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2 Machine Learning

� First, let us recall or understand what we denote as machine 

learning

� An engineering orientation of Tom Mitchell (1997) seems to be 

quite useful

“A computer program is said to learn from experience E with 

respect to some task T and some performance measure P, if its 

performance on T, as measured by P, improves with 

experience E.” 

� Why is this thinking useful?

� On the contrary, traditional programming has to define rules, 

procedures, and sophisticated routines (algorithms) that 

determine in each detail what the computer has to do

� But is this always reasonable?
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Consequences

See it that way! 

Machine learning is 

your thing as a lazy 

bear! Let the machine 

learn not only work. 

See it that way! 

Machine learning is 

your thing as a lazy 

bear! Let the machine 

learn not only work. 

Great!

I thought that I should learn and not the 

machine. 

Great!

I thought that I should learn and not the 

machine. 
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2.1 Some basics

� In what follows, we try to understand some basic 

notations and concepts by asking

� What is machine learning about?

� Why do we use it?

� How we can classify the existing systems?

� See Géron (2017, 2019)
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Writing a spam filter in a traditional way 

Necessary steps to do in traditional programming

1. Before writing down rules you have to analyze tons of emails in order to 

find out characterizing words in the header or specific sender names or 

domains or further significant attributes of spam mails

2. Subsequently, you write a corresponding detection algorithm that checks 

all these cases in order to provide a reliable identification

3. You have to test the spam filter after being launched in your real-world 

application. Whenever you notice identification problems or new spam 

attributes, you have to repeat the two steps ahead. Therefore you undergo 

a continuous process of testing, analyzing, and programming

But, as these tasks are not trivial, it is quite likely that the program becomes 

quite complex and maintaining proves to be a time-consuming inefficient task 

to do
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Using machine learning

� On the contrary, in machine learning, the programmed spam filter is able to 

learn which words and phrases are promising predictors

� This learning can be done by comparing the frequency of these phrases in 

spam mails compared to ham mails

� Also such kind of programs have to be tuned (cycles of validation and 

correction) by the programmer, but are often much more compact and 

simpler to maintain

� Moreover, the every day usage is more efficient

� After being validated, the system should be able to adapt the applied 

rules according to the experienced (modified) data dynamically coming in

� Hence, the reprogramming of the spam filter occurs only rarely

� On top of that, there is frequently some versatility that allows to apply some 

basic components to different tasks
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Machine learning seems to be appropriated for

� …problems for which existing solutions require a lot 

of tuning or huge lists of rules

� …problems for which no solution of acceptable 

quality is known by applying a traditional approach

� …problems for which relevant data is very fluctuating 

and this data directly influences the structure of the 

applicable algorithms

� …problems for which we have to find some insights 

into the structure of the problem, i.e., we use 

machine learning in order to understand the problem
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2.1.1 Types of machine learning systems

� Today, there is an extremely increasing number of machine learning 

approaches that act quite differently and that are designed for various 

applications

� Thus, it seems to be useful to provide a useful classification

� Basically, we distinguish

� …whether the training of the system is supervised by a teacher or not 

(supervised, unsupervised, semi-supervised, or reinforcement learning)

� …whether it learns incrementally (with each new data) or not (online 

versus batch learning)

� …whether the system learns by just comparing new data points with 

existing known ones or detect patterns in the training data and derive a 

predictive mathematical model (instance-based versus model-based 

learning)

� Note that these criteria are not complete, disjoint, or exclusive. Clearly, we 

may have further criteria or applications that combine different of them
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Supervised learning

� Characterization

� The algorithm is fed with training data that includes the desired solutions (called 

labels)

� For instance, if a classification has to be done (e.g. by a spam filter), various 

examples are trained with the given class (spam or ham)

� Another example is the prediction of a sought numeric value (realistic market price 

of a car depending on given features) done by regression. For this purpose, the 

system is trained with numerous real-world cases

� Some regression algorithms can also be used for classification (by comparing with 

thresholds) and vice versa

� Examples 

� k-nearest neighbor

� Linear regression

� Logistic regression

� Support vector machines (SVM)

� Decision trees and random forests

� Neural networks (besides semi-supervised and unsupervised neural networks)
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Unsupervised learning

� Characterization

� The training data is unlabeled (there is no teacher comparing the results)

� For instance, you want to cluster the visitors of your online shop 

� At no time you tell (or can tell) the algorithm to which group someone belongs. 

Rather, the algorithm has to find it out on its own

� Another example are visualization algorithms providing the user an overview on the 

data. Or anomaly detection: For instance, detecting unusual credit card transactions 

in order to identify fraud, the system is trained with normal instances

� Association rule learning: Dig into large amounts of data and identify relations 

between the behavior of people: Who purchases potato chips also buys steaks etc.

� Examples 

� Clustering of data sets by 

� k-means clustering/k++ clustering

� Hierarchical cluster analysis (HCA)

� Expectation Maximization

� Many approaches dealing with visualization and dimensionality reduction

� Many approaches doing association rule learning
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Semi-supervised learning

� Algorithms that deal with partially labeled training data, i.e., a 

lot of unlabeled data and a little bit of labeled data

� Note that this definition is quite ambiguous 

� Therefore, let us consider a photo hosting service as an 

appropriate example

� Usually you upload your family photos

� Then, the service starts clustering these photos with the possible result 

that it identifies the same person on different photos (this is obviously 

the unsupervised part of the system)

� After that, you are asked to label these persons by name and possibly 

correct some results. This naming simplifies future search processes

� Many semi-supervised learning algorithms are just such combinations 

of unsupervised and supervised methods
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Reinforcement learning

� In reinforcement learning system the system is frequently denoted 

as an agent

� This agent continuously observes the environment, select and 

perform actions while getting feedbacks for them

� Rewards for intended, i.e., pursued actions and 

� Negative rewards, i.e., penalties 

� The agent has to find the best strategy, denoted as a policy, to 

maximize the total received reward

� Robots often implement reinforcement learning algorithms to learn 

how to walk

� DeepMind’s AlphaGo program is another example for reinforcement 

learning. It learned its strategy by analyzing millions of games. It 

beats in May 2017 the world champion Ke Jie at the game of Go

Wirtschaftsinformatik und Operations Research 46

Summary – Classes of learning algorithms

� Basically, we can depict the following classification of 

learning algorithms (see Rojas (1996))

Learning

Supervised learning

Unsupervised learning

Corrective learning

Reinforcement learning

Semi-supervised learning
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Batch learning

� The system is incapable of incrementally learning

� It needs all available data at once

� As this takes some time, it is often done by an offline step 

(offline learning) and not during the ordinary application of the 

system

� Therefore, if new data is available and has to be considered, 

the system is trained with all data (new and old) from scratch. 

Subsequently, the new version replaces the former one

� As the training cycles are time consuming, such steps should be 

scheduled with some care
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Online learning

� In contrast to batch learning systems, online learning systems 

are trained incrementally by feeding them in small batches or 

individually 

� The effort of those learning steps is insignificant (learning the 

new data on the fly)

� One important aspect is the learning rate, i.e., how fast adapts 

the system its behavior to the specifics of the new training 

data?

� However, fast adaption is not always preferable if the system is 

fed with bad data (i.e., data that is not representative or 

distorted)

� Thus, online learning needs to be continuously controlled by 

checking its ongoing performance results
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Instance-based learning

� These systems learn from each individual case

� In an extreme scenario each case is stored and if this case 

occurs again it is handled accordingly

� More sophisticated instance-based learning systems 

mathematically measure the similarity between incoming 

instances in order to decide whether a current case coincides 

with the learned ones

� For instance, spam filters frequently use instance-based 

learning 

� Spam filters are learned by heart

� Then, similarity measures are applied as the number of relevant 

words two emails have in common 
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Model-based learning

� Model-based learning approaches generalize from a set of examples by 

building a model that is based on these examples. Then, this model is used to 

make predictions

� For instance, consider a scientific study that deals with the question whether 

money makes people happy

� It may use the Better Life Index data from the OECD’s website as well as stats 

about GDP per capita from the IMF’s website

� Then, both data is mixed together in order to define happiness in dependence of 

income

� As you identify a trend in this mixed data (it actually looks like life satisfaction goes 

up more or less linearly as the country’s GDP per capita increases), you decide to 

apply linear regression in order to model satisfaction as a linear function of income

� This is the model selection step

� In summary: Studying the data, selecting a model, Training it on the data (i.e., 

the learning algorithm searched for the model parameter values that minimize 

a cost function), and finally applying the model to make predictions on new 

cases (this is called inference), hoping that this model will generalize well
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2.1.2 Main challenges and pitfalls

The methods introduced in this section (and throughout the 

entire course) do not work by themselves, but need to be 

programmed and designed in a sophisticated way. Particularly, 

the efficient use of machine learning approaches may be 

endangered by the following challenges:

� Insufficient quantity of training data

� Non-representative training data

� Poor-quality training data

� Irrelevant Features

� Overfitting the training data

� Underfitting the training data
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Insufficient Quantity of Training Data

� A toddler learns what an apple is …

� by just seeing (and touching) one and hearing the word “apple” (maybe several 

times)

� Afterwards, this child is able to recognize apples in all sorts of colors and 

shapes. This is amazing out of our view as ML-scientists

� In machine learning, however, it takes much more data to reach this point

� Finding sophisticated learning procedures is for sure one decisive side of 

the coin

� However, on the other, not less decisive side, there are studies that reveals 

that completely different learning algorithms (including fairly simple ones) 

may attain a comparable solution quality if the quantity of the training data 

is sufficiently high

� This underlines that insufficient quantity of training data is a serious 

shortcoming
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Nonrepresentative Training Data

� Clearly, it is crucial that your training data be representative of 

the new cases you want to generalize to

� This is true whether you use instance-based learning or model-

based learning

� For instance, if our formerly mentioned scientific study that 

deals with the question whether money makes people happy

does the linear regression without richer countries the results 

may be not appropriate for countries like Switzerland or 

Luxembourg
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Poor-Quality Data

� Clearly, if the training data is full of errors, outliers, 

and noise (reasons for that are often poor quality 

measurements or false channels of data acquisition), 

it is hard for the system to exploit the underlying 

pattern (it is gone due to the poor quality)

� Hence, it is worth the effort, to spend time cleaning 

up the data, i.e., delete outliers, decide about missing 

or corrupted values of some attributes etc. 
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Irrelevant Features

� In order to derive the existing pattern in the data, it is 

useful to condense the features to the relevant ones

� Feature engineering comprises 

� Feature selection: selecting the most useful features to 

train on among existing features.

