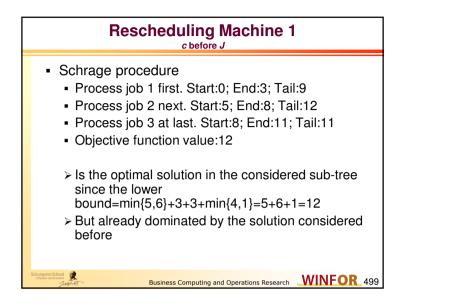








	Modified o	one-mac	hine pro	oblem	
	(bolc	Machine means modi	-		
		Job 1	Job 2	Job 3	
	Head	3	0	0	
	Processing time	3	2	4	
	Tail	3	10	4	
Schumpeter Scho of Bastless and Boone		siness Computing a	nd Operations Resea	Irch WINF	OR _491

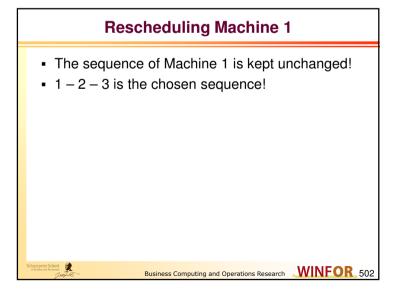

Rescheduling Machine 1
 Schrage procedure Process job 1 first. Start:0; End:3; Tail:9 Process job 2 next. Start:5; End:8; Tail:8 Process job 3 at last. Start:8; End:11; Tail:12 Objective function value:12
 Cannot be proven to be optimal since the lower bound is min{5,6}+3+3+min{0,1}=5+6=11 J={3}, c=2;

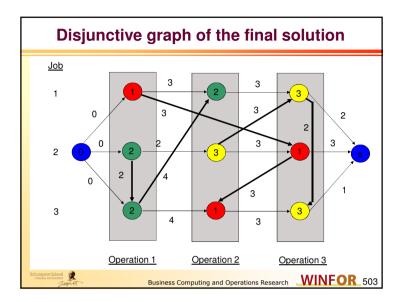
Business Computing and Operations Research WINFOR 497

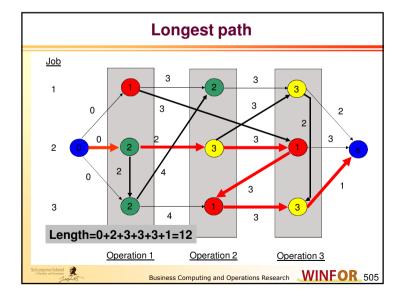
nool

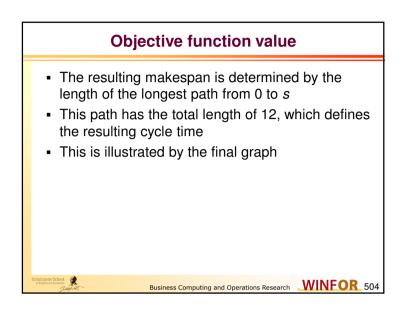
One-machine problems									
	(bolc	Machine I means modi							
	Job 1 Job 2 Job 3								
	Head	0	5	6					
	Processing time	3	3	3					
	Tail	6	0	1					
of Besters and Bootest	Bus	iness Computing an	d Operations Resea	rch WINF	OR 496				

	Modified	Branchi c before		lem 1						
	Machine 1 (bold means modified value)									
		Job 1	Job 2	Job 3						
			=C	=J						
	Head	0	5	6						
	Processing time	3	3	3						
	Tail	6	4=3+1	1						
Schumpeter Scho		siness Computing ar	nd Operations Resea	urch WINF	OR 498					

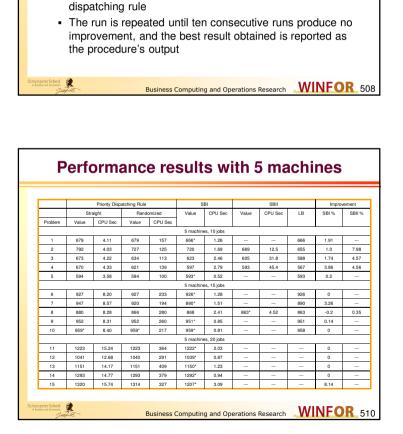

Rescheduling	Machine 1
c after	J


Schrage procedure


2


- Process job 1 first. Start:0; End:3; Tail:9
- Process job 3 next. Start:6; End:9; Tail:10
- Process job 2 at last. Start:9; End:12; Tail:12
- Objective function value:12
- Is the optimal solution in the considered sub-tree since the lower bound=min{9,6}+3+3+min{0,1}=6+6+0=12


Modified Branching Problem 1						
	(bolc	Machine means modi	-			
		Job 1	Job 2	Job 3		
			=C	=J		
	Head	0	9=6+3	6		
	Processing time	3	3	3		
	Tail	6	0	1		
Schumpeter Schu of Besters and Boore	YES SAL		nd Operations Resea	rch WINFOR 5		



- Procedures were implemented in FORTRAN on a VAX 780/11 on 40 problems taken from wellknown benchmarks
- In what follows, we depict the results presented by Balas et al.
- They tested the SBP in its both variants against some simple priority rules
- The consumed CPU time is illustrated in the tables beside the solution quality

Business Computing and Operations Research _______507

		Number of			SBI			s	BII		
Instance	Machines	Jobs	Operations	Value	CPU Sec	Micro-runs	Value	CPU Sec	Macro-runs	LB	
1	5	4	20	13*	0.50	21				13	
2	6	6	36	55*	1.50	82				52	
3	10	10	100	1015	10.10	249	930*#	851	270	808	
4	5	20	100	1290	3.50	71	1178	80	32	1164	
5	10	10	100	1306	5.70	181	1239	1503	352	1028	
6	10	10	100	962	12.67	235	943	1101	343	835	
7	15	20	300	730	118.87	1057	710	1269	30	650	
8	15	20	300	774	125.02	1105	716	1775	35	597	
9	15	20	300	751	94.32	845	735	1312	35	616	
10	10	15	150	1172	21.89	343	1084	362	25	995	
11	10	15	150	1040	19.24	293	994	414	44	913	
12	10	20	200	1304	48.54	525	1224	744	62	1218	
13	10	20	200	1325	45.54	434	1291	837	64	1235	
14	10	30	300	1784*	38.26	212				1784	
15	10	30	300	1850*	29.06	164				1850	
16	10	40	400	2553*	11.05	61				2553	
17	10	40	400	2228*	75.03	226				2228	
18	10	50	500	2864*	53.42	98				2864	
19	10	50	500	2985*	27.47	75				2985	
lue: cro-runs acro-runs	number	of the on	best sched e-machine SBI was rui	problems		*: #: LB:	opt low	imal value /er bound		nal er 320 secor plution value	

