
1

Wirtschaftsinformatik und Operations Research 35

2 Machine Learning

� First, let us recall or understand what we denote as machine

learning

� An engineering orientation of Tom Mitchell (1997) seems to be

quite useful

“A computer program is said to learn from experience E with

respect to some task T and some performance measure P, if its

performance on T, as measured by P, improves with

experience E.”

� Why is this thinking useful?

� On the contrary, traditional programming has to define rules,

procedures, and sophisticated routines (algorithms) that

determine in each detail what the computer has to do

� But is this always reasonable?

Wirtschaftsinformatik und Operations Research 36

Consequences

See it that way!

Machine learning is

your thing as a lazy

bear! Let the machine

learn not only work.

See it that way!

Machine learning is

your thing as a lazy

bear! Let the machine

learn not only work.

Great!

I thought that I should learn and not the

machine.

Great!

I thought that I should learn and not the

machine.

Wirtschaftsinformatik und Operations Research 37

2.1 Some basics

� In what follows, we try to understand some basic

notations and concepts by asking

� What is machine learning about?

� Why do we use it?

� How we can classify the existing systems?

� See Géron (2017, 2019)

Wirtschaftsinformatik und Operations Research 38

Writing a spam filter in a traditional way

Necessary steps to do in traditional programming

1. Before writing down rules you have to analyze tons of emails in order to

find out characterizing words in the header or specific sender names or

domains or further significant attributes of spam mails

2. Subsequently, you write a corresponding detection algorithm that checks

all these cases in order to provide a reliable identification

3. You have to test the spam filter after being launched in your real-world

application. Whenever you notice identification problems or new spam

attributes, you have to repeat the two steps ahead. Therefore you undergo

a continuous process of testing, analyzing, and programming

But, as these tasks are not trivial, it is quite likely that the program becomes

quite complex and maintaining proves to be a time-consuming inefficient task

to do

2

Wirtschaftsinformatik und Operations Research 39

Using machine learning

� On the contrary, in machine learning, the programmed spam filter is able to

learn which words and phrases are promising predictors

� This learning can be done by comparing the frequency of these phrases in

spam mails compared to ham mails

� Also such kind of programs have to be tuned (cycles of validation and

correction) by the programmer, but are often much more compact and

simpler to maintain

� Moreover, the every day usage is more efficient

� After being validated, the system should be able to adapt the applied

rules according to the experienced (modified) data dynamically coming in

� Hence, the reprogramming of the spam filter occurs only rarely

� On top of that, there is frequently some versatility that allows to apply some

basic components to different tasks

Wirtschaftsinformatik und Operations Research 40

Machine learning seems to be appropriated for

� …problems for which existing solutions require a lot

of tuning or huge lists of rules

� …problems for which no solution of acceptable

quality is known by applying a traditional approach

� …problems for which relevant data is very fluctuating

and this data directly influences the structure of the

applicable algorithms

� …problems for which we have to find some insights

into the structure of the problem, i.e., we use

machine learning in order to understand the problem

Wirtschaftsinformatik und Operations Research 41

2.1.1 Types of machine learning systems

� Today, there is an extremely increasing number of machine learning

approaches that act quite differently and that are designed for various

applications

� Thus, it seems to be useful to provide a useful classification

� Basically, we distinguish

� …whether the training of the system is supervised by a teacher or not

(supervised, unsupervised, semi-supervised, or reinforcement learning)

� …whether it learns incrementally (with each new data) or not (online

versus batch learning)

� …whether the system learns by just comparing new data points with

existing known ones or detect patterns in the training data and derive a

predictive mathematical model (instance-based versus model-based

learning)

� Note that these criteria are not complete, disjoint, or exclusive. Clearly, we

may have further criteria or applications that combine different of them

Wirtschaftsinformatik und Operations Research 42

Supervised learning

� Characterization

� The algorithm is fed with training data that includes the desired solutions (called

labels)

� For instance, if a classification has to be done (e.g. by a spam filter), various

examples are trained with the given class (spam or ham)

� Another example is the prediction of a sought numeric value (realistic market price

of a car depending on given features) done by regression. For this purpose, the

system is trained with numerous real-world cases

� Some regression algorithms can also be used for classification (by comparing with

thresholds) and vice versa

� Examples

� k-nearest neighbor

� Linear regression

� Logistic regression

� Support vector machines (SVM)

� Decision trees and random forests

� Neural networks (besides semi-supervised and unsupervised neural networks)

3

Wirtschaftsinformatik und Operations Research 43

Unsupervised learning

� Characterization

� The training data is unlabeled (there is no teacher comparing the results)

� For instance, you want to cluster the visitors of your online shop

� At no time you tell (or can tell) the algorithm to which group someone belongs.

Rather, the algorithm has to find it out on its own

� Another example are visualization algorithms providing the user an overview on the

data. Or anomaly detection: For instance, detecting unusual credit card transactions

in order to identify fraud, the system is trained with normal instances

� Association rule learning: Dig into large amounts of data and identify relations

between the behavior of people: Who purchases potato chips also buys steaks etc.

� Examples

� Clustering of data sets by

� k-means clustering/k++ clustering

� Hierarchical cluster analysis (HCA)

� Expectation Maximization

� Many approaches dealing with visualization and dimensionality reduction

� Many approaches doing association rule learning

Wirtschaftsinformatik und Operations Research 44

Semi-supervised learning

� Algorithms that deal with partially labeled training data, i.e., a

lot of unlabeled data and a little bit of labeled data

� Note that this definition is quite ambiguous

� Therefore, let us consider a photo hosting service as an

appropriate example

� Usually you upload your family photos

� Then, the service starts clustering these photos with the possible result

that it identifies the same person on different photos (this is obviously

the unsupervised part of the system)

� After that, you are asked to label these persons by name and possibly

correct some results. This naming simplifies future search processes

� Many semi-supervised learning algorithms are just such combinations

of unsupervised and supervised methods

Wirtschaftsinformatik und Operations Research 45

Reinforcement learning

� In reinforcement learning system the system is frequently denoted

as an agent

� This agent continuously observes the environment, select and

perform actions while getting feedbacks for them

� Rewards for intended, i.e., pursued actions and

� Negative rewards, i.e., penalties

� The agent has to find the best strategy, denoted as a policy, to

maximize the total received reward

� Robots often implement reinforcement learning algorithms to learn

how to walk

� DeepMind’s AlphaGo program is another example for reinforcement

learning. It learned its strategy by analyzing millions of games. It

beats in May 2017 the world champion Ke Jie at the game of Go

Wirtschaftsinformatik und Operations Research 46

Summary – Classes of learning algorithms

� Basically, we can depict the following classification of

learning algorithms (see Rojas (1996))

Learning

Supervised learning

Unsupervised learning

Corrective learning

Reinforcement learning

Semi-supervised learning

4

Wirtschaftsinformatik und Operations Research 47

Batch learning

� The system is incapable of incrementally learning

� It needs all available data at once

� As this takes some time, it is often done by an offline step

(offline learning) and not during the ordinary application of the

system

� Therefore, if new data is available and has to be considered,

the system is trained with all data (new and old) from scratch.

Subsequently, the new version replaces the former one

� As the training cycles are time consuming, such steps should be

scheduled with some care

Wirtschaftsinformatik und Operations Research 48

Online learning

� In contrast to batch learning systems, online learning systems

are trained incrementally by feeding them in small batches or

individually

� The effort of those learning steps is insignificant (learning the

new data on the fly)

� One important aspect is the learning rate, i.e., how fast adapts

the system its behavior to the specifics of the new training

data?

� However, fast adaption is not always preferable if the system is

fed with bad data (i.e., data that is not representative or

distorted)

� Thus, online learning needs to be continuously controlled by

checking its ongoing performance results

Wirtschaftsinformatik und Operations Research 49

Instance-based learning

� These systems learn from each individual case

� In an extreme scenario each case is stored and if this case

occurs again it is handled accordingly

� More sophisticated instance-based learning systems

mathematically measure the similarity between incoming

instances in order to decide whether a current case coincides

with the learned ones

� For instance, spam filters frequently use instance-based

learning

� Spam filters are learned by heart

� Then, similarity measures are applied as the number of relevant

words two emails have in common

Wirtschaftsinformatik und Operations Research 50

Model-based learning

� Model-based learning approaches generalize from a set of examples by

building a model that is based on these examples. Then, this model is used to

make predictions

� For instance, consider a scientific study that deals with the question whether

money makes people happy

� It may use the Better Life Index data from the OECD’s website as well as stats

about GDP per capita from the IMF’s website

� Then, both data is mixed together in order to define happiness in dependence of

income

� As you identify a trend in this mixed data (it actually looks like life satisfaction goes

up more or less linearly as the country’s GDP per capita increases), you decide to

apply linear regression in order to model satisfaction as a linear function of income

� This is the model selection step

� In summary: Studying the data, selecting a model, Training it on the data (i.e.,

the learning algorithm searched for the model parameter values that minimize

a cost function), and finally applying the model to make predictions on new

cases (this is called inference), hoping that this model will generalize well

5

Wirtschaftsinformatik und Operations Research 51

2.1.2 Main challenges and pitfalls

The methods introduced in this section (and throughout the

entire course) do not work by themselves, but need to be

programmed and designed in a sophisticated way. Particularly,

the efficient use of machine learning approaches may be

endangered by the following challenges:

� Insufficient quantity of training data

� Non-representative training data

� Poor-quality training data

� Irrelevant Features

� Overfitting the training data

� Underfitting the training data

Wirtschaftsinformatik und Operations Research 52

Insufficient Quantity of Training Data

� A toddler learns what an apple is …

� by just seeing (and touching) one and hearing the word “apple” (maybe several

times)

� Afterwards, this child is able to recognize apples in all sorts of colors and

shapes. This is amazing out of our view as ML-scientists

� In machine learning, however, it takes much more data to reach this point

� Finding sophisticated learning procedures is for sure one decisive side of

the coin

� However, on the other, not less decisive side, there are studies that reveals

that completely different learning algorithms (including fairly simple ones)

may attain a comparable solution quality if the quantity of the training data

is sufficiently high

� This underlines that insufficient quantity of training data is a serious

shortcoming

Wirtschaftsinformatik und Operations Research 53

Nonrepresentative Training Data

� Clearly, it is crucial that your training data be representative of

the new cases you want to generalize to

� This is true whether you use instance-based learning or model-

based learning

� For instance, if our formerly mentioned scientific study that

deals with the question whether money makes people happy

does the linear regression without richer countries the results

may be not appropriate for countries like Switzerland or

Luxembourg

Wirtschaftsinformatik und Operations Research 54

Poor-Quality Data

� Clearly, if the training data is full of errors, outliers,

and noise (reasons for that are often poor quality

measurements or false channels of data acquisition),

it is hard for the system to exploit the underlying

pattern (it is gone due to the poor quality)

� Hence, it is worth the effort, to spend time cleaning

up the data, i.e., delete outliers, decide about missing

or corrupted values of some attributes etc.