� Feature extraction: combining existing features to 

produce a more useful one (e.g., dimensionality 

reduction may help)

� Creating new features by gathering new data
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Overfitting

No, no. OVERfitted

means that you are too 

specialized by the 

training data and this is 

not useful for a general 

real-world case

No, no. OVERfitted

means that you are too 

specialized by the 

training data and this is 

not useful for a general 

real-world case

I am overfitted! Great!

I am the best.

I get every fish within a second. 

I am overfitted! Great!

I am the best.

I get every fish within a second. 
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What is overfitting?

� Roughly speaking, overfitting pictures the situation when the 

learning algorithm overgeneralizes its training data with the 

consequence that it performs well for the specific training 

data, but not for the general case

� Overfitting frequently happens when the applied model is too 

complex relative to the amount and noisiness of the training 

data. Thus, possible solutions may be

� Simplify the model by reducing the integrated parameters (e.g., a linear 

model rather than a high-degree polynomial model), 

� Simplify the model by reducing the number of attributes in the training 

data or by constraining the model

� Gather more training data

� Reduce the existing noise in the training data (e.g., fix data errors and 

remove outliers)
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The opposite: Underfitting

� Occurs when the model is to simple to learn the 

structure of the data 

� For instance, if a linear model is applied to a 

phenomenon with exponential dependencies this 

would lead to underfitting
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2.2 Decision trees

� Trees are very common data structure in computer science

� In a approximately full tree with node degree � we have an 

asymptotic depth of � ���� �
� Hence, access and update operations can be done quite 

efficiently

� Therefore, trees are promising data structures for efficiently 

storing larger data sets

� In what follows, we want to learn from these data set while 

storing this exploited knowledge in an efficient way 

� As a consequence, despite its huge size, stored knowledge can 

be accessed very fast
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2.2.1 Learning with decision trees – The problem

� Specifically, in what follows we consider a list of items that 

possess individual attributes. Moreover, each item belongs to a 

specific class that is given by the respective data set

� Our task is to derive a tree that classifies the items by some of their 

stored attribute values

� While starting from the root node with all items each inner node 

clusters the respective items according to their values for a specific 

attribute considered at this node

� At a leaf node a final classification is provided

� Therefore, after starting at the root node, each item is iteratively 

classified by following the inner nodes according to the respective 

attribute values of the item until the classification is done by the 

reached leaf
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Preparing the mathematical definition

2.2.1.1 Definition

Let �, 
 ∈ ℕ be natural numbers. A set of 
 attributes is given by � = ��, … , �� , while for each � ∈ 1, … , � the attribute �� is 

defined as a set of possible values. A classification into � classes 

is a set � = ��, … , �� , while for each � ∈ 1, … , 
  �� is a class 

that is finally assigned to each item (or case) that possesses 

individual values for each attribute. 
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Mathematically, we consider the following 

2.2.1.2 Definition

Given � attributes � = ��, … , ��  and a classification � =��, … , �� into 
 classes as defined in Definition 2.2.1.1.

A data set � with � items possessing � attributes to be learned by 

a decision tree is defined as follows 

� = ��,� … ��,�⋮ ⋱ ⋮� ,� … � ,�
��,�!�⋮� ,�!�

The value of the �th item for the �th attribute is defined by entry ��,� ∈ �� , with � ∈ 1, … , � and � ∈ 1, … , � .

The classification of the �th item is defined by entry ��,�!� ∈ �, 

with � ∈ 1, … , �
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Attributes of a data set

2.2.1.3 Definition

Let � be a data set with � items and � attributes as 

defined in Definition 2.2.1.2. � is denoted as non-trivial if and only if it holds that ∃� ≠ � ∈ 1, … , � : ��,�!� ≠ ��,�!�� is denoted as consistent if and only if it holds that∃� ≠ � ∈ 1, … , � :∀ℎ ∈ 1, … , � :  ��,' = ��,' ⇒ ��,�!� = ��,�!�
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Decision tree – Interpretation

2.2.1.4 Definition

A decision tree ) for a data set � as defined in Definition 2.2.1.2 

with an attribute set � = ��, … , ��  and a classification � = ��, … , ��  is a tree with leafs �� ∈ � and inner nodes �� ∈�. The edges that emerge from such an inner node �� ∈� possess edge values * ∈ ��
A decision tree ) classifies an item + ∈ �� × ⋯ × �� × � into 

class �� ∈ � if there exists an edge path *�, … , *. in tree ) such 

that each edge value *� of the attribute / � visited by the path 

at depth � coincides with the corresponding entry of item x, i.e., it 

holds that +0 � = *� and the path finally reaches leaf �� ∈ �. 

Wirtschaftsinformatik und Operations Research 65

Correctness of classification

2.2.1.5 Definition

A decision tree ) for a data set � (as defined in Definition 

2.2.1.2) with an attribute set � = ��, … , ��  and a classification � = ��, … , �� classifies an item + ∈ �� × ⋯ × �� × � into class �� ∈ � correctly if and only if it holds that +�!� = ��.
By storing the information in a decision tree ) that is given in data 

set �, we demand, if � is consistent, that ) classifies all items of � correctly. Moreover, we want to store the information (learned 

knowledge) in a most efficient way. 

For this purpose, we have to define suitable performance 

measures. 
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Performance measure

2.2.1.6 Definition

Let ) be a decision tree for a data set � as defined in Definition 2.2.1.2 

with an attribute set � = ��, … , ��  and a classification � =��, … , �� . Then, we define the following performance measures:

1. For each leaf �� ∈ � of ) we define � �� as the length of the path 

starting from the root and ending at ��  that is measured by the 

transferred edges 

2. The external path-length of ) is defined by ∑ � ����2�
3. For each item + = +�, … , +� , +�!� ∈ � the function �3 + gives 

the number of edges of the path in ) that correctly classifies x 

4. The weighted total external path-length of ) is defined by ∑ �3 +4∈3
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Interpreting the performance measure

The performance measures of the generated decision 

tree ), as defined in Definition 2.2.1.6, can be 

interpreted as follows:

� The number of leafs gives the number of rules stored in )
� The external path-length is the total storage consumption of 

decision tree )
� Depth of ) is the maximal length of some stored rule 

� The weighted total external path-length of ) is the total time 

effort needed for classifying the data set �
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2.2.1.7 Example – Mushroom classification

Color Size Dots? Edible?

Red Small Yes No

Brown Small No Yes

Brown Large Yes Yes

Green Small No Yes

Red Large No Yes

ColorDecision tree

Size
Edible

Edible

Non-edible Edible

Red
Green

Brown

Small Large

External path-length amounts to 1 + 1 + 2 + 2 = 6
Weighted total external path-length amounts to 2 + 1 + 1 + 1 + 2 = 7
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2.2.2 Excursion: Entropy in information theory

� The information theory was originated in 1948 by Shannon

� He published the paper named “A Mathematical Theory of 

Communication”

� In this paper, he proposed the measure of information entropy, 

which describes the amount of impurity in a set of features

� The entropy 9 of a set : comprising � possible events with an 

occurrence probability of :� with 0 < :� ≤ 1 and ∑ :���2� = 1 is 

given through

9 :�, … , :� = − ? :� ∙ ���A :�
�

�2�
� Note that, in this computation, events with a zero probability are 

ignored, i.e., they are put aside before computing the entropy value 

and therefore their contribution is set to zero
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2.2.2 Excursion: Entropy in information theory

� The base 2 represents a coding into a binary digits, i.e., into 

bits

� These are the smallest information units as they can have only 

two distinct values

� The entropy measures the average information attained by 

executing one random choice according to the given 

occurrence probabilities
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The assumptions made by Shannon

Shannon (1948) derived the entropy measure 9 :�, … , :� on the basis of the 

following requirements that 1. 9 should be continuous in the :�
2. If all the :� are equal, i.e., :� = �� , ∀� ∈ 1, … , � , then 9 should be a monotonic 

increasing function of n. With equally likely events there is more choice, or 

uncertainty, when there are more possible events

3. If a choice be broken down into two successive choices, the original H should be the 

weighted sum of the individual values of H. The meaning of this is illustrated in the 

figure below. At the left we have three possibilities :� = �A , :A = �C , :C = �D. On the 

right we first choose between two possibilities each with probability 
�A, and if the 

second occurs make another choice with probabilities 
AC , �C. The final results have the 

same probabilities as before. 

1 2E 1 3E1 6E
1 2E = 1 3E

= 1 6E1 2E 2 3E
1 3E

Wirtschaftsinformatik und Operations Research 72

The assumptions made by Shannon

3. Continuation: As there are identical probabilities at the end, we require, 

in this special case, that it holds 9 �A , �C , �D = 9 �A , �A + �A ∙ 9 AC , �C . The 

coefficient 
�A is because this second choice only occurs half the time. 

Shannon (1948) proves that the only entropy measure 9 :�, … , :� that 

satisfies these three assumptions possesses the form: 

9 : = −G ? :� ∙ ���A :�
�

�2�
while G is a positive constant. 