Priority rule application

• First, the priority rule algorithms are applied in a

operations to be processed next randomly

Second, the priority rules are applied in a random

priority assigned to each operation by the given

• The randomized rule is to select one of the available

 This is done by applying a probability distribution which makes the odds of being selected proportional to the

straightforward fashion

fashion by applying all rules

		Priority Disp	atching Rule		s	BI		SBII		Impro	vement
	Str	aight	Rand	omized	Value	CPU Sec	Value	CPU Sec	LB	SBI %	SBII
Problem	Value	CPU Sec	Value	CPU Sec	1						
					10 machin	ies, 10 jobs					
16	1036	7.66	1036	240	1021	6.48	978	240**	875	1.45	5.60
17	857	6.85	857	192	796	4.58	787	192**	737	7.12	8.17
18	673	6.55	897	225	891	10.2	859	225**	770	0.67	4.24
19	670	7.45	898	240	875	7.40	860	240**	709	2.56	4.24
20	594	7.89	942	289	924	10.2	914	289**	807	1.91	2.97
					10 machin	ies, 15 jobs					
21	1208	14.71	1198	362	1172	21.9	1084	362**	995	2.17	9.52
22	1085	13.93	1038	414	1040	19.2	944	419**	913	-0.2	9.06
23	1163	14.22	1108	417	1061	24.6	1032*	225**	1023	4.24	6.86
24	1142	14.33	1048	435	1000	25.5	976	434**	881	4.58	6.87
25	1259	14.70	1160	430	1048	27.9	1017	430**	894	1.03	3.71
					10 machin	ies, 20 jobs					
26	1373	24.62	1373	744	1304	48.5	1224	744**	1218	5.03	10.85
27	1472	25.79	1417	837	1325	45.5	1291	837**	1235	6.49	8.89
28	1475	25.5	1402	901	1256	28.5	1250	901**	1216	10.41	10.84
29	1539	25.38	1382	892	1294	48.0	1239	892**	1114	6.37	10.35
30	1604	26.7	1508	816	1403	37.8	1355*	551**	1355	6.96	10.15

Further performance results Priority Dispatching Bule SBI SBII Improvement Straight Randomized Value CPU Se Value CPU Sec 1 B SBI % SBII % Value CPU Sec Value CPU Sec 10 machines 30 jobs 1852 1784* 38.3 1935 55.42 1786 3.67 1969 57 48 1916 1889 3 44 32 1850° 29.1 1719* 4 82 33 1871 54.13 1806 1313 25.6 34 1926 55.65 1844 1559 1721* 27.6 6.67 1997 56.61 1888* 21.3 4.98 35 1987 1537 15 machines, 15 jobs 1351 46.9 1305 1517 26.20 1385 735 735** 1224 2 45 5 78 36 37 1670 26.95 1551 837 1485 61.4 1423 837** 1355 4.26 8.25 38 1405 24.43 1388 1079 1280 57.7 1255 1079** 1077 7.78 9.58 1341 669 1321 71.8 1273 5.07 39 1436 24 40 669** 1221 1 49 1477 899 1326 76.7 1269 8.24 40 24,71 1383 899** 1170 4.12 Value: makespan of the best schedule obtained Improvement: improvement (in percent) in solution value over lower bound given by solution value for the that found by the randomized priority dispatching IB: first bottleneck problem rulo value proved to be optimal time limit set to time required by randomized priority dispatching rule. Business Computing and Operations Research WINFOR 512

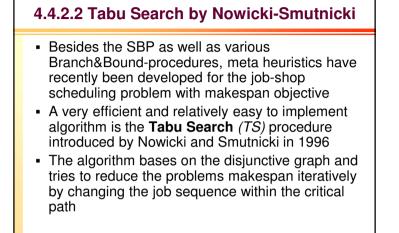
Main results

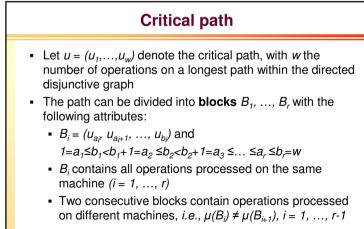
• Priority rules:

2

- No domination between the rules can be identified
- Eight of the ten rules showed best result on at least one problem
- Two rules (LPT and FA) never
- · Priority rules vs. SBP I/II
 - In 38 cases SBP I finds better solutions than the constellations generated by the priority rule procedure whether in the straight or randomized version
 - Furthermore, Version 2 finds substantially improved solutions for many constellations most of the time
 - Altogether, it can be stated that SBP II is always without exception at least as good as the randomized priority rule
 - Moreover, in the vast majority of the considered cases, it is considerably better
 - Typical average improvement rates were between 4 and 10 percent

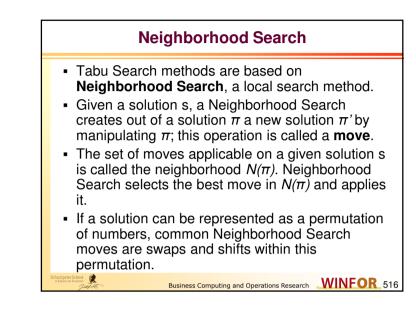
Business Computing and Operations Research WINFOR 513

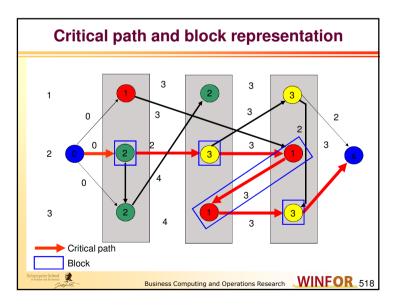

SBP – **Pros** and **Cons**

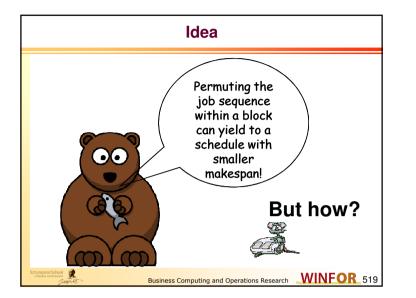

Pros

- Elaborated procedure
- Despite the fact that the procedure uses a Branch&Bound procedure to tackle an NP-hard problem as a frequently called subroutine, it is quite fast in comparison to well-known meta strategies, as for example, the Tabu Search procedure of Nowicki and Smutnicki
- SBP I is frequently used as an initial procedure to generate a first solution with quite good quality
- Cons

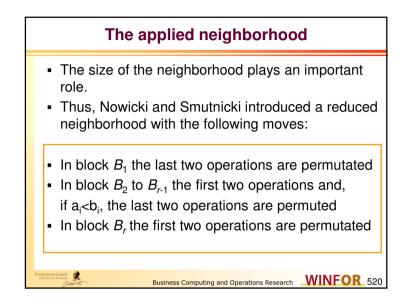
2

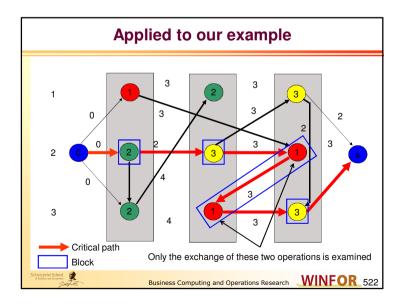

- Solution quality is poorer than known from elaborated meta strategies
- Single priority rules are much faster

