

Supervised learning

Wirtschaftsinformatik und Operations Research

WINFOR 40

42

- Characterization
 - The algorithm is fed with training data that includes the desired solutions (called labels)
 - For instance, if a classification has to be done (e.g. by a spam filter), various examples are trained with the given class (spam or ham)
 - Another example is the prediction of a sought numeric value (realistic market price of a car depending on given features) done by regression. For this purpose, the system is trained with numerous real-world cases
 - Some regression algorithms can also be used for classification (by comparing with thresholds) and vice versa
- Examples
 - k-nearest neighbor
 - Linear regression
 - Logistic regression
 - Support vector machines (SVM)
 - Decision trees and random forests
 - Neural networks (besides semi-supervised and unsupervised neural networks)

Wirtschaftsinformatik und Operations Research WINFOR

Model-based learning						
 Model-based learning approaches generalize from a set of examples by building a model that is based on these examples. Then, this model is used to make predictions 						
 For instance, consider a scientific study that deals with the question whether money makes people happy 						
 It may use the Better Life Index data from the <u>OECD's website</u> as well as stats about GDP per capita from the <u>IMF's website</u> 						
 Then, both data is mixed together in order to define happiness in dependence of income 						
 As you identify a trend in this mixed data (it actually looks like life satisfaction goes up more or less linearly as the country's GDP per capita increases), you decide to apply linear regression in order to model satisfaction as a linear function of income 						
 This is the model selection step 						
 Insummary: Studying the data, selecting a model, Training it on the data (i.e., the learning algorithm searched for the model parameter values that minimize a cost function), and finally applying the model to make predictions on new cases (this is called inference), hoping that this model will generalize well 						

The methods introduced in this section (and throughout the entire course) do not work by themselves, but need to be programmed and designed in a sophisticated way. Particularly, the efficient use of machine learning approaches may be endangered by the following challenges:

- Insufficient quantity of training data
- Non-representative training data
- Poor-guality training data
- Irrelevant Features

2

- Overfitting the training data
- Underfitting the training data

Nonrepresentative Training Data

Wirtschaftsinformatik und Operations Research

- Clearly, it is crucial that your training data be representative of the new cases you want to generalize to
- This is true whether you use instance-based learning or modelbased learning
- For instance, if our formerly mentioned scientific study that deals with the question whether *money makes people happy* does the linear regression without richer countries the results may be not appropriate for countries like Switzerland or Luxembourg

Insufficient Quantity of Training Data A toddler learns what an apple is ... by just seeing (and touching) one and hearing the word "apple" (maybe several times) • Afterwards, this child is able to recognize apples in all sorts of colors and shapes. This is amazing out of our view as ML-scientists In machine learning, however, it takes much more data to reach this point Finding sophisticated learning procedures is for sure one decisive side of the coin However, on the other, not less decisive side, there are studies that reveals that completely different learning algorithms (including fairly simple ones) may attain a comparable solution quality if the quantity of the training data is sufficiently high This underlines that insufficient quantity of training data is a serious shortcoming WINFOR 52 Wirtschaftsinformatik und Operations Research

WINFOR 53 Wirtschaftsinformatik und Operations Research

WINFOR 51

Poor-Quality Data

- Clearly, if the training data is full of errors, outliers. and noise (reasons for that are often poor quality measurements or false channels of data acquisition), it is hard for the system to exploit the underlying pattern (it is gone due to the poor quality)
- Hence, it is worth the effort, to spend time cleaning up the data, i.e., delete outliers, decide about missing or corrupted values of some attributes etc.