Wirtschaftsinformatik und Operations Research 73

Observations

� The entropy 9 :�, … , :� is maximal if we have equal probabilities (minimal knowledge of the 

given distribution), i.e., if we have ∀� ∈ 1, … , � : :� = �� it holds that 9 :�, … , :� = − ∑ :� ∙ ���A :� =��2� − ∑ �� ∙ ���A �� = − ����2� ∑ ���A �� =��2� − ���A �� =− ���A 1 + ���A � = ���A �
� On the contrary, the entropy is minimal (equal to zero) if there is a safe event, i.e., ∃� ∈ 1, … , � : :� = 1 and have perfect knowledge of the given distribution

� It holds that 0 ≤ 9 :�, … , :� ≤ ���A �
� For illustration purposes, the entropy 9 :, 1 − : is plotted below
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2.2.2 ID3/C4.5/C5

� In what follows, we consider the problem of finding an optimal decision 

tree

� However, Hyafil and Rivest (1976) show that this problem is strongly NP-

hard

� Therefore, in what follows, we will design a heuristic approach

� By considering the small example 2.2.1.7, we observe that the values 

specific items possess for a certain attribute are not independent from 

values occurring for other attributes

� Hence, we see that the construction of a corresponding decision tree has to 

chose the attributes positioned at the inner nodes in a sophisticated way in 

order to minimize the resulting weighted total external path-length of the 

decision tree
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Basic structure of the decision tree construction

Given: Data set � with � item belonging to 
 classes while possessing � attributes 

Function HI��J���_LMII_���JLMN�L��� � :

1. Delete all attributes that have only a single value in � (all items in � are not 

distinguishable by that attribute). IF � is trivial THEN build a tree ) with one 

node that gives the single class � = ��. Moreover, if there is no attribute left 

assign the classification �� ∈ � that the most items in � posses. 

2. IF � is NOT trivial THEN select heuristically (by following a predetermined 

criterion) an attribute �� ∈ � and consider the values that items in M possess 

for attribute ��. Let O�, OA, … , OP be the set of M occurring attribute values 

for attribute ��. Build the disjoint separation of � = �� ∪ �A ∪ ⋯ ∪ �P with �� = + ∈ � +� = O� .

3. For � = 1 TO M: Call recursively HI��J���_LMII_���JLMN�L��� ��
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Lacking attribute value combinations in data sets

� Above procedure correctly classifies all items of the initial dataset �
� This can not be guaranteed for new items, even if they only contain 

Attribute values encountered in the initial Dataset

� Example:

� What about an item with attribute values R = 0 and S = 2?

R S �0 0 10 1 00 1 01 0 11 1 01 2 0

Dataset R
S

0

0 1

0

1 1

0

S
1

0 0

1 2

Decision tree
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Lacking attribute value combinations in data sets

� In step 2 of the decision tree construction procedure a disjoint separation 

was built solely based on the attribute values occurring in the considered 

dataset, but not by considering all possible attribute value combination of a 

theoretical dataset

� The description of the separation procedure given by Quinland (1993)

slightly differs from the one given above according to the creation of a 

branching step. In the description provided by Quinland (1993) the disjoint 

separation is based on all possible attribute values

� Moreover, empty disjoint separations �� that form a leaf node with 

classification ‚null‘, represent a no classification case

� Obviously, a classification query can result in such an answer whenever no 

feasible edge exists for classifying a new item

� Quinland (1993) suggests that a better solution would be to generalize from 

the dataset of the parent node and assign this leaf the most frequent class, 

although this is not implemented in ID3
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Lacking attribute value combinations in data sets

� Let us return to our small example: Here, we now follow the suggested approach 

of Quinland (1993) and include nodes for lacking attribute values

� The classification is determined by choosing the most frequent class of items at 

the parent node

� Thus, items with the (currently) not occurring combination R =  0 and S = 2 are classified as 0 since the majority of items with R =  0 are classified as 0
R S �0 0 10 1 00 1 01 0 11 1 01 2 0

Dataset R
0 1

1

0

S
0 0

1 2

Decision tree

1

0

S
0 0

1 2
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Special cases for a subtree ) and their handling

� Special case 1: ) contains one or more cases, but all 

belong to a single class ��
The decision tree for ) contains a single leaf that identifies 

class ��
� Special case 2: ) contains no cases at all 

� The decision tree is again just a leaf, but the class to be 

associated with the leaf must be determined from 

information other than )
� For instance, the leaf might be chosen in accordance with 

some background knowledge of the domain, such as the 

overall majority class

� C4.5 uses the most frequent class at the parent of this node
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Gain criterion

� As the basic structure of the decision tree construction procedure reveals, we 

have to decide for the next attribute to be assigned to the next inner node only 

according to the immediate partition of the considered data set into subtrees

� Hence, in this decision, we do not integrate the consequences caused by 

subsequent divisions in further subsets

� We consider a data set � with � items, 
 classes, and � attributes

� TMIU ��, � : Number of items + in data set � with classification ��, with � ∈1, … , 

� TMIU � = � = �: Size of data set �
� :M�V ��, � : Probability of randomly drawing an item with classification �� in data 

set �
� ��T� � : Expected information received by drawing an item from data set �

� It holds that :M�V �� , � = WPXY Z[,3WPXY 3 = WPXY Z[,33
� I.e., such a draw of an item in data set � with classification �� conveys the 

information of −���A WPXY Z[,33 bits
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Expected information of a data set \
� We compute ��T� � = − ∑ WPXY Z[,3WPXY 3 ⋅ ���A WPXY Z[,3WPXY 3��2� as the 

number of bits that such a drawing of an item from � conveys

� Clearly, it is just the entropy of �
� We apply this measurement before and after using a chosen attribute ��

for partitioning a considered data set � into subtrees )�, … , ).
� Hence, we derive the information gain by computing ��T� �, �� = ∑ WPXY ^[WPXY 3.�2� ⋅ ��T� )� and �/�� �, �� = ��T� � − ��T� �, ��
� The abbreviation �/�� �, �� provides us with the information we 

perceived by conducting the partition of the set � pertaining the values of 

items in � according the attribute ��
� A reduced entropy reveals that we know more about the structure of the 

current distribution pertaining the classification of the items
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Message of the gain criterion

� Consequently, in order to maximize the gained information in 

each separation, the gain criterion chooses the attribute for 

separation that maximizes the information gain

� Hence, for data set � and a classification � = ��, … , �� , 

choose �� fulfilling �/�� �, �� = �/+ �/�� �, �. ∣ � ∈ 1, … , 
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Continuing the small mushroom example

� We come back to the mushroom example

� Hence, we consider again the following data set

Color Size Dots? Edible?

Red Small Yes No

Brown Small No Yes

Brown Large Yes Yes

Green Small No Yes

Red Large No Yes

� There are three attributes: color, size, and dots. We compute the entropy 

values

� We start with the given data set � and obtain ��T� � = − 15 ���A 15 − 45 ���A 45 = 0,72192809
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Mushroom example – Attribute color

� We obtain three subtrees with the respective values red, brown, and green

� This can be illustrated by the following sub data sets

Color Edible Non-edible Sum

Red 1 1 2

Brown 2 0 2

Green 1 0 1

� We compute the entropy of the three resulting subtrees

� Red: − �A ���A �A − �A ���A �A = 1 = ���A 2
� Brown: − AA ���A AA = 0
� Green: − �� ���A �� = 0
� Thus, we obtain ��T� �, ����M = Ad ⋅ 1 + Ad ⋅ 0 + �d ⋅ 0 = Ad = 0,4
� �/�� �, ����M = ��T� � − ��T� �, ����M = 0,72192809 − 0,4 =0,32192809
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Mushroom example – Attribute size

� We obtain two subtrees with the respective small and large

� This can be illustrated by the following sub data sets

Size Edible Non-edible Sum

Small 2 1 3

Large 2 0 2

� We compute the entropy of the two resulting subtrees

� Small: − AC ���A AC − �C ���A �C = 0,91829583
� Large: − AA ���A AA = 0
� Thus, we obtain ��T� �, J�eI = Cd ⋅ 0,91829583 + Ad ⋅ 0 = 0,5509775
� �/�� �, J�eI = ��T� � − ��T� �, J�eI = 0,72192809 −0,5509775 = 0,17095059
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Mushroom example – Attribute dots

� We obtain two subtrees with the respective values with and without dots

� This can be illustrated by the following sub data sets

Size Edible Non-edible Sum

With dots 1 1 2

Without dots 3 0 3

� We compute the entropy of the two resulting subtrees

� With dots: − �A ���A �A − �A ���A �A = 1 = ���A 2
� Without dots: − CC ���A CC = 0
� Thus, we obtain ��T� �, f�LJ = Ad ⋅ 1 = 0,4
� �/�� �, f�LJ = ��T� � − ��T� �, ����M = 0,72192809 − 0,4 =0,32192809
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We choose the attribute dots

� As it possesses less attribute values

� We therefore obtain with ��T� � = 0,4
Decision tree Dots

Yes No

Color Size Edible

Brown Small Yes

Green Small Yes

Red Large Yes

Color Size Edible

Brown Large Yes

Red Small No

Trivial case as all items are edible

No further distinctions are necessary

Further distinctions are necessary
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Mushroom example – Attribute color

� We obtain two subtrees with the respective values red and brown

� This can be illustrated by the following sub data sets

Color Edible Non-edible Sum

Red 1 0 1

Brown 0 1 1

� We compute the entropy of the two resulting subtrees

� Red: − �� ���A �� = 0
� Brown:− �� ���A �� = 0
� Thus, we obtain ��T� �, ����M = �A ⋅ 0 + �A ⋅ 0 = 0
� �/�� �, ����M = ��T� � − ��T� �, ����M = 0,4 − 0 = 0,4
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Mushroom example – Attribute size

� We obtain two subtrees with the respective values large and small

� This can be illustrated by the following sub data sets

Size Edible Non-edible Sum

Large 1 0 1

Small 0 1 1

� We compute the entropy of the two resulting subtrees

� Large: − �� ���A �� = 0
� Small:− �� ���A �� = 0
� Thus, we obtain ��T� �, J�eI = �A ⋅ 0 + �A ⋅ 0 = 0
� �/�� �, J�eI = ��T� � − ��T� �, J�eI = 0,4 − 0 = 0,4