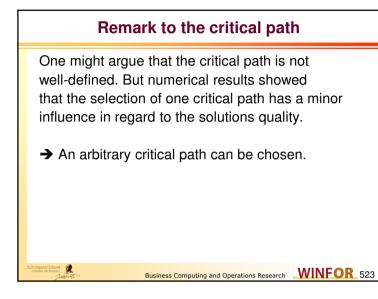


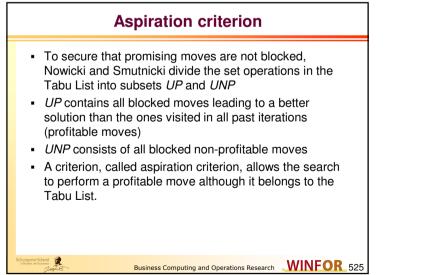


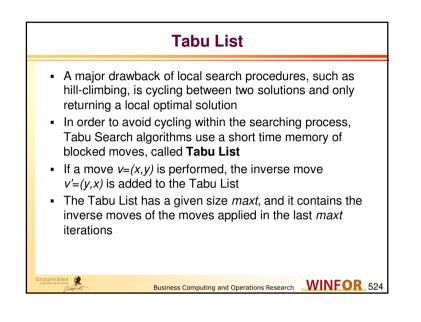
2

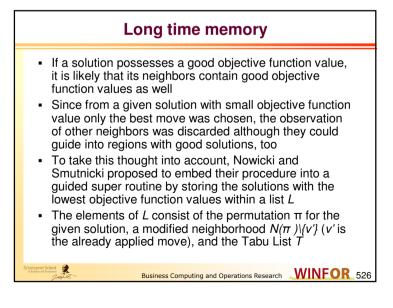

Business Computing and Operations Research WINFOR 517

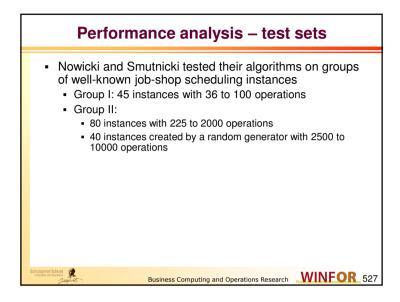


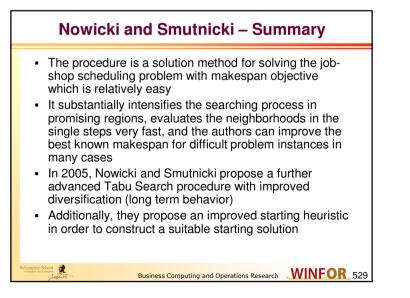


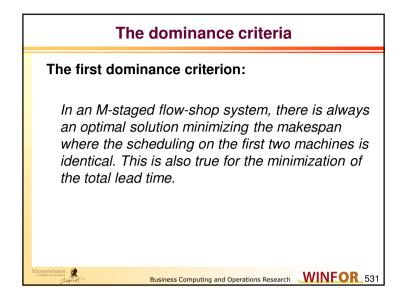


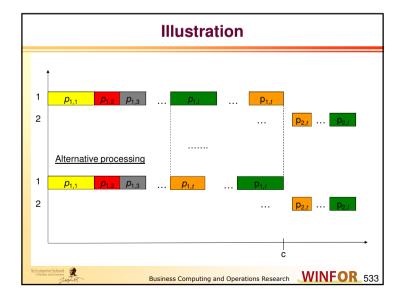

Mathematical represent	ation of the moves
Let $V(\pi) = (V_1(\pi),, V_r(\pi))$ denot are applicable to a given job sequ	
$V_1(\boldsymbol{\pi}) = \begin{cases} \{(u_{b_1-1}, u_{b_1})\}\\ \varnothing \end{cases}$	if $a_1 < b_1$ and $r > 1$ else
$V_i(\pi) = \begin{cases} \{(u_{a_i}, u_{a_i+1}), (u_{b_i-1}, u_{b_i})\} \\ \emptyset \end{cases}$	if $a_i < b_i$
Ø	else
$V_r(\boldsymbol{\pi}) = \begin{cases} \{(u_{a_r}, u_{a_r+1})\} \\ \varnothing \end{cases}$	if $a_r < b_r$ and $r > 1$
$V_r(\lambda) = \begin{cases} \emptyset \end{cases}$	else
Schumpeter School Business Computing and	Operations Research WINFOR 521

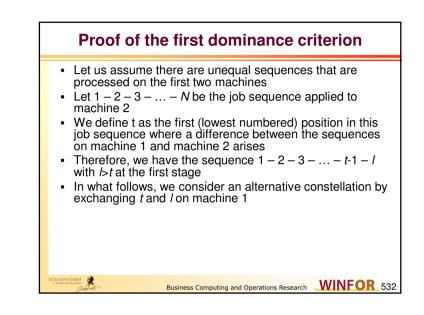




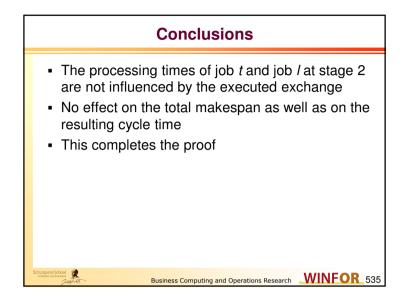


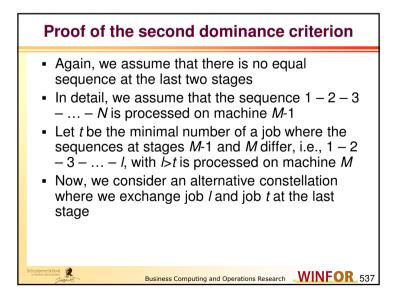


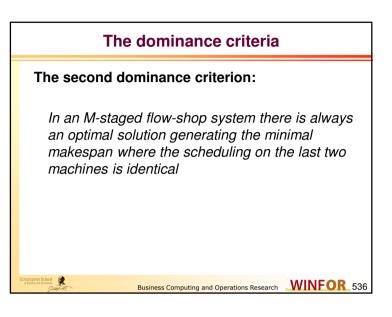


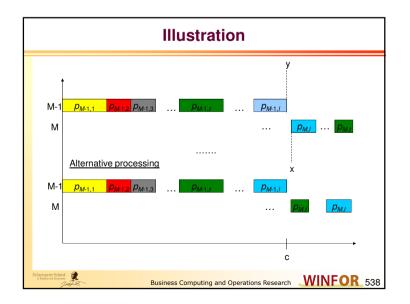


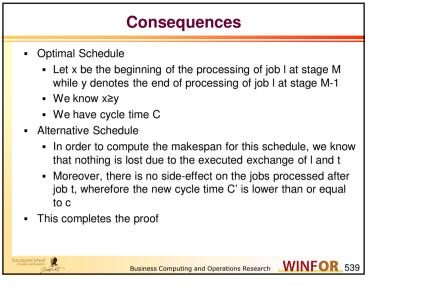
Test set		Number of instances	C* better than best- known value	Optimality proven
Group I		45	30	In 20 of 30 unknown cases*
0 "	a)	80	33	In 10 of 61 unknown cases*
Group II b)		40	No references available	No references available

