3 Lot-sizing problems

A lot size is defined as the amount of a particular item that is ordered
from the plant or a supplier or issued as a standard quantity to the
production process,
l.e., in what follows, we define the lot size as the number of items of
one product to be continuously produced without preemption on the
same machine
As relevant costs we consider
= the lot size dependent setup costs and additionally
= the lot size dependent inventory costs.
Note that there is always a tradeoff between these costs
= The larger the chosen lot size is, the larger is the inventory and,
consequently, the inventory costs
= The smaller the chosen lot size is, the more batches have to be
realized and, therefore, the more setup costs are increased
In what follows, we consider different models computing efficient lot
sizes
These models can be mainly distinguished by their assumptions
according to the dependencies between the scheduled products and
the occurring demands
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Open vs. closed production

stage x stage x+1

H. B

Batch currently processed at stage x

An open production is characterized by the fact that the items of
the current batch that are already processed at stage x can be
further processed at the subsequent stage in spite of the fact that
the total batch is not completed

In contrast to this, a closed production does not allow a
simultaneous processing of one batch at two neighboring stages.
Therefore, each item of a batch currently processed at stage x
cannot be processed at the subsequent one before this batch is not
completed
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Model characteristics

Degree of dependency Demand
between the scheduled = =
products stationary dynamic
independent EOQ model SLULSP (=WW)
(Andler model) SRP
SPLP
dependent ELSP MCLSP
MLCLSP
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4.

Outline of the chapter

The EOQ model
Extensions to multiple products
The SLULSP model (WW model)
1. Model definition
2. Dynamic programming approach
3. Heuristic approaches
The CLSP model
1. Problem definition
2. The Dixon and Silver heuristic
The CLSPL model
1. Basics
2. Tightening the model
3. Time-oriented decomposition heuristic
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3.1 The EOQ model Parameters

= =Economic Order Quantity model: Most simple model in literature
= Main assumptions of the model
= Stationary demand

o

, : Cost rate for inventory { [currency unns] }

[quantity units]- [planning horizon units]

o

currency units
s - Cost rate for each setup {w}

= Continuous production with a predefined constant velocity [baten]
= Continuous demand with a predefined constant velocity x; : Total production quantity to be produced in the considered planning horizon M ;
. ) [planning horizon units]
= The production always has to fulfill the demands of the subsequent
distribution

v, :Demand rate {7[quanmy umts]}

= Only one stage and one product are considered [time units]
= Unlimited continuous planning horizon

= No capacity constraints are modeled

= Setup costs are independent of a given sequence

. . . . . . . i its .
L] Therefore, @he EOQ Isa smgle item model where the 0pt|mal solution ts : Time necessary for the sale of a complete batch of size x [%} [I,e, tg =Vi];
can be easily derived from >

v, :Production rate M
[time units]

We assume: vj, < Vp;

t, : Time necessary for the production of a complete batch of size x [M} [i e. ,L].

Production Demand . [batoh] ety =

continuous demand must be continuous

production always fulfilled ! > demand Sought :

with a with a predefined _[[quantity units]
predefined rate but lower rate x: Lot size W}
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Solution of the model Inventory (open production)
= In order to derive the optimal lot size, we first have to inventory
define the cost function computing the total lot size level

dependent costs

= In order to do so, we need an additional function telling us
what proportion of the used lot size is on the average on
stock during the total planning horizon =tprvg =tp"Vp

= Therefore, we analyze subsequently the inventory level
and generate a function QGIl(x) defining the average
inventory level if the lot size x is used during the
execution of the production process

= In this connection, we have to distinguish between open
and closed production processes

t ts time

School SchumpeterSch
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Computation of @I(x) (open production)

= Inventory level always increases and decreases linearly

= This behavior is constant over the infinite planning horizon and is
repeated for each processed batch

= The maximum inventory level is defined by x-tpvp
= The minimum inventory level is defined by 0
= Therefore, we get for the average inventory level:

zz(x)=;«x—tp-vmo):;(x—;-vpj

S SN U V') D O P
2 Vp 2 Vp

Proportion of the lot size x
to beon stock on the average
in the planning horizon
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4@?(7 ~ Business Computing and Operations Research WI N FOR 179

Invento 'Y (closed production)

inventory
X level
+pVp
=t Vp
X
/
/
=t Vvp
Safety stock (=t vp)
time
tp ts
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Computation of GI(x) (closed production)

= Inventory level increases and decreases linearly

= This behavior is constant over the infinite planning horizon and is
repeated for each processed batch

= The maximum inventory level is defined by x
= The minimum inventory level is defined by tpvp
= Therefore, we get for the average inventory level:

Proportion of the lot size x
tobeon stock on the average
in the planning horizon
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Finding the optimal lot size (open production)

> Now, we can define the total cost function
depending on the chosen lot size x:

Cfotal(x):ﬁcs +@I(x)~c1 :x—TCS +1‘x[1_VDJC1
X X 2 v,

> By using this function, we can easily derive the
optimal lot size
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Finding the optimal lot size (open production) Finding the optimal lot size (closed production)

1 : .
Cm,m(X)=x7:~cs+5~X~[l—:f“}c, > Now, we can define the total cost function
! depending on the chosen lot size x:
Cul(x) —Xr 1 [ VDJ
L =—L e+ —| 1= |-,
ox x’ 2 vy |
X X 1%
o) C,u(x)="Le +@DI(x)-¢, ==Ly +—-x-| 1+ |-¢
ox Xr total N 1 N 1
—SE =200 >0 X X 2 Vp
Log;("):o:»_x’ﬁf~cs+é~[1—i—“)-c,=0@%-(1——
P

> By using this function, we can easily derive the
optimal lot size

Vp

@xz.%.(l_vl].cl =Xy Cg @xz.z["‘
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Finding the optimal lot size (closed production) Observation
x 1 v > By analyzing the computation of the optimal lot
CouX)="Locy+—- x| 142 |.c, . . . . .
x 2 vy size, it becomes obvious that for this lot size the
C (x) -x Ll setup costs are identical with the occurring
- TGty [1+ VI’J ¢ inventory costs, i.e., it holds:
p
Ctoml(x)
> =256 >0 c,.(x) —x 1 v 1 v X
o . %=O=} ,T-cS+E-(1+—Dj-c,:04:)5-[1+—Djvc,:—f»cs
_ X x° v v -
M=O@ )fT~cs+l~[1+v—l’]~c,=0(:>l~[l+v—l’]~c,=x—f~cs . 4 r
ox x 2 vy 2 vp x* ie.
oLl C, =X Cg @ X = 2XCs e |2 @l~x~[l+vfbj~c,:x~x—€~cs@l~x~[1+v—0j~c,:x—7~cs
2 v, [ VDJ \/[ vnj 2 vy x 2 vy x
1+-2 |-, 1+ |-,
Vp Vp
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3.2 Extensions to multiple products cases

= The optimal individual lot sizes are frequently not
applicable if there is more than one product. This can be
illustrated by the following simple example
= Example:
= Two products A and B have to be produced
= Optimal individual lot sizes
= X,=1000 and xg=3000 [quantity units]/[batch]
= vpa=10 and vp,=20 [quantity units])/[minute]
= vpg=40 and vpg=100 [quantity units}/[minute]
= We can derive the respective time intervals:
— tpa=1000/20=50 [minutes]/[batch]
— tpa=1000/10=100 [minutes]/[batch]
— tpg=3000/100=30 [minutes]/[batch]
— tpg=3000/40=75 [minutes]/[batch]
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Sale
Multiple allocation !!! —— >

| \ | | \ |
25 50 75 100 125 150 175 200

Multiple allocation !!!

| | \ | \ \ |
25 50 75 100 125 150 175 200

Consequence

= We cannot produce A and B in their optimal lot
sizes!
= Possible “work around”:
= Approximate solutions

» Try to generate a feasible solution as close as
possible to the individual optimal lot sizes

= Computation of optimal cycle times

> Use lot sizes for the different products leading to an
identical number of batches to be processed for all
products

erSchool
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Approximate solution |

1. Generate the individual optimal lot sizes X, (N€{1,...,N})
for N products by using the computation derived above

2. Calculate the resulting total costs of this optimal solution,
ie.,
N

C()[lt.T = ZCJPI,T,n (x()pt,n )

n=

3. Define a fixed rate i as an upper bound for the percentage
derivation of the resulting costs C , in comparison to the
theoretic ones, i.e.,

o

Vne,....N :*(—)’“‘" <l+i=
ne{ } Copl.T.n xapl.n e
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Approximate solution Il

