

Open vs. closed production
Stage x Stage x+1 Batch currently processed at stage x
 An open production is characterized by the fact that the items of the current batch that are already processed at stage x can be further processed at the subsequent stage in spite of the fact that the total batch is not completed In contrast to this, a closed production does not allow a simultaneous processing of one batch at two neighboring stages. Therefore, each item of a batch currently processed at stage x cannot be processed at the subsequent one before this batch is not completed
Business Computing and Operations Research WINFOR 172

Degree of dependency	Den	hand
products	stationary	dynamic
independent	EOQ model (Andler model)	SLULSP (=WW) SRP SPLP
dependent	ELSP	MCLSP MLCLSP

Solution of the model
 In order to derive the optimal lot size, we first have to define the cost function computing the total lot size dependent costs In order to do so, we need an additional function telling us what proportion of the used lot size is on the average on stock during the total planning horizon Therefore, we analyze subsequently the inventory level and generate a function Øl(x) defining the average inventory level if the lot size x is used during the execution of the production process In this connection, we have to distinguish between open and closed production process
Business Computing and Operations Research WINFOR 177

Proof of Theorem 3.3.1.1

Proof:

2

We assume there is an optimal program not fulfilling the itemized restriction for a minimally chosen period s. Therefore, it holds:

$$\left(I_0 + \sum_{k=1}^{s-1} x_k - \sum_{k=1}^{s-1} d_j\right) \cdot x_s > 0 \Rightarrow I_0 + \sum_{k=1}^{s-1} x_k - \sum_{k=1}^{s-1} d_j > 0 \land x_s > 0$$

Let I_{s-1} be the inventory brought into period s. Let r<s be the next preceding period where a production takes place (Note that r is well defined since at least period one fulfills this requirement).

Note that $x_r \ge I_{s-1}$ since $I_{r-1}=0$ (s was minimally chosen) and we have an inventory in period s.

Example										
•	 6 perie Setup Produ Invent Dema 	ods costs pe ction cos ory costs nds:	er batch: sts are ne s per iten	S ₁ =S ₂ =S ₃ : eglected a and per	=S ₄ =S ₅ =S riod i ₁ =i ₂ =	₆ =500 =i ₃ =i ₄ =i ₅ =	.i ₆ =1			
Γ	t	1	2	3	4	5	6			
	d _t 20 80 160 85 120 100									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										

	Last	period v	where a	consump	otion take	s place
Last period where a production takes place	1	2	3	4	5	6
1	500	580	900	1155	1635	2135
2		500	660	830	1190	1590
3			500	585	825	1125
4				500	620	820
5					500	600
6						500

Preliminary work (C(i,j))

• Tł	ne algorithm d	escribed above	generates a	n optimal
SC	olution within (D(T ²) steps		
• By fo lo	y using specifi r finding the o g(T))	c data structures ptimal solution c	s, the compu an be reduc	ed to O(T
 For construction re 	or the special osts p=p ₁ =p ₂ = duced to O(T)	case characteriz =p _T , this effor (cf. Federgruer	ed by constant t can be add n and Tzur (1	ant production itionally 991))
 The interval in the interval in t	nis solution is ventory is zero sumption for prizon	only optimal if th b. However, this a realistic applic	ne starting ar is not neces ation in a rol	nd ending sarily a valid ling time
ichumpeter School of Basins and Rosensio		Business Computing and (Operations Research	WINFOR 218

3.4.1 Mathematical definition – Parameters T: Number of considered periods [-];<math>J: Number of available resources [-];<math>K: Number of products [-]; M: Large number [-]; $b_{j,t}(1 \le j \le J; 1 \le t \le T): Capacity of resource j in period t [time units];$ $P_{k,t}(1 \le k \le K; 1 \le t \le T): Primary, gross-demand for item k in$ period t [product units]; $<math>h_k(1 \le k \le K): Holding cost for one unit of product k per period$ [currency units/product units];

Mathematical definition – Variables

 $X_{k,t}$ ($1 \le k \le K; 1 \le t \le T$): Lot size of product *k* in period *t*; $\gamma_{k,t}$ ($1 \le k \le K; 1 \le t \le T$): Binary derived variable indicating a setup operation of product *k* in period *t*;

 $y_{k,t}$ ($1 \le k \le K$; $0 \le t \le T$): Derived variable defining the inventory of product *k* at the end of period *t*;