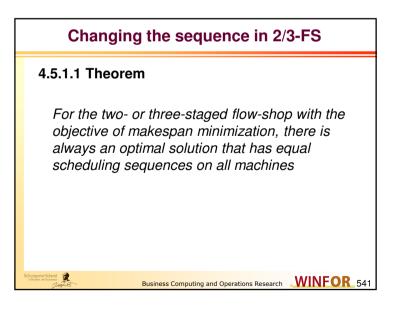

4.5 Flow-shop problems
 In the following, we consider flow-shop problems as a special case of job-shop systems In this special case, each job has an identical machine sequence in which it is processed Therefore, we can define a definite numbering (1,,<i>M</i>) of the used resources that determine the processing sequence of each job Despite the fact that the total solution space still consists of altogether (<i>N</i>!)^M constellations, this problem seems to be somehow relaxed in comparison to the general job-shop problem
Business Computing and Operations Research

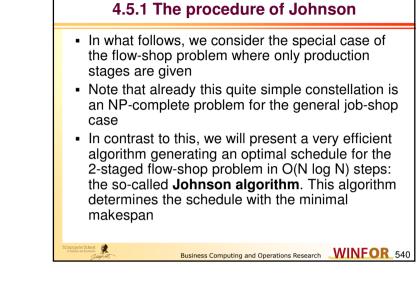


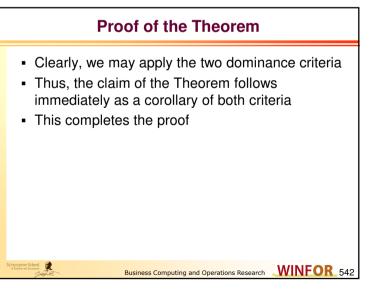


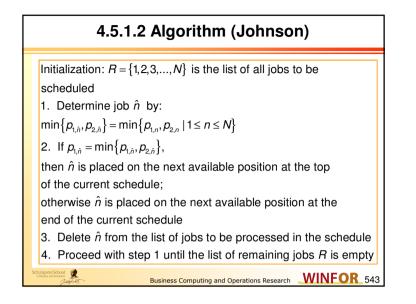


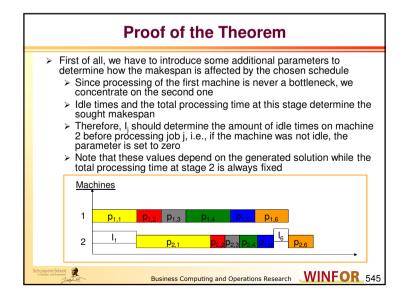

Consequences for jobs
 Job t The exchange on machine 1 can improve only the subsequent constellation by an earlier processing at stage 2 Therefore, the remaining schedule is of better or at least of an equal quality Job I
 Firstly, note that the end of processing of job / at stage 1 in the modified constellation is equal to the point of time the processing of job <i>t</i> ends at stage 1 in the original constellation. Let <i>c</i> denote this point of time in both schedules Therefore, job / can not be processed at stage 2 before <i>t</i> is processed. Note that this applies to both schedules Schedule 1: Reason: Processing of job <i>t</i> at stage 2 before job <i>l</i>. In addition, job <i>t</i> at stage 2 has to wait for its processing at stage 1, which is not ended before <i>c</i> Schedule 2: Reason: Processing of job / at stage 1. In detail, job / at stage 2 has to wait for its processing at stage 1, which is not ended before <i>c</i>
Business Computing and Operations Research