Wirtschaftsinformatik und Operations Research

WINFOR

54

The opposite: Underfitting

- Occurs when the model is to simple to learn the structure of the data
- For instance, if a linear model is applied to a phenomenon with exponential dependencies this would lead to underfitting

Wirtschaftsinformatik und Operations Research

2

6

WINFOR 58

Preparing the mathematical definition

2.2.1.1 Definition

2

Let $n, k \in \mathbb{N}$ be natural numbers. A **set of** n **attributes** is given by $A = \{A_1, ..., A_n\}$, while for each $i \in \{1, ..., n\}$ the attribute A_i is defined as a set of possible values. A **classification into** k **classes** is a set $C = \{C_1, ..., C_k\}$, while for each $j \in \{1, ..., k\}$ C_j is a class that is finally assigned to each item (or case) that possesses individual values for each attribute.

2.2.1 Learning with decision trees – The problem

- Specifically, in what follows we consider a list of items that possess individual attributes. Moreover, each item belongs to a specific class that is given by the respective data set
 - Our task is to derive a tree that classifies the items by some of their stored attribute values
 - While starting from the root node with all items each inner node clusters the respective items according to their values for a specific attribute considered at this node
 - At a leaf node a final classification is provided
 - Therefore, after starting at the root node, each item is iteratively classified by following the inner nodes according to the respective attribute values of the item until the classification is done by the reached leaf

Wirtschaftsinformatik und Operations Research

WINFOR 60

WINFOR 62

Mathematically, we consider the following

2.2.1.2 Definition

2

Given *n* attributes $A = \{A_1, ..., A_n\}$ and a classification $C = \{C_1, ..., C_k\}$ into *k* classes as defined in Definition 2.2.1.1. A **data set** *M* with *m* items possessing *n* attributes **to be learned by**

a decision tree is defined as follows

$$M = \begin{pmatrix} m_{1,1} & \dots & m_{1,n} \\ \vdots & \ddots & \vdots \\ m_{m,1} & \dots & m_{m,n} \\ \end{pmatrix} \begin{pmatrix} m_{1,n+1} \\ \vdots \\ m_{m,n+1} \\ \end{pmatrix}$$

The **value** of the *i*th item for the *j*th attribute is defined by entry $m_{i,j} \in A_j$, with $i \in \{1, ..., m\}$ and $j \in \{1, ..., n\}$.

The **classification** of the *i*th item is defined by entry $m_{i,n+1} \in C$, with $i \in \{1, ..., m\}$

Wirtschaftsinformatik und Operations Research

Wirtschaftsinformatik und Operations Research WINFOR 61

Correctness of classification

2.2.1.5 Definition

A decision tree *T* for a data set *M* (as defined in Definition 2.2.1.2) with an attribute set $A = \{A_1, ..., A_n\}$ and a classification $C = \{C_1, ..., C_k\}$ classifies an item $x \in A_1 \times \cdots \times A_n \times C$ into class $C_i \in C$ correctly if and only if it holds that $x_{n+1} = C_i$.

By storing the information in a decision tree T that is given in data set M, we demand, if M is consistent, that T classifies all items of M correctly. Moreover, we want to store the information (learned knowledge) in a most efficient way.

For this purpose, we have to define suitable performance measures.

2

Decision tree – Interpretation

2.2.1.4 Definition

A **decision tree** *T* **for a data set** *M* as defined in Definition 2.2.1.2 with an attribute set $A = \{A_1, ..., A_n\}$ and a classification $C = \{C_1, ..., C_k\}$ is a tree with leafs $C_i \in C$ and inner nodes $A_j \in A$. The edges that emerge from such an inner node $A_j \in A$ possess edge values $v \in A_j$

A decision tree *T* classifies an item $x \in A_1 \times \cdots \times A_n \times C$ into class $C_i \in C$ if there exists an edge path (v_1, \dots, v_l) in tree *T* such that each edge value v_c of the attribute a(c) visited by the path at depth *c* coincides with the corresponding entry of item x, i.e., it holds that $x_{a(c)} = v_c$ and the path finally reaches leaf $C_i \in C$.