Calculation of the lot size window of each product is
depending on the costs rate

vne{l...N}: Cral3)
C X

opt.T.n \Nopt.n

S Xy (q - \/ﬁ)ﬁ Xy S Xyt (q + \/ﬁ)

lower upper
Xopt.m opt.n

<l+i=qox -2-q-x,,, X, +x2,, <0

optn“*n opt.n

Check if there are possible constellations inside the computed
windows for each product leading to feasible solutions

= If so, realize the best one

= Otherwise, continue with step 6
Increase i by a predefined percentage rate and proceed with
step 4

School
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Pros vs. Cons

Pros

+ High solution quality since the objective functions differ
only slightly around the optimal lot size

+ Specific requirements of each product can be respected
+ Flexible adjustment

Cons
- No systematic approach
- Trial and error

— Can become extremely time consuming and, additionally,
there is no guarantee for success
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Optimal cycle times

This “work around” tries to generate a realizable
solution by requiring an identical number of batches
for each considered product in the planning horizon
To do so, we extend the model defined above by
introducing an additional variable ¢ as the sought
optimal number of batches to be processed of each
product, i.e., c=xt,/ X,

Therefore, a new model arises with a single variable
¢ while the lot size of each product can be derived
from a defined value for ¢

The optimal cycle time is defined as the cycle time
leading to the minimal total costs of all products

School
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Deriving the optimal cycle time (open production)

Objective function:

1 X

N v,
=Ye. I X | Yon | o .
Cr(c) ;C CS‘n+2 c [ VP,.] Cin

Cr(c) _& 1 =X, Von
% —"Z:‘:CSV”+2 1= Gy

c? Voo

Gi(9)

oc X [
et

=K

Von .
] Cn20;
Ven

Finding the optimal cycle time
Gile) _ 1
ac S 2 ¢

torSch
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Deriving the optlmal CyC|e time (closed production)

Objective function:
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Pros vs. Cons

+ Frequently a solution is generated that is feasible
and quite efficient

+ Systematic approach
+ Fast solution generation

- Generates a rough compromise

- Neglects frequently many insights of the different
considered products by a summarized
simultaneous examination of all items
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3.3 The SLULSP model (WW model)

= Single-Level Uncapacitated Lot Sizing Problem
Also called Wagner Whitin model (WW-model)

Dynamic model (changing demand)

= Finite planning horizon which is subdivided into
several discrete periods of predefined length

= Demand is given for each period but can vary
from period to period

Demand must be satisfied in each period
Capacity restrictions are not considered
Single item model
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3.3.1 Model definition — Parameters

T : Number of considered periods;

d,(1<t<T): Amount demanded in period t;

i,(1<t<T): Interest charge per unit of inventory carried forward
to period t+1;

s,(1<t<T): Ordering (or setup) costs in period ¢,

p,(1<t<T): Production costs in period t;

Iy - Initial inventory;

M: Large number;
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Model definition — Variables

x,(1<t<T): Chosen lot size in period t;

v,(1<t<T): Binary derived variable indication a setup operation
in period t;

(1< t<T): Inventory in period t;
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Restrictions

= We have to find a program (x;,...,x7) for all considered periods,
so that all demands are met at minimal total costs

= In each period the current inventory level can be computed by
the difference of production and demand added to the inventory
of the preceding period

= Setup costs always occur in a period if there is a production
quantity unequal to null

= We additionally assume that the initial as well as the final
inventory is equal to null

'

;
Vie{l.T-1}:1,+> x,->.d,; 20;
J=1

=1
vie{l,..T} 1 +x,~1,=d,;
vie{l,..T}:x,—M -y, <0;
vie{l,..T}:x,20
I,=1,=0;

vie{l,...T}:y, {01}
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Objective function

@ An efficient production plan should minimize the
resulting total sum of setup-, production-, and
inventory costs, i.e., we can derive the following
objective function:

T
Minimize C; (... %, )= Y (s, - % +i, -1, + p, - x,)

t=1

erSchool
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Main cognitions — First substantial Theorem

3.3.1.1 Theorem

There exists an optimal program fulfilling the following
restrictions:

Jj=1 Jj=1

-1 -1
vie{l,...T}: [10 +0x; —Zd,}x, =0
N

=l

l.e., in each period, there is either an existing inventory or an
additional order is generated. This means that the production
of additional items is processed if and only if the inventory is
totally consumed in the previous periods.

it
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Proof of Theorem 3.3.1.1

Proof:

We assume there is an optimal program not fulfilling the
itemized restriction for a minimally chosen period s.
Therefore, it holds:

[10+ixk —idj]'xs >0310+ixk—idj >0ax,>0
k=1

k=1 k=1 =

Let I_; be the inventory brought into period s. Let r<s be the
next preceding period where a production takes place

(Note that r is well defined since at least period one fulfills this
requirement).

Note that x.2l¢; since |,4=0 (s was minimally chosen) and we
have an inventory in period s.

erSchool
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Proof of Theorem 3.3.1.1

If it holds ¢, >p; (c,s are the total costs for producing one unit of
demand of period s in period r and carry it over to period s), we
produce the I _; items not until period s. Since this reduces the
total costs, it contradicts the optimality of the solution found.

Thus, we know ¢, :<p,. Hence, we abstain from producing in

period s and increase the production quantity in period r by X
items. Owing to the optimality, it holds that ¢, .=p, and we can
transform the solution as intended without losing its optimality.
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Second substantial Theorem

3.3.1.2 Theorem
There exists an optimal program so that:

J=t

Proof:

We assume again that an optimal program does not fulfill the
defined restriction. Since the occurring demand must be
always satisfied by the production, there is a period t where it
holds:

k
X, :sz +cwithe>0,c<d,,, andk <T

=t

erSchool
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Proof (continued):
Therefore, we know that there is a period s>t where it holds:

k=1

s-1 s—1 s-1 s—1
[10 +Zxk —Zdlj-x‘ >0=1, +2xk —Zdl >0Ax, >0
k=1 k=1 k=1

Now, we can apply Theorem 3.3.1.1 to finish the proof
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Graph representation

= By using the two Theorems defined above, we can define an
alternative problem definition

= This description transforms the problem into a shortest
path problem

= In this graph for each considered period an additional node
is inserted defining the isolated decision situation where in
this period no inventory is left over

= Each edge represents a specific lot size leading to the
subsequent period where a further production becomes
necessary again

= With each edge a cost weight is associated representing the
additional costs occurring in the realization of the respective
lot size in the mapped constellation

= Finding a cost minimal production plan is equivalent to the
computation of the shortest path in the defined graph
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lllustration
Costs for .Costs for )
producing d, in period 1 Producing d; in period 2
e OO )

|

Costs for Costs for
producing d, and d, in period 1 producing d, up to dr, in period 1

= Additional costs incurred by a specific lot size represented by an
edge leading from node rto t (t>r):

t-1 a1

a=r+1 b=r

W, =S, +p, -[gdkj+ > > (i,-d,)
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S R P:Shorlest Route Problem

Parameters :

Vie{l..,T}:Vje{i+1..,T+1}:w,, : Costs for the satisfaction of the
demand of the periods i through j —1by the production in i

T : Total number of periods

Variables :

Vie{0,...,T}:Vje {i+1,...,T +1}: x,, : Binary decision variable indicating
whether the demand of the periods i through j -1 is satisfied by the
production in i

Objective function:
T T+

Minimize Z=Y" > w,,-x,,
r=1t=r+1
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S R P:Shortesl Route Problem

Restrictions :
T+

Z Xt = 1
t=2
T+1

-1
Vte{2..,T}:=> x,+ > x,=0
1=

I=t+1

Vse{0,..,T-1}:vte {s+1..,T+1}: x,, € {0,1}
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3.3.2 Dynamic programming approach

= Wagner and Whitin propose a dynamic programming algorithm working
with the following recursive function
= Recursive function
= For periods ij p;; defines a policy satisfying the demand of the
periods i,...,j by a production in period i
= In this coherence, C(i,j) (or C;;) gives the respective total costs of
policy p;;
= By using these notations, we come to the following simple functional
dependency for the calculation of the minimal costs f; to satisfy the
demands d,...,d;
f=min{f_ +C(Li)} with

i

Computational effort

In the worst case, we have altogether T recursions
In the recursion for f, we have to consider altogether
O(i) constellations

Altogether, we need O(T?) parameters during the
recursion

Total effort: O(1+2+3+4+..+T)=0(T?)

torSch
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f=0
and
J =J
Vije{l..,THI<j):C(i,f)=p,- D de+s+D>. > i -dy
k=i r=i R=r+1
: ;‘ngz'\ Business Computing and Operations Research WINFOR 211
Example
= 6 periods

= Setup costs per batch: s,=8,=5;=5,=55=5,=500

= Production costs are neglected

= Inventory costs per item and period i;=i,=ig=i,=is=ig=1
= Demands:

t 1 2 3 4 5 6

d; 20 80 160 85 120 100

Owing to these simplifications we get:

=t J I
Vi, je {1,...T}(i< j):C(i,j)=500+" > d, =500+ ) (r—i)-d,

r=i R=r+1 r=i+1

School
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Preliminary work (C(i,j))

Last period where a consumption takes place
Last period
where a
production 1 2 3 4 5 6
takes place
1 500 580 900 1155 1635 2135
2 500 660 830 1190 1590
3 500 585 825 1125
4 500 620 820
5 500 600
6 500
P e Business Computing and Operations Research Wl N F OR 214
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Recursive computation

f,=0
f, = min{f, +¢,, }=500

f, =minff, +c,,.f, +c,, = {0+580,500+500} = {580,1000} = 580

f, =min{f, +c, ,.f, +c, .f, + ¢, = {0+900,500+ 660,580 + 500}
={900,1160,1080} =900

£, =minff, +¢, o, +Cy40fs +Cy00fy +¢4, )
={0+1155,500+ 830,580 + 585,900+ 500}
={1155,1330,1165,1400}=1155
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Recursive computation

fs= min{fo e b+, 5 b, +ey s f+ey 5.0+ Cs,s}
={0+1635,500+1190,580+ 825,900+ 620,1155+ 500}
={1635,1690,1405,1520,1655}=1405

fo= min{fo +C 6.0+, 0.0, ey, f+e, o +os0.f5 + Cé.a}

={0+2135,500+1590,580+1125,900+820,1 155+ 600,1405 + 500}
={2135,2090,1705,1720,1755,1905}=1705
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Recursive construction of the solution

Consider fg:

= Best solution f,+¢(3,6), i.e., the demand of the periods 3,4,5, and
6 is produced in period 3

= For the first two periods we have to go on with f,
Consider f,:

= Best solution fy+c(1,2), i.e., the demand of the periods 1 and 2 is
produced in period 1

= Therefore, altogether we have two batches produced in period 1
and in period 3

Summary:
= Period 1: Production of d;+d,=100
= Period 3: Production of d;+d,+d5+dg=160+85+120+100=465
= Total costs: 1,705
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Further improvements and observations

= The algorithm described above generates an optimal
solution within O(T?) steps

= By using specific data structures, the computational effort
for finding the optimal solution can be reduced to O(T
log(T))

= For the special case characterized by constant production
costs p=p;=p,=...=ps , this effort can be additionally
reduced to O(T) (cf. Federgruen and Tzur (1991))

= This solution is only optimal if the starting and ending
inventory is zero. However, this is not necessarily a valid
assumption for a realistic application in a rolling time
horizon
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3.3.3 Heuristic approaches

= In the following, we consider different heuristic
approaches. These procedures can be applied for
large problem instances as well as in a modified
version for the multiple product constellations
= Described approaches
= Method of a “least-unit cost” approach
= Silver-Meal procedure
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Least unit cost approach

= Consider an arbitrary period t (1<t<T). If a batch satisfying
the subsequent periods t to s (s2t) is produced, we have
the following average costs per item:

s=1 s s
s, +Z Zic d,+p, 'ch
c=t

unit __ c=t b=c+1

1s s

24,

c=t

= In every period t the period s is sought which fulfills the
following expression:

min ({1¢ > with T-12 j 2 r}u{T})

[

A heuristic approach

1. cp=1
2. While cp<Tdo
3. Planning of batch in period cp

3.1j=cp;
.S +p. -d

32 ¢y =—"+—2—12 Pey £ it = true;
) dcp

3.3 While it do

unit
cp,j

3.3.1 Compute c

3.32 if (¢! >cut,) then it = false else it = true

cp,j cp,j-1
3.3.3 ifit=truethenj=j+1
334 od
e ;"«qu@“ Business Computing and Operations Research WINFOR 221
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Example
. unit 500
tzll‘]:llclyl 25225
« 580
t=1:j=2:c""="-=58
T
« 900
t=1:j=3:c""="-=346
7779 Ta60
. i 1155
t=1:j=4:c)'=—-=3,35
1735 =55 =%
« 1635
t=1:j=5:¢"4 =——=3,52
77205 Taes
g, =345
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Example

t=5:j=5:c"" —500—417
120
t=5:j=6:cm =500 _5 75
220
qs =220
Costs:1755
ﬂ;g‘a'\ Business Computing and Operations Research
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Silver-Meal procedure

The Silver-Meal procedure works quite similar to the least-unit cost
procedure considered before

The only difference results from a modified criteria to decide about the
number of subsequent periods satisfied by the production of a period
currently considered

This criterion is given by the average costs per period occurring for the
realization of a specific lot size

To do so, consider an arbitrary period t (1<t<T). If a batch satisfying the
subsequent periods t to s (s2t) is produced, we have the following average
costs per time period:

z [Zd j+ - zd
[)t/fllld b=c+1

C,

1s

s—t+1

Similar to the least-unit cost procedure in every period t, the period s is
sought that fulfills the following expression

min ({] Lerod>elr! with T—12 j >t} U{T})

The resulting procedure

1. cp=1

2. While co< T do

3. Planning of batch in period cp

3.1 j=cp;

32 crowod = o P e, oo it = true;
cp,j j—cp+1

3.3 While it do

3.3.1 Compute ¢/

3.32 if (¢ > ck’) then it = false else it = true

cp.J cp,j-1
3.3.3 ifit=truethenj=j+1
33 od
ﬂw‘a' = Business Computing and Operations Research
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Example
t=1:j=1:Cf1eHOd 5?0—500
t=1:j=2:c55" =@=290
t=1:j=8:cfy" = 9(;0 =300

t=1:j=4:c0 = 11455 288,75

=1:j=5:c¢ pe”"d 1635 _ =327
5
g,=100
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Example

t=3:j=3:c3’i§””d=¥=500

t=3:j=4:c{j’i”d =5—§5=292,5

t=3:i=5:c§§,"°"=%=275

Example

1=6:j=6:c" =5—(1)0=500
g, =100

Total costs : 580 +825+500 =1905
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i 1125
t=3:j=6:c07" ==, =28L25
q, =365
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Observations

The SRP can be characterized as a pure shortest path

Broblem where we have to find the shortest connection
etween source and sink comprising total costs for the

production of the demanded quantities

Unfortunately, the integration of additional existing

restrictions frequently given in real applications cannot be

handled

In order to do so, a modified version SRPg of the SRP is

proposed where we use continuous variables instead of

integers

In this model we can add arbitrary capacity restrictions

often occurring in industrial applications
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3.4 The CLSP model

=Capacitated Lot-Sizing Problem

= Extension of the SLULSP model by integrating
multiple products with dynamically changing
demands

= The available capacities are limited and must be
shared between the different products

= Big-bucket model, i.e., long periods, J jobs per
bucket to be processed

N
3
|
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Big- vs. Small-bucket problems

= In literature, two main types of lot-sizing models are
distinguished:

= Big-bucket models: The planning horizon is divided into
larger sub-horizons (called buckets) which allow the
processing of multiple products where different setup
states are necessary. Consequently, the respective
models characterized as big-bucket approaches are
defined as multiple product concepts, where individual
setup and processing times for each resource are present
(cf. CLSP). Setup states between neighboring buckets
are not preserved while it is assumed that, due to the
time dominance of the bucket sizes in comparison to the
setup times, the non-preservation of specific setup states
between successive buckets causes only small and
negligible errors
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Big- vs. Small-bucket problems

= Small-bucket models: Allow only at most one setup
activity per bucket. Therefore, the model additionally
comprises a sequence decision with respect to the jobs to
be processed on the considered machines. As a
consequence, a problem instance occurs which
comprises frequently a large number of buckets by
mapping realistic sized problems

» Trend towards the more accurate small-bucket models,
especially for applications with larger lead times (inherent
drawback of big-bucket models)

Linked models

= To combine the advantages of the two types by
preventing the respective disadvantages, the lot-
sizing models with linked lot sizes are
proposed in new publications,

= ...namely the CLSPL as a big-bucket model with
the additional attribute that existing setup states
can be preserved between successive buckets

School
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lllustration
Big-bucket | mmm | | memm | [ _
model Longer periods;
J products per bucket
sl

1 2 3 4 time

! ! | |

I I 1 1 .
Small-bucket | | ! ! Short periods;
model | | i i <2 products per bucket

R >

time

Longer periods;
J products per bucket;
Linked lot sizes

time
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CLSP - Assumptions

= The planning hotrizon is fixed and divided into
T time buckets, numbered from 1to T

= Resource consumption to produce a product
j on a specific resource m is fixed, and there
exists a unique assignment of products to
resources