6

Wirtschaftsinformatik und Operations Research 55

Irrelevant Features

� In order to derive the existing pattern in the data, it is

useful to condense the features to the relevant ones

� Feature engineering comprises

� Feature selection: selecting the most useful features to

train on among existing features.

� Feature extraction: combining existing features to

produce a more useful one (e.g., dimensionality

reduction may help)

� Creating new features by gathering new data

Wirtschaftsinformatik und Operations Research 56

Overfitting

No, no. OVERfitted

means that you are too

specialized by the

training data and this is

not useful for a general

real-world case

No, no. OVERfitted

means that you are too

specialized by the

training data and this is

not useful for a general

real-world case

I am overfitted! Great!

I am the best.

I get every fish within a second.

I am overfitted! Great!

I am the best.

I get every fish within a second.

Wirtschaftsinformatik und Operations Research 57

What is overfitting?

� Roughly speaking, overfitting pictures the situation when the

learning algorithm overgeneralizes its training data with the

consequence that it performs well for the specific training

data, but not for the general case

� Overfitting frequently happens when the applied model is too

complex relative to the amount and noisiness of the training

data. Thus, possible solutions may be

� Simplify the model by reducing the integrated parameters (e.g., a linear

model rather than a high-degree polynomial model),

� Simplify the model by reducing the number of attributes in the training

data or by constraining the model

� Gather more training data

� Reduce the existing noise in the training data (e.g., fix data errors and

remove outliers)

Wirtschaftsinformatik und Operations Research 58

The opposite: Underfitting

� Occurs when the model is to simple to learn the

structure of the data

� For instance, if a linear model is applied to a

phenomenon with exponential dependencies this

would lead to underfitting

7

Wirtschaftsinformatik und Operations Research 59

2.2 Decision trees

� Trees are very common data structure in computer science

� In a approximately full tree with node degree � we have an

asymptotic depth of � ���� �
� Hence, access and update operations can be done quite

efficiently

� Therefore, trees are promising data structures for efficiently

storing larger data sets

� In what follows, we want to learn from these data set while

storing this exploited knowledge in an efficient way

� As a consequence, despite its huge size, stored knowledge can

be accessed very fast

Wirtschaftsinformatik und Operations Research 60

2.2.1 Learning with decision trees – The problem

� Specifically, in what follows we consider a list of items that

possess individual attributes. Moreover, each item belongs to a

specific class that is given by the respective data set

� Our task is to derive a tree that classifies the items by some of their

stored attribute values

� While starting from the root node with all items each inner node

clusters the respective items according to their values for a specific

attribute considered at this node

� At a leaf node a final classification is provided

� Therefore, after starting at the root node, each item is iteratively

classified by following the inner nodes according to the respective

attribute values of the item until the classification is done by the

reached leaf

Wirtschaftsinformatik und Operations Research 61

Preparing the mathematical definition

2.2.1.1 Definition

Let �,
 ∈ ℕ be natural numbers. A set of
 attributes is given by � = ��, … , �� , while for each � ∈ 1, … , � the attribute �� is

defined as a set of possible values. A classification into � classes

is a set � = ��, … , �� , while for each � ∈ 1, … ,
 �� is a class

that is finally assigned to each item (or case) that possesses

individual values for each attribute.

Wirtschaftsinformatik und Operations Research 62

Mathematically, we consider the following

2.2.1.2 Definition

Given � attributes � = ��, … , �� and a classification � =��, … , �� into
 classes as defined in Definition 2.2.1.1.

A data set � with � items possessing � attributes to be learned by

a decision tree is defined as follows

� = ��,� … ��,�⋮ ⋱ ⋮� ,� … � ,�
��,�!�⋮� ,�!�

The value of the �th item for the �th attribute is defined by entry ��,� ∈ �� , with � ∈ 1, … , � and � ∈ 1, … , � .

The classification of the �th item is defined by entry ��,�!� ∈ �,

with � ∈ 1, … , �

8

Wirtschaftsinformatik und Operations Research 63

Attributes of a data set

2.2.1.3 Definition

Let � be a data set with � items and � attributes as

defined in Definition 2.2.1.2. � is denoted as non-trivial if and only if it holds that ∃� ≠ � ∈ 1, … , � : ��,�!� ≠ ��,�!�� is denoted as consistent if and only if it holds that∃� ≠ � ∈ 1, … , � :∀ℎ ∈ 1, … , � : ��,' = ��,' ⇒ ��,�!� = ��,�!�

Wirtschaftsinformatik und Operations Research 64

Decision tree – Interpretation

2.2.1.4 Definition

A decision tree) for a data set � as defined in Definition 2.2.1.2

with an attribute set � = ��, … , �� and a classification � = ��, … , �� is a tree with leafs �� ∈ � and inner nodes �� ∈�. The edges that emerge from such an inner node �� ∈� possess edge values * ∈ ��
A decision tree) classifies an item + ∈ �� × ⋯ × �� × � into

class �� ∈ � if there exists an edge path *�, … , *. in tree) such

that each edge value *� of the attribute / � visited by the path

at depth � coincides with the corresponding entry of item x, i.e., it

holds that +0 � = *� and the path finally reaches leaf �� ∈ �.

Wirtschaftsinformatik und Operations Research 65

Correctness of classification

2.2.1.5 Definition

A decision tree) for a data set � (as defined in Definition

2.2.1.2) with an attribute set � = ��, … , �� and a classification � = ��, … , �� classifies an item + ∈ �� × ⋯ × �� × � into class �� ∈ � correctly if and only if it holds that +�!� = ��.
By storing the information in a decision tree) that is given in data

set �, we demand, if � is consistent, that) classifies all items of � correctly. Moreover, we want to store the information (learned

knowledge) in a most efficient way.

For this purpose, we have to define suitable performance

measures.

Wirtschaftsinformatik und Operations Research 66

Performance measure

2.2.1.6 Definition

Let) be a decision tree for a data set � as defined in Definition 2.2.1.2

with an attribute set � = ��, … , �� and a classification � =��, … , �� . Then, we define the following performance measures:

1. For each leaf �� ∈ � of) we define � �� as the length of the path

starting from the root and ending at �� that is measured by the

transferred edges

2. The external path-length of) is defined by ∑ � ����2�
3. For each item + = +�, … , +� , +�!� ∈ � the function �3 + gives

the number of edges of the path in) that correctly classifies x

4. The weighted total external path-length of) is defined by ∑ �3 +4∈3

9

Wirtschaftsinformatik und Operations Research 67

Interpreting the performance measure

The performance measures of the generated decision

tree), as defined in Definition 2.2.1.6, can be

interpreted as follows:

� The number of leafs gives the number of rules stored in)
� The external path-length is the total storage consumption of

decision tree)
� Depth of) is the maximal length of some stored rule

� The weighted total external path-length of) is the total time

effort needed for classifying the data set �

Wirtschaftsinformatik und Operations Research 68

2.2.1.7 Example – Mushroom classification

Color Size Dots? Edible?

Red Small Yes No

Brown Small No Yes

Brown Large Yes Yes

Green Small No Yes

Red Large No Yes

ColorDecision tree

Size
Edible

Edible

Non-edible Edible

Red
Green

Brown

Small Large

External path-length amounts to 1 + 1 + 2 + 2 = 6
Weighted total external path-length amounts to 2 + 1 + 1 + 1 + 2 = 7

Wirtschaftsinformatik und Operations Research 69

2.2.2 Excursion: Entropy in information theory

� The information theory was originated in 1948 by Shannon

� He published the paper named “A Mathematical Theory of

Communication”

� In this paper, he proposed the measure of information entropy,

which describes the amount of impurity in a set of features

� The entropy 9 of a set : comprising � possible events with an

occurrence probability of :� with 0 < :� ≤ 1 and ∑ :���2� = 1 is

given through

9 :�, … , :� = − ? :� ∙ ���A :�
�

�2�
� Note that, in this computation, events with a zero probability are

ignored, i.e., they are put aside before computing the entropy value

and therefore their contribution is set to zero

Wirtschaftsinformatik und Operations Research 70

2.2.2 Excursion: Entropy in information theory

� The base 2 represents a coding into a binary digits, i.e., into

bits

� These are the smallest information units as they can have only

two distinct values

� The entropy measures the average information attained by

executing one random choice according to the given

occurrence probabilities

10

Wirtschaftsinformatik und Operations Research 71

The assumptions made by Shannon

Shannon (1948) derived the entropy measure 9 :�, … , :� on the basis of the

following requirements that 1. 9 should be continuous in the :�
2. If all the :� are equal, i.e., :� = �� , ∀� ∈ 1, … , � , then 9 should be a monotonic

increasing function of n. With equally likely events there is more choice, or

uncertainty, when there are more possible events

3. If a choice be broken down into two successive choices, the original H should be the

weighted sum of the individual values of H. The meaning of this is illustrated in the

figure below. At the left we have three possibilities :� = �A , :A = �C , :C = �D. On the

right we first choose between two possibilities each with probability
�A, and if the

second occurs make another choice with probabilities
AC , �C. The final results have the

same probabilities as before.

1 2E 1 3E1 6E
1 2E = 1 3E

= 1 6E1 2E 2 3E
1 3E

Wirtschaftsinformatik und Operations Research 72

The assumptions made by Shannon

3. Continuation: As there are identical probabilities at the end, we require,

in this special case, that it holds 9 �A , �C , �D = 9 �A , �A + �A ∙ 9 AC , �C . The

coefficient
�A is because this second choice only occurs half the time.

Shannon (1948) proves that the only entropy measure 9 :�, … , :� that

satisfies these three assumptions possesses the form:

9 : = −G ? :� ∙ ���A :�
�

�2�
while G is a positive constant.