WINFOR 64

WINFOR 66

Performance measure

Wirtschaftsinformatik und Operations Research

2.2.1.6 Definition

2

Let *T* be a **decision tree for a data set** *M* as defined in Definition 2.2.1.2 with an attribute set $A = \{A_1, ..., A_n\}$ and a classification $C = \{C_1, ..., C_k\}$. Then, we define the following performance measures:

- 1. For each leaf $C_i \in C$ of T we define $l(C_i)$ as the **length** of the path starting from the root and ending at C_i that is measured by the transferred edges
- 2. The **external path-length of** *T* is defined by $\sum_{i=1}^{k} l(C_i)$
- 3. For each item $x = (x_1, ..., x_n, x_{n+1}) \in M$ the function $l^M(x)$ gives the number of edges of the path in T that correctly classifies x

Wirtschaftsinformatik und Operations Research

4. The weighted total external path-length of *T* is defined by $\sum_{x \in M} l^M(x)$

Wirtschaftsinformatik und Operations Research WINFOR 65

<section-header><list-item><list-item><list-item><list-item><list-item><list-item>

Mushroom example – Attribute size								
 We obtain two subtrees with the respective small and large This can be illustrated by the following sub data sets 								
	Size	Edible	Non-edible	Sum				
	Small	2	1	3				
	Large	2	0	2				
• We compute the entropy of the two resulting subtrees • Small: $-\frac{2}{3} log_2\left(\frac{2}{3}\right) - \frac{1}{3} log_2\left(\frac{1}{3}\right) = 0.91829583$ • Large: $-\frac{2}{2} log_2\left(\frac{2}{2}\right) = 0$ • Thus, we obtain $inf o(M, size) = \frac{3}{5} \cdot 0.91829583 + \frac{2}{5} \cdot 0 = 0.5509775$ • $gain(M, size) = inf o(M) - inf o(M, size) = 0.72192809 - 0.5509775 = 0.17095059$								
Schumpeter School of Radius and Economics	Schumpter School Wirtschaftsinformatik und Operations Research WINFOR 85							

Mushroom example – Attribute dots						
 We obtain two subtrees with the respective values with and without dots This can be illustrated by the following sub data sets 						
	Size	Edible	Non-edible	Sum		
	With dots	1	1	2		
	Without dots	3	0	3		
• We compute the entropy of the two resulting subtrees • With dots: $-\frac{1}{2}log_2\left(\frac{1}{2}\right) - \frac{1}{2}log_2\left(\frac{1}{2}\right) = 1 = log_2(2)$ • Without dots: $-\frac{3}{3}log_2\left(\frac{3}{3}\right) = 0$ • Thus, we obtain $info(M, dots) = \frac{2}{5} \cdot 1 = 0.4$ • $gain(M, dots) = info(M) - info(M, color) = 0.72192809 - 0.4 = 0.32192809$						
thumpeter School	~	Wirtschaftsinformatik	und Operations Research	WIN	FOR	

Mushroom example – Attribute size							
 We obtain two subtrees with the respective values large and small This can be illustrated by the following sub data sets 							
	Size	Edible	Non-edible	Sum			
	Large	1	0	1			
	Small 0 1 1						
 We compute the entropy of the two resulting subtrees Large: -¹/₁log₂(¹/₁) = 0 Small: -¹/₁log₂(¹/₁) = 0 Thus, we obtain info(M, size) = ¹/₂ · 0 + ¹/₂ · 0 = 0 gain(M, size) = info(M) - info(M, size) = 0,4 - 0 = 0,4 							
Schumpeter School		Wirtschaftsinformatik	und Operations Research	WIN	FOR	89	

- The first version of the ID3 algorithm solely applies the gain criterion
- <u>Quinland (1993)</u> reports that he noticed that there is a bias in this procedure for attributes with many occurring values as, due to more values, the information gain is larger
- However, as we do not want to give an incentive to this aspect, Quiland (1993) proposes to modify the gain criterion by relating it to the entropy of the value distribution