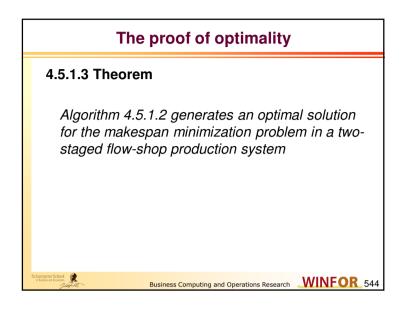


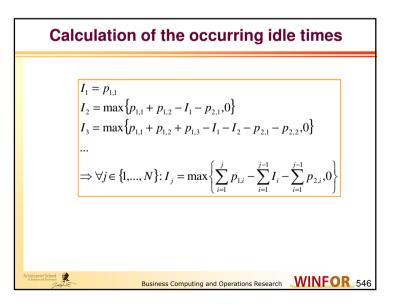


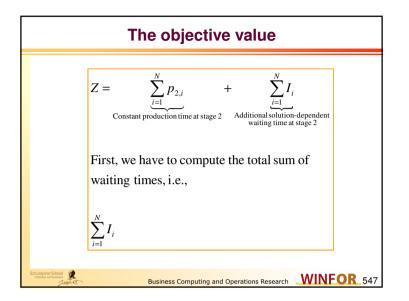


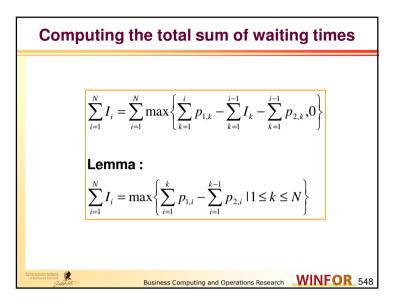


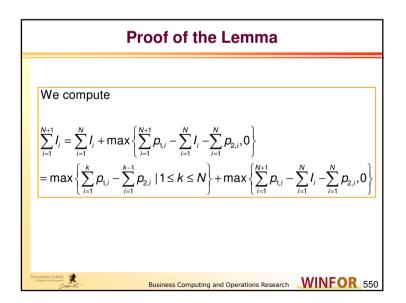


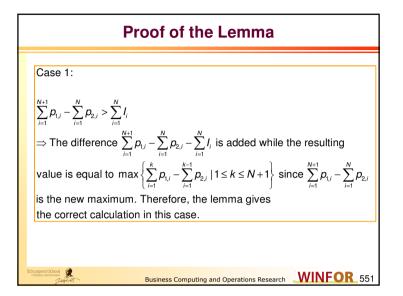


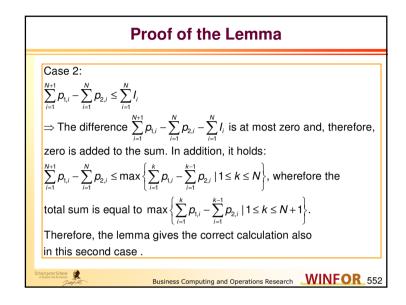


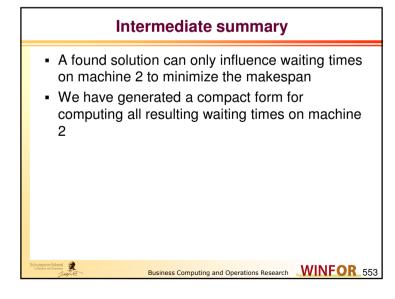


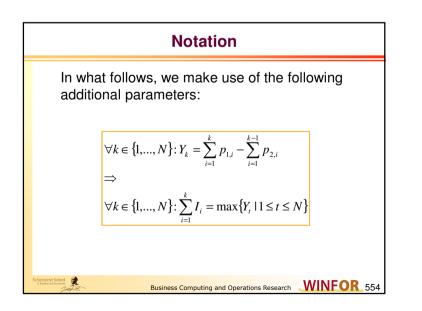


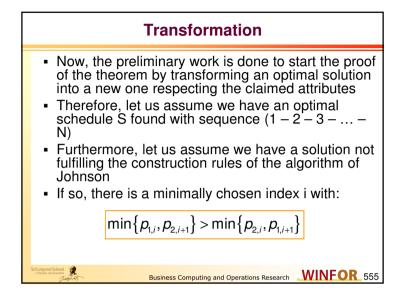


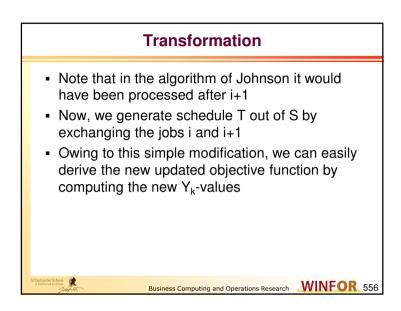


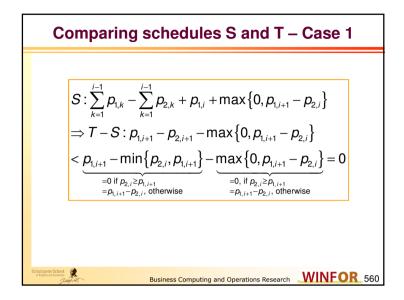



Proof of the Lemma
We show the claim by induction:
Start: N = 1
$\sum_{i=1}^{1} I_i = \sum_{i=1}^{1} \max\left\{\sum_{k=1}^{i} p_{1,k} - \sum_{k=1}^{i-1} I_k - \sum_{k=1}^{i-1} p_{2,k}, 0\right\} = \max\left\{\sum_{k=1}^{1} p_{1,k} - \sum_{k=1}^{0} I_k - \sum_{k=1}^{0} p_{2,k}, 0\right\}$
$= \max\{p_{1,1}, 0\} = p_{1,1}$
$N \rightarrow N+1$
It holds: $\sum_{i=1}^{N} I_i = \max\left\{\sum_{i=1}^{k} p_{1,i} - \sum_{i=1}^{k-1} p_{2,i} \mid 1 \le k \le N\right\}$
Strumers School @
Business Computing and Operations Research

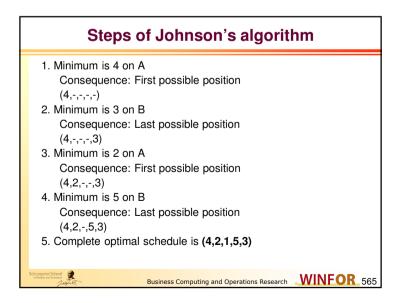


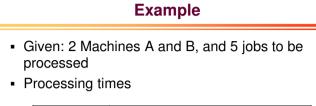


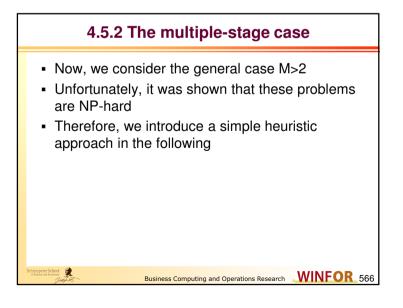


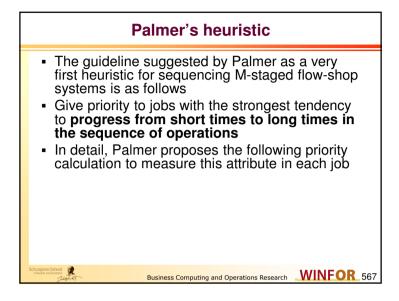

Compa	aring schedules S and T
Let us consider Y_k^T a	as the value for job k under schedule T
$Y_{i} = \sum_{k=1}^{i} p_{1,k} - \sum_{k=1}^{i-1} p_{2,k}$	$(1 \rightarrow 2 \rightarrow \rightarrow i - 1 \rightarrow i \rightarrow i + 1 \rightarrow \rightarrow N)$
$Y_i^T = \sum_{k=1}^{i+1} p_{1,k} - \sum_{k=1}^{i-1} p_{2,k} -$	$-p_{2,i+1} (1 \to 2 \to \dots \to i-1 \to i+1 \to i \to \dots \to N)$
$Y_{i+1} = \sum_{k=1}^{i+1} p_{1,k} - \sum_{k=1}^{i} p_{2,k}$	
$Y_{i+1}^{T} = \sum_{k=1}^{i-1} p_{1,k} + p_{1,i+1} - \sum_{k=1}^{i-1} p_{1,i+1} - \sum_{k=1$	$\sum_{k=1}^{k-1} p_{2,k}$
All other values are	not affected !
Schumpeter School	Business Computing and Operations Research WINFOR 557