= Setup processes incur setup costs and
consume setup time, thereby reducing capacity
in the respective period. Costs and consumed
time occur sequence-independent

= No setup state can be preserved to the
subsequent bucket
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3.4.1 Mathematical definition — Parameters

T : Number of considered periods [-];

J: Number of available resources [-];

K :Number of products [-];

M: Large number [-];

b, (1< j<J;1<t<T): Capacity of resource j in period ¢ [time units];
P.,(1<k<K1<t<T): Primary, gross-demand for item k in

period t [product units];

h, (1< k< K): Holding cost for one unit of product k per period
[currency units/product units];
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3.4.1 Mathematical definition — Parameters

s, (1< k< K): Ordering (or setup) costs for product k

[currency units/product units];

P, (1Sk<K;1<t<T): Production costs for product k in period t
[currency units/product units];

to,, (1< j<Ji1< k< K): Operating time for each item of product k
on resource j [time units/product units];

ts; (1< j< ;1< k< K): Setup time for product k on resource j
[time units/batches];
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Mathematical definition — Variables

X (1Sk<K1<t<T): Lot size of product k in period t;

Y. (1< k< K;1<t<T): Binary derived variable indicating a setup
operation of product k in period ¢

Y (1Sk<K;0<t<T): Derived variable defining the inventory of
product k at the end of period t;

Objective function :

K T
Minimize Z=3"%"5, Y, + B - Vi, + Pros - Xy

k=1 t=1

Business Computing and Operations Research Wl N F OR 238

N
3
g

17



Mathematical definition — Restrictions |

Vke{1...K}:vte {L...T} Y+ X = YVio =P
The demand in every period of each product must be fulfilled by
the inventory and additional production

Vke{1...K}:vte{1...,T}: X, , - M-7,,<0;
Derivation of the binary setup variables

K
Vjie{l..J}:Vte (1., T} Y (to,, - X, +15;, Vi) < by,
k=1

Compliance with the time restriction of each available resource
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Mathematical definition — Restrictions Il

Vke{1..,K}:vte{1..,T}: X,, 20  Non-negative lot
sizes

Vke{1,...K} Yo =0AYy,+ =0 Start and end inventory
is zero

Vke{1..,K}:vte{1..,T}:y,, 20  Non-negative
inventories

Vke{1..,K}:vte{1...,T}:7,,€{0,1} Possible values
for the derived variable
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3.4.2 Solution methods

= The CLSP can be directly solved by using a standard
solver
= This, however, causes frequently an unacceptable
computational effort
= Two different solution methods are frequently proposed to
prevent this computational effort:
= Use of the Shortest Path Problem SRPg:
= Integration of capacity restrictions
= Easier to solve due to its flow attitude
= Use of appropriate heuristics
= The procedure of Dixon and Silver
= The ABC-procedure of Maes

|
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The procedure of Dixon and Silver

= Heuristic approach

= The use of only one resource (one machine) is
assumed

= Bases on (idea derived from) the Silver-Meal

heuristic

= In every iteration the procedure tries to minimize
the average costs per period caused by each
product

= But due to the simultaneous production of several
products, capacity restrictions can prevent a
sequence defined according to this criterion

= Therefore, the procedure has to define additionally
some priority rules to decide about which product
can be produced according to the decisions of the
Silver-Meal procedure
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Preparing main instruments

= In each iteration the procedure tries to extend the
production in the current period by integrating the
demand of a following period of some product, i.e., all
products compete for implementing its production in a
subsequent period if this integration attains a reduction
of the respective average costs per period

= But, owing to the fact that the available capacity defines
the bottleneck of the planning process, all cost
reductions are interpreted accordingkto their capacity
requirements, i.e., for each product k the integration of
the demand of the j+1-th period in the production
generated in period i is rated by the following priority A, ;:

period _ period]

A = [Ck.i.j Cri.j
ki — [ . ]
fo, -d,. 4l

with d, ; as the demand of product k in period j
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Interpretation

A, ; gives the relative reduction of average
production costs per period of product k produced
in period i by integrating the demand of period j+ 1
per capacity unit to be used for its realization

By integrating the products in the sequence of
non-increasing A-values, a solution arises
optimally applying the Silver-Meal criterion
according to the local minimization of total
average costs per period
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Pseudocode of the Dixon and Silver procedure

While current period i<T do
Iteration i:

While capacity is available and costs per
period reductions for some products are still
possible, do

Enlarge production quantities by

integrating subsequent periods of

the product with largest A-value

Od (end while)
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Capacity requirements

In order to respect the capacity requirements in the CLSP
model, it may become necessary to advance some
productions to earlier periods

First of all, we therefore have to check whether a given
instance is solvable at all. This can be checked by the
following requirements:

K
vte{1...,T}: Zt‘,ztok'dk,j < Zt:bj
j=1

j=1 k=1
T p~—
Total capacity demand up Total available capacity up
to period t to period t

Note that average setup times are already subtracted
from the capacities

Note further that these times cannot be exactly computed
beforehand since they depend on the found solution
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Consequences

= In order to guarantee a feasible solution
generated in the computation of the procedure of
Dixon and Silver, we have to introduce some
additional shortcuts

= In what follows, we define:
Vie{l....T}:Vje{ii+1,...Thn,

Already in period i produced quantity
of the demand of product k needed

in period j
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Definition of used parameters

;
-Total capacity usage in i:vie {1...,T}:CU, =Y CU,,

J=i
K
-Total capacity demand of period j:vje {1,...,T} :CD, = > to, - d,,
k=1
-Total net-demand of period j in period i:Vie {1...,T}:Vje {i,..., T}:
i-1 K
CN,;=CD,-> > to,-n,
t=1 k=1
-Needed capacity in j remaining for i-vie {1,...,T}:Vje {i,....,T}:
CR,;=CN,; - b,
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Observation

= A capacity shortage CR,; >0 can be satisfied only if an
additional production in the periods i,i+1,...,j-1is
established

= Therefore, a period i has to account for a production of
the period j if the intermediate periods are not able to fulfill
its capacity requirements

= Therefore, in order to guarantee the feasibility of a
generated solution — if possible — a period i has to
integrate the additional capacity requirements:

max{O,max{ Z(CRI._]. —CU,._].)I ie{l,..T-1}ni<t ST}}

j=i+l

School
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Consequences

= By integrating these additional quantities in the i-
th period, the demand of all subsequent periods
can be satisfied

= As a consequence, we fulfill the following
necessary restrictions ensuring the feasibility:

Vie{l,...T-1}:Vte{i+1...,T}: Y CR ;< > CU,

j=i+l j=i+l
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The Dixon and Silver procedure

= As a consequence, the procedure of Dixon and
Silver respects the advanced production of future
deficits to prevent any violation of the defined
capacity requirements

= Therefore, by considering each period and its
production program only once, its determination
always results in a program where it remains
possible to fulfill the demand requirements of all
subsequent periods
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The procedure of Dixon and Silver

= Step 1: Initialization of variables
= Check whether the entire problem is solvable. If

K
vte {1...T}: Zt:Ztok d,; < Zt:bj
=

j=1 k=t
\—/_/ . v .
Total capacity demand up Total available capacity up
to period t to period t

then the problem is solvable. Otherwise, stop with
the output “Problem cannot be solved”

= Current period is i=1
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Continuation of step 1

= Initialization of the product ranges
For all products k: r, =0
= Initialization of production quantities
For all products k: x, =dy ;
= Generate the respective remaining capacities in

period i
K
RC,=b,-) 10, -d,,
k=1
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Step 2

+ Generate the earliest period where the current
production program of period iis not able to
guarantee a feasible execution of the demanded
production quantities, i.e., we compute:

. =min{t|t>i/\ ZZ:CUI.J < ZZ:CRW}

Jj=i+l Jj=i+l
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Step 3

= Consider the set M of products whose current
range does not cover the period t, und whose
subsequent demand can be integrated in the
production of period i, i.e.,
M={k|r, <t,-ind

Ki+r i+1

o, < RC,}

= |f M contains no products, go to step 4
= Otherwise, determine the product /in M with
largest priority 4,;
= If A;20: Integrate the demand of the next period

of product / and go to step 3 — integration (next
slide)

= Otherwise, go to step 4

|
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Step 3 - Integration

= The extension of the production quantity for
product /to the next period is advantageous:

hi=nh+1
X =%t dl,i+r,y,
RC,=RC,—to,-d
dl,i+r,y, =0

Gotostep2

Li+r;
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Step 4 — Feasibility check

= If t.>T, then the production plan for period i is
already feasible and we can switch to the next
iteration by setting i:=i+1

= Otherwise, we have to resume adapting the
production program in period i by integrating the
production of future demands

= This is done in step 5
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Step 5 — Feasibility construction