Objective function :

Minimize $Z = \sum_{k=1}^{N} \sum_{k=1}^{r} s_k \cdot \gamma_{k,t} + h_k \cdot y_{k,t} + p_{k,t} \cdot X_{k,t}$

Wathematical definition – Restrictions II $\forall k \in \{1,...,K\} : \forall t \in \{1,...,T\} : X_{k,t} \ge 0$ Non-negative lotsizes $\forall k \in \{1,...,K\} : y_{k,0} = 0 \land y_{k,T} = 0$ Start and end inventory $\forall k \in \{1,...,K\} : \forall t \in \{1,...,T\} : y_{k,t} \ge 0$ Non-negative $\forall k \in \{1,...,K\} : \forall t \in \{1,...,T\} : y_{k,t} \in \{0,1\}$ Possible values $\forall k \in \{1,...,K\} : \forall t \in \{1,...,T\} : y_{k,t} \in \{0,1\}$ Possible valuesfor the derived variable $\forall k \in \{0,1\}$ Possible values

The pro	ocedure of Dixon and Silver
 Heuristic a The use of assumed 	pproach f only one resource (one machine) is
 Bases on (heuristic 	(idea derived from) the Silver-Meal
 In every the avera product 	iteration the procedure tries to minimize age costs per period caused by each
 But due products sequence 	to the simultaneous production of several , capacity restrictions can prevent a e defined according to this criterion
 Therefor some pri can be p Silver-M 	e, the procedure has to define additionally ority rules to decide about which product produced according to the decisions of the eal procedure
Schumpeter School	Business Computing and Operations Research WINFOR 242

- As a consequence, the procedure of Dixon and Silver respects the advanced production of future deficits to prevent any violation of the defined capacity requirements
- Therefore, by considering each period and its production program only once, its determination always results in a program where it remains possible to fulfill the demand requirements of all subsequent periods

Business Computing and Operations Research WINFOR 251

Step 2
Generate the earliest period where the current production program of period <i>i</i> is not able to guarantee a feasible execution of the demanded production quantities, i.e., we compute:
$t_{c} = \min\left\{t \mid t > i \land \sum_{j=i+1}^{t} CU_{i,j} < \sum_{j=i+1}^{t} CR_{i,j}\right\}$
Business Computing and Operations Research WINFOR 254

	Iteration i=1								
 Ste 	p 1:								
General feasibility check:									
	t=1:158<160)	ok						
	t=2: 282<320)	ok						
	t=3: 297<480)	ok						
	t=4: 499<640)	ok						
	r _{1,1} =0; x _{1,1} =1	10	product 1						
	 r_{2,1}=0; x_{2,1}=4 	8	product 2						
	 RC₁=2 Remaining capacity in period 1 								
	t	1	2	3	4				
	q _{1,t}	110	-	-	-				
	q _{2,t}	48	-	-	-				
	CN _{i,t}	-	124	15	202				
	RC _i	2	160	160	160				
Schumpeter School	<u>_</u>	Business Con	nputing and Op	perations Resea	rch WIN	FOR 262			

Iteration i=1 − **step 2**
Now, we have to determine if there is a period where the feasibility is endangered by the current production plan

$$t = 2: CN_{1,2} = 49 + 75 = 124 \Rightarrow CR_{1,2} = 124 - 160 = -36$$

 $\Rightarrow \sum_{j=2}^{2} CU_{1,j} = 0 \ge \sum_{j=2}^{2} CR_{1,j} = -36$ ok
 $t = 3: CN_{1,3} = 0 + 15 = 15 \Rightarrow CR_{1,3} = 15 - 160 = -145$
 $\Rightarrow \sum_{j=2}^{3} CU_{1,j} = 0 \ge \sum_{j=2}^{3} CR_{1,j} = -36 - 145 = -181$ ok
 $t = 4: CN_{1,4} = 82 + 120 = 202 \Rightarrow CR_{1,4} = 202 - 160 = 42$
 $\Rightarrow \sum_{j=2}^{4} CU_{1,j} = 0 \ge \sum_{j=2}^{4} CR_{1,j} = -36 - 145 + 42 = -139$ ok
 $\Rightarrow t_c = 5 > T = 4$