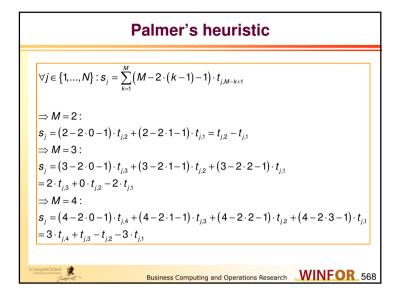

Comparing schedules S and T
$\Rightarrow \max\{Y_i^T, Y_{i+1}^T\} = \max\{\sum_{k=1}^{i+1} p_{1,k} - \sum_{k=1}^{i-1} p_{2,k} - p_{2,i+1}, \sum_{k=1}^{i-1} p_{1,k} + p_{1,i+1} - \sum_{k=1}^{i-1} p_{2,k}\}$
$=\sum_{k=1}^{i-1} p_{1,k} - \sum_{k=1}^{i-1} p_{2,k} + \max\left\{p_{1,i} + p_{1,i+1} - p_{2,i+1}, p_{1,i+1}\right\}$
$=\sum_{k=1}^{i-1} p_{1,k} - \sum_{k=1}^{i-1} p_{2,k} + p_{1,i+1} + \max\{p_{1,i} - p_{2,i+1}, 0\}$
$\Rightarrow \max\{Y_{i}, Y_{i+1}\} = \max\left\{\sum_{k=1}^{i} p_{1,k} - \sum_{k=1}^{i-1} p_{2,k}, \sum_{k=1}^{i+1} p_{1,k} - \sum_{k=1}^{i} p_{2,k}\right\}$
$=\sum_{k=1}^{i-1} p_{1,k} - \sum_{k=1}^{i-1} p_{2,k} + \max\{p_{1,i}, p_{1,i} + p_{1,i+1} - p_{2,i}\}$
$=\sum_{k=1}^{i-1} p_{1,k} - \sum_{k=1}^{i-1} p_{2,k} + p_{1,i} + \max\{0, p_{1,i+1} - p_{2,i}\}$
Schumpeter School & Business Computing and Operations Research


$$\begin{aligned} & \mathcal{F} : \sum_{k=1}^{i-1} p_{1,k} - \sum_{k=1}^{i-1} p_{2,k} + p_{1,i+1} + \max\{p_{1,i} - p_{2,i+1}, 0\} \\ & \mathcal{F} : \sum_{k=1}^{i-1} p_{1,k} - \sum_{k=1}^{i-1} p_{2,k} + p_{1,i} + \max\{0, p_{1,i+1} - p_{2,i}\} \\ & \mathcal{F} : \sum_{k=1}^{i-1} p_{1,k} - \sum_{k=1}^{i-1} p_{2,k} + p_{1,i} + \max\{0, p_{1,i+1} - p_{2,i}\} \\ & \mathcal{F} : \sum_{k=1}^{i-1} p_{1,k} - \sum_{k=1}^{i-1} p_{2,k} + p_{1,i+1} + p_{1,i} - p_{2,i+1} \\ & \mathcal{F} : \sum_{k=1}^{i-1} p_{1,k} - \sum_{k=1}^{i-1} p_{2,k} + p_{1,i+1} + p_{1,i} - p_{2,i+1} \\ & = \sum_{k=1}^{i-1} p_{1,k} - \sum_{k=1}^{i-1} p_{2,k} + p_{1,i} + p_{1,i+1} - p_{2,i+1} \end{aligned}$$

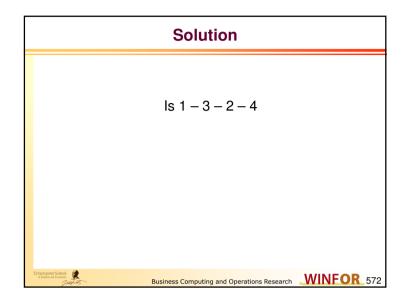

$$\begin{aligned} & \mathcal{F}_{k=1}^{i-1} p_{1,k} - \sum_{k=1}^{i-1} p_{2,k} + p_{1,i+1} + \max\{p_{1,i} - p_{2,i+1}, 0\} \\ & \mathcal{F}_{k=1}^{i-1} p_{1,k} - \sum_{k=1}^{i-1} p_{2,k} + p_{1,i} + \max\{0, p_{1,i+1} - p_{2,i}\} \\ & \mathcal{F}_{k=1}^{i-1} p_{1,k} - \sum_{k=1}^{i-1} p_{2,k} + p_{1,i} + \max\{0, p_{1,i+1} - p_{2,i}\} \\ & \mathcal{F}_{k=1}^{i-1} p_{1,k} - \sum_{k=1}^{i-1} p_{2,k} + p_{1,i} + \max\{0, p_{1,i+1} - p_{2,i}\} \\ & \mathcal{F}_{k=1}^{i-1} p_{1,k} - \sum_{k=1}^{i-1} p_{2,k} + p_{1,i} + \max\{0, p_{1,i+1} - p_{2,i}\} \\ & \mathcal{F}_{k=1}^{i-1} p_{1,k} - \sum_{k=1}^{i-1} p_{2,k} + p_{1,i+1} + \max\{0, p_{1,i+1} - p_{2,i}\} \\ & \mathcal{F}_{k=1}^{i-1} p_{1,k} - \sum_{k=1}^{i-1} p_{2,k} + p_{1,i+1} + \max\{0, p_{1,i+1} - p_{2,i}\} \\ & \mathcal{F}_{k=1}^{i-1} p_{1,k} - \sum_{k=1}^{i-1} p_{2,k} + p_{1,i+1} + \max\{0, p_{1,i+1} - p_{2,i}\} \\ & \mathcal{F}_{k=1}^{i-1} p_{1,k} - \sum_{k=1}^{i-1} p_{2,k} + p_{1,i+1} + \max\{0, p_{1,i+1} - p_{2,i}\} \\ & \mathcal{F}_{k=1}^{i-1} p_{1,k} - \sum_{k=1}^{i-1} p_{2,k} + p_{1,i+1} + \max\{0, p_{1,i+1} - p_{2,i}\} \\ & \mathcal{F}_{k=1}^{i-1} p_{1,k} - \sum_{k=1}^{i-1} p_{2,k} + p_{1,i+1} + \max\{0, p_{1,i+1} - p_{2,i}\} \\ & \mathcal{F}_{k=1}^{i-1} p_{1,k} - \sum_{k=1}^{i-1} p_{2,k} + p_{1,i+1} + \max\{0, p_{1,i+1} - p_{2,i}\} \\ & \mathcal{F}_{k=1}^{i-1} p_{1,k} - \sum_{k=1}^{i-1} p_{2,k} + p_{1,i+1} + \max\{0, p_{1,i+1} - p_{2,i}\} \\ & \mathcal{F}_{k=1}^{i-1} p_{1,k} - \sum_{k=1}^{i-1} p_{2,k} + p_{1,i+1} + \max\{0, p_{1,i+1} - p_{2,i}\} \\ & \mathcal{F}_{k=1}^{i-1} p_{1,k} - \sum_{k=1}^{i-1} p_{2,k} + p_{1,i+1} + \max\{0, p_{1,i+1} - p_{2,i}\} \\ & \mathcal{F}_{k=1}^{i-1} p_{1,k} - \sum_{k=1}^{i-1} p_{2,k} + p_{1,i+1} + \max\{0, p_{1,i+1} - p_{2,i}\} \\ & \mathcal{F}_{k=1}^{i-1} p_{1,k} - \sum_{k=1}^{i-1} p_{2,k} + p_{2,i+1} + p_{2,i} + p_{2,i+1} + p_{2,i} + p_{2,i+1} + p_{2,i+1}$$