= Compute with Q the additional production
demand for attaining a feasible constellation after
period i, i.e.,

t t
Q:max{z CR,-> CU, It < tsT}

j=i+1 j=i+t
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Step 6 — Corrections

= Consider all products whose current range does
not cover up to period t.. In case of the k-th
product we get:

. Q
e =mingr, +4r, +———
y il 5 tok.d

ki+r ;+1

If r7* is an integer define the priority as follows:

period _ ~period
A [Ck,i,iwk,, Ck.f.wk"iw
T

Step 6 — continuation

= Integrate the period demand as described above
for the product with the largest A-priority. Let W,
the respective occurring capacity, demand for this
integration. Then Q:=Q-W

= If Q>0, repeat step 6 — otherwise, go to the next
(i:=i+1) iteration
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f)
tok ' dk./+r,(’f’}w
Otherwise:
period _ ~period
[Ckv/'.fw,, Ck,i,i+r,f‘,ewj|
Aki = =
’ Q
S¢ 1 a
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Example

Two products, 4 periods to be considered
Setup costs: s;=100; s,=50

Holding costs: hy=4; hy=1

Production times: to,=to,=1

Capacities: b,=b,=b;=b,=160

t 1 2 3 4

d, | 110 | 49 0 82

dpy | 48 | 75 | 15 | 120

School
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lteration i=1

= Step 1:
= General feasibility check:

= t=1:158<160 ok

= t=2:282<320 ok

= 1=3:297<480 ok

= t=4:499<640 ok

= ry14=0; x,,=110 product 1

= 1p4=0; X, =48 product 2

= RC;=2 Remaining capacity in period 1

t 1 2 3 4
1t 110
2t 48
CNi, - 124 15 202
RC; 2 160 160 160
“4.»,/43 ~ Business Computing and Operations Research Wl N FOR 262
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Iteration i=1 — step 2

Now, we have to determine if there is a period where the
feasibility is endangered by the current production plan
t=2:CN,,=49+75=124= CR, , =124-160=-36
2

322:CULJ.=OZZCR].=—36 ok
Jj=2

N
=2
1=3:CN,, :O+1/5:15:>CR,V3 =15-160=-145
323:CU1._, =0223:CR,'_, =-36-145=—181 ok
=2 j=2
t=‘,4:CN,V4 :82+]120: 202= CR,, =202-160=42
:>Z4:CUU:OZZA:CR,J.:—36—145+42:—139 ok
=2 Jj=2

=t =5>T=4
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Iteration i=1 — step 3

+ Now, we try to enlarge the production quantities
in order to reduce the costs per period

« Unfortunately, in this case the small remaining
capacity of 2 in period 1 prevents any integration

+ Demands:
« Product 1: d ,10,=49>2
« Product 2: d, ,10,=75>2
« lteration 1 ends
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Ilteration i=2

= Step 1:
= Initialization of product quantities:
= 11=0; X, ;=49 product 1
" rp5=0; X, ,=75 product 2

= RC,=36 Remaining capacity in period 2
t 1 2 3 4
J1 110 49
oy 48 75
CN;; - - 15 202
RC; 2 36 160 160
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Iteration i=2 — step 2

Now, we have to determine if there is a period
where the feasibility is endangered by the
current production plan

t=3:CN,,=0+15=15=CR,, =15-160 = —145

U

3
CU,,=02) CR, ,=-145 ok
j=3

3
t=4:CN,, =82+120=202= CR, , = 202-160 = 42
4

4
CU,;=02) CR, =—145+42=-103 ok
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Iteration i=2 — step 3

+ Now, we try to enlarge the production quantities in order to
reduce the costs per period
» Product 1 has no demand in period 3. Therefore, an
enlargement yields always the highest priority and is
executed, i.e., ry ,=1
 Product 2 has in period 3 the demand 15, i.e., it holds that
d, 510,=15<RC,=36
= A, »,=(50/1-(50+1-15)/2)/15=(50-32,5)/15=17,5/15=1,1666720,
i.e., enlargement is implemented
" ry=1

T 1 2 3 4
(<17 110 49
Aot 48 90 -
CNi’t - - - 202
RC; 2 21 160 160
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Iteration i=2 — step 2(2)

Now, we have to determine if there is a period
where the feasibility is endangered by the
current production plan

t=3:CN,,=0= CR,, =-160

3 3
=Y CU,, =1szZ;CRz_j =-160 ok
=

j=3

t=4:CN,, =82+120=202 = CR, , =202-160 =42
4 4

=Y CU,,;=152) CR,;=-160+42=-118 ok
j=3

i
Jj=3

=t =5>T=4
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Iteration i=2 — step 3(2)

+ Now, we again try to enlarge the production
quantities in order to reduce the costs per period
« Unfortunately, in this case the small remaining
capacity of 21 in period 2 prevents any further
integration
« Demands:
- Product 1: d, 4t0,=82>21
- Product 2: d, ,t0,=120>21
- lteration 2 ends
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lteration i=3

= Step 1:
= Initialization of product quantities:

= 1y3=0; X, 3=0 product 1

" rp3=0; X, 3=0 product 2

= RC,;=160 Remaining capacity in period 3

t 1 2 3 4

Ay, 110 49
oy 48 90 -
CN;, - - - 202
RC, 2 21 160 160
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Iteration i=3 — step 2

Now, we have to determine whether there is a
period where the feasibility is endangered by the
current production plan

t=4:CN,, =82+120=202 = CR,, =202-160=42
4 4
=> CU,;=0<) CR, ;=42 Bottleneck!
J=4 j=4
=t =4
= We have to adapt the current plan!
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Iteration i=3 — step 3

+ Now, we try to enlarge the production quantities
in order to reduce the costs per period
+ Product 1 has in period 4 the demand 82, i.e., it
holds d, ,t0,=82<RC,=160
A, 5=(0/1-(100+4-82)/2)/82=(-214)/82=
-2,609, i.e., enlargement is not implemented

« Product 2 has in period 4 the demand 120, i.e., it
holds d, ,t0,=120<RC3=160
A, 5=(0/1-(50+1:120)/2)/120=(-85)/120=
-0,708333<0, i.e., enlargement is not implemented
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Iteration i=3 — step 4

Now, we have to determine whether there is a
period where feasibility is endangered by the
current production plan

t=4: CN,,=82+120=202= CR,, =202-160 =42
4 4

=Y CU,;=0<) CR, =42 Bottleneck!
= =

=>t =4
= We have to adapt the current plan!
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Iteration i=3 — step 5

= Q=42: Minimal capacity to be integrated in period
is 3 in order to guarantee a feasible production
plan
= Respective ranges:
= Product 1: 42/82=0,51
A 5=(0/1-(100+4-42)/1,51)/42=-4,2258
= Product 2: 42/120=0,35
A, 5=(0/1-(50+1-42)/1,35)/42=-1,6223, i.e.,
enlargement is implemented
r3=0,35; X, 3=42
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Iteration i=3 — step 5

t 1 2 3 4
ay, 110 49 - -
' 48 9 42 -
CN,, - - - 160
RC, 2 21 118 160

* |teration 3 ends
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lteration i=4

= Step 1:
= Initialization of product quantities:
= ry4=0; X, ,=82 product 1
" rp4=0; X, ,=78 product 2

= RC,=0 Remaining capacity in period 4
t 1 2 3 4
G4 110 49 - 82
o4 48 90 42 78
CNy, - - - -
RC; 2 21 118 0
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Iteration i=4 — step 2

Now, we have to determine if there is a period where the
feasibility is endangered by the current production plan

=t.=52T=4

The algorithm stops! Solution generated!

t 1 2 3 4
Qg 110 49 - 82
sy 48 90 42 78
RC; 2 21 118 0
: ;‘ngz'\ Business Computing and Operations Research WINFOR 277

Can we improve the solution?