Iteration i=2								
• Ste • Ir	p 1: itialization • $r_{1,2}=0; x_{1,2}=0; x_{2,2}=0; x_{2,2}$	of produ 49 75	uct quar product product 2 Remaini	ntities: 1 2 ng capac	ity in peri	od 2		
	t	1	2	3	4			
	q _{1,t}	110	49	-	-			
	q _{2,t}	48	75	-	-			
	CN _{i,t}	-	-	15	202			
	RC _i	2	36	160	160			
Schumpeter School	~	Business Com	puting and Op	erations Resear	rch WIN	FOR 265		

Iteration i=3									
Step 1:									
 Initialization of product guantities: 									
▪ r _{1,3} =0; x ₁	, ₃ =0	produc	:t 1						
• $r_{2,3}=0; x_{2,3}=0$ product 2									
• RC ₃ =160 Remaining capacity in period 3									
• RC ₃ =16)	Remai	ning cap	acity in pe	eriod 3				
• RC ₃ =16	0	Remai	ning cap	acity in pe	eriod 3				
• RC ₃ =16) 1	Remai	ning cap	acity in pe	eriod 3				
• RC ₃ =16) 1 110	Remai 2 49	ning cap 3 -	acity in pe	eriod 3				
• RC ₃ =16 t q _{1,t} q _{2,t}) 110 48	Remai 2 49 90	ning cap	acity in pe	eriod 3				
 RC₃=160 t q_{1,t} q_{2,t} CN_{i,t} 	1 110 48 -	Remai 2 49 90 -	ning cap 3 - - -	acity in pe	eriod 3				
 RC₃=160 t q_{1,t} q_{2,t} CN_{i,t} RC_i) 110 48 - 2	Remai 2 49 90 - 21	ning cap 3 - - - 160	4 - - 202 160	eriod 3				

Now, we have to determine whether there is a period where the feasibility is endangered by the current production plan

$$t = 4: CN_{3,4} = 82 + 120 = 202 \Rightarrow CR_{3,4} = 202 - 160 = 42$$

$$\Rightarrow \sum_{j=4}^{4} CU_{3,j} = 0 < \sum_{j=4}^{4} CR_{3,j} = 42$$
 Bottleneck!

$$\Rightarrow t_c = 4$$

$$\Rightarrow We have to adapt the current plan!$$

Iteration i=3 – step 4
Now, we have to determine whether there is a period where feasibility is endangered by the current production plan
$t = 4: CN_{3,4} = 82 + 120 = 202 \Rightarrow CR_{3,4} = 202 - 160 = 42$
$\Rightarrow \sum_{j=4}^{4} CU_{3,j} = 0 < \sum_{j=4}^{4} CR_{3,j} = 42 \qquad \text{Bottleneck!}$
$\Rightarrow t_c = 4$
\Rightarrow We have to adapt the current plan!

Iteration i=4 – step 2									
Now, we feasibili	e have to de ty is endang	termine ered by	if there is the curre	s a perio ent produ	d where t ction plar	he າ			
$\Rightarrow t_c = 5 \ge T = 4$									
The algorithm stops! Solution generated!									
	t 1 2 3 4								
	q _{1,t} 110 49 - 82								
q _{2,t} 48 90 42 78									
RC _i 2 21 118 0									
						-			
Business Computing and Operations Research									

Can we improve the solution?								
 Ide in Th We 	 Idea: It is always advantageous to produce all quantities in the last possible period This is not implemented for product 2 We can move the production of 15 units needed in 3 in this period to save holding costs of 15 currency units, i.e., we generate the solution: 							
1	t	1	2	3	4			
	q _{1,t}	110	49	-	82			
	q _{2,t} 48 75 57 78							
	RC _i 2 36 103 0							
Schumpeter School	R.	Business C	omputing and	Operations Res	earch WI	NFOR 278		

3.5.1 CLSPL – Attributes

- The planning horizon T is fixed and divided into time buckets 1,...,T
- Resource consumption to produce a product j on a specific resource m is fixed, and there exists an unique assignment of products to resources
- Setups incur setup costs and consume setup time, thereby reducing capacity in periods where setups occur
- At most one setup state can be carried over on each resource to the next one, consequently no setup activity is necessary in this subsequent period
- Single-item production is possible (i.e. the conservation of one setup state for the same product over two consecutive bucket boundaries)
- A setup state is not lost if there is no production on the respective resource within a bucket
- In the following, we give a detailed mathematical definition of the problem basing on the model proposed by Stadtler and Suerie (2003)