Wirtschaftsinformatik und Operations Research 73

Observations

� The entropy 9 :�, … , :� is maximal if we have equal probabilities (minimal knowledge of the

given distribution), i.e., if we have ∀� ∈ 1, … , � : :� = �� it holds that 9 :�, … , :� = − ∑ :� ∙ ���A :� =��2� − ∑ �� ∙ ���A �� = − ����2� ∑ ���A �� =��2� − ���A �� =− ���A 1 + ���A � = ���A �
� On the contrary, the entropy is minimal (equal to zero) if there is a safe event, i.e., ∃� ∈ 1, … , � : :� = 1 and have perfect knowledge of the given distribution

� It holds that 0 ≤ 9 :�, … , :� ≤ ���A �
� For illustration purposes, the entropy 9 :, 1 − : is plotted below

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 0,2 0,4 0,6 0,8 1

Wirtschaftsinformatik und Operations Research 74

2.2.2 ID3/C4.5/C5

� In what follows, we consider the problem of finding an optimal decision

tree

� However, Hyafil and Rivest (1976) show that this problem is strongly NP-

hard

� Therefore, in what follows, we will design a heuristic approach

� By considering the small example 2.2.1.7, we observe that the values

specific items possess for a certain attribute are not independent from

values occurring for other attributes

� Hence, we see that the construction of a corresponding decision tree has to

chose the attributes positioned at the inner nodes in a sophisticated way in

order to minimize the resulting weighted total external path-length of the

decision tree

11

Wirtschaftsinformatik und Operations Research 75

Basic structure of the decision tree construction

Given: Data set � with � item belonging to
 classes while possessing � attributes

Function HI��J���_LMII_���JLMN�L��� � :

1. Delete all attributes that have only a single value in � (all items in � are not

distinguishable by that attribute). IF � is trivial THEN build a tree) with one

node that gives the single class � = ��. Moreover, if there is no attribute left

assign the classification �� ∈ � that the most items in � posses.

2. IF � is NOT trivial THEN select heuristically (by following a predetermined

criterion) an attribute �� ∈ � and consider the values that items in M possess

for attribute ��. Let O�, OA, … , OP be the set of M occurring attribute values

for attribute ��. Build the disjoint separation of � = �� ∪ �A ∪ ⋯ ∪ �P with �� = + ∈ � +� = O� .

3. For � = 1 TO M: Call recursively HI��J���_LMII_���JLMN�L��� ��

Wirtschaftsinformatik und Operations Research 76

Lacking attribute value combinations in data sets

� Above procedure correctly classifies all items of the initial dataset �
� This can not be guaranteed for new items, even if they only contain

Attribute values encountered in the initial Dataset

� Example:

� What about an item with attribute values R = 0 and S = 2?

R S �0 0 10 1 00 1 01 0 11 1 01 2 0

Dataset R
S

0

0 1

0

1 1

0

S
1

0 0

1 2

Decision tree

Wirtschaftsinformatik und Operations Research 77

Lacking attribute value combinations in data sets

� In step 2 of the decision tree construction procedure a disjoint separation

was built solely based on the attribute values occurring in the considered

dataset, but not by considering all possible attribute value combination of a

theoretical dataset

� The description of the separation procedure given by Quinland (1993)

slightly differs from the one given above according to the creation of a

branching step. In the description provided by Quinland (1993) the disjoint

separation is based on all possible attribute values

� Moreover, empty disjoint separations �� that form a leaf node with

classification ‚null‘, represent a no classification case

� Obviously, a classification query can result in such an answer whenever no

feasible edge exists for classifying a new item

� Quinland (1993) suggests that a better solution would be to generalize from

the dataset of the parent node and assign this leaf the most frequent class,

although this is not implemented in ID3

Wirtschaftsinformatik und Operations Research 78

Lacking attribute value combinations in data sets

� Let us return to our small example: Here, we now follow the suggested approach

of Quinland (1993) and include nodes for lacking attribute values

� The classification is determined by choosing the most frequent class of items at

the parent node

� Thus, items with the (currently) not occurring combination R = 0 and S = 2 are classified as 0 since the majority of items with R = 0 are classified as 0
R S �0 0 10 1 00 1 01 0 11 1 01 2 0

Dataset R
0 1

1

0

S
0 0

1 2

Decision tree

1

0

S
0 0

1 2

12

Wirtschaftsinformatik und Operations Research 79

Special cases for a subtree) and their handling

� Special case 1:) contains one or more cases, but all

belong to a single class ��
The decision tree for) contains a single leaf that identifies

class ��
� Special case 2:) contains no cases at all

� The decision tree is again just a leaf, but the class to be

associated with the leaf must be determined from

information other than)
� For instance, the leaf might be chosen in accordance with

some background knowledge of the domain, such as the

overall majority class

� C4.5 uses the most frequent class at the parent of this node

Wirtschaftsinformatik und Operations Research 80

Gain criterion

� As the basic structure of the decision tree construction procedure reveals, we

have to decide for the next attribute to be assigned to the next inner node only

according to the immediate partition of the considered data set into subtrees

� Hence, in this decision, we do not integrate the consequences caused by

subsequent divisions in further subsets

� We consider a data set � with � items,
 classes, and � attributes

� TMIU ��, � : Number of items + in data set � with classification ��, with � ∈1, … ,

� TMIU � = � = �: Size of data set �
� :M�V ��, � : Probability of randomly drawing an item with classification �� in data

set �
� ��T� � : Expected information received by drawing an item from data set �

� It holds that :M�V �� , � = WPXY Z[,3WPXY 3 = WPXY Z[,33
� I.e., such a draw of an item in data set � with classification �� conveys the

information of −���A WPXY Z[,33 bits

Wirtschaftsinformatik und Operations Research 81

Expected information of a data set \
� We compute ��T� � = − ∑ WPXY Z[,3WPXY 3 ⋅ ���A WPXY Z[,3WPXY 3��2� as the

number of bits that such a drawing of an item from � conveys

� Clearly, it is just the entropy of �
� We apply this measurement before and after using a chosen attribute ��

for partitioning a considered data set � into subtrees)�, … ,).
� Hence, we derive the information gain by computing ��T� �, �� = ∑ WPXY ^[WPXY 3.�2� ⋅ ��T�)� and �/�� �, �� = ��T� � − ��T� �, ��
� The abbreviation �/�� �, �� provides us with the information we

perceived by conducting the partition of the set � pertaining the values of

items in � according the attribute ��
� A reduced entropy reveals that we know more about the structure of the

current distribution pertaining the classification of the items

Wirtschaftsinformatik und Operations Research 82

Message of the gain criterion

� Consequently, in order to maximize the gained information in

each separation, the gain criterion chooses the attribute for

separation that maximizes the information gain

� Hence, for data set � and a classification � = ��, … , �� ,

choose �� fulfilling �/�� �, �� = �/+ �/�� �, �. ∣ � ∈ 1, … ,

13

Wirtschaftsinformatik und Operations Research 83

Continuing the small mushroom example

� We come back to the mushroom example

� Hence, we consider again the following data set

Color Size Dots? Edible?

Red Small Yes No

Brown Small No Yes

Brown Large Yes Yes

Green Small No Yes

Red Large No Yes

� There are three attributes: color, size, and dots. We compute the entropy

values

� We start with the given data set � and obtain ��T� � = − 15 ���A 15 − 45 ���A 45 = 0,72192809
Wirtschaftsinformatik und Operations Research 84

Mushroom example – Attribute color

� We obtain three subtrees with the respective values red, brown, and green

� This can be illustrated by the following sub data sets

Color Edible Non-edible Sum

Red 1 1 2

Brown 2 0 2

Green 1 0 1

� We compute the entropy of the three resulting subtrees

� Red: − �A ���A �A − �A ���A �A = 1 = ���A 2
� Brown: − AA ���A AA = 0
� Green: − �� ���A �� = 0
� Thus, we obtain ��T� �, ����M = Ad ⋅ 1 + Ad ⋅ 0 + �d ⋅ 0 = Ad = 0,4
� �/�� �, ����M = ��T� � − ��T� �, ����M = 0,72192809 − 0,4 =0,32192809

Wirtschaftsinformatik und Operations Research 85

Mushroom example – Attribute size

� We obtain two subtrees with the respective small and large

� This can be illustrated by the following sub data sets

Size Edible Non-edible Sum

Small 2 1 3

Large 2 0 2

� We compute the entropy of the two resulting subtrees

� Small: − AC ���A AC − �C ���A �C = 0,91829583
� Large: − AA ���A AA = 0
� Thus, we obtain ��T� �, J�eI = Cd ⋅ 0,91829583 + Ad ⋅ 0 = 0,5509775
� �/�� �, J�eI = ��T� � − ��T� �, J�eI = 0,72192809 −0,5509775 = 0,17095059

Wirtschaftsinformatik und Operations Research 86

Mushroom example – Attribute dots

� We obtain two subtrees with the respective values with and without dots

� This can be illustrated by the following sub data sets

Size Edible Non-edible Sum

With dots 1 1 2

Without dots 3 0 3

� We compute the entropy of the two resulting subtrees

� With dots: − �A ���A �A − �A ���A �A = 1 = ���A 2
� Without dots: − CC ���A CC = 0
� Thus, we obtain ��T� �, f�LJ = Ad ⋅ 1 = 0,4
� �/�� �, f�LJ = ��T� � − ��T� �, ����M = 0,72192809 − 0,4 =0,32192809

14

Wirtschaftsinformatik und Operations Research 87

We choose the attribute dots

� As it possesses less attribute values

� We therefore obtain with ��T� � = 0,4
Decision tree Dots

Yes No

Color Size Edible

Brown Small Yes

Green Small Yes

Red Large Yes

Color Size Edible

Brown Large Yes

Red Small No

Trivial case as all items are edible

No further distinctions are necessary

Further distinctions are necessary

Wirtschaftsinformatik und Operations Research 88

Mushroom example – Attribute color

� We obtain two subtrees with the respective values red and brown

� This can be illustrated by the following sub data sets

Color Edible Non-edible Sum

Red 1 0 1

Brown 0 1 1

� We compute the entropy of the two resulting subtrees

� Red: − �� ���A �� = 0
� Brown:− �� ���A �� = 0
� Thus, we obtain ��T� �, ����M = �A ⋅ 0 + �A ⋅ 0 = 0
� �/�� �, ����M = ��T� � − ��T� �, ����M = 0,4 − 0 = 0,4

Wirtschaftsinformatik und Operations Research 89

Mushroom example – Attribute size

� We obtain two subtrees with the respective values large and small

� This can be illustrated by the following sub data sets

Size Edible Non-edible Sum

Large 1 0 1

Small 0 1 1

� We compute the entropy of the two resulting subtrees

� Large: − �� ���A �� = 0
� Small:− �� ���A �� = 0
� Thus, we obtain ��T� �, J�eI = �A ⋅ 0 + �A ⋅ 0 = 0
� �/�� �, J�eI = ��T� � − ��T� �, J�eI = 0,4 − 0 = 0,4