= |dea: It is always advantageous to produce all quantities

in the last possible period

= This is not implemented for product 2
= We can move the production of 15 units needed in 3 in

this period to save holding costs of 15 currency units, i.e.,
we generate the solution:

t 1 2 3 4
duy 110 49 - 82
sy 48 75 57 78
RC, 2 36 103 0
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Observation

In literature, it is stated that the procedure of
Dixon and Silver yields a high solution quality

Consequently, this procedure is also used in
multiple-stage problems as a subroutine
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3.5 The CLSPL Model

= All assumptions of the CLSP beside the carry-

over-prohibition of setup states are valid

A setup state is not lost if there is no production
on the resource within a bucket

Single-item production is possible (i.e., the
conservation of one setup state for the same
product over two consecutive bucket
boundaries)
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3.5.1 CLSPL - Attributes

'1I'he [%Ianning horizon T is fixed and divided into time buckets

Resource consumption to produce a product j on a specific
resource m is fixed, and there exists an unique assignment of
products to resources

Setups incur setup costs and consume setup time, thereby
reducing capacity in periods where setups occur

At most one setup state can be carried over on each resource
to the next one, consequently no setup activity is necessary in
this subsequent period

Single-item tproduction is possible (i.e. the conservation of one
setup state for the same product over two consecutive bucket
boundaries)

A setup state is not lost if there is no production on the
respective resource within a bucket

In the following, we give a detailed mathematical definition of
the problem basing on the model proposed by Stadtler and
Suerie (2003)
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Computation of the net-demands

In the CLSPL introduced here the chosen lot sizes are
defined according to the net demands for product j in
period t, i.e., we define the proportion of the net
demand of a specific product in period t that is
satisfied by the production in the considered period.
This is done in order to get a more strict and compact
model definition which can be solved much easier
To do so, we first have to introduce what we
understand as the so called net demand of a specific
product in a defined period

= Up to now we have modeled the inventory and gross

demands directly within separated variabres (derived
variables)

= So far, we have neglected dependencies resulting from
multiple-stage systems
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Computation of the net-demands

= Now, the relative definition requires a detailed
handling of these interdependencies. Therefore,
we have to derive the net demands instead.

= Consequently, inventory and secondary
demands have to be respected

= First of all, we have to map the product structure
with all existing interdependencies

= Note that ending inventory is explicitly
allowed

School
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Generating net demands — Parameters

J : Number of products (or items)

T : Number of considered periods

Vje{l,..,J}:Vte{l,..,T}: P, : Primary gross demand of product j in period ¢
Viel{l,...J}:Vie{l,...,T}: D;, : Gross demand of product j in period ¢
Vje{l,..,J}:Vte{l,..,T}: D}, : Net demand of product j in period ¢
Vie{2,...,J}:Vje{l...i=1}:#", : The number of units of product (item) i

required to produce one unit of product (item) j
In what follows, we assume that the products are ordered according to

the adjacency graph, i.e., a lower numbered product is never necessary

in order to produce a higher numbered one

R
/’.4/,:/?@ ~ Business Computing and Operations Research WI N F OR 284

Generating net demands — Parameters

Therefore, we can generate the net demands starting with the lowest
numbered product which has no successor, i.e.

vie{l,...J}:Vie{l,..,T}:
j-1
d
D, = P, + XD
— — k=1
Gross demand Primary demand

Gross demand of successors

and
Vje{l,..J}:Vie{l,..T}:6=1,,:

j-1 j-1
D, = max {O,Pjy, +Zr/'fk D}, - 5} with 6 = max {0,5— P, —Zr;fk -D; }
k=1

k=1

New inventory of product j in period
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CLSPL — Parameters

j=1,...,J: Product index or item index

m=1,....M : Resource index

t=1,...,T : Index of periods

R, (1<m<M): Set of products produced on resource m

a, (1<m<M ;1< j<J):Capacity needed on resource

m to produce one unit of item j

B, (1< j<J;1<t<T):Large number, not limiting feasible lot sizes of
product j in period ¢

C,,(1Sm<M;1<t<T): Available capacity of resource m in period

h; (1< j <J): Holding cost for one unit of product unit j per period

R
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CLSPL - Parameters

P, (1< j<J;1<t<T): Primary, gross demand for item j in period ¢
(with P, including final inventory - if given for the planning horizon T)
D, (1< j<J;1<t<T): Gross demand for item j in period ¢

D, (1< j<J;1<t<T): Net demand for item j in period 7

sc; (1< j<J):Setup cost for product j

st; (1< j<J):Setup time for product j

S, (1< j<J):Setof direct successors of product j in the multilevel
product structure

rj’fk (1< j<J;1<k < j—1): Units of items j necessary to produce one unit
of the direct successor item k

1 : Lead time offset (in the following assumed to be 0)

Sehoo]
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CLSPL — Variables

1,,(1<j<J;1<t<T): Inventory of item or product j at the end of the period ¢
Z,,, (1< j<J;1<1<T;1<s<T): Proportion of net demand of product j in period s
fulfilled by production in period ¢

X,, (1< j<J;1<1<T): Production amount of item or product j in period ¢

Y, (1< j<J;1<t<T): Derived binary setup variable

1: if a setup for item j is performed in period f;
- {O:otherwise

W, (1< j<J;1<t<T): Binary linkage variable indicating that a setup state

for product j is carried over from period 7 —1 to period ¢

0,.,(1Sm<M;1<t<T): Binary variable indicating that production on resource
m in period ¢ is limited to a single product, and there is no setup activity necessary,
i.e., the setup state is linked from the preceding to the subsequent period
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CLSPL - Restrictions

T
vme{l,...M}:vie{l,..T}: > > a, -D! -Z,, + Y st,-Y,, <C,, 1]

JeR, s=t JeR,,

(Capacity restrictions)

viell,... :vre{l,...ThVselt,..T}:Z,, <Y, +W,, ()

(Dependency between production and setup and linkage states)

vie{l,... :vte{l,...Th:Vset,...T}:Z,, 20AY,, {01} (3)

(Co - domain definition )

Sehoo]
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CLSPL — Restrictions

t

Vie{l...J}:Vee{l...T}:(D],>0): Y7, =1 (4)
s=1
(Demand fulfillment)
Vme{l,...M}:Vie{2,..T}: > W, <1 (5)
JER,

(At most one setup state can be linked per time period and resource)

viel{l,...J}:Vie{2,...T}:W, +W, (6)

(Dependencies between setup activities and linkage variables)

<Y.
o= Tl
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CLSPL - Restrictions

vme{l,..M}:Vje R, :Vie{l .T-1}:W, +W, <1+0,,  (7)

J

(Dependencies between different sets of linkage variables)

Vme{l,...,M}:Vje R, :Vte{l,..,T}:Y, +0Q,, <1 (8)

(Dependencies between different sets of linkage variables)

vme{l,...M}:Vie{l,..,T-1}:0,, 2070, , =0AQ, . =0 9)

(Co-domains of variable)

Vie{l,..J}:Vie{l,..,T}: W, e{0,1}AW, =0 (10)
(Co-domains of linkage variable)
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CLSPL - Objective function

J T-1 T J T
1 1 1 = —_ . n . .
Minimize Z = Zhj (t-s) D, -Z,,, + ZZscj Y,
Jj=1 s=1 t=s j=1 t=1
Holding costs Setup costs
ch
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3.5.2 Tightening the model

= Suerie and Stadtler (2003) propose several
extensions of the defined model in order to
strengthen it significantly

= Strengthen means that it becomes possible to
derive tighter LP bounds

= In particular...
= new variables are added

= and three groups of valid inequalities are
introduced

erSchool
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Added / exchanged variables

= The resource-dependent variables Q,,, are

replaced by product-dependent ones termed as
QQ;

= By using these modified variables instead we can

give a more precise definition of occurring setup
states linked between subsequent periods

= |n detail we define:

Viell,...J}:Vte{l,...,T}:0Q,, : Binary decision variable. Is
one iff the setup state is carried from period 7 -1 through 7+1
while product j is solely produced in period ¢
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Erasing restriction 8

vmefl,...M}:Vje R, :Vte{l,...T}:Y,, +0,, <1 (8)

(Dependencies between different sets of linkage variables)
is replaced by

Vme{l,...M}:VjeR, :Vie{l...T}:Y, +W,, + > 00, <1 (8a)

keR,,
k#j

Note that there can be either a setup activity for item j in period ¢ (Ym = l),
a link for item j into period ¢ (Wj’, = 1), a single item production for

any item k # j in period ¢, or none of those three options, but never two of

them simultaneously.
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Erasing restriction 6

Viell,...J}:Vie {2,..ThwW, <Y,  +W, | (6)
is replaced by
Viell,...J}:Vie {2,..ThW,, <Y, +00,, ., (6a)

Note there can be setup state carried over in period t only if either item j
was set up in period #-1 (Y/.J_l = l)or the setup state is already carried over

from period #-2 to -1 and there is a single item production in period ¢-1

(o, =1)

Range-restriction of values for QQ

Vie{l,.,J}:Vie{2,...T -1}:Vse {r,r +1}:
QQj,t SVVj,s (9)

vie{l....J}:veedl,...T-1}:00,, 20
(00,,=0A00,,=0) (10)

Sehoo]
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Restriction 7
Vme{l,...M}:Vje R, :Vte{l,..T-1}:W,,  +W, <1+Q,, (7)
is replaced by
Viefl... Ve {l...T-1}:W, , +W,, <1+00,, (7a)
BUT:

Is this restriction really necessary to define the model?
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Restriction 7

+W, (using :(6a): W, <Y, .+ QQ/.H)