	Computation of the net-demands
	 In the CLSPL introduced here the chosen lot sizes are defined according to the net demands for product j in period t, i.e., we define the proportion of the net demand of a specific product in period t that is satisfied by the production in the considered period. This is done in order to get a more strict and compact model definition which can be solved much easier To do so, we first have to introduce what we understand as the so called net demand of a specific product in a defined period Up to now we have modeled the inventory and gross demands directly within separated variables (derived variables) So far, we have neglected dependencies resulting from multiple-stage systems
Schu	Business Computing and Operations Research

CLSPL – Restrictions	
$\forall m \in \{1,, M\}: \forall t \in \{1,, T\}: \sum_{j \in R_m} \sum_{s=t}^T a_{m,j} \cdot D_{j,s}^n \cdot Z_{j,t,s} + \sum_{j \in R_m} st_j \cdot Y_{j,t} \le C_{m,t}$	(1)
(Capacity restrictions)	
$\forall j \in \{1,,J\}: \forall t \in \{1,,T\}: \forall s \in \{t,,T\}: Z_{j,t,s} \leq Y_{j,t} + W_{j,t}$	(2)
(Dependency between production and setup and linkage states)	
$\forall j \in \{1,, J\}: \forall t \in \{1,, T\}: \forall s \in \{t,, T\}: Z_{j,t,s} \ge 0 \land Y_{j,t} \in \{0, 1\}$	(3)
(Co - domain definition)	
Stumper Store Business Computing and Operations Research	289

CLSPL – Restrictions	
$\forall j \in \{1,, J\} : \forall t \in \{1,, T\} : (D_{j,t}^n > 0) : \sum_{s=1}^t Z_{j,s,t} = 1$ (Demand fulfillment)	(4)
$\forall m \in \{1,, M\} : \forall t \in \{2,, T\} : \sum_{j \in R_m} W_{j,t} \le 1$ (At most one setup state can be linked per time period and resource)	(5) ce)
$\forall j \in \{1,, J\} : \forall t \in \{2,, T\} : W_{j,t} \leq Y_{j,t-1} + W_{j,t-1}$ (Dependencies between setup activities and linkage variables)	(6)
Business Computing and Operations Pasaarch WINF	OR 290

	CLSPL – Restrictions	
	$\forall m \in \{1,, M\} : \forall j \in R_m : \forall t \in \{1,, T-1\} : W_{j,t} + W_{j,t+1} \le 1 + Q_{m,t}$ (Dependencies between different sets of linkage variables)	(7)
	$\forall m \in \{1,,M\} : \forall j \in R_m : \forall t \in \{1,,T\} : Y_{j,t} + Q_{m,t} \le 1$ (Dependencies between different sets of linkage variables)	(8)
	$\forall m \in \{1, \dots, M\} : \forall t \in \{1, \dots, T-1\} : Q_{m,t} \ge 0 \land Q_{m,1} = 0 \land Q_{m,T} = 0$ (Co-domains of variable)	(9)
	$\forall j \in \{1,, J\}: \forall t \in \{1,, T\}: W_{j,t} \in \{0, 1\} \land W_{j,1} = 0$ (Co-domains of linkage variable)	(10)
Sch	Business Computing and Operations Research	DR 291

Added / exchanged variables
 The resource-dependent variables Q_{m,t} are replaced by product-dependent ones termed as QQ_{j,t}
 By using these modified variables instead we can give a more precise definition of occurring setup states linked between subsequent periods
In detail we define:
$\forall j \in \{1,, J\}: \forall t \in \{1,, T\}: QQ_{j,t}:$ Binary decision variable. Is
while product j is solely produced in period t
Stumpeter School Market Business Computing and Operations Research WINFOR 294