Wirtschaftsinformatik und Operations Research 90

We choose the attribute size

� We obtain the following complete decision tree

� It has the external path length 1 + 2 + 2 = 5
� It has a total weighted path length 1 + 1 + 1 + 2 + 2 = 7

Resulting decision tree Dots

Yes No

EdibleSize

Large Small

Non-edibleEdible

� Note that by firstly choosing the attribute color instead (this was also

possible as the attainable gain is identical) we obtain the first tree with

longer external path length

� The reason for this is that color possesses three occurring values and dots

only two

� This aspect will be considered in more detail next

15

Wirtschaftsinformatik und Operations Research 91

Gain ratio criterion – Motivation

� The first version of the ID3 algorithm solely applies

the gain criterion

� Quinland (1993) reports that he noticed that there is

a bias in this procedure for attributes with many

occurring values as, due to more values, the

information gain is larger

� However, as we do not want to give an incentive to

this aspect, Quiland (1993) proposes to modify the

gain criterion by relating it to the entropy of the value

distribution

Wirtschaftsinformatik und Operations Research 92

Gain ratio criterion – Mathematical definition

� We consider a data set � with � items,
 classes, and � attributes

� All abbreviations are given as before

� We consider a chosen attribute �� for partitioning a considered data set � into

subtrees)�, … ,).
� The abbreviation J:��L provides the information given in the separation according

to attribute ��
J:��L ��T� �, �� = − ? TMIU)�TMIU �

.
�2� ⋅ ���A TMIU)�TMIU �

� The gain ratio expresses the attained information gain relative to the effort of the

performed separation to attribute ���/�� M/L�� �, �� = �/�� �, ��J:��L ��T� �, ��

Wirtschaftsinformatik und Operations Research 93

How to apply the gain ratio criterion

� Based on these values, Quinland (1993) proposes to

follow the gain ratio criterion such that an attribute is

selected that maximizes the gain ratio, subject to the

constraint that the information gain must be large,

i.e., at least as great as the average gain over all

attributes examined

� On the next slide, we apply the gain ratio criterion to

our mushroom example

Wirtschaftsinformatik und Operations Research 94

Applying the gain ratio to the mushroom example

� During the first choice of an attribute we obtainJ:��L ��T� �, ����M = − Ad ���A Ad − Ad ���A Ad − �d ���A �d= − 45 ∙ −1,3219280949 − 15 ∙ −2,3219280949 = 1,5219280949
� Therefore, it holds that�/�� M/L�� �, ����M = 0,321928091,5219280949

= 0,2115264782
� During the first choice of an attribute we obtainJ:��L ��T� �, J�eI = − Cd ���A Cd − Ad ���A Ad = 0,97095059
� Therefore, it holds that�/�� M/L�� �, J�eI = 0,170950590,97095059

= 0,17606518
� During the first choice of an attribute we obtainJ:��L ��T� �, f�LJ = − Ad ���A Ad − Cd ���A Cd = 0,97095059
� Therefore, it holds that�/�� M/L�� �, f�LJ = 0,321928090,97095059

= 0,3315597

16

Wirtschaftsinformatik und Operations Research 95

Result

� This time, we do not have a choice and have to

choose the dot-attribute in the first place

� This underlines the motivation for introducing the

gain ratio criterion

Wirtschaftsinformatik und Operations Research 96

Observations

� Quinland (1993) reports that, in his experience, the

gain ratio criterion is robust and typically gives a

consistently better choice of test than the gain

criterion

� It even appears advantageous when all tests are

binary but differ in the proportions of cases

associated with the two outcomes

Wirtschaftsinformatik und Operations Research 97

From ID3 to C4.5/C5.0

� Until now, we have considered ID3 as a decision tree

generation procedure

� Quinland (1993) proposes some extensions leading to the

program C4.5

� Handling of continuous attributes

� Handling training data with missing attribute values

� Pruning trees after creation

� Further improvements were implemented in C5 (Link, Link)

� Speedup – C5.0 is significantly faster than C4.5

� Improved memory usage

� Generated decision trees are of reduced size

� Provision of using case-depending weights (item dependent)

� Attribute winnowing

Wirtschaftsinformatik und Operations Research 98

Tests

� Quinland (1993) uses the generalized term test instead of using

attributes for generating the next node in the decision tree

� This is reasonable as in C4.5/C5 each node does not necessarily

coincide with an attribute as we have defined it in the so-called

“Basic structure of the decision tree construction”

� In contrast to this, the decision tree generation procedure C4.5

contains mechanisms for proposing three types of tests

� The standard test on a discrete attribute, with one outcome and

branch for each possible value of that attribute (this was solely

considered before)

� A more complex test, based on a discrete attribute, in which the

possible values are allocated to a variable number of groups (that

have to be generated) with one outcome for each group (rather

than each value (condensing the values)

17

Wirtschaftsinformatik und Operations Research 99

Tests

� If attribute � has continuous numeric values, a binary test with

outcomes � ≤ g and � > g, based on comparing the value of �
against a threshold value g

� All these tests are evaluated in the same way

� The gain ratio (alternatively the gain) criterion is applied that arises

from the produced partitions, respectively

� It turns out to be useful to require for each partition (test) that at

least two of the resulting subsets contain a reasonable number of

items. Specifically, this additional restriction should avoid near-trivial

splits. Note that the minimum number can be adjusted application-

dependent

Wirtschaftsinformatik und Operations Research 100

Continuous attributes

� If an attribute is known to be continuous we may face the

problem of arbitrary thresholds

� However, this is not the case as we can use the following

procedure (see Paterson and Niblett (1982) or Breiman et al.

(1984)) for finding appropriate thresholds against which to

compare the values of continuous attributes

� As before, we assume to consider a continuous attribute �� ∈ �
within a data set � that comprises � items with � attributes

� Hence, for the considered attribute ��, we have the ordered

values *�, … , *

Wirtschaftsinformatik und Operations Research 101

Continuous attributes

� Consider an arbitrary threshold * between *� and *�!�. Clearly,

independent of its specific value * separates the items into the

ones whose values for �� are in *�, … , *� and those whose

values are in *�!�, … , *
� Hence, we have only � − 1 possible splits of the items in �

� After sorting the existing values, the separation can be carried out in one

pass, updating the distributions to the left and right of the threshold on

the fly

� For this purpose, one should use the midpoint
i[!i[jkA as the threshold

� One possibility is to build a binary split and test the gain and gain

ratio for testing all reasonable threshold values
i[!i[jkA , � = 1, … , � − 1 (reasonable means that in both groups are more

that one element)

Wirtschaftsinformatik und Operations Research 102

Unknown attribute values

� So far, the introduced decision tree generation procedure

assumes that, in the considered data set, all items have well-

defined values for all listed attributes

� Unfortunately, in real-world applications, this does not has to

be the case. Rather, it is quite common that data is not

complete

� We are facing the choice of discarding the data or amending

the procedure accordingly. For the latter, the literature

provides various proposals while, in what follows, we consider

the handling of C4.5/C5.0

� As a tested attribute can provide no information about the class

membership of items whose value of the test attribute is unknown, this

item is left out when respective ��T� values are computed

� This applies to both needed values ��T�(�) and ��T� �, �

18

Wirtschaftsinformatik und Operations Research 103

Unknown attribute values

� Hence, we compute the values ��T�(�) and ��T� �, � as

before, except that only cases with known values of � are

taken into account

� But, as we have left out items, the attained gain has to be

weighted with the proportion of participating items

(probability l that the value of attribute � is known in �) that

in data set �
� Thus, we define �/�� �, � = l ⋅ ��T�(�) − ��T�(�, �)
� Furthermore, the definition of J:��L ��T�(�, �) can be altered

by regarding the cases with unknown values as an additional

group.

� Consequently, if the considered attribute � has � outcomes in �, this leads to an entropy values basing on � + 1 subsets

Wirtschaftsinformatik und Operations Research 104

Example – Item 6 is ignored for attribute outlook

Item Outlook Temp (°F) Humidity Windy? Class – Play?

1 Sunny 75 70 True Yes

2 Sunny 80 90 True No

3 Sunny 85 85 False No

4 Sunny 72 95 False No

5 Sunny 69 70 False Yes

6 ? 72 90 True Yes

7 Overcast 83 78 False Yes

8 Overcast 64 65 True Yes

9 Overcast 81 75 False Yes

10 Rain 71 80 True No

11 Rain 65 70 True No

12 Rain 75 80 False Yes

13 Rain 68 80 False Yes

14 Rain 70 95 False Yes

Wirtschaftsinformatik und Operations Research 105

Computed results

The ��T� and �/�� */�NIJ are computed while ignoring the sixth item:

� ��T� � = − o�C ⋅ ���A o�C − d�C ⋅ ���A d�C = 0.961
� ��T� �, �NL���
 =d�C ⋅ − Ad ⋅ ���A Ad −

Cd ⋅ ���A Cd + C�C ⋅ − CC ⋅ ���A CC + d�C ⋅− Cd ⋅ ���A Cd −
Ad ⋅ ���A Ad = 0,747

� �/�� �NL���
, � = �C�p ⋅ ��T� � − ��T� �, �NL���
 = 0,199
The J:��L ��T� computation considers an additional subset:

� J:��L ��T� �, �NL���
 = − d�p ⋅ ���A d�p −
C�p ⋅ ���A C�p −

d�p ⋅���A d�p −
��p ⋅ ���A ��p = 1,809

� �/�� M/L�� �NL���
, � = 0,110
Note that by changing the outlook value of item 6 from “?” to “overcast”

would increase this �/�� M/L�� value to 0,156
Wirtschaftsinformatik und Operations Research 106

Pruning

� Pruning pursues the reduction of a generated decision

tree for efficiency or correctness reasons, i.e., it

intends to replace certain subtrees with leaves

� Therefore, pruning reduces specific parts of the

current decision tree

� Basically, there are two alternative ways for pruning

� Prepruning: During the tree generation process it is decided

that a currently considered data set is not further divided,

i.e., we have to integrate such kind of stopping criterion

� Pruning after tree generation: removing retrospectively

some of the subtrees built during the preceding tree

generation process

19

Wirtschaftsinformatik und Operations Research 107

Consequences

Clearly, if the data base

is consistent, there is no

erroneously classified

item. But, this does not

have to be the case and

please note that in

many applications, it is

only training data!