Wirtschaftsinformatik und Operations Research 90

We choose the attribute size

� We obtain the following complete decision tree

� It has the external path length 1 + 2 + 2 = 5
� It has a total weighted path length 1 + 1 + 1 + 2 + 2 = 7

Resulting decision tree Dots

Yes No

EdibleSize

Large Small

Non-edibleEdible

� Note that by firstly choosing the attribute color instead (this was also 

possible as the attainable gain is identical) we obtain the first tree with 

longer external path length

� The reason for this is that color possesses three occurring values and dots 

only two

� This aspect will be considered in more detail next
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Gain ratio criterion – Motivation 

� The first version of the ID3 algorithm solely applies 

the gain criterion

� Quinland (1993) reports that he noticed that there is 

a bias in this procedure for attributes with many 

occurring values as, due to more values, the 

information gain is larger 

� However, as we do not want to give an incentive to 

this aspect, Quiland (1993) proposes to modify the 

gain criterion by relating it to the entropy of the value 

distribution 
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Gain ratio criterion – Mathematical definition

� We consider a data set � with � items, 
 classes, and � attributes

� All abbreviations are given as before

� We consider a chosen attribute �� for partitioning a considered data set � into 

subtrees )�, … , ).
� The abbreviation J:��L provides the information given in the separation according 

to attribute ��
J:��L ��T� �, �� = − ? TMIU )�TMIU �

.
�2� ⋅ ���A TMIU )�TMIU �

� The gain ratio expresses the attained information gain relative to the effort of the 

performed separation to attribute ���/�� M/L�� �, �� = �/�� �, ��J:��L ��T� �, ��
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How to apply the gain ratio criterion

� Based on these values, Quinland (1993) proposes to 

follow the gain ratio criterion such that an attribute is 

selected that maximizes the gain ratio, subject to the 

constraint that the information gain must be large, 

i.e., at least as great as the average gain over all 

attributes examined

� On the next slide, we apply the gain ratio criterion to 

our mushroom example
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Applying the gain ratio to the mushroom example

� During the first choice of an attribute we obtainJ:��L ��T� �, ����M = − Ad ���A Ad − Ad ���A Ad − �d ���A �d= − 45 ∙ −1,3219280949 − 15 ∙ −2,3219280949 = 1,5219280949
� Therefore, it holds that�/�� M/L�� �, ����M = 0,321928091,5219280949 

= 0,2115264782
� During the first choice of an attribute we obtainJ:��L ��T� �, J�eI = − Cd ���A Cd − Ad ���A Ad = 0,97095059
� Therefore, it holds that�/�� M/L�� �, J�eI = 0,170950590,97095059 

= 0,17606518
� During the first choice of an attribute we obtainJ:��L ��T� �, f�LJ = − Ad ���A Ad − Cd ���A Cd = 0,97095059
� Therefore, it holds that�/�� M/L�� �, f�LJ = 0,321928090,97095059 

= 0,3315597
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Result

� This time, we do not have a choice and have to 

choose the dot-attribute in the first place

� This underlines the motivation for introducing the 

gain ratio criterion
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Observations

� Quinland (1993) reports that, in his experience, the 

gain ratio criterion is robust and typically gives a 

consistently better choice of test than the gain 

criterion

� It even appears advantageous when all tests are 

binary but differ in the proportions of cases 

associated with the two outcomes
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From ID3 to C4.5/C5.0

� Until now, we have considered ID3 as a decision tree 

generation procedure

� Quinland (1993) proposes some extensions leading to the 

program C4.5

� Handling of continuous attributes

� Handling training data with missing attribute values

� Pruning trees after creation

� Further improvements were implemented in C5 (Link, Link)

� Speedup – C5.0 is significantly faster than C4.5

� Improved memory usage

� Generated decision trees are of reduced size

� Provision of using case-depending weights (item dependent)

� Attribute winnowing
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Tests

� Quinland (1993) uses the generalized term test instead of using 

attributes for generating the next node in the decision tree

� This is reasonable as in C4.5/C5 each node does not necessarily 

coincide with an attribute as we have defined it in the so-called 

“Basic structure of the decision tree construction”

� In contrast to this, the decision tree generation procedure C4.5 

contains mechanisms for proposing three types of tests 

� The standard test on a discrete attribute, with one outcome and 

branch for each possible value of that attribute (this was solely 

considered before)

� A more complex test, based on a discrete attribute, in which the 

possible values are allocated to a variable number of groups (that 

have to be generated) with one outcome for each group ( rather 

than each value (condensing the values)
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Tests

� If attribute � has continuous numeric values, a binary test with 

outcomes � ≤ g and � >  g, based on comparing the value of �
against a threshold value g

� All these tests are evaluated in the same way

� The gain ratio (alternatively the gain) criterion is applied that arises 

from the produced partitions, respectively

� It turns out to be useful to require for each partition (test) that at 

least two of the resulting subsets contain a reasonable number of 

items. Specifically, this additional restriction should avoid near-trivial 

splits. Note that the minimum number can be adjusted application-

dependent
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Continuous attributes

� If an attribute is known to be continuous we may face the 

problem of arbitrary thresholds

� However, this is not the case as we can use the following 

procedure (see Paterson and Niblett (1982) or Breiman et al. 

(1984)) for finding appropriate thresholds against which to 

compare the values of continuous attributes

� As before, we assume to consider a continuous attribute �� ∈ �
within a data set � that comprises � items with � attributes 

� Hence, for the considered attribute ��, we have the ordered 

values *�, … , * 
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Continuous attributes

� Consider an arbitrary threshold * between *� and *�!�. Clearly, 

independent of its specific value * separates the items into the 

ones whose values for ��  are in *�, … , *� and those whose 

values are in *�!�, … , * 
� Hence, we have only � − 1 possible splits of the items in �

� After sorting the existing values, the separation can be carried out in one 

pass, updating the distributions to the left and right of the threshold on 

the fly

� For this purpose, one should use the midpoint 
i[!i[jkA as the threshold

� One possibility is to build a binary split and test the gain and gain 

ratio for testing all reasonable threshold values 
i[!i[jkA , � = 1, … , � − 1 (reasonable means that in both groups are more 

that one element)
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Unknown attribute values

� So far, the introduced decision tree generation procedure 

assumes that, in the considered data set, all items have well-

defined values for all listed attributes

� Unfortunately, in real-world applications, this does not has to 

be the case. Rather, it is quite common that data is not 

complete

� We are facing the choice of discarding the data or amending 

the procedure accordingly. For the latter, the literature 

provides various proposals while, in what follows, we consider 

the handling of C4.5/C5.0

� As a tested attribute can provide no information about the class 

membership of items whose value of the test attribute is unknown, this 

item is left out when respective ��T� values are computed

� This applies to both needed values ��T�(�) and ��T� �, �
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Unknown attribute values

� Hence, we compute the values ��T�(�) and ��T� �, �  as 

before, except that only cases with known values of � are 

taken into account

� But, as we have left out items, the attained gain has to be 

weighted with the proportion of participating items 

(probability l that the value of attribute � is known in �) that 

in data set �
� Thus, we define �/�� �, � = l ⋅ ��T�(�) − ��T�(�, �)
� Furthermore, the definition of J:��L ��T�(�, �) can be altered 

by regarding the cases with unknown values as an additional 

group. 

� Consequently, if the considered attribute � has � outcomes in �, this leads to an entropy values basing on � + 1 subsets
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Example – Item 6 is ignored for attribute outlook

Item Outlook Temp (°F) Humidity Windy? Class – Play?

1 Sunny 75 70 True Yes

2 Sunny 80 90 True No

3 Sunny 85 85 False No

4 Sunny 72 95 False No

5 Sunny 69 70 False Yes

6 ? 72 90 True Yes

7 Overcast 83 78 False Yes

8 Overcast 64 65 True Yes

9 Overcast 81 75 False Yes

10 Rain 71 80 True No

11 Rain 65 70 True No

12 Rain 75 80 False Yes

13 Rain 68 80 False Yes

14 Rain 70 95 False Yes
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Computed results

The ��T� and �/�� */�NIJ are computed while ignoring the sixth item:

� ��T� � = − o�C ⋅ ���A o�C − d�C ⋅ ���A d�C = 0.961
� ��T� �, �NL���
 =d�C ⋅ − Ad ⋅ ���A Ad −  

Cd ⋅ ���A Cd + C�C ⋅ − CC ⋅ ���A CC + d�C ⋅− Cd ⋅ ���A Cd −  
Ad ⋅ ���A Ad = 0,747

� �/�� �NL���
, � = �C�p ⋅ ��T� � − ��T� �, �NL���
 = 0,199
The J:��L ��T� computation considers an additional subset:

� J:��L ��T� �, �NL���
 = − d�p ⋅ ���A d�p −  
C�p ⋅ ���A C�p −  

d�p ⋅���A d�p −  
��p ⋅ ���A ��p = 1,809

� �/�� M/L�� �NL���
, � = 0,110
Note that by changing the outlook value of item 6 from “?” to “overcast” 

would increase this �/�� M/L�� value to 0,156
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Pruning

� Pruning pursues the reduction of a generated decision 

tree for efficiency or correctness reasons, i.e., it 

intends to replace certain subtrees with leaves

� Therefore, pruning reduces specific parts of the 

current decision tree

� Basically, there are two alternative ways for pruning

� Prepruning: During the tree generation process it is decided 

that a currently considered data set is not further divided, 

i.e., we have to integrate such kind of stopping criterion

� Pruning after tree generation: removing retrospectively 

some of the subtrees built during the preceding tree 

generation process
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Consequences

Clearly, if the data base 

is consistent, there is no 

erroneously classified  

item. But, this does not 

have to be the case and 

please note that in 

many applications, it is 

only training data!

Clearly, if the data base 

is consistent, there is no 

erroneously classified  

item. But, this does not 

have to be the case and 

please note that in 

many applications, it is 

only training data!