	Erasing restriction 8	
	$\forall m \in \{1, \dots, M\}: \forall j \in R_m: \forall t \in \{1, \dots, T\}: Y_{j,t} + Q_{m,t} \le 1$	(8)
	(Dependencies between different sets of linkage variables)	
	is replaced by	
	$\forall m \in \{1, \dots, M\}: \forall j \in R_m: \forall t \in \{1, \dots, T\}: Y_{j,t} + W_{j,t} + \sum_{\substack{k \in R_m \\ k \neq j}} QQ_{k,t} \le 1$	(8a)
	Note that there can be either a setup activity for item j in period $t(Y)$	$_{j,t} = 1$),
	a link for item <i>j</i> into period $t(W_{j,t} = 1)$, a single item production for	
	any item $k \neq j$ in period t, or none of those three options, but never	two of
	them simultaneously.	
Schum of Bas	Business Computing and Operations Research	R 295

Range-restriction of values for QQ
$ \forall j \in \{1, \dots, J\} \colon \forall t \in \{2, \dots, T-1\} \colon \forall s \in \{t, t+1\} \colon \\ QQ_{j,t} \leq W_{j,s} \qquad (9) $
^
$\forall j \in \{1,, J\}: \forall t \in \{1,, T - 1\}: QQ_{j,t} \ge 0$ $(QQ_{j,1} = 0 \land QQ_{j,T} = 0) (10)$
Schumptre School

	Erasing restriction 6	
	$\forall j \in \{1,, J\}: \forall t \in \{2,, T\}: W_{j,t} \le Y_{j,t-1} + W_{j,t-1} $	5)
	is replaced by	
	$\forall j \in \{1,, J\}: \forall t \in \{2,, T\}: W_{j,t} \le Y_{j,t-1} + QQ_{j,t-1} $ (6)	a)
	Note there can be setup state carried over in period t only if either item was set up in period $t-1(Y_{j,t-1} = 1)$ or the setup state is already carried ov	j er
	from period <i>t</i> -2 to <i>t</i> -1 and there is a single item production in period <i>t</i> -1 $(QQ_{j,t-1} = 1)$.	
Schum of Best	Business Computing and Operations Research WINFOR	296

$\forall m \in \{1,, M\}: \forall j \in R_m : \forall t \in \{1,, T-1\}: W_{j,t+1} + W_{j,t} \le 1 + Q_{m,t} $ (7) is replaced by $\forall j \in \{1,, J\}: \forall t \in \{1,, T-1\}: W_{j,t+1} + W_{j,t} \le 1 + QQ_{j,t} $ (7a) BUT : Is this restriction really necessary to define the model?		Restriction 7	
$\forall m \in \{1,, M\}: \forall j \in R_m: \forall t \in \{1,, T-1\}: W_{j,t+1} + W_{j,t} \le 1 + Q_{m,t} $ (7) is replaced by $\forall j \in \{1,, J\}: \forall t \in \{1,, T-1\}: W_{j,t+1} + W_{j,t} \le 1 + QQ_{j,t} $ (7a) BUT : Is this restriction really necessary to define the model?			
is replaced by $\forall j \in \{1,,J\}: \forall t \in \{1,,T-1\}: W_{j,t+1} + W_{j,t} \le 1 + QQ_{j,t}$ (7a) BUT: Is this restriction really necessary to define the model?	$\forall m \in \{1,, M\} : \forall j \in$	$R_m: \forall t \in \{1,, T-1\}: W_{j,t+1} + W_{j,t} \le 1 + Q_{m,t}$	(7)
$\forall j \in \{1,, J\}: \forall t \in \{1,, T-1\}: W_{j,t+1} + W_{j,t} \le 1 + QQ_{j,t} $ BUT: Is this restriction really necessary to define the model? (7a)	is replaced by		
BUT : Is this restriction really necessary to define the model?	$\forall j \in \{1,, J\} : \forall t \in \{1,, J\}$	$, T-1$ }: $W_{j,t+1} + W_{j,t} \le 1 + QQ_{j,t}$	(7a)
BUT : Is this restriction really necessary to define the model?			
Is this restriction really necessary to define the model?	BUT:		
	Is this restriction real	ly necessary to define the model?	
	and had		
	a and Economics	Business Computing and Operations Research	FOR 29

Example						
ltem j	a _{m,j}	Net demand in period 1	Net demand in period 2	Net demand in period 3		
1	1	20	20	20		
2	1	30	40	40		
3	1	20	20	20		
Available capacity		100	100	100		
Cumulative slack capacity		30	50			
humpeter School	Bus	iness Computing and Ope	rations Research	NINFOR 30		