Clearly, if the data base

is consistent, there is no

erroneously classified

item. But, this does not

have to be the case and

please note that in

many applications, it is

only training data!

Why do we need pruning? I thought that the

found tree was efficiently generated for the

data base…

Why do we need pruning? I thought that the

found tree was efficiently generated for the

data base…

Wirtschaftsinformatik und Operations Research 108

Small example – Overfitting

� The partitioning procedure used for decision tree generation introduced so

far assumed that the data set was

� More or less consistent and

� Does not lead to a tree structure that overfits the data

� However, in real-world applications the items in the data set may be not

consistent

� Furthermore, after being generated, the tree may be used for further items

with modified interdependencies between the attribute values and their

classification

� For illustration purposes, we consider the extreme case of random data

� Let us assume we have two classes while one class (class 1) has the dominating

probability : ≥ 0.5
� If a most simple classifier assigns all cases to this first class (corresponding

decision tree consists only of one node, i.e., it is a leaf with class 1

identification) its expected error rate is obviously 1 − :

Wirtschaftsinformatik und Operations Research 109

More can be less

� We also consider an alternative more complex classifier that assigns an item

with probability : to class 1 and with probability 1 − : to class 2
� The error rate is now the sum of

� the probability that a case assigned to class 2 belongs to class 1, i.e., : ⋅ 1 − : ,

and

� the probability that a case assigned to class 1 belongs to class 2, i.e., 1 − : ⋅ :
� Just to check: the remaining cases have a total probability of :A + 1 − : A =2:A − 2: + 1 and thus we obtain 2:A − 2: + 1 + 2: ⋅ 1 − : = 1

� Thus, we obtain 2: ⋅ 1 − : and since : ≥ 0.5 this error rate is at least 1 − :
� Therefore, the simple classifier outperforms the second more complex one

for the expected error rate

� Clearly, the most simple classifier benefits from the fact that the whole

classification game is guessing and therefore, on the long run, it is best to go

for the majority of cases (i.e., it uses the entire knowledge)

� But in real-world applications, data sets are at least partly indeterminate

because the attributes do not capture all information relevant to classification

Wirtschaftsinformatik und Operations Research 110

Error-based pruning

� C4.5/C5.0 applies pruning after the tree generation

� Specifically, a subtree is replaced by a leaf (pruned to it) if the expected

error rate of this leaf (this has to chose a majority classification) is smaller

than an upper limit derived for the respective subtree

� For this purpose, a confidence level �r is defined (in C4.5 the default

confidence level is 25%) and the upper limit is defined by the confidence

limits for the binomial distribution

� It is abbreviated as sZt u, � with

� �: number of items in the data set

� u: number of erroneously classified items in the considered data set

� Hence, the correct/non-correct classification is interpreted as a Bernoulli

experiment

20

Wirtschaftsinformatik und Operations Research 111

Example – Democrats and Republicans

� We consider a subtree of a decision tree derived from

congressional voting data in the United States of America

� It classifies the members to the respective parties

� The attribute is education spending with the values (n/y/u) and

the classification for the items in the data set

Partial decision tree
Education spending

Yes No

Democrats 9

Undecided

Democrats 6Republican 1

Democrat DemocratRepublicanClassification:

� Hence, there occurs no classification error for the training data

(i.e., for the current data set)

Wirtschaftsinformatik und Operations Research 112

Example – Democrats and Republicans

� However, in order to estimate errors for future cases, Quinland (1993)

proposes to apply sZt u, � with �r = 25%
� In our example, we go through the three classification cases and obtain sAd% 0,9 = 0.143, sAd% 0,1 = 0.750, and sAd% 0,6 = 0.206
� Hence, based on these assumptions, the total number of predicted errors of

the considered subtree amounts to 9 ⋅ 0.143 + 6 ⋅ 0.206 + 1 ⋅ 0.750 = 3.273
� If we replace this subtree by a leaf with the classification “democrat”, we

obtain for the training data 15 correct classifications and 1 erroneous

classification

� Hence, we obtain sAd% 1,16 = 0.157 and 16 ⋅ sAd% 1,16 = 2.512
predicted errors of this leaf

� Consequently, C4.5 prunes the subtree to a leaf

Wirtschaftsinformatik und Operations Research 113

Windowing

� Windowing is a technique in decision tree generation that

processes a large data set by separating it into smaller pieces

that are iteratively processed while the successively

constructed tree is adapted in each step

� Specifically, typical steps are

� Start with a subset of items (denoted as the window) and generate the

corresponding decision tree

� Subsequently, this tree is used to classify (one by one) the remaining

items

� Usually, some of these remaining items will now be misclassified

(exceptions)

� Hence, add a selection of these exceptions to the initial window and

update the decision tree that is in turn tested with the remaining cases

� This cycle is repeated until all cases are classified correctly (if the entire

data set is consistent)

Wirtschaftsinformatik und Operations Research 114

Windowing

� It is quite common that the window ended up containing only a small fraction

of the training cases

� This final window represents a screened set of training cases that comprises

the “interesting ones” together with a sufficiently large variety of “ordinary

cases”

� Note that rather than picking training cases randomly to form the initial

window, C4.5 biases the choice so that the distribution of classes in the initial

window is as uniform as possible

� Moreover, the process of adding exceptions is controlled

� While ID3 strongly limits the number of exceptions to be added, C4.5 always adds

at least the half of these cases in each iteration, thereby attempting to speed

convergence on a final tree

� C4.5 may also stop before the tree correctly classifies all cases outside the window

if it appears that the generated trees do not become more accurate

� For domains in which classification is not correctly possible due to noise or

indeterminacy, early termination is meant to prevent the growth of the window

until it includes almost all the training cases

21

Wirtschaftsinformatik und Operations Research 115

Windowing – A modern technique?

There are still some

interesting reasons to

be considered.

Therefore, it may be

useful to retain

windowing.

There are still some

interesting reasons to

be considered.

Therefore, it may be

useful to retain

windowing.

Windowing was necessary in former times

due to strong memory limitations. But today?

Windowing was necessary in former times

due to strong memory limitations. But today?

Wirtschaftsinformatik und Operations Research 116

Why retain windowing?

� Frankly speaking, windowing was invented due to limited

memory resources in former times

� Therefore, it was necessary to analyze larger data sets with

significant numbers of attributes and items

� But today?

� Even inexpensive computers run processes with significant

memory consumptions (larger than the physical memory)

� Since windowing was introduced to overcome memory limits

that no longer pose any problems, its retention in the system

needs some justification

Wirtschaftsinformatik und Operations Research 117

Reasons for windowing

� Faster construction of trees for useful data sets

� If the data set is consistent and free of noise and

indeterminism, windowing can quickly converge on a final

tree and so lead to computational speedup

� Quinland (1993) reports a speedup of 15% for a collection

of 8,124 mushroom descriptions, each classified as

poisonous or edible. When this data is used with the default

windowing parameters, the initial window gives a tree that

correctly classifies all the other cases, so the final tree is

arrived at on the first cycle

� However, note that the opposite is true for real-world data

with unreliable data sets. Here, slow downs are observed

Wirtschaftsinformatik und Operations Research 118

Reasons for windowing

� More accurate or specialized trees

� Empirical studies report that some samples can help for dealing with

continuous variables and finding better thresholds

� The generation of various decision trees by using different starting

samples provides the basis for new features, namely

� Growing several alternative trees and selecting as "the" tree the one with

the lowest predicted error rate

� Growing several trees, generating production rules from all of them, then

constructing a single production rule classifier from all the available rules

� However, in these positive cases, the downside is almost always a

considerably higher computational effort

22

Wirtschaftsinformatik und Operations Research 119

Example – The pathological multiplexer

� In the pathological multiplexor task, a case is described by a series of bits

� The first / bits constitute an address (from 0 to 20 − 1)

� Then, there are 20 data bits f�, … , fAw while the binary classification in

yes or no is determined by the / − 1th data bit f0x�
� Let a=3: An address is defined by /y/�/A and we have eight data bits fyf�fAfCfpfdfDfz. Thus, f0 = fA gives the classification

� For instance, 01001101001 belongs to the class 1, i.e., yes, due to fA = 1
� For this 11-bit multiplexor, five training set sizes 100, 200, ... , 500 were

chosen and five training sets of each size generated randomly (with

replacement)

� A large set of 1,000 test cases was also generated randomly and used for

evaluation issues (these case were unseen)

Wirtschaftsinformatik und Operations Research 120

Results of the pathological multiplexer

Training cases No windowing Single tree

windowing

Ten trees

windowing

100 35.4 % 36.0 % 34.4 %

200 24.4 % 24.6 % 16.9 %

300 18.5 % 13.9 % 11.6 %

400 17.9 % 9.4 % 5.7 %

500 13.2 % 8.0 % 6.3 %

� The table provides the measured error rates

� The higher accuracy on unseen cases was achieved at additional

running time

� Developing a single tree by windowing takes almost twice as long as

generating a tree from all the training cases in one pass

� And producing ten trees takes ten times as long

Wirtschaftsinformatik und Operations Research 121

2.2.3 CART

� CART stands for “classification and regression trees”

� It is a further well-known and widely used algorithm for decision tree

generation

� It was originated by Breimann, Friedman, Olshen, and Stone (1984)

� The procedure generates only binary decision trees and conducts the

choice of the separation steps by applying the gini impurity measure

� Although the binary tree attribute seems to be fairly restrictive, it is not a

real limitation

� Note that for each occurring value /. of some attribute �� (the �th

attribute) we can check every item + in a binary way, i.e., whether it holds

that +� ≤ /. or not

� Thus, possible branches are combinations of attributes and value sets that

are combined for the left branch and for the right branch, respectively

Wirtschaftsinformatik und Operations Research 122

Gini impurity

� Given a data set � comprising � items with values for � attributes � =��, … , �� and a classification � = ��, … , �� into
 classes

� The attributes and their values are transformed into � suitable branching

candidates { = V�, VA, … , V|
� The impurity suggests the aim of the decision tree to have each leaf

representing only items of the same class (causing no classification error)

� The impurity measure is mathematically defined as follows

� � �, V., M/� : Fraction of the number of items of a considered data set belonging to

the right/left branch of V. possessing the classification �� ∈ �
� # V., M/� : Number of items (of the � ones) belonging to the right/left branch of V.
� The Gini impurity of the branching candidate V. ∈ { is defined by � V. =# V., �� ⋅ ? ? � �, V., � ⋅ � �, V., ��

�2�,���
�

�2� + # V., M� ⋅ ? ? � �, V. , M ⋅ � �, V., M�
�2�,���

�
�2�

= # V., �� ⋅ ? � �, V., � ⋅ ? � �, V. , ��
�2�,���

�
�2� + # V., M� ⋅ ? � �, V., M ⋅ ? � �, V. , M�

�2�,���
�

�2�

23

Wirtschaftsinformatik und Operations Research 123

Gini impurity – Simplifying the formula

= # V., �� ⋅ ? � �, V., � ⋅ 1 − � �, V., ��
�2� + # V., M� ⋅ ? � �, V. , M ⋅ 1 − � �, V. , M�

�2�= # V., �� ⋅ ? � �, V., � − � �, V., � A�
�2� + # V., M� ⋅ ? � �, V., M − � �, V., M A�

�2�
= # V., �� ⋅ 1 − ? � �, V., � A�

�2� + # V., M� ⋅ 1 − ? � �, V., M A�
�2�

Wirtschaftsinformatik und Operations Research 124

CART – A simple example

� We consider the following data set

� The classification is binary (
 = 2), i.e., just yes or no

� By testing all thresholds for the two attributes, we obtain 20 theoretical

branching alternatives

� However, we focus here on the most promising one and an alternative one

for comparison reasons

� First, we consider for attribute �A the threshold 1.15 (say V�)

� Hence, the left branch contains the items 1,2,3,and 6. The right 4,5,7,8,9, and

10

Item 1 2 3 4 5 6 7 8 9 10�� 0.6 1.8 0.7 0.2 1.1 2.9 2.5 2.2 2.8 2.5�A 0.2 0.3 1.1 1.3 2.3 0.4 1.2 1.6 2.0 3.0

Class? No No No No No Yes Yes Yes Yes Yes

Wirtschaftsinformatik und Operations Research 125

Branch alternative �� – Gini impurity

� Left branch: � ��, V�, � = Cp , � �IJ, V�, � = �p , and
�k,. = p�y

� Right branch: � ��, V�, M = AD , � �IJ, V�, M = pD , and
�k,P = D�y

� Hence, we obtain

� V� = # V�, �� ⋅ 1 − ? � �, V�, � A�
�2� + # V�, M� ⋅ 1 − ? � �, V�, M A�

�2�410 ⋅ 1 − 1016 + 610 ⋅ 1 − 2036 = 25 ⋅ 38 + 610 ⋅ 49= 320 + 415 = 960 + 1660 = 2560 = 512 = 0.416�.

Wirtschaftsinformatik und Operations Research 126

Branch alternative �� – Gini impurity

� Second, we consider for attribute �� the threshold 2.0 (say VA)

� Hence, the left branch contains the items 1,2,3,4, and 5. The right 6,7,8,9,

and 10

� Left branch: � ��, VA, � = dd = 1 , � �IJ, VA, � = yd = 0 , and
��,. = d�y

� Right branch: � ��, VA, M = yd = 0 , � �IJ, VA, M = dd = 1 , and
��,P = d�y

� Hence, we obtain

� V� = # VA, �� ⋅ 1 − ? � �, VA, � A�
�2� + # VA, M� ⋅ 1 − ? � �, VA, M A�

�2�510 ⋅ 1 − 1 + 510 ⋅ 1 − 1 = 510 ⋅ 0 + 510 ⋅ 0 = 0 + 0 = 0

24

Wirtschaftsinformatik und Operations Research 127

Branching alternative �� is chosen

� The branching alternative VA provides the perfect

value 0.0 as there is no impurity left and we have

found the decision tree for the training data

Resulting decision tree �� ≤ 2.0
Yes No

Class: NO Class: YES

Wirtschaftsinformatik und Operations Research 128

2.3 Statistical methods for data analysis

� In what follows, we consider some basic statistical methods that

are quite useful for data analysis

� The following depictions are based on Section 8.1 of the book of

Ertel (2016)

� Analogously, in what follows, we use, only for illustration

purposes, some data available from the so-called LEXMED project

� LEXMED is a machine learning system for diagnostic appendicitis purposes

� It is an expert system that uses reasoning with probabilities and maximum

entropy

� However, at this point, we only consider a generated data set of � = 473 patients with collected data for 15 attributes and a

respectively derived diagnosis (see next slide)

� Hence, each patient is defined by a vector x with the respective

16 values

Wirtschaftsinformatik und Operations Research 129

Data from Ertel (2016)

Var.-Nr. Description Values of domain

1 Age Continuous

2 Sex (1 D male, 2 D female) 1, 2

3 Dolor Quadrant 1 0, 1

4 Dolor Quadrant 2 0, 1

5 Dolor Quadrant 3 0, 1

6 Dolor Quadrant 4 0, 1

7 Muscular defense (local) 0, 1

8 Muscular defense (general) 0, 1

9 Dolor during leaving hold of 0, 1

10 Agitation 0, 1

11 Dolor during rectal examination 0, 1

12 Temperature axial Continuous

13 Temperature rectal Continuous

14 Leucocytes Continuous

15 Diabetes mellitus 0, 1

16 Diagnosis: appendicitis (yes or no) 0, 1

Wirtschaftsinformatik und Operations Research 130

Applying basic statistical values

� Mean

+�� = 1� ⋅ ? +��
�

�2�
� The standard deviation gives the average deviation from the mean

�� = 1� ⋅ ? +�� − +�� A�
�2�

� The covariance gives us information concerning a possible correlation of

two attribute values over all patients, i.e., it holds that

��,� = 1� ⋅ ? +�� − +̅� ⋅ +�� − +̅�
�

�2�
Clearly, if for two attributes, patients have related values, this leads to positive

contributions as both products are positive or negative.

25

Wirtschaftsinformatik und Operations Research 131

Applying basic statistical values

� However, as the covariance is significantly triggered by the absolute values

of the respective variables, we normalize the covariance by the product of

standard deviations. Hence we get Pearson's correlation coefficient

��,� = ��,��� ⋅ �� = 1� ⋅ �� ⋅ �� ⋅ ? +�� − +̅� ⋅ +�� − +̅�
�

�2�
� For the example, we can generate the matrix of all Pearson’s correlation

coefficients for the 16 variables

� These correlations can be best illustrated by graphical density profiles as

done on the next slide

Wirtschaftsinformatik und Operations Research 132

Density profiles of the correlation coefficients

� By considering the density profiles (detailed values can be found in Ertel (2016) p.199), it

becomes obvious that the attributes 7,9,10, and 14 possess the strongest correlation

(0.33, 0.38, 0.32, and 0.44) with the sought classification (attribute 16)

� However, the attributes 9 and 10 are also highly correlated (0.53). Therefore, one of the

two values may be sufficient

See Ertel (2016) p.199

= −1: is black= 1: is white

7 910 14

7

10
9

14

Wirtschaftsinformatik und Operations Research 133

2.4 The perceptron – A linear classifier

� Again, we consider a data base with � items that are

characterized by � attribute values and have to be clustered

into two classes, i.e., a binary classification is sought

� To be able to separate a set of � items that are given as

vectors + in the ℝ� with an additional classification bit � ∈ 0,1 in a linear way means that we are able to define a

hyperplane that divides the considered vector space ℝ� into

two half spaces such that all items with a classification 0 are in

the one half space while all other items (with classification 1)

are in the other half space

� If this is the case, the hyperplane provides us with a fast

computable method that decides to which class a vector

belongs

Wirtschaftsinformatik und Operations Research 134

Hyperplanes, half spaces are …?

No problem.

Both terms come from

Linear Algebra and are

really important.

Particularly in

Operations Research.

No problem.

Both terms come from

Linear Algebra and are

really important.

Particularly in

Operations Research.

Please stop! What the hell are hyperplanes

and half spaces? I am happy to know what

the ℝ� is.

Please stop! What the hell are hyperplanes

and half spaces? I am happy to know what

the ℝ� is.

26

Wirtschaftsinformatik und Operations Research 135

Hyperplanes

2.4.1 Definition

Let / ∈ ℝ� ∖ 0 and � ∈ ℝ. Then, the vectors of the ℝ� that belong to the set 9 = + ∈ ℝ� / ⋅ + = �
constitute a hyperplane

Observations

� Due to the linear restriction to be fulfilled, such a hyperplane in

an �-dimensional space has the dimension � − 1
� A hyperplane defines two separated half spaces, i.e., it divides

the space into two parts

Wirtschaftsinformatik und Operations Research 136

Half spaces

2.4.2 Definition

Given the hyperplane 9 = + ∈ ℝ� / ⋅ + = � as

defined in Definition 2.4.1.

Then, this hyperplane determines the following two half

spaces in the ℝ�:

First half space: 9�� = + ∈ ℝ� / ⋅ + ≥ �
Second half space: 9A� = + ∈ ℝ� −/ ⋅ + ≥ −�

Wirtschaftsinformatik und Operations Research 137

Illustration

� We illustrate the linear separation for the two-dimensional space

� Here, the hyperplane 9 = + ∈ ℝ� 11 ⋅ + = 1 separates the

two-dimensional space ℝA

/A = 1

/� = 1

+

+

+

+

+
++

-
-

- -

-

-

-

-

-

+�

+A

Wirtschaftsinformatik und Operations Research 138

Linear separability

Hence, we can now define what we understand under a

linearly separable data set:

2.4.3 Definition

Two sets �x, �! ⊆ ℝ� are denoted as linearly separable

if and only if there exist � + 1 real numbers /�, /A, … , /� ∈ ℝ and � ∈ ℝ such that it holds that ∑ /� ⋅ +� ≥ ���2� , ∀+ ∈ �! and ∑ /� ⋅ +� < ���2� , ∀+ ∈ �x.

The parameter � is denoted as the threshold value.

27

Wirtschaftsinformatik und Operations Research 139

Example – The AND function

� We are looking for the weights and threshold needed to

implement the AND function for the 0,1 A with a perceptron

� Thus, the mapped items are the following+y = 00 , +� = 01 , +A = 10 , +C = 11 , with �x = +y, +�, +A
and �! = +C
The sets �x and �! are linearly separable by using the hyperplane 9 = + ∈ ℝ� 11 ⋅ + = � = 2 as we have for +y = 00 : 11 ⋅ 00 = 0 < � = 2, for +� = 01 :

11 ⋅ 01 = 1 < � = 2, and

for +A = 10 :
11 ⋅ 10 = 1 < � = 2, while for +C = 11 : 11 ⋅ 11 = 2 ≥ � as claimed by Definition 2.4.3.