Wirtschaftsinformatik und Operations Research

WINFOR 91

WINFOR 93

2

2

How to apply the gain ratio criterion
 Based on these values, <u>Quinland (1993)</u> proposes to follow the gain ratio criterion such that an attribute is selected that maximizes the gain ratio, subject to the constraint that the information gain must be large,

- i.e., at least as great as the average gain over all attributes examined
- On the next slide, we apply the gain ratio criterion to our mushroom example

Wirtschaftsinformatik und Operations Research

Applying the gain ratio to the mushroom example						
During the first choice of an attribute we obtain						
$split info(M, color) = -\frac{2}{5}log_{2}\left(\frac{2}{5}\right) - \frac{2}{5}log_{2}\left(\frac{2}{5}\right) - \frac{1}{5}log_{2}\left(\frac{1}{5}\right)$						
$= -\frac{4}{5} \cdot (-1,3219280949) - \frac{1}{5} \cdot (-2,3219280949) = 1,5219280949$						
Therefore, it holds that						
$gain \ ratio(M, color) = \frac{0.32192809}{1.5219280949} = 0.2115264782$						
 During the first choice of an attribute we obtain 						
split info(M, size) = $-\frac{3}{5}log_2\left(\frac{3}{5}\right) - \frac{2}{5}log_2\left(\frac{2}{5}\right) = 0.97095059$						
Therefore, it holds that						
$gain\ ratio(M, size) = \frac{0.17095059}{0.97095059} = 0.17606518$						
During the first choice of an attribute we obtain						
$split info(M, dots) = -\frac{2}{5}log_2\left(\frac{2}{5}\right) - \frac{3}{5}log_2\left(\frac{3}{5}\right) = 0,97095059$						
Therefore, it holds that						
$gain \ ratio(M, dots) = \frac{0.32192809}{0.97095059} = 0.3315597$						
Wirtschaftsinformatik und Operations Research WINEOR 94						

Tests						
 <u>Quinland (1993)</u> uses the generalized term attributes for generating the next node in t 	<i>test</i> instead of using he decision tree					
 This is reasonable as in C4.5/C5 each node does not necessarily coincide with an attribute as we have defined it in the so-called "Basic structure of the decision tree construction" 						
 In contrast to this, the decision tree generation procedure C4.5 contains mechanisms for proposing three types of tests 						
 The standard test on a discrete attribute, with one outcome and branch for each possible value of that attribute (this was solely considered before) 						
 A more complex test, based on a discrete attribute, in which the possible values are allocated to a variable number of groups (that have to be generated) with one outcome for each group (rather than each value (condensing the values) 						
Schumper: School Wirtschaftsinformatik und Operations Research	WINFOR 98					

WINFOR 103 Wirtschaftsinformatik und Operations Research

Item	Outlook	Temp (°F)	Humidity	Windy?	Class – Play?
1	Sunny	75	70	True	Yes
2	Sunny	80	90	True	No
3	Sunny	85	85	False	No
4	Sunny	72	95	False	No
5	Sunny	69	70	False	Yes
6	?	72	90	True	Yes
7	Overcast	83	78	False	Yes
8	Overcast	64	65	True	Yes
9	Overcast	81	75	False	Yes
10	Rain	71	80	True	No
11	Rain	65	70	True	No

95

Wirtschaftsinformatik und Operations Research

Itom C is isneyed for attribute outlook

False

False

False

Yes

WINFOR 104

Eveneele

12

13

14

Rain

Rain

Rain

75

68

Pruning					
 Pruning pursues the reduction of a generated decision tree for efficiency or correctness reasons, i.e., it intends to replace certain subtrees with leaves Therefore, pruning reduces specific parts of the current decision tree 					
 Basically, there are two alternative ways for pruning Prepruning: During the tree generation process it is decided that a currently considered data set is not further divided, i.e., we have to integrate such kind of stopping criterion 					
 Pruning after tree generation: removing retrospectively some of the subtrees built during the preceding tree generation process 					
Wirtschaftsinformatik und Operations Research WINFOR 106					