General speaking						
 Let U denoting the length of the interval under consideration: 						
"If cumulative slack capacity (up to period t-1) is less than the amount that has to be pre-produced to allow single-item production of just one product in the interval under consideration [t; t+U-1], then at least two products have to be produced in the interval [t; t+U-1]"						
 This implies that at least one setup activity has to be performed, which implies that not all periods of the interval [t; t+U-1] can have single-item production 						
Statemeter School Business Computing and Operations Research WINFOR 305						

Additional restrictions				
$\forall j \in \{1,, J\} : \forall t \in \{1,, T-1\} : \forall p \in \{1,, T-t\} :$ $I_{j,t-1} + \sum_{k \in S_j} r_{j,k} \cdot I_{k,t-1} \geq \sum_{\substack{s=t \\ \text{Total quantities of } j \text{ already in stock in } t-1}^{t+p-1} \sum_{\substack{s=t \\ \text{Total net demand in } \text{the interval } t \text{ to } t+p-1}^{t} \int_{1}^{n} \frac{1}{\text{ iff, no linking or setup operation } t \text{ takes place for product type}_{j}}}{\text{in the periods } t \text{ to } s}$ with: $S_j : \text{Set of successor items (direct or indirect) of item } j$				
Schungerer School Business Computing and Operations Research WINFOR 309				

Observations						
 Branch & Cut yields smaller matrices and faster solution times at each node at the price of some separation procedure On the other hand, both might require immense amounts of memory and time Therefore, a heuristic modified version of the procedures has been applied 						
Business Computing and Operations Research						

Estimating setup times

- Unfortunately, setup activities in these periods following the lot-sizing window are not planned explicitly and therefore unknown in respect of there capacity requirements. We only model the balance restriction as specific flow requirements resulting in production quantities
- But to anticipate future capacity bottlenecks, different variants for estimating the occurring setup times are tested, itemized subsequently

Business Computing and Operations Research

WINFOR 325

2

<text>

<section-header>

Results for class 1

- 10 seconds computational time per experiment
- Best solution found so far is taken as the result
- It can be observed, that the proposed model formulation with valid inequalities not only yields better solutions but also better lower bounds
- Independent from the version B & C or C & B the yielded solution quality of these approaches was significantly higher than the solution of the results of the standardized versions

2

Class #Products #Periods #Instances								
1	6	15	116					
2	6	30	5					
3	12	15	5					
4	12	30	5					
5	24	15	5					
6	24	30	5					
7	10	20	180					
8	20	20	180					
9	30	20	180					

Gap to LB 6,26 % 3,94 %	Avg. time first solution 0,11 sec 1,19 sec					
6,26 %	0,11 sec					
3,94 %	1,19 sec					
2,72 %	2,66 sec.					
2,62 %	2,34 sec.					
manufalati						
	2,62 %					

	Branc	h & Cut	Heuristic (6/2/2, ST ^{MIN})		
Classes	Gap to LB	Avg. time	Gap to LB	Avg. time	
1,2	2,18 %	22 sec	2,52 %	5,3 sec	
3,4	1,12 %	45 sec	0,84 %	9 sec	
5,6	0,36 %	52,4 sec	0,42 %	11,2 sec	
7-9	1,64 %	142,9 sec	2,69 %	13,3 sec	

Observations						
 Surie and S new Tabu S Gopalakrish their decom approach a to computat But the app 	tadtler reports comparison Search procedure propose man et al. (2001) and con position heuristic outperfo ccording to solution quality tional time roach was not tested on	ns to the d by clude that orms this y as well as the same				
computation report the report the report the report ium III, meaning of	bach was not tested on bonal system. However, the sults of this reference ach 550 MHz system. This res this conclusion significant	ey only nieved on a stricts the ly				
Schumpeter School	Business Computing and Operations Research	WINFOR 338				

	Results								
		Branch (6/2/2) & Cut Time limit 60 seconds		(6/2/2) Time limit 180 seconds		(4/2/2) Time limit 60 seconds			
	Test set	Gap to LB	Gap to LB	Avg. time	Gap to LB	Avg. time	Gap to LB	Avg. time	
	B+	37,5 %	32,2 %	53,2 sec	29,6 %	139,5 sec	29,1 %	38,7 sec	
Schun et Be	Summers Charles Summers Computing and Operations Research WINFOR 342								