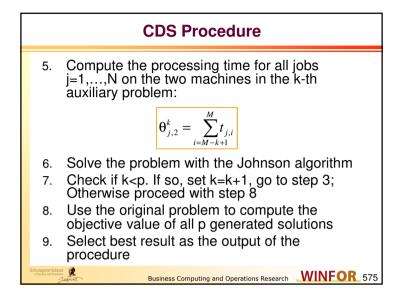

Comparing schedules S and T – Case 2
Case 2: $p_{1,i} = \min\{p_{1,i}, p_{2,i+1}\} > \min\{p_{2,i}, p_{1,i+1}\}$
$T : \sum_{k=1}^{i-1} p_{1,k} - \sum_{k=1}^{i-1} p_{2,k} + p_{1,i+1}$ $S : \sum_{k=1}^{i-1} p_{1,k} - \sum_{k=1}^{i-1} p_{2,k} + p_{1,i} + \max\{0, p_{1,i+1} - p_{2,i}\}$ $\Rightarrow T - S : p_{1,i+1} - p_{1,i} - \max\{0, p_{1,i+1} - p_{2,i}\}$
$= p_{1,i+1} - \min\{p_{2,i}, p_{1,i+1}\} - \max\{0, p_{1,i+1} - p_{2,i}\} = 0$
$\underbrace{(1,1,1)}_{=0 \text{ if } p_{2,i} \ge p_{1,i+1}}_{=p_{1,i+1}-p_{2,i}, \text{ otherwise}} \underbrace{(1,1,1,1)}_{=0,i,1} \underbrace{(1,1,1,1,1)}_{=0,i,1} \underbrace{(1,1,1,1,1)}_{=0,i,1} \underbrace{(1,1,1,1,1)}_{=0,i,1} $
Business Computing and Operations Research WINFOR 562



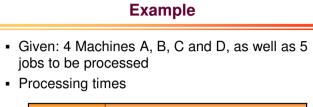


Machine	Jobs					
	1	2	3	4	5	
Α	20	11	13	5	17	
В	15	27	8	27	13	
	Business Co	mouting and	Operations R	osoarch	VINEO	




	Exai	nple			
Processing time of job j		Jo	bs		
on machine	1	2	3	4	
t _{j,1}	3	11	7	10	
t _{j,2}	4	1	9	12	
t _{j,3}	10	5	13	2	
apeter School	usiness Comput	ing and Operati	ons Research	WINFC	DR

	Prior	ities		
Processing time of job j		Jo	bs	
on machine	1	2	3	4
t _{j,1}	3	11	7	10
-2	-6	-22	-14	-20
t _{j,2}	4	1	9	12
Ő	0	0	0	0
t _{j,3}	10	5	13	2
2	20	10	26	4
Priority	14	-12	12	-16
BL BL	isiness Computi	ng and Operatio	ns Research	WINFO

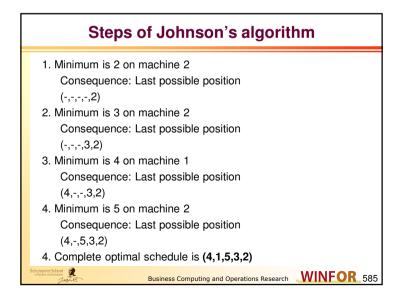

CDS Heuristic
 CDS="Cambel Dudek Smith", the authors of the respective paper Extension of the Johnson algorithm for multiple-stage cases Considers only solutions with equal sequences at all stages Note that it starts from at least four stages Generates artificial 2-staged problems out of the general constellation and solves them optimally by the application of the Johnson algorithm For M=2 the CDS procedure becomes the Johnson algorithm generating an optimal solution Otherwise, the procedure generates M-1 iterations
 representing an additional two-staged flow-shop problem Can be used for the minimization of cycle time or total lead time
Stungers Stool Business Computing and Operations Research

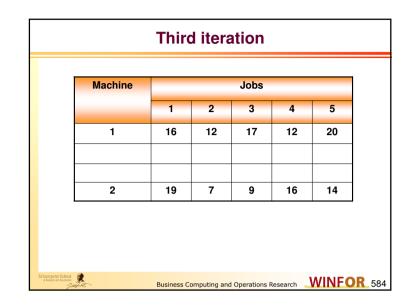
	CDS procedure
1. Estab where	plish NxM-matrix of processing times $t_{j,i}$, e $t_{j,i}$ is the processing time of j-th job on
2. Estab	line i blish number of auxiliary n-job, 2-machine ems, p, to be calculated, where p≤M-1
3. Set k	=1 for first auxiliary problem
4. Comp j=1, auxilia	oute the processing time for all jobs .,N on the two machines in the k-th ary problem:
	$\boldsymbol{\Theta}_{j,1}^{k} = \sum_{i=1}^{k} t_{j,i}$
et Backen and Economics	Business Computing and Operations Research WINFOR 574

	Fir	st iter	ation			
Machine			Jobs			
	1	2	3	4	5	
1	3	6	10	4	7	
2	6	1	2	8	1	

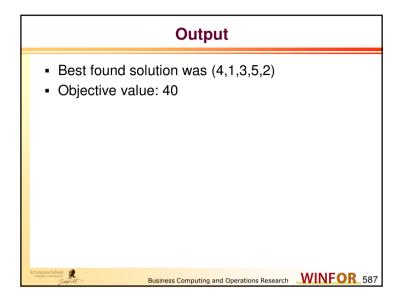
Machine		Jobs					
	1	2	3	4	5		
А	3	6	10	4	7		
В	12	4	1	1	9		
С	1	2	6	7	4		
D	6	1	2	8	1		

Steps of Johnson's algorithm
1. Minimum is 2 on machine 2
Consequence: Last possible position
(-,-,-,2)
2. Minimum is 5 on machine 2
Consequence: Last possible position
(-,-,-,5,2)
3. Minimum is 3 on machine 2
Consequence: Last possible position
(-,-,3,5,2)
4. Minimum is 1 on machine 1
Consequence: Last possible position
(1,-,3,5,2)
5. Complete optimal schedule is (1,4,3,5,2)
Business Computing and Operations Research


	Obj	pjective function value								
Processing	Jo	b 1	Jo	b 4	Jo	b 3	Jo	b 5	Jo	b 2
	S	Е	S	E	S	Е	S	Е	S	E
Machine A	0	3	3	7	7	17	17	24	24	30
Machine B	3	15	15	16	17	18	24	33	33	37
Machine C	15	16	16	23	23	29	33	37	37	39
Machine D	16	22	23	31	31	33	37	38	39	40
umpeter School 2000		Busi	ness Cor	mputing	and Ope	rations Re	esearch	WI	VFO	R_ 579