Why do we need pruning? I thought that the 

found tree was efficiently generated for the 

data base…

Why do we need pruning? I thought that the 

found tree was efficiently generated for the 

data base…
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Small example – Overfitting 

� The partitioning procedure used for decision tree generation introduced so 

far assumed that the data set was

� More or less consistent and 

� Does not lead to a tree structure that overfits the data 

� However, in real-world applications the items in the data set may be not 

consistent

� Furthermore, after being generated, the tree may be used for further items 

with modified interdependencies between the attribute values and their 

classification

� For illustration purposes, we consider the extreme case of random data

� Let us assume we have two classes while one class (class 1) has the dominating 

probability : ≥ 0.5
� If a most simple classifier assigns all cases to this first class (corresponding 

decision tree consists only of one node, i.e., it is a leaf with class 1 

identification) its expected error rate is obviously 1 − :
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More can be less

� We also consider an alternative more complex classifier that assigns an item 

with probability : to class 1 and with probability 1 − : to class 2
� The error rate is now the sum of 

� the probability that a case assigned to class 2 belongs to class 1, i.e., : ⋅ 1 − : , 

and

� the probability that a case assigned to class 1 belongs to class 2, i.e., 1 − : ⋅ :
� Just to check: the remaining cases have a total probability of :A + 1 − : A =2:A − 2: + 1 and thus we obtain 2:A − 2: + 1 + 2: ⋅ 1 − : = 1

� Thus, we obtain 2: ⋅ 1 − : and since : ≥ 0.5 this error rate is at least 1 − :
� Therefore, the simple classifier outperforms the second more complex one 

for the expected error rate

� Clearly, the most simple classifier benefits from the fact that the whole 

classification game is guessing and therefore, on the long run, it is best to go 

for the majority of cases (i.e., it uses the entire knowledge)

� But in real-world applications, data sets are at least partly indeterminate 

because the attributes do not capture all information relevant to classification
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Error-based pruning

� C4.5/C5.0 applies pruning after the tree generation

� Specifically, a subtree is replaced by a leaf (pruned to it) if the expected 

error rate of this leaf (this has to chose a majority classification) is smaller 

than an upper limit derived for the respective subtree

� For this purpose, a confidence level �r is defined (in C4.5 the default 

confidence level is 25%) and the upper limit is defined by the confidence 

limits for the binomial distribution

� It is abbreviated as sZt u, � with 

� �: number of items in the data set 

� u: number of erroneously classified items in the considered data set 

� Hence, the correct/non-correct classification is interpreted as a Bernoulli 

experiment



20

Wirtschaftsinformatik und Operations Research 111

Example – Democrats and Republicans

� We consider a subtree of a decision tree derived from 

congressional voting data in the United States of America

� It classifies the members to the respective parties

� The attribute is education spending with the values (n/y/u) and 

the classification for the items in the data set

Partial decision tree
Education spending

Yes No

Democrats 9

Undecided

Democrats 6Republican 1

Democrat DemocratRepublicanClassification:

� Hence, there occurs no classification error for the training data 

(i.e., for the current data set)
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Example – Democrats and Republicans

� However, in order to estimate errors for future cases, Quinland (1993)

proposes to apply sZt u, � with �r = 25%
� In our example, we go through the three classification cases and obtain sAd% 0,9 = 0.143, sAd% 0,1 = 0.750, and sAd% 0,6 = 0.206
� Hence, based on these assumptions, the total number of predicted errors of 

the considered subtree amounts to 9 ⋅ 0.143 + 6 ⋅ 0.206 + 1 ⋅ 0.750 = 3.273
� If we replace this subtree by a leaf with the classification “democrat”, we 

obtain for the training data 15 correct classifications and 1 erroneous 

classification

� Hence, we obtain sAd% 1,16 = 0.157 and 16 ⋅ sAd% 1,16 = 2.512
predicted errors of this leaf

� Consequently, C4.5 prunes the subtree to a leaf
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Windowing

� Windowing is a technique in decision tree generation that 

processes a large data set by separating it into smaller pieces 

that are iteratively processed while the successively 

constructed tree is adapted in each step

� Specifically, typical steps are

� Start with a subset of items (denoted as the window) and generate the 

corresponding decision tree

� Subsequently, this tree is used to classify (one by one) the remaining 

items

� Usually, some of these remaining items will now be misclassified 

(exceptions)

� Hence, add a selection of these exceptions to the initial window and 

update the decision tree that is in turn tested with the remaining cases

� This cycle is repeated until all cases are classified correctly (if the entire 

data set is consistent)
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Windowing

� It is quite common that the window ended up containing only a small fraction 

of the training cases

� This final window represents a screened set of training cases that comprises 

the “interesting ones” together with a sufficiently large variety of “ordinary 

cases”

� Note that rather than picking training cases randomly to form the initial 

window, C4.5 biases the choice so that the distribution of classes in the initial 

window is as uniform as possible

� Moreover, the process of adding exceptions is controlled 

� While ID3 strongly limits the number of exceptions to be added, C4.5 always adds 

at least the half of these cases in each iteration, thereby attempting to speed 

convergence on a final tree

� C4.5 may also stop before the tree correctly classifies all cases outside the window 

if it appears that the generated trees do not become more accurate 

� For domains in which classification is not correctly possible due to noise or 

indeterminacy, early termination is meant to prevent the growth of the window 

until it includes almost all the training cases
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Windowing – A modern technique?

There are still some 

interesting reasons to 

be considered. 

Therefore, it may be 

useful to retain 

windowing.

There are still some 

interesting reasons to 

be considered. 

Therefore, it may be 

useful to retain 

windowing.

Windowing was necessary in former times 

due to strong memory limitations. But today?

Windowing was necessary in former times 

due to strong memory limitations. But today?
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Why retain windowing?

� Frankly speaking, windowing was invented due to limited 

memory resources in former times

� Therefore, it was necessary to analyze larger data sets with 

significant numbers of attributes and items

� But today?

� Even inexpensive computers run processes with significant 

memory consumptions (larger than the physical memory)

� Since windowing was introduced to overcome memory limits 

that no longer pose any problems, its retention in the system 

needs some justification
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Reasons for windowing

� Faster construction of trees for useful data sets

� If the data set is consistent and free of noise and 

indeterminism, windowing can quickly converge on a final 

tree and so lead to computational speedup

� Quinland (1993) reports a speedup of 15% for a collection 

of 8,124 mushroom descriptions, each classified as 

poisonous or edible. When this data is used with the default 

windowing parameters, the initial window gives a tree that 

correctly classifies all the other cases, so the final tree is 

arrived at on the first cycle

� However, note that the opposite is true for real-world data 

with unreliable data sets. Here, slow downs are observed
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Reasons for windowing

� More accurate or specialized trees

� Empirical studies report that some samples can help for dealing with 

continuous variables and finding better thresholds

� The generation of various decision trees by using different starting 

samples provides the basis for new features, namely

� Growing several alternative trees and selecting as "the" tree the one with 

the lowest predicted error rate

� Growing several trees, generating production rules from all of them, then 

constructing a single production rule classifier from all the available rules

� However, in these positive cases, the downside is almost always a 

considerably higher computational effort
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Example – The pathological multiplexer

� In the pathological multiplexor task, a case is described by a series of bits

� The first / bits constitute an address (from 0 to 20 − 1)

� Then, there are 20 data bits f�, … , fAw while the binary classification in 

yes or no is determined by the / − 1th data bit f0x�
� Let a=3: An address is defined by /y/�/A and we have eight data bits fyf�fAfCfpfdfDfz. Thus, f0 = fA gives the classification

� For instance, 01001101001 belongs to the class 1, i.e., yes, due to fA = 1
� For this 11-bit multiplexor, five training set sizes 100, 200, ... , 500 were 

chosen and five training sets of each size generated randomly (with 

replacement) 

� A large set of 1,000 test cases was also generated randomly and used for 

evaluation issues (these case were unseen)
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Results of the pathological multiplexer

Training cases No windowing Single tree 

windowing

Ten trees 

windowing

100 35.4 % 36.0 % 34.4 %

200 24.4 % 24.6 % 16.9 %

300 18.5 % 13.9 % 11.6 %

400 17.9 % 9.4 % 5.7 %

500 13.2 % 8.0 % 6.3 %

� The table provides the measured error rates 

� The higher accuracy on unseen cases was achieved at additional 

running time 

� Developing a single tree by windowing takes almost twice as long as 

generating a tree from all the training cases in one pass 

� And producing ten trees takes ten times as long
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2.2.3 CART 

� CART stands for “classification and regression trees”

� It is a further well-known and widely used algorithm for decision tree 

generation 

� It was originated by Breimann, Friedman, Olshen, and Stone (1984) 

� The procedure generates only binary decision trees and conducts the 

choice of the separation steps by applying the gini impurity measure

� Although the binary tree attribute seems to be fairly restrictive, it is not a 

real limitation

� Note that for each occurring value /. of some attribute �� (the �th

attribute) we can check every item + in a binary way, i.e., whether it holds 

that +� ≤ /. or not

� Thus, possible branches are combinations of attributes and value sets that 

are combined for the left branch and for the right branch, respectively 
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Gini impurity

� Given a data set � comprising � items with values for � attributes � =��, … , �� and a classification � = ��, … , �� into 
 classes 

� The attributes and their values are transformed into � suitable branching 

candidates { = V�, VA, … , V|
� The impurity suggests the aim of the decision tree to have each leaf 

representing only items of the same class (causing no classification error)

� The impurity measure is mathematically defined as follows

� � �, V., M/� : Fraction of the number of items of a considered data set belonging to 

the right/left branch of V. possessing the classification �� ∈ �
� # V., M/� : Number of items (of the � ones) belonging to the right/left branch of V.
� The Gini impurity of the branching candidate V. ∈ { is defined by � V. =# V., �� ⋅ ? ? � �, V., � ⋅ � �, V., ��

�2�,���
�

�2� + # V., M� ⋅ ? ? � �, V. , M ⋅ � �, V., M�
�2�,���

�
�2�

= # V., �� ⋅ ? � �, V., � ⋅ ? � �, V. , ��
�2�,���

�
�2� + # V., M� ⋅ ? � �, V., M ⋅ ? � �, V. , M�

�2�,���
�

�2�
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Gini impurity – Simplifying the formula

= # V., �� ⋅ ? � �, V., � ⋅ 1 − � �, V., ��
�2� + # V., M� ⋅ ? � �, V. , M ⋅ 1 − � �, V. , M�

�2�= # V., �� ⋅ ? � �, V., � − � �, V., � A�
�2� + # V., M� ⋅ ? � �, V., M − � �, V., M A�

�2�
= # V., �� ⋅ 1 − ? � �, V., � A�

�2� + # V., M� ⋅ 1 − ? � �, V., M A�
�2�
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CART – A simple example

� We consider the following data set

� The classification is binary (
 = 2), i.e., just yes or no

� By testing all thresholds for the two attributes, we obtain 20 theoretical 

branching alternatives

� However, we focus here on the most promising one and an alternative one 

for comparison reasons

� First, we consider for attribute �A the threshold 1.15 (say V�)

� Hence, the left branch contains the items 1,2,3,and 6. The right 4,5,7,8,9, and 

10

Item 1 2 3 4 5 6 7 8 9 10�� 0.6 1.8 0.7 0.2 1.1 2.9 2.5 2.2 2.8 2.5�A 0.2 0.3 1.1 1.3 2.3 0.4 1.2 1.6 2.0 3.0

Class? No No No No No Yes Yes Yes Yes Yes
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Branch alternative �� – Gini impurity

� Left branch: � ��, V�, � = Cp , � �IJ, V�, � = �p , and 
# �k,. = p�y

� Right branch: � ��, V�, M = AD , � �IJ, V�, M = pD , and 
# �k,P = D�y

� Hence, we obtain

� V� = # V�, �� ⋅ 1 − ? � �, V�, � A�
�2� + # V�, M� ⋅ 1 − ? � �, V�, M A�

�2�410 ⋅ 1 − 1016 + 610 ⋅ 1 − 2036 = 25 ⋅ 38 + 610 ⋅ 49= 320 + 415 = 960 + 1660 = 2560 = 512 =  0.416�.

Wirtschaftsinformatik und Operations Research 126

Branch alternative �� – Gini impurity

� Second, we consider for attribute �� the threshold 2.0 (say VA)

� Hence, the left branch contains the items 1,2,3,4, and 5. The right 6,7,8,9, 

and 10

� Left branch: � ��, VA, � = dd = 1 , � �IJ, VA, � = yd = 0 , and 
# ��,. = d�y

� Right branch: � ��, VA, M = yd = 0 , � �IJ, VA, M = dd = 1 , and 
# ��,P = d�y

� Hence, we obtain

� V� = # VA, �� ⋅ 1 − ? � �, VA, � A�
�2� + # VA, M� ⋅ 1 − ? � �, VA, M A�

�2�510 ⋅ 1 − 1 + 510 ⋅ 1 − 1 = 510 ⋅ 0 + 510 ⋅ 0 = 0 + 0 = 0
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Branching alternative �� is chosen

� The branching alternative VA provides the perfect 

value 0.0 as there is no impurity left and we have 

found the decision tree for the training data

Resulting decision tree �� ≤ 2.0
Yes No

Class: NO Class: YES
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2.3 Statistical methods for data analysis

� In what follows, we consider some basic statistical methods that 

are quite useful for data analysis

� The following depictions are based on Section 8.1 of the book of 

Ertel (2016)

� Analogously, in what follows, we use, only for illustration 

purposes, some data available from the so-called LEXMED project 

� LEXMED is a machine learning system for diagnostic appendicitis purposes

� It is an expert system that uses reasoning with probabilities and maximum 

entropy

� However, at this point, we only consider a generated data set of � = 473 patients with collected data for 15 attributes and a 

respectively derived diagnosis (see next slide)

� Hence, each patient is defined by a vector x with the respective 

16 values
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Data from Ertel (2016)

Var.-Nr. Description Values of domain

1 Age Continuous

2 Sex (1 D male, 2 D female) 1, 2

3 Dolor Quadrant 1 0, 1

4 Dolor Quadrant 2 0, 1

5 Dolor Quadrant 3 0, 1

6 Dolor Quadrant 4 0, 1

7 Muscular defense (local) 0, 1

8 Muscular defense (general) 0, 1

9 Dolor during leaving hold of 0, 1

10 Agitation 0, 1

11 Dolor during rectal examination 0, 1

12 Temperature axial Continuous

13 Temperature rectal Continuous

14 Leucocytes Continuous

15 Diabetes mellitus 0, 1

16 Diagnosis: appendicitis (yes or no) 0, 1
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Applying basic statistical values

� Mean

+�� = 1� ⋅ ? +��
�

�2�
� The standard deviation gives the average deviation from the mean

�� = 1� ⋅ ? +�� − +�� A�
�2�

� The covariance gives us information concerning a possible correlation of 

two attribute values over all patients, i.e., it holds that

��,� = 1� ⋅ ? +�� − +̅� ⋅ +�� − +̅�
�

�2�
Clearly, if for two attributes, patients have related values, this leads to positive 

contributions as both products are positive or negative.



25

Wirtschaftsinformatik und Operations Research 131

Applying basic statistical values

� However, as the covariance is significantly triggered by the absolute values 

of the respective variables, we normalize the covariance by the product of 

standard deviations. Hence we get Pearson's correlation coefficient 

��,� = ��,��� ⋅ �� = 1� ⋅ �� ⋅ �� ⋅ ? +�� − +̅� ⋅ +�� − +̅�
�

�2�
� For the example, we can generate the matrix of all Pearson’s correlation 

coefficients for the 16 variables

� These correlations can be best illustrated by graphical density profiles as 

done on the next slide 
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Density profiles of the correlation coefficients 

� By considering the density profiles (detailed values can be found in Ertel (2016) p.199), it 

becomes obvious that the attributes 7,9,10, and 14 possess the strongest correlation 

(0.33, 0.38, 0.32, and 0.44) with the sought classification (attribute 16)

� However, the attributes 9 and 10 are also highly correlated (0.53). Therefore, one of the 

two values may be sufficient

See Ertel (2016) p.199

= −1: is black= 1: is white

7 910 14

7

10
9

14
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2.4 The perceptron – A linear classifier

� Again, we consider a data base with � items that are 

characterized by � attribute values and have to be clustered 

into two classes, i.e., a binary classification is sought

� To be able to separate a set of � items that are given as 

vectors + in the ℝ� with an additional classification bit � ∈ 0,1 in a linear way means that we are able to define a 

hyperplane that divides the considered vector space ℝ� into 

two half spaces such that all items with a classification 0 are in 

the one half space while all other items (with classification 1) 

are in the other half space

� If this is the case, the hyperplane provides us with a fast 

computable method that decides to which class a vector 

belongs
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Hyperplanes, half spaces are …?

No problem. 

Both terms come from 

Linear Algebra and are 

really important. 

Particularly in 

Operations Research. 

No problem. 

Both terms come from 

Linear Algebra and are 

really important. 

Particularly in 

Operations Research. 

Please stop! What the hell are hyperplanes 

and half spaces? I am happy to know what 

the ℝ� is.

Please stop! What the hell are hyperplanes 

and half spaces? I am happy to know what 

the ℝ� is.
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Hyperplanes

2.4.1 Definition

Let / ∈ ℝ� ∖ 0 and � ∈ ℝ. Then, the vectors of the ℝ� that belong to the set 9 = + ∈ ℝ� / ⋅ + = �
constitute a hyperplane

Observations

� Due to the linear restriction to be fulfilled, such a hyperplane in 

an �-dimensional space has the dimension � − 1
� A hyperplane defines two separated half spaces, i.e., it divides 

the space into two parts
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Half spaces

2.4.2 Definition

Given the hyperplane 9 = + ∈ ℝ� / ⋅ + = � as 

defined in Definition 2.4.1. 

Then, this hyperplane determines the following two half 

spaces in the ℝ�:

First half space: 9�� = + ∈ ℝ� / ⋅ + ≥ �
Second half space: 9A� = + ∈ ℝ� −/ ⋅ + ≥ −�
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Illustration

� We illustrate the linear separation for the two-dimensional space

� Here, the hyperplane 9 = + ∈ ℝ� 11 ⋅ + = 1 separates the 

two-dimensional space ℝA

/A = 1

/� = 1

+

+

+

+

+
++

-
-

- -

-

-

-

-

-

+�

+A
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Linear separability

Hence, we can now define what we understand under a 

linearly separable data set:

2.4.3 Definition

Two sets �x, �! ⊆ ℝ� are denoted as linearly separable 

if and only if there exist � + 1 real numbers /�, /A, … , /� ∈ ℝ and � ∈ ℝ such that it holds that ∑ /� ⋅ +� ≥ ���2� , ∀+ ∈ �! and ∑ /� ⋅ +� < ���2� , ∀+ ∈ �x.

The parameter � is denoted as the threshold value.