Wirtschaftsinformatik und Operations Research 140

Absolute linear separability

Analogous to the linear separability, we introduce the

absolute linear separability. Here, we demand in both

cases non-equality, i.e., no item belongs to the separating

hyperplane

2.4.4 Definition

Two sets �x, �! ⊆ ℝ� are denoted as absolutely linearly

separable if and only if there exist � + 1 real numbers /�, /A, … , /� ∈ ℝ and � ∈ ℝ such that it holds that ∑ /� ⋅ +� > ���2� , ∀+ ∈ �! and ∑ /� ⋅ +� < ���2� , ∀+ ∈ �x.

Wirtschaftsinformatik und Operations Research 141

Coming back to the AND function

The sets �x and �! are absolutely linearly separable by

using the hyperplane

9 = + ∈ ℝ� 11 ⋅ + = � = 1.5 as we have for +y = 00 :
11 ⋅ 00 = 0 < �, for +� = 01 :

11 ⋅ 01 =1 < �, and for +A = 10 :
11 ⋅ 10 = 1 < �, while for +C = 11 :

11 ⋅ 11 = 2 > � as claimed by Definition

2.4.4.

Wirtschaftsinformatik und Operations Research 142

Consequence

2.4.5 Lemma

Two finite sets of points, �x and �!, in �-dimensional

space are linearly separable if and only if there are also

absolutely linearly separable. Hence, linear separability

and absolute linear separability are equivalent.

28

Wirtschaftsinformatik und Operations Research 143

Proof of Lemma 2.4.5

� We assume that �x and �! are linearly separable

� Hence, there exist weights ��, … , �� , ��!� such that it holds ∑ �� ⋅ +� ≥ ��!���2� , ∀+ ∈ �! and ∑ �� ⋅ +� < ��!���2� , ∀+ ∈ �x
� Let � = �/+ ∑ �� ⋅ +� − ��!� ∣ + ∈ �x��2�
� Then, we have � < �A < 0
� Moreover, we set * = ��!� + �A. Then, for all points + ∈ �!, it holds that ∑ �� ⋅ +� ≥ ��!���2� and therefore, by setting ��!� = * − �A, we obtain ∑ �� ⋅ +� ≥��2� * − �A. This implies ∑ �� ⋅ +� − * − �A ≥ 0��2�
� Therefore, we conclude that ∑ �� ⋅ +� − * ≥ − �A��2� > 0.

� This implies ∑ �� ⋅ +� > *��2�

Wirtschaftsinformatik und Operations Research 144

Proof of Lemma 2.4.5

� Analogously, we consider + ∈ �x
� Since � = �/+ ∑ �� ⋅ +� − ��!� ∣ + ∈ �x��2� , we conclude that ∑ �� ⋅ +� − ��!� ≤��2� �
� By using ��!� = * − �A , it holds that ∑ �� ⋅ +� − * − �A ≤��2� �
� Thus, we deduce ∑ �� ⋅ +� − * ≤��2� �A < 0
� Therefore, it holds that ∑ �� ⋅ +���2� < *
� Hence, �! and �x are absolutely linearly separable

� Clearly, the inverted direction is trivial, i.e., if �! and �x are absolutely

linearly separable, they are, by definition, also linearly separable

Wirtschaftsinformatik und Operations Research 145

Perceptron

2.4.6 Definition

Given a weight vector � = ��, �A, … , �� ∈ ℝ� and + ∈ ℝ� an

input vector.

A perceptron is a mapping l: ℝ� ↦ 0,1 such that

l� + = �1 �T� ⋅ + = ? �� ⋅ +�
�

�2� > 0
0 �LℎIM��JI

In order to additionally consider the threshold value �, both

vectors are extended by adding ��!� = −� and +�!� = 1,

respectively.

Then, we obtain � ⋅ + − � ⋅ 1 = −� + ∑ �� ⋅ +���2� and if l� + = 1 holds, we have ∑ �� ⋅ +���2� > �
Wirtschaftsinformatik und Operations Research 146

Perceptron training

� In what follows, we generate a training procedure

that iteratively generates a perceptron for a given

data set

� It should absolutely separate the two sets �x, �! ⊆ℝ�

29

Wirtschaftsinformatik und Operations Research 147

Perceptron learning algorithm

Input: �!, �x ⊆ ℝ� as sets of items with positive (“1”) and

negative (“0”) classification

Set � ∈ ℝ� arbitrarily such that � ≠ 0 holds

Set L ≔ 0 /* Counter of conducted updates */

REPEAT

FOR all + ∈ �!
IF � ⋅ + ≤ 0 THEN � ≔ � + +; L ≔ L + 1;

END FOR

FOR all + ∈ �x
IF � ⋅ + ≥ 0 THEN � ≔ � − +; L ≔ L + 1;

END FOR

UNTIL all + ∈ �! ∪ �x are classified correctly by l� +
Wirtschaftsinformatik und Operations Research 148

Convergence

2.4.7 Theorem

We consider the perceptron learning algorithm and

assume that the sets �!, �x ⊆ ℝ� are finite and

linearly separable. Then, the perceptron learning

algorithm updates the weight vector � ∈ ℝ� a finite

number of times, i.e., the algorithm will terminate with

a perceptron that separates the elements of the two

sets �!, �x ⊆ ℝ�.

Wirtschaftsinformatik und Operations Research 149

Proof of Theorem 2.4.7

� We give the proof that can be found in Rojas (1996)

� First of all, we make three simplifications without losing

generality

1. The sets �!, �x ⊆ ℝ� can be joined together in a single set named �. In

order to enable an equal treatment of all vectors in �, we negate all

vectors �x ⊆ ℝ�
2. Subsequently, we normalize all vectors of �. This does not change the

decision criterion of the algorithm (and therefore the termination) as if

we have � ⋅ + < 0 for some + ∈ �, this also applies after multiplying a

scalar �, i.e., this also applies to � ⋅ +. The same is true for � ⋅ + > 0, ∀+ ∈ �. Thus, in what follows all vectors in � are normalized, i.e., + = 1, ∀+ ∈ �
3. The weight vector can be also normalized. As we assume that the

considered problem is linearly separable there exists such a solution

vector �| ∈ ℝ� that we normalize and obtain �∗ ∈ ℝ� fulfilling �∗ = 1
Wirtschaftsinformatik und Operations Research 150

Proof of Theorem 2.4.7

� We consider the step of the algorithm that updates the weight vector and

this was the L + 1th update. The result is the weight vector � !� that was

built by setting � !� ≔ � + +
� The reason for this update is that there is a vector + ∈ � with � ⋅ + ≤ 0
� We start with the following trigonometric result

For two vectors �, { ∈ ℝ� and the angle � between them, it holds that ��J � = ¡⋅¢¡ ⋅ ¢
� Hence, we compare the current (just updated) weight vector � !� and the

normalized solution vector �∗
� It holds that (note that �∗ = 1)��J � = � !� ⋅ �∗� !� ⋅ �∗ = � + + ⋅ �∗� !� = � ⋅ �∗ + + ⋅ �∗� !�
� We compute £ = ��� �∗ ⋅ +¤ +¤ ∈ � > 0 and obtain��J � = ¥¦⋅¥∗!4⋅¥∗¥¦jk ≥ ¥¦⋅¥∗!§¥¦jk

30

Wirtschaftsinformatik und Operations Research 151

Proof of Theorem 2.4.7

� Note that £ = ��� �∗ ⋅ +¤ +¤ ∈ � > 0 due to the fact that �∗ is a

solution and therefore correctly separates all elements of set �
� By induction of all updating steps, we obtain for the initial weight vector �y��J � ≥ ¥¨⋅¥∗! !� ⋅§¥¦jk ∗
� Furthermore, after modifying the numerator, we consider the

denominator. It holds that� !� A = � + + ⋅ � + + = � A + 2� ⋅ + + + A
� Since, by assumption, � ⋅ + ≤ 0, we have 2� ⋅ + ≤ 0 and therefore� !� A = � A + 2� ⋅ + + + A ≤ � A + + A
� Moreover, by assumption, all vectors + ∈ � are normalized and we obtain� !� A ≤ � A + 1
� Again, we get by induction of the all updating steps � !� A ≤ �y A + L + 1 ⟹ � !� ≤ �y A + L + 1 ∗∗

Wirtschaftsinformatik und Operations Research 152

Proof of Theorem 2.4.7

� By substituting ∗∗ in ∗ , we derive��J � ≥ ¥¨⋅¥∗! !� ⋅§¥¦jk ≥ ¥¨⋅¥∗! !� ⋅§¥¨ �! !�
� The right hand side comprises the values £, �y ⋅ �∗, and �y A that are

constant and positive during the computation steps for a given data set

� However, the number of conducted steps increases and the right hand side

grows proportionally to ª
� But, as the left hand side is upper bounded by �, L is bounded by a

maximum value

� This proves the termination and therefore convergence of the perceptron

learning algorithm

� Clearly, the proof underlines that the algorithm works by bringing the initial

vector �y iteratively sufficiently close to the solution vector �∗ as cos �
becomes larger due to a proportionally smaller angle �

Wirtschaftsinformatik und Operations Research 153

Example – The OR function

+y = 00 , +� = 01 , +A = 10 , +C = 11 , with �x = +y and �! = +�, +A, +C
In order to compute a linear separator, we have to extend the vectors to

+y = 001 , +� = 011 , +A = 101 , and +C = 111 and start the calculation with

�y = 000 . Then, we obtain:

1. �y ⋅ +y = 0: This is not correctly classified and we update to �� ≔ �y − +y =000 − 001 = 00−12. �� ⋅ +� = −1: This is not correctly classified and we update to �A ≔ �� + +� =00−1 + 011 = 010
Wirtschaftsinformatik und Operations Research 154

Example – The OR function

3. �A ⋅ +A = 0: This is not correctly classified and we update to �C ≔ �A + +A =010 + 101 = 1114. �C ⋅ +C = 1: This is correctly classified and we have no update5. �C ⋅ +y = 1: This is not correctly classified and we update to �p ≔ �p − +y =111 − 001 = 1106. �p ⋅ +� = 1: This is correctly classified and we have no update7. �p ⋅ +A = 1: This is correctly classified and we have no update8. �p ⋅ +C = 2: This is correctly classified and we have no update9. �p ⋅ +y = 0: This is not correctly classified and we update to �d ≔ �p − +y =110 − 001 = 11−1

31

Wirtschaftsinformatik und Operations Research 155

Example – The OR function

10. �d ⋅ +� = 0: This is not correctly classified and we update to �D ≔ �d + +� =11−1 + 011 = 12011. �D ⋅ +A = 1: This is correctly classified and we have no update12. �D ⋅ +C = 3: This is correctly classified and we have no update13. �D ⋅ +y = 0: This is not correctly classified and we update to �z ≔ �D − +y =120 − 001 = 12−114. �z ⋅ +� = 1: This is correctly classified and we have no update15. �z ⋅ +A = 0: This is not correctly classified and we update to �o ≔ �z + +A =12−1 + 101 = 22016. �o ⋅ +C = 4: This is correctly classified and we have no update

Wirtschaftsinformatik und Operations Research 156

Example – The OR function

17. �o ⋅ +y = 0: This is not correctly classified and we update to �® ≔ �o − +y =220 − 001 = 22−118. �® ⋅ +� = 1: This is correctly classified and we have no update19. �® ⋅ +A = 1: This is correctly classified and we have no update20. �® ⋅ +C = 3: This is correctly classified and we have no update21. �® ⋅ +y = −1: This is correctly classified and we have no update

Termination

Output is: � = 22−1

Wirtschaftsinformatik und Operations Research 157

Is everything fine?