Machine			Jobs		
	1	2	3	4	5
1	15	10	11	5	16
2	7	3	8	15	5

	Obj	ect	ective function value								
Processing	Jo	Job 4		b 1	Jo	b 3	Job 5		Jo	Job 2	
	S	Е	S	Е	S	Е	S	Е	S	E	
Machine A	0	4	4	7	7	17	17	24	24	30	
Machine B	4	5	7	19	19	20	24	33	33	37	
Machine C	5	12	19	20	20	26	33	37	37	39	
Machine D	12	20	20	26	26	28	37	38	39	40	
					1		1	1	1		
mpeter School		Busi	ness Co	mputing	and Ope	rations Re	esearch	WI	NFO	R 58	

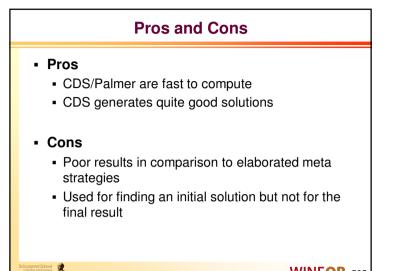

г	
	Steps of Johnson's algorithm
ł	
	1. Minimum is 2 on machine 2
	Consequence: Last possible position
	(-,-,-,2)
	2. Minimum is 5 on machine 2
	Consequence: Last possible position
	(-,-,-,5,2)
	3. Minimum is 4 on machine 1
	Consequence: Last possible position
	(4,-,-,5,2)
	4. Minimum is 1 on machine 2
	Consequence: Last possible position
	(4,-,1,5,2)
	4. Complete optimal schedule is (4,3,1,5,2)
	Business Computing and Operations Research WINFOR 582

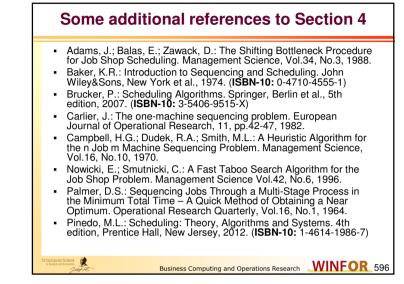
	Obj	Object								
Processing	Jo	b 4	Job 3		Jo	b 1	Jo	b 5	Jo	b 2
	S	Е	S	Е	S	Е	S	Е	S	Е
Machine A	0	4	4	14	14	17	17	24	24	30
Machine B	4	5	7	8	17	29	29	38	38	42
Machine C	5	12	12	18	29	30	38	42	42	44
Machine D	12	20	20	22	30	36	42	43	44	45
umpeterSchool			1	1		1				
Unipeter School		Bus	iness Co	mputing	and Op	erations F	Research	W	NFO	R 58

C)bje	ectiv	/e f	unc	tior	ו va	lue			
D								k 0		
Processing	Jo	04	JO	b 1	JO	b 5	JO	b 3	JO	b 2
	S	Е	S	E	S	Е	S	Е	S	E
Machine A	0	4	4	7	7	14	14	24	24	30
Machine B	4	5	7	19	19	28	28	29	30	34
Machine C	5	12	19	20	28	32	32	38	38	40
Machine D	12	20	20	26	32	33	38	40	40	41
Impeter School		Busine	ss Com	outing an	d Operat	tions Rese	arch	WIN	FO	58

Result of Palmer's procedure
• 4-1-2-3-5
Business Computing and Operations Research WINFOR 589

Machine			Jobs		
	1	2	3	4	5
Α	3	6	10	4	7
-3	-9	-18	-30	-12	-21
В	12	4	1	1	9
-1	-12	-4	-1	-1	-9
С	1	2	6	7	4
1	1	2	6	7	4
D	6	1	2	8	1
3	18	3	6	24	3
Priority	-2	-17	-19	18	-23


					nation value						
	Objective function value										
Processing	Jo	b 4	Jo	b 1	Jo	b 2	Jo	Job 3		b 5	
	S	E	S	Е	S	Е	S	Е	S	Е	
Machine A	0	4	4	7	7	13	13	23	23	30	
Machine B	4	5	7	19	19	23	23	24	30	39	
Machine C	5	12	19	20	23	25	25	31	39	43	
Machine D	12	20	20	26	26	27	31	33	43	44	
		Bus	iness Co	mputing	and Ope	erations R	esearch	WI	NFO	R 59	


	Dis			erms of Percent ne from Optima			n Best	
		Sample Size	Numbe	rs of Problems with Deviation of	Percent	Range (%)	Average Error (90)	
			0%	0% < to ≤ 5%	>5%			
3	3	20	17	3	0	0-2.9	0.19	
4	3	20	15	3	2	0-22.6	1.80	
5	3	20	13	6	1	0-10.4	1.13	
6 7	3	20 20	12	2	6	0-15.9	3.57	
8	3	20	13 12	5	2	0-8.3 0-14.7	1.17 2.03	
0	°	20	12	8	•	0-14.7	2.03)	
3	5	20	19	1	0	0-1.4	0.07)	
4	5	20	9	7	4	0-41.3	3.95	
5	5	20	11	5	4	0-9.2	2.02 3.77	
6	5	20	4	7	9	0-23.2	5.24	
7	5	20	2	9	9	0-14.3	5.18	
8	5	20	3	7	10	0-25.4	6.18	
3	7	20	20	0	0	0	0)	
4	7	20	14	5	ĩ	0-5.3	0.68	
5	7	20	7	9	4	0-10.0	2.27 2.13	
6	7	20	3	9	8	0-11.4	3.64	
7	7	20	2	12	6	0-12.6	4.07)	
Total		340	176	95	69	Average	2.54	

comparison	on Problem	ns with Unkr	ioion Optima	l Sequence Tin		
		Sequer	ace Time			
n	m.	C-D	Palmer	70 Improvement		
20	20	2452	2712	10.60		
20	20	2496	2542	1.84		
20	20	2390	2382	-0.34		
20	20	2422	2484	2.56		
40	30	4458	4574	2.60		
40	30	4597	4634	0.80		
40	30 ·	4496	4600	2.31		
40	30	4475	4665	4.25		
60	- 30	5747	5841	1.64		
60	30	5849	5997	2.53		

Problem Size			Campbell-Dudek			Palmer		
n	m	Problems	No. Optimals	Largest Error (%)	Average Error (%)	No. Optimals	Largest Error (%)	Average Error (%
3	4	20	17	8.1	.61)	11	17.5	2.68
4	4	20	15	10.1	1 74	6	19.2	6.08 4.5
5	4	20	10	13.8	2.56	4	15.6	4.95
6	4	20	12	11.5	1.24	2	15.1	4.61
3	6	20	18	1.4	.12)	14	18.7	2.77)
4	6	20	15	4.1	ER	8	13.9	3.13 4.5
5	6	20	11	6.9	2.01 1.22	2	20.2	5.90 (4.5
6	6	20	6	9.0	2.18	3	18.2	6.52
Totals		160	104		1.38	50		4.58

Com	puter Computation	lime	
	Average Computation Time (min)		
Number of Jobs	C-D	Paimer	
8	.055	.029	
10	.067	.037	
20	.195	.100	
40	.752	. 223	
60	1.806	.347	