27

Wirtschaftsinformatik und Operations Research 139

Example – The AND function

� We are looking for the weights and threshold needed to 

implement the AND function for the 0,1 A with a perceptron

� Thus, the mapped items are the following+y = 00 , +� = 01 , +A = 10 , +C = 11 , with �x = +y, +�, +A
and �! = +C
The sets �x and �! are linearly separable by using the hyperplane 9 = + ∈ ℝ� 11 ⋅ + = � = 2 as we have for +y = 00 : 11 ⋅ 00 = 0 < � = 2, for +� = 01 : 

11 ⋅ 01 = 1 < � = 2, and 

for +A = 10 : 
11 ⋅ 10 = 1 < � = 2, while for +C = 11 : 11 ⋅ 11 = 2 ≥ � as claimed by Definition 2.4.3.
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Absolute linear separability

Analogous to the linear separability, we introduce the 

absolute linear separability. Here, we demand in both 

cases non-equality, i.e., no item belongs to the separating 

hyperplane

2.4.4 Definition

Two sets �x, �! ⊆ ℝ� are denoted as absolutely linearly 

separable if and only if there exist � + 1 real numbers /�, /A, … , /� ∈ ℝ and � ∈ ℝ such that it holds that ∑ /� ⋅ +� > ���2� , ∀+ ∈ �! and ∑ /� ⋅ +� < ���2� , ∀+ ∈ �x.
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Coming back to the AND function

The sets �x and �! are absolutely linearly separable by 

using the hyperplane 

9 = + ∈ ℝ� 11 ⋅ + = � = 1.5 as we have for +y = 00 : 
11 ⋅ 00 = 0 < �, for +� = 01 : 

11 ⋅ 01 =1 < �, and for +A = 10 : 
11 ⋅ 10 = 1 < �, while for +C = 11 : 

11 ⋅ 11 = 2 > � as claimed by Definition 

2.4.4.
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Consequence

2.4.5 Lemma

Two finite sets of points, �x and �!, in �-dimensional 

space are linearly separable if and only if there are also 

absolutely linearly separable. Hence, linear separability 

and absolute linear separability are equivalent. 
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Proof of Lemma 2.4.5

� We assume that �x and �! are linearly separable 

� Hence, there exist weights ��, … , �� , ��!� such that it holds ∑ �� ⋅ +� ≥ ��!���2� , ∀+ ∈ �! and ∑ �� ⋅ +� < ��!���2� , ∀+ ∈ �x
� Let � = �/+ ∑ �� ⋅ +� − ��!� ∣ + ∈ �x��2�  
� Then, we have � < �A < 0
� Moreover, we set * = ��!� + �A. Then, for all points + ∈ �!, it holds that ∑ �� ⋅ +� ≥ ��!���2� and therefore, by setting ��!� = * − �A, we obtain ∑ �� ⋅ +� ≥��2� * − �A. This implies ∑ �� ⋅ +� − * − �A ≥ 0��2�
� Therefore, we conclude that ∑ �� ⋅ +� − * ≥ − �A��2� > 0. 

� This implies ∑ �� ⋅ +� > *��2�
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Proof of Lemma 2.4.5

� Analogously, we consider + ∈ �x
� Since � = �/+ ∑ �� ⋅ +� − ��!� ∣ + ∈ �x��2� , we conclude that ∑ �� ⋅ +� − ��!� ≤��2� �
� By using ��!� = * − �A , it holds that ∑ �� ⋅ +� − * − �A ≤��2� �
� Thus, we deduce ∑ �� ⋅ +� − * ≤��2� �A < 0
� Therefore, it holds that ∑ �� ⋅ +���2� < *
� Hence, �! and �x are absolutely linearly separable 

� Clearly, the inverted direction is trivial, i.e., if �! and �x are absolutely 

linearly separable, they are, by definition, also linearly separable
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Perceptron

2.4.6 Definition

Given a weight vector � = ��, �A, … , �� ∈ ℝ� and + ∈ ℝ� an 

input vector. 

A perceptron is a mapping l: ℝ� ↦ 0,1 such that 

l� + = �1    �T� ⋅ + = ? �� ⋅ +�
�

�2� > 0
0                              �LℎIM��JI

In order to additionally consider the threshold value �, both 

vectors are extended by adding ��!� = −� and +�!� = 1, 

respectively. 

Then, we obtain � ⋅ + − � ⋅ 1 = −� + ∑ �� ⋅ +���2� and if l� + = 1 holds, we have ∑ �� ⋅ +���2� > �
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Perceptron training

� In what follows, we generate a training procedure 

that iteratively generates a perceptron for a given 

data set

� It should absolutely separate the two sets �x, �! ⊆ℝ�
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Perceptron learning algorithm

Input: �!, �x ⊆ ℝ� as sets of items with positive (“1”) and 

negative (“0”) classification

Set � ∈ ℝ� arbitrarily such that � ≠ 0 holds

Set L ≔ 0 /* Counter of conducted updates */

REPEAT

FOR all + ∈ �!
IF � ⋅ + ≤ 0 THEN � ≔ � + +; L ≔ L + 1;

END FOR

FOR all + ∈ �x
IF � ⋅ + ≥ 0 THEN � ≔ � − +; L ≔ L + 1;

END FOR

UNTIL all + ∈ �! ∪ �x are classified correctly by l� +
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Convergence

2.4.7 Theorem

We consider the perceptron learning algorithm and 

assume that the sets �!, �x ⊆ ℝ� are finite and 

linearly separable. Then, the perceptron learning 

algorithm updates the weight vector � ∈ ℝ� a finite 

number of times, i.e., the algorithm will terminate with 

a perceptron that separates the elements of the two 

sets �!, �x ⊆ ℝ�. 
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Proof of Theorem 2.4.7

� We give the proof that can be found in Rojas (1996)

� First of all, we make three simplifications without losing 

generality

1. The sets �!, �x ⊆ ℝ� can be joined together in a single set named �. In 

order to enable an equal treatment of all vectors in �, we negate all 

vectors �x ⊆ ℝ�
2. Subsequently, we normalize all vectors of �. This does not change the 

decision criterion of the algorithm (and therefore the termination) as if 

we have � ⋅ + < 0 for some + ∈ �, this also applies after multiplying a 

scalar �, i.e., this also applies to � ⋅ +. The same is true for � ⋅ + > 0, ∀+ ∈ �. Thus, in what follows all vectors in � are normalized, i.e., + = 1, ∀+ ∈ �
3. The weight vector can be also normalized. As we assume that the 

considered problem is linearly separable there exists such a solution 

vector �| ∈ ℝ� that we normalize and obtain �∗ ∈ ℝ� fulfilling �∗ = 1
Wirtschaftsinformatik und Operations Research 150

Proof of Theorem 2.4.7

� We consider the step of the algorithm that updates the weight vector and 

this was the L + 1th update. The result is the weight vector � !� that was 

built by setting � !� ≔ �  + +
� The reason for this update is that there is a vector + ∈ � with �  ⋅ + ≤ 0
� We start with the following trigonometric result

For two vectors �, { ∈ ℝ� and the angle � between them, it holds that ��J � = ¡⋅¢¡ ⋅ ¢
� Hence, we compare the current (just updated) weight vector � !� and the 

normalized solution vector �∗
� It holds that (note that �∗ = 1)��J � = � !� ⋅ �∗� !� ⋅ �∗ = �  + + ⋅ �∗� !� = �  ⋅ �∗ + + ⋅ �∗� !�
� We compute £ = ��� �∗ ⋅ +¤ +¤ ∈ � > 0 and obtain��J � = ¥¦⋅¥∗!4⋅¥∗¥¦jk ≥ ¥¦⋅¥∗!§¥¦jk
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Proof of Theorem 2.4.7

� Note that £ = ��� �∗ ⋅ +¤ +¤ ∈ � > 0 due to the fact that �∗ is a 

solution and therefore correctly separates all elements of set �
� By induction of all updating steps, we obtain for the initial weight vector �y��J � ≥ ¥¨⋅¥∗!  !� ⋅§¥¦jk ∗
� Furthermore, after modifying the numerator, we consider the 

denominator. It holds that� !� A = �  + + ⋅ �  + + = �  A + 2�  ⋅ + + + A
� Since, by assumption, �  ⋅ + ≤ 0, we have 2�  ⋅ + ≤ 0 and therefore� !� A = �  A + 2�  ⋅ + + + A ≤ �  A + + A
� Moreover, by assumption, all vectors + ∈ � are normalized and we obtain� !� A ≤ �  A + 1
� Again, we get by induction of the all updating steps � !� A ≤ �y A + L + 1 ⟹ � !� ≤ �y A + L + 1 ∗∗
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Proof of Theorem 2.4.7

� By substituting ∗∗ in ∗ , we derive��J � ≥ ¥¨⋅¥∗!  !� ⋅§¥¦jk ≥ ¥¨⋅¥∗!  !� ⋅§¥¨ �! !�
� The right hand side comprises the values £, �y ⋅ �∗, and �y A that are 

constant and positive during the computation steps for a given data set

� However, the number of conducted steps increases and the right hand side 

grows proportionally to ª
� But, as the left hand side is upper bounded by �, L is bounded by a 

maximum value 

� This proves the termination and therefore convergence of the perceptron 

learning algorithm

� Clearly, the proof underlines that the algorithm works by bringing the initial 

vector �y iteratively sufficiently close to the solution vector �∗ as cos �
becomes larger due to a proportionally smaller angle �
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Example – The OR function

+y = 00 , +� = 01 , +A = 10 , +C = 11 , with �x = +y and �! = +�, +A, +C
In order to compute a linear separator, we have to extend the vectors to 

+y = 001 , +� = 011 , +A = 101 , and +C = 111 and start the calculation with 

�y = 000 . Then, we obtain:

1. �y ⋅ +y = 0: This is not correctly classified and we update to �� ≔ �y − +y =000 − 001 = 00−12. �� ⋅ +� = −1: This is not correctly classified and we update to �A ≔ �� + +� =00−1 + 011 = 010
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Example – The OR function

3. �A ⋅ +A = 0: This is not correctly classified and we update to �C ≔ �A + +A =010 + 101 = 1114. �C ⋅ +C = 1: This is correctly classified and we have no update5. �C ⋅ +y = 1: This is not correctly classified and we update to �p ≔ �p − +y =111 − 001 = 1106. �p ⋅ +� = 1: This is correctly classified and we have no update7. �p ⋅ +A = 1: This is correctly classified and we have no update8. �p ⋅ +C = 2: This is correctly classified and we have no update9. �p ⋅ +y = 0: This is not correctly classified and we update to �d ≔ �p − +y =110 − 001 = 11−1
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Example – The OR function

10. �d ⋅ +� = 0: This is not correctly classified and we update to �D ≔ �d + +� =11−1 + 011 = 12011. �D ⋅ +A = 1: This is correctly classified and we have no update12. �D ⋅ +C = 3: This is correctly classified and we have no update13. �D ⋅ +y = 0: This is not correctly classified and we update to �z ≔ �D − +y =120 − 001 = 12−114. �z ⋅ +� = 1: This is correctly classified and we have no update15. �z ⋅ +A = 0: This is not correctly classified and we update to �o ≔ �z + +A =12−1 + 101 = 22016. �o ⋅ +C = 4: This is correctly classified and we have no update
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Example – The OR function

17. �o ⋅ +y = 0: This is not correctly classified and we update to �® ≔ �o − +y =220 − 001 = 22−118. �® ⋅ +� = 1: This is correctly classified and we have no update19. �® ⋅ +A = 1: This is correctly classified and we have no update20. �® ⋅ +C = 3: This is correctly classified and we have no update21. �® ⋅ +y = −1: This is correctly classified and we have no update

Termination

Output is: � = 22−1
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Is everything fine?