Ji+l Jst J

w

using:(8a):Y,, +W,, + 3500, <1
keR,,
k#j
<Y + LW
it QQ/J L N Y/-" +Wj.r <l- ZQQAJ
keR

P

<Q0;,+1- Y00, ,<1+00,,

keR,,

=>W

Jut+

+W,,<1+00,, (7a)
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Observation

Restriction 7 can be erased due to the
combined application of restrictions 6 and 8

By analyzing the transformations on the previous
slide, it becomes obvious that the restrictions 6
and 8 together form restrictions that are
considerably tighter than the restriction 7
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Valid inequalities

In the following, additional restrictions are
introduced to achieve a further tightening of the
model definition

To do so, basic attributes of adequate solutions
are elaborated and subsequently fixed by the
integration of additional restrictions in the model
definition
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Preprocessing — Inequalities

Now attributes of the given test data are used to
define additional restrictions

In detail, the possible range of the new introduced
QQ-variables is limited

This can be done in a step called preprocessing
Therefore, in this preprocessing step available
capacities are computed and compared with the
cumulative slack capacities summed up to the
respective period

Since there is no backlog allowed, impossible
single item productions in some periods may be
identified and, therefore, excluded
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Example

Item j A, Netd din Netd din | Netd din
period 1 period 2 period 3

1 1 20 20 20

2 1 30 40 40

3 1 20 20 20
Available capacity 100 100 100
Cumulative slack 30 50

capacity
2
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Observations
= Period 2
Single item production is not possible at all
Why?

— Necessary is a capacity requirement shift of at least 40
units to period 1

— But: In period 1 there is a slack capacity of only 30 units

= Period 3
Single item production is not possible for products 1
and 3
Why?

— Necessary is a capacity requirement shift of at least 60
units to period 2

— But: In period 2 there is a cumulative slack capacity of only
50 units
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General speaking

= Let U denoting the length of the interval under
consideration:

“If cumulative slack capacity (up to period t-1) is
less than the amount that has to be pre-produced
to allow single-item production of just one product
in the interval under consideration [t; t+U-1], then
at least two products have to be produced in the

interval [t; t+U-1]"

= This implies that at least one setup activity has to
be performed, which implies that not all periods of
the interval [t; t+U-1] can have single-item
production
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Additional model restrictions — Type 1

vme{l,..M}:Vje R, :VUe{,23}: Ve {2,..T-U +1}:

if :icm,s —i zam,k -Dl:l,s - ZS’/«
s=1

o— =)
5=l keR,, keR,, with: ¥.D} >0

Slack capacity in periods 1to -1

t+U~1

- z Zamvk D, <0:

s=t keR, k#j

Necessary capacity in1to -1 for single item
production of product type jin periodst, ..., t+U-1

t+U~1

300, <U-1 (11)
s=t
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Additional model restrictions — Type 2 (ext)

vmefl,..M}:VVei{l,23}:vie{2,...T-V +1}:

if :iCm.s —i 2. Di— st
s=1

o— -1
5=l keR,, keR,, with: S0} >0
s=1

Slack capacity in periods 1to -1

t+V—-1 V-1
- z Zam‘j DY, + max z a, D} |<0:
s=t

s=t jeR, &R
-
Necessary capacity in1to ¢-1 for the production of Maximal capacity remaining
allitems in the subsequent periods ¢, ..., +V-1 inperiods 7 to 1+V-1
1+V-1
22,00, <V-1 (12)
s=t jeR,
erSchool a
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Inventory / Setup — Inequalities

= IfY;=W, =0 for product j, there is no production in
t for product j and therefore the stock has to
satisfy the occurring demand

= These dependencies can be generalized to
intervals of the periods t to t+p

= Therefore, we can add the following restrictions
to the model
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Additional restrictions

Vie{l,...J}:Vie{l,...,T-1}:Vpe{l,...,T -1}:

t+p-1

Lo+, 1, = YD, - (1—WN —ZYNJ
s=t r=t

kes;

%/—/ .
Total quantities of j already in stock in 7-1 Total net demand in Liff, no linking or setup operation
the interval 7 to r+p=1  takes place for product type j
in the periods 7 to s

with:
S :Set of successor items (direct or indirect) of

item j

erSchool
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Capacity/Single-ltem — Inequalities

= Now, additional restrictions are defined which
map the capacity consequences of an occurred
single item production
= Therefore, it is distinguished whether there is a
single item production on a considered resource
or not
= In the first case we can significantly strengthen the
existing capacity restriction
= In the latter case the original capacity restriction
remains
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Additional restrictions

Vme{l,...M}:vie{2,...,T-1}:

Z(am./'xj.z +St/'Yj.z)

JeR,

Total capacity demand on resource m

<C,,- [1 ->.00 jj + D a,,; X0,

JER,, JER,,

—_ R S
=liff there is no single item production of resource m  Demand of the single item production on resource m
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New derived variables

Vie{l,...J}:Vte{2,..T-1}: XQ,,
Production quantity of item j in period t, if this is a single-item

production period, i.e., we have to add the following restrictions:

Vie{l..J}:Vre{2,.,T~1}: X0, <X,

C T
vie{l,....J}:Vre{2,.,T-1}: XQ,, <min =L 3D |00,
a, o=t

Capacity of resource - Maximal demand in t
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Solution approaches for the CLSPL

= Suerie and Stadtler use a standard MIP solver
(XPRESS-MP, Release 12)

= They apply two different variants
= Branch & Cut:

= The additional restrictions are omitted in the initial model
formulation which is solved in each node of the solution tree

= However, the restrictions are stored in a cut pool. If a found
solution violates such a restriction this restriction is
subsequently added to the model

= Cut & Branch:

= All additional restrictions are inserted in the model and
therefore respected in each node by the computed solutions

= By doing so the LP becomes more restrictive

erSchool
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Observations

= Branch & Cut yields smaller matrices and faster
solution times at each node at the price of some
separation procedure

= On the other hand, both might require immense
amounts of memory and time

= Therefore, a heuristic modified version of the
procedures has been applied
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3.5.3 Time-oriented decomposition heuristic

= Stadtler has applied this version already to the
MLCLSP (Stadtler (2003))
= Main characteristics
= The time horizon is separated into three parts
= The lot-sizing window,
= the time intervals preceding the window and finally
= the time intervals following the window

= In successive planning steps, the lot-sizing
window is moved through the planning horizon
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Decisions in the parts ...

Lot-sizing window:
= Only in this part Iot-sizindg decisions dealing with binary
variables are considere

Preceding part:
. Blilnary setup variables are fixed and cannot be changed at
al

Following part:

= Only inventory balance and capacity constraints (without
the inclusion of setup times) are included in the model
definition to anticipate future capacity bottlenecks

Objective function:

= Minimization of setup- and inventory holding costs up to
the end of the lot-sizing window
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Idea

> Finding of a tight model formulation inside a
variable lot-sizing window, gathering their
benefits without accepting the drawback of an
inflated matrix, if such a model formulation is
used for the whole planning horizon

> Parameters ((A,W,P)-setting)

> A: Length of the lot-sizing window

> W: Overlap of two consecutive lot-sizing windows

> ®: Number of periods at the end of the lot-sizing
window with relaxed integrality constraints in
respect of the setup variables

i.e. P<W<A
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(4/2/1) setting

periods t 1 2 3 45 6 7 8

1.Planning step @.‘."*
2.Planning step «-‘—.\E.‘..
3.Planning step m@
4.Planning step —.—‘—.—“—'—@
Window preceding periods

Lot-sizing window|
e Window following periods
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Planning horizon effect

= Due to the fact that the objective function measures costs
to the end of the lot-sizing-window only, possible
enlargements of the production quantities at the end of
the window are quite unlikely, since
= they cause additional setup- and production costs but do
not result in
= any savings ...
= Therefore, in order to deal with this problem, Suerie and
Stadtler propose a bonus concept rewarding productions
at the end of the planning horizon.

= Overlapping of lot-size windows also reduces the
planning horizon effect
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Bonus computation

First, i.e., as an offline processing step, we execute
the Silver Meal heuristic on the non-capacitated version
of the problem for each period.