Unfortunately, not

always as you see. It

depends on some

prerequisites. This is

considered next.

Unfortunately, not

always as you see. It

depends on some

prerequisites. This is

considered next.

OK. It terminates. That is nice. But, is this

convergence process fast? The example does

not suggest this…

OK. It terminates. That is nice. But, is this

convergence process fast? The example does

not suggest this…

Wirtschaftsinformatik und Operations Research 158

Accelerating the convergence

� Although the perceptron learning algorithm converges to a

solution, the number of iterations can be very large if the

input vectors are not normalized and are arranged in an

unfavorable way

� Note that in an update step the respective vector x gives the

weight vector a new direction in order to correct the

misclassification of x. But, in order to correct this failure

directly it is reasonable to do just this in one step (and not in

many) while doing not more than this (causing new failures)

� Therefore, the following modification seems to be reasonable

32

Wirtschaftsinformatik und Operations Research 159

Improved update handling

� If at iteration t the vector + ∈ �! is classified erroneously and we have � ⋅ + ≤ 0 the resulting error £ is determined by £ = −� ⋅ +
� By using a small positive value � > 0, the new weight vector � !� is

calculated as follows � !� = � + £ + �+ A ⋅ +
� Note that this corrects the misclassification in one update step as it holds� !� ⋅ + = � + £ + �+ A ⋅ + ⋅ + = � ⋅ + + £ + � = −£ + £ + � = � > 0
� Hence, the usage of � guarantees that the new weight vector just barely

skips over the border of the region with a higher error

� Therefore, � should be made small enough to avoid skipping to another

region whose error is higher than the current one

� When + ∈ �x holds, the correction step is similarly, but using the factor £ − � instead of £ + �
Wirtschaftsinformatik und Operations Research 160

Observations

� As mentioned in Rojas (1996) it can be stated that the

accelerated algorithm is an example of corrective

learning

� The weight vector is not just enforced, but completely

corrects the currently observed error

� A variant of this rule is correction of the weight vector

using a proportionality constant ¯ as the learning

factor in so far that at each update the vector ¯ ⋅ £ + � ⋅ + is added to the current weight vector �.

In this updating the learning constant falls to zero

when learning progresses

Wirtschaftsinformatik und Operations Research 161

Example – The OR function

+y = 00 , +� = 01 , +A = 10 , +C = 11 , with �x = +y and �! = +�, +A, +C
In order to compute a linear separator, we have to extend the vectors to

+y = 001 , +� = 011 , +A = 101 , and +C = 111 and start the calculation with

�y = 000 and set � = 0.1. Then, we obtain with update formula � !� = � + §!x�4 � ⋅ +
and £ = −� ⋅ +:1. �y ⋅ +y = 0: This is not correctly classified and we update with £ = 0 to

�� ≔ �y + yxy.�� ⋅ 001 = 000 + 00−0.1 = 00−0.12. �� ⋅ +� = −0.1: This is not correctly classified and we update with £ = 0.1 to

�A ≔ �� + y.�!y.�A ⋅ 011 = 00−0.1 + 00.10.1 = 00.10
Wirtschaftsinformatik und Operations Research 162

Example – The OR function

3. �A ⋅ +A = 0: This is not correctly classified and we update with £ = 0 to

�C ≔ �A + y!y.�A ⋅ 101 = 00.10 + 00.050.05 = 00.150.054. �C ⋅ +C = 0.2: This is correctly classified and we have no update5. �C ⋅ +y = 0.05: This is not correctly classified and we update with £ = −0.05 to

�p ≔ �C + xy.ydxy.�� ⋅ 001 = 00.150.05 + 00−0.15 = 00.15−0.16. �p ⋅ +� = 0.05: This is correctly classified and we have no update7. �p ⋅ +A = −0.1: This is not correctly classified and we update with £ = 0.1 to

�d ≔ �p + y.�!y.�A ⋅ 101 = 00.15−0.1 + 0.100.1 = 0.10.1508. �d ⋅ +C = 0.25: This is correctly classified and we have no update9. �d ⋅ +y = 0: This is not correctly classified and we update with £ = 0 to

�D ≔ �d + xy.�� ⋅ 001 = 0.10.150 + 00−0.1 = 0.10.15−0.1

33

Wirtschaftsinformatik und Operations Research 163

Example – The OR function

10. �D ⋅ +� = 0.05: This is correctly classified and we have no update11. �D ⋅ +A = 0: This is not correctly classified and we update with £ = 0 to

�z ≔ �D + y.�A ⋅ 101 = 0.10.15−0.1 + 0.0500.05 = 0.150.15−0.0512. �z ⋅ +C = 0.25: This is correctly classified and we have no update13. �z ⋅ +y = −0.05: This is correctly classified and we have no update14. �z ⋅ +� = 0.1: This is correctly classified and we have no update15. �z ⋅ +A = 0.1: This is correctly classified and we have no update

Termination

Output is: � = 0.150.15−0.05

Wirtschaftsinformatik und Operations Research 164

Initial vector

� Aside from the update formula, the convergence speed

significantly depends on the initial vector �y
� Ertel (2016) proposes to use �y = ? +� −4[∈3j

? +�4[∈3°
� It can be observed that this initial vector may accelerate

the convergence of the perceptron learning algorithm

Wirtschaftsinformatik und Operations Research 165

Example – The OR function

+y = 00 , +� = 01 , +A = 10 , +C = 11 , with �x = +y and �! = +�, +A, +C
In order to compute a linear separator, we have to extend the vectors to

+y = 001 , +� = 011 , +A = 101 , and +C = 111 and start the calculation with �y = +� +
+A + +C − +y = 222 and set � = 0.1. Then, we obtain with update formula � !� = � +
§!x�4 � ⋅ + and £ = −� ⋅ +:1. �y ⋅ +y = 2: This is not correctly classified and we update with £ = −2 to �� ≔ �y +

xAxy.�� ⋅ 001 = 222 + 00−2.1 = 22−0.12. �� ⋅ +� = 1.9: This is correctly classified and we have no update3. �� ⋅ +A = 1.9: This is correctly classified and we have no update4. �� ⋅ +C = 3.9: This is correctly classified and we have no update

Wirtschaftsinformatik und Operations Research 166

Example – The OR function

5. �� ⋅ +y = −0.1: This is correctly classified and we have no update

Termination

Output is: � = 22−0.1

34

Wirtschaftsinformatik und Operations Research 167

Is everything fine?

…and it underlines that

it may be reasonable to

directly integrate the

impact of the vectors of

both sets �x and �!.

…and it underlines that

it may be reasonable to

directly integrate the

impact of the vectors of

both sets �x and �!.

Impressive. By solely changing the initial

vector, we only need a single update of the

weight vector instead of seven as before.

Impressive. By solely changing the initial

vector, we only need a single update of the

weight vector instead of seven as before.

Wirtschaftsinformatik und Operations Research 168

What if the learning set is not linearly separable?

� In that case there is no termination possible and we do not

obtain a solution

� Moreover, if we stop the computation after an arbitrary step

the quality of the generated weight vector is undefined

� Therefore, Gallant (1990) proposed a very simple variant of the

perceptron learning algorithm capable of computing a good

approximation of an ideal, but not attainable, linear separation

� The main idea of the algorithm is to store the best weight

vector found so far by perceptron learning (in a “pocket”)

while continuing to update the weight vector itself

� If a better weight vector is found, it supersedes the one

currently stored and the algorithm continues to run

Wirtschaftsinformatik und Operations Research 169

The pocket algorithm

� Initialize the weight vector w randomly

� Set �±: = �;

� Set ℎ± ≔ 0;

� Iterate:

� Update � using a single iteration of the perceptron

learning algorithm;

� Keep track of the number ℎ of consecutively

successfully tested vectors.

� If at any moment ℎ > ℎ± THEN set �± ≔ �; ℎ± ≔ ℎ;

� Go to iterate

Wirtschaftsinformatik und Operations Research 170

Observations

� The algorithm can occasionally change a good stored

weight vector for an inferior one, since only

information from the last run of selected examples is

considered

� The probability of this happening, however, becomes

smaller and smaller as the number of iterations grows

� If the training set is finite and the weights and vectors

are rational, it can be shown that this algorithm

converges to an optimal solution with probability 1

(see Gallant (1990))

35

Wirtschaftsinformatik und Operations Research 171

Possible application – Pattern recognition

� Ertel (2016) gives the following further example for a possible

application of the linear perceptron learning algorithm

� The application deals with pattern recognition of specific

letters that may be modified by inverted bits

� Hence, a specific fault tolerance (adaptability) is needed in

order to attain a reliable recognition of partly falsely

transferred patterns

Patterns of set �! Patterns of set �x Candidate to

be classified

Wirtschaftsinformatik und Operations Research 172

Attained correctness

� Clearly, the number of correctly classified patterns significantly

depends on the number of inverted bits

� The more bits are inverted the lower is the relative correctness

of the algorithm

� Specifically, for the considered application, Ertel (2016) reports

the following correctness values in dependence of the number

of inverted bits:

5 10 15 20

1

0.8

0.6

0.4

0.2

25

Correctness

Executed Bitflips (See Ertel (2016) p.205)