Unfortunately, not 

always as you see. It 

depends on some 

prerequisites. This is 

considered next. 

Unfortunately, not 

always as you see. It 

depends on some 

prerequisites. This is 

considered next. 

OK. It terminates. That is nice. But, is this 

convergence process fast? The example does 

not suggest this…

OK. It terminates. That is nice. But, is this 

convergence process fast? The example does 

not suggest this…
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Accelerating the convergence

� Although the perceptron learning algorithm converges to a 

solution, the number of iterations can be very large if the 

input vectors are not normalized and are arranged in an 

unfavorable way

� Note that in an update step the respective vector x gives the 

weight vector a new direction in order to correct the 

misclassification of x. But, in order to correct this failure 

directly it is reasonable to do just this in one step (and not in 

many) while doing not more than this (causing new failures)

� Therefore, the following modification seems to be reasonable 
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Improved update handling

� If at iteration t the vector + ∈ �! is classified erroneously and we have �  ⋅ + ≤ 0 the resulting error £ is determined by £ = −�  ⋅ +
� By using a small positive value � > 0, the new weight vector � !� is 

calculated as follows � !� = �  + £ + �+ A ⋅ +
� Note that this corrects the misclassification in one update step as it holds� !� ⋅ + = �  + £ + �+ A ⋅ + ⋅ + = �  ⋅ + + £ + � = −£ + £ + � = � > 0
� Hence, the usage of � guarantees that the new weight vector just barely 

skips over the border of the region with a higher error

� Therefore, � should be made small enough to avoid skipping to another 

region whose error is higher than the current one

� When + ∈ �x holds, the correction step is similarly, but using the factor £ − � instead of £ + �
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Observations

� As mentioned in Rojas (1996) it can be stated that the 

accelerated algorithm is an example of corrective 

learning

� The weight vector is not just enforced, but completely 

corrects the currently observed error

� A variant of this rule is correction of the weight vector 

using a proportionality constant ¯ as the learning 

factor in so far that at each update the vector ¯ ⋅ £ + � ⋅ + is added to the current weight vector �. 

In this updating the learning constant falls to zero 

when learning progresses
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Example – The OR function

+y = 00 , +� = 01 , +A = 10 , +C = 11 , with �x = +y and �! = +�, +A, +C
In order to compute a linear separator, we have to extend the vectors to 

+y = 001 , +� = 011 , +A = 101 , and +C = 111 and start the calculation with 

�y = 000 and set � = 0.1. Then, we obtain with update formula � !� = �  + §!x�4 � ⋅ +
and £ = −�  ⋅ +:1. �y ⋅ +y = 0: This is not correctly classified and we update with £ = 0 to 

�� ≔ �y + yxy.�� ⋅ 001 = 000 + 00−0.1 = 00−0.12. �� ⋅ +� = −0.1: This is not correctly classified and we update with £ = 0.1 to 

�A ≔ �� + y.�!y.�A ⋅ 011 = 00−0.1 + 00.10.1 = 00.10
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Example – The OR function

3. �A ⋅ +A = 0: This is not correctly classified and we update with £ = 0 to 

�C ≔ �A + y!y.�A ⋅ 101 = 00.10 + 00.050.05 = 00.150.054. �C ⋅ +C = 0.2: This is correctly classified and we have no update5. �C ⋅ +y = 0.05: This is not correctly classified and we update with £ = −0.05 to 

�p ≔ �C + xy.ydxy.�� ⋅ 001 = 00.150.05 + 00−0.15 = 00.15−0.16. �p ⋅ +� = 0.05: This is correctly classified and we have no update7. �p ⋅ +A = −0.1: This is not correctly classified and we update with £ = 0.1 to 

�d ≔ �p + y.�!y.�A ⋅ 101 = 00.15−0.1 + 0.100.1 = 0.10.1508. �d ⋅ +C = 0.25: This is correctly classified and we have no update9. �d ⋅ +y = 0: This is not correctly classified and we update with £ = 0 to 

�D ≔ �d + xy.�� ⋅ 001 = 0.10.150 + 00−0.1 = 0.10.15−0.1
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Example – The OR function

10. �D ⋅ +� = 0.05: This is correctly classified and we have no update11. �D ⋅ +A = 0: This is not correctly classified and we update with £ = 0 to 

�z ≔ �D + y.�A ⋅ 101 = 0.10.15−0.1 + 0.0500.05 = 0.150.15−0.0512. �z ⋅ +C = 0.25: This is correctly classified and we have no update13. �z ⋅ +y = −0.05: This is correctly classified and we have no update14. �z ⋅ +� = 0.1: This is correctly classified and we have no update15. �z ⋅ +A = 0.1: This is correctly classified and we have no update

Termination

Output is: � = 0.150.15−0.05
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Initial vector

� Aside from the update formula, the convergence speed 

significantly depends on the initial vector �y
� Ertel (2016) proposes to use �y = ? +� −4[∈3j

? +�4[∈3°
� It can be observed that this initial vector may accelerate 

the convergence of the perceptron learning algorithm
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Example – The OR function

+y = 00 , +� = 01 , +A = 10 , +C = 11 , with �x = +y and �! = +�, +A, +C
In order to compute a linear separator, we have to extend the vectors to 

+y = 001 , +� = 011 , +A = 101 , and +C = 111 and start the calculation with �y = +� +
+A + +C − +y = 222 and set � = 0.1. Then, we obtain with update formula � !� = �  +
§!x�4 � ⋅ + and £ = −�  ⋅ +:1. �y ⋅ +y = 2: This is not correctly classified and we update with £ = −2 to �� ≔ �y +

xAxy.�� ⋅ 001 = 222 + 00−2.1 = 22−0.12. �� ⋅ +� = 1.9: This is correctly classified and we have no update3. �� ⋅ +A = 1.9: This is correctly classified and we have no update4. �� ⋅ +C = 3.9: This is correctly classified and we have no update

Wirtschaftsinformatik und Operations Research 166

Example – The OR function

5. �� ⋅ +y = −0.1: This is correctly classified and we have no update

Termination

Output is: � = 22−0.1
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Is everything fine?

…and it underlines that 

it may be reasonable to 

directly integrate the 

impact of the vectors of 

both sets �x and �!.

…and it underlines that 

it may be reasonable to 

directly integrate the 

impact of the vectors of 

both sets �x and �!.

Impressive. By solely changing the initial 

vector, we only need a single update of the 

weight vector instead of seven as before.

Impressive. By solely changing the initial 

vector, we only need a single update of the 

weight vector instead of seven as before.
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What if the learning set is not linearly separable?

� In that case there is no termination possible and we do not 

obtain a solution

� Moreover, if we stop the computation after an arbitrary step 

the quality of the generated weight vector is undefined

� Therefore, Gallant (1990) proposed a very simple variant of the 

perceptron learning algorithm capable of computing a good 

approximation of an ideal, but not attainable, linear separation

� The main idea of the algorithm is to store the best weight 

vector found so far by perceptron learning (in a “pocket”) 

while continuing to update the weight vector itself

� If a better weight vector is found, it supersedes the one 

currently stored and the algorithm continues to run

Wirtschaftsinformatik und Operations Research 169

The pocket algorithm

� Initialize the weight vector w randomly

� Set �±: = �; 

� Set ℎ± ≔ 0;

� Iterate:

� Update � using a single iteration of the perceptron 

learning algorithm;

� Keep track of the number ℎ of consecutively 

successfully tested vectors. 

� If at any moment ℎ > ℎ± THEN set �± ≔ �; ℎ± ≔ ℎ;  

� Go to iterate
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Observations

� The algorithm can occasionally change a good stored 

weight vector for an inferior one, since only  

information from the last run of selected examples is 

considered

� The probability of this happening, however, becomes 

smaller and smaller as the number of iterations grows

� If the training set is finite and the weights and vectors 

are rational, it can be shown that this algorithm 

converges to an optimal solution with probability 1 

(see Gallant (1990))
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Possible application – Pattern recognition

� Ertel (2016) gives the following further example for a possible 

application of the linear perceptron learning algorithm

� The application deals with pattern recognition of specific 

letters that may be modified by inverted bits 

� Hence, a specific fault tolerance (adaptability) is needed in 

order to attain a reliable recognition of partly falsely 

transferred patterns

Patterns of set �! Patterns of set �x Candidate to 

be classified
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Attained correctness

� Clearly, the number of correctly classified patterns significantly 

depends on the number of inverted bits

� The more bits are inverted the lower is the relative correctness 

of the algorithm

� Specifically, for the considered application, Ertel (2016) reports 

the following correctness values in dependence of the number 

of inverted bits:

5 10 15 20

1

0.8

0.6

0.4

0.2

25

Correctness

Executed Bitflips (See Ertel (2016) p.205)