Therefore, we get myopic TBO (time between orders)
tbo, for every period t

If a production quantity in period t is enlarged to cover up
'lt)o eriod s, we charge the total costs C(t,s) defined
elow

In this situation, we assume that there is a current lot-

sizing window starting at period Ty, and ending in period
int

Note that we assume that s is somewhere between the

end of the window and the current tbo,, i.e., we want to

give a bonus only to enlargements likely to be prevented

by the horizon effect
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Bonus computation

t  tbo=4

Current planning step @.".'*
™
s

Vie T +1,..7" }:se fr™ +1...t+tho, — 1}:
(if t+tho, >T’“‘):

Tm\ — t +1
C(l, s) — Periods to the end of the window o-t+1 . (COS[S for setup and holding)
gL

Periods between f and s

Bonus for enlarging
BONUS,, =C(r,5)-C(r,s~1)
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Example
C_ts
1
0,9+ -
0,8 x\,‘\ —e—C_ts (t=11
0,7 \W —=—C_ts (t=12

. \.\:tx. —+—C_ts (t=17)
03 | \ ——C_ts (t=18

(t=11)

(t=12)

, C_ts (t=13)

0.6 C_ts (t=14)

2 —x—C_ts (t=15)
~ 0,5 1

o —e—C_ts (t=16)

0,4 (t=17)

(t=18)

(t=19)

(t=20)

0,2 C_ts (t=19
C_ts (=20,

0,1

0 T T T T T
1 2 3 4 5 6 7 8 9 10
sT_int
T,=20; T;,=10; Window size=10
ferSch
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Example

Bonus-Computation

2 3 4 5 6 7 8 9 10
- —+—BONUS (t=11
. —=—BONUS (t=12
BONUS (t=13
/ BONUS (t=14;
7

1
(t=11)
(t=12)
(t=13)
(t=14)
-0.08 - —%—BONUS (t=15)
(t=16)
(t=17)
(t=18)
(t=19)
(t=20)

-0,02

-0,04

-0,06 -

04 —s—BONUS (=16
—+—BONUS (t=17,
-0,12 ——BONUS (t=18,
0.14 | / BONUS (t=19
BONUS (t=20
-0,16
-0,18
sT_int
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Feasibility of capacity demands

= By introducing the inventory balancing

constraints for all periods T, ..., T following the
lot-sizing window the general feasibility of the
generated sub-solution should be preserved

In periods following the lot-sizing window only
continuous production quantities can be chosen
while the total capacity in each period can be
extended by overtime that is charged by a
predefined rate per time unit in the objective
function
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Estimating setup times

Unfortunately, setup activities in these periods
following the lot-sizing window are not planned
explicitly and therefore unknown in respect of
there capacity requirements. We only model
the balance restriction as specific flow
requirements resulting in production quantities

But to anticipate future capacity bottlenecks,
different variants for estimating the occurring
setup times are tested, itemized subsequently
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Estimating setup times - STMIN

This version do not reduces the available
capacity by any setup activity to be executed

l.e. this version neglects all capacity
consumptions due to setup times in periods
following the lot-sizing window

l.e., somehow a “best case consideration”
Problem:
> Underestimation of capacity requirements
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Estimating setup times - STMAX

This version assumes that all items have to be
produced in every period, i.e. we have to setup
all resources in each period

l.e. in this version available capacity per period
is reduced by the sum of setup times of item
producible on the specific machine
Consequently, if capacities are tight, infeasible
problems for one or more planning steps will
sometimes emerge, resulting in no solution for
the complete problem

l.e., somehow a “worst case consideration”
Problem:

» Overestimation of capacity requirements
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Estimating setup times - STE

= This version lays somewhere between the
extreme cases itemized above

= Capacity losses due to setups are estimated by
their average consumption that is implemented in
the periods preceding the lot-sizing window plus
a predefined safety margin
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Computational results

All following results are measured on a PC
(Windows NT 4.0) with Pentium IV 1.7 GHz
microprocessor, and 256 MB RAM.

As a MIP solver, XPRESS-MP release 12 with
standard setting is used
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Used approaches

1. Basic: Most simple version using the basic

model definition without any extensions
(extended formulation & valid inequalities)

2. Extended: Using the extended formulation but

still omits the valid inequalities

3. C&B: Uses the valid inequalities additionally,

Cut & Branch approach as described above

4. B&C: Uses the valid inequalities additionally,

Branch & Cut approach as described above
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Single-Level Test Instances

= First experiments were done by testing the
different approaches on famous benchmarks
proposed in literature

= In the first phase the version STMAX was proven
to be not advantageous and is therefore
discarded for the rest of the evaluations
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Instances - Single Level

Class #Products #Periods #Instances
1 6 15 116
2 6 30 5
3 12 15 5
4 12 30 5
5 24 15 5
6 24 30 5
7 10 20 180
8 20 20 180
9 30 20 180

N
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Results for class 1

= 10 seconds computational time per experiment
= Best solution found so far is taken as the result

= It can be observed, that the proposed model
formulation with valid inequalities not only yields
better solutions but also better lower bounds

= Independent from the version —-B & Cor C & B —
the yielded solution quality of these
approaches was significantly higher than the
solution of the results of the standardized
versions
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Results for class 1

Approach Gap to LB Avg. time first solution
Basic 6,26 % 0,11 sec
Extended 3,94 % 1,19 sec
C&B 2,72% 2,66 sec.
B&C 2,62 % 2,34 sec.

N
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Branch & Cut

= Giving additionally at most 600 seconds per each
of the 116 instances the performance of the best
approach the Branch & Cut procedure is tested in
more detalil

= In 91 cases the optimality of the best found
solution could be proven in the given time limit

Business Computing and Operations Research
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Parameters

= For the MIP formulations, the solution after 30

seconds is taken for classes 1-3 and 5, whereas
60 seconds of computational time are allowed for
class 4 and 6-9

= For some experiments no solution was attained
= Therefore, the limit is enlarged until the first valid

constellation could be generated

= Sometimes up to 20 minutes were necessary
= As LB the LP relaxation after automatic cut

generation of the extended model with valid
Inequalities is chosen

= In contrast, the time-oriented decomposition

heuristic provides excellent solutions in a very

short time interval, which shows the effectiveness
of the model decomposition
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All classes — Heuristic comparison

Branch & Cut

Heuristic (6/2/2, STVIN)

Classes Gap to LB Avg. time Gapto LB Avg. time
1,2 2,18 % 22 sec 2,52% 5,3 sec
34 1,12% 45 sec 0,84 % 9 sec
5,6 0,36 % 52,4 sec 0,42 % 11,2 sec
7-9 1,64 % 142,9 sec 2,69 % 13,3 sec
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Observations

= Surie and Stadtler reports comparisons to the
new Tabu Search procedure proposed by
Gopalakrishnan et al. (2001) and conclude that
their decomposition heuristic outperforms this
approach according to solution quality as well as
to computational time

= But the approach was not tested on the same
computational system. However, they only
report the results of this reference achieved on a
Pentium IIl, 550 MHz system. This restricts the
meaning of this conclusion significantly
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Modified Single-Level Test Instances

In classes 7-9, the impact of the CLSPL is rather poor,
since only a single from 30 setup states is carried over
a period

Feature to carry over one setup state over two consecutive
bucket boundaries is never used

One answer could be, the CLSPL should be applied if only
a few items require one resource and/or some of them
are long runners, whereas demand for the other items
is rather low

For its evaluation, further test instances were generated
additionally

Owing to executed ag?regations these instances are
characterized by significantly smaller sets of items to be
produced on the resources

Again, 60 seconds computational time are allowed per
instance
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Main results

= It can be observed that the option to carry over a
setup state over two consecutive periods is now
used frequently

= In detail, there are 3.9 single-item productions per
periods on average

= The new test instances were more difficult to
SOI|\_/§ on the average due to a larger average gap
to

= Again, B & C was the best approach, but the
heuristic reaches nearly the same solution quality
while consuming significantly less computational
time
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Multiple-Level Test Instances

Further multiple level instances were tested
Time limit 600 seconds for finding a solution

60 instances comprising the production of 10
products on 3 resources over 24 periods each
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Results
Branch (6/2/2) (6/2/2) (4/2/2)
& Cut Time limit Time limit Time limit
60 seconds 180 seconds 60 seconds

Test Gapto | Gapto Avg. Gap to Avg. Gap to | Avg. time
set LB LB time LB time LB

B+ | 375% | 322% | 532 |296% | 1395 | 291% | 387
sec sec sec
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Results

The heuristic approaches now outperforms the Branch &
Cut procedure

Even enlarging its computational time to 24 hours(!) does
not help. Using this additional time, the procedure
reduces the gap significantly but cannot outperform the
solution quality of the best heuristic using only 60 seconds
Due to complexity, it becomes interesting to limit the
length of the time window

To do so, complexity remains controllable

Still, the time-oriented decomposition heuristic generates
presumable good results in reasonable time
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Conclusions

Under specific propositions the use of the CLSPL
model seems to be advantageous

The heuristic approach seems to be very efficient
but needs the use of an appropriate MIP solver
and its complex model definition

Some drawn conclusions against the use of the
Tabu Search approach have to be reevaluated by
additional tests under equal conditions

Future work:

= Parallel resources

= Scheduling integration

= Real-time restrictions
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