	Error-based pruning
•	C4.5/C5.0 applies pruning after the tree generation Specifically, a subtree is replaced by a leaf (pruned to it) if the expected error rate of this leaf (this has to chose a majority classification) is smaller than an upper limit derived for the respective subtree For this purpose, a confidence level <i>CF</i> is defined (in C4.5 the default confidence level is 25%) and the upper limit is defined by the confidence limits for the binomial distribution It is abbreviated as $U_{CF}(E, N)$ with • <i>N</i> : number of items in the data set • <i>E</i> : number of erroneously classified items in the considered data set Hence, the correct/non-correct classification is interpreted as a Bernoulli experiment
mpeter Sci union and Icu	Wirtschaftsinformatik und Operations Research WINFOR 110

	Windowing							
•	It is quite common that the window ended up containing only a small fraction of the training cases							
·	 This final window represents a screened set of training cases that comprises the "interesting ones" together with a sufficiently large variety of "ordinary cases" 							
·	 Note that rather than picking training cases randomly to form the initial window, C4.5 biases the choice so that the distribution of classes in the initial window is as uniform as possible 							
•	Moreover, the process of adding exceptions is controlled							
	 While ID3 strongly limits the number of exceptions to be added, C4.5 always adds at least the half of these cases in each iteration, thereby attempting to speed convergence on a final tree 							
	 C4.5 may also stop before the tree correctly classifies all cases outside the window if it appears that the generated trees do not become more accurate 							
	 For domains in which classification is not correctly possible due to noise or indeterminacy, early termination is meant to prevent the growth of the window until it includes almost all the training cases 							
Schumpe of Ballin	Wirtschaftsinformatik und Operations Research WINFOR 114							

results	or the	pathological multiplexer				
	All and a state of the state of		Charle Avenue			

Desults of the nothelesised multipleyer

Training cases	No windowing	Single tree windowing	Ten trees windowing
100	35.4 %	36.0 %	34.4 %
200	24.4 %	24.6 %	16.9 %
300	18.5 %	13.9 %	11.6 %
400	17.9 %	9.4 %	5.7 %
500	13.2 %	8.0 %	6.3 %

- The table provides the measured error rates
- The higher accuracy on unseen cases was achieved at additional running time
 - Developing a single tree by windowing takes almost twice as long as generating a tree from all the training cases in one pass

Wirtschaftsinformatik und Operations Research

Gini impurity

WINFOR 120

And producing ten trees takes ten times as long

2.2.3 CART

• CART stands for "classification and regression trees"

2

- It is a further well-known and widely used algorithm for decision tree generation
- It was originated by Breimann, Friedman, Olshen, and Stone (1984)
- The procedure generates **only binary decision trees** and conducts the choice of the separation steps by applying the **gini impurity measure**
- Although the binary tree attribute seems to be fairly restrictive, it is not a real limitation
- Note that for each occurring value a_l of some attribute A_j (the *j*th attribute) we can check every item x in a binary way, i.e., whether it holds that x_i ≤ a_l or not
- Thus, possible branches are combinations of attributes and value sets that are combined for the left branch and for the right branch, respectively

Wirtschaftsinformatik und Operations Research

WINFOR 121

• Given a data set *M* comprising *m* items with values for *n* attributes $A = \{A_1, ..., A_n\}$ and a classification $C = \{C_1, ..., C_k\}$ into *k* classes • The attributes and their values are transformed into *o* suitable branching candidates $B = \{b_1, b_2, ..., b_o\}$ • The **impurity** suggests the aim of the decision tree to have each leaf representing only items of the same class (causing no classification error) • The impurity measure is mathematically defined as follows • $N(i, b_l, r/l)$: Fraction of the number of items of a considered data set belonging to the right/left branch of b_l possessing the classification $C_i \in C$ • $\#(b_l, r/l)$: Number of items (of the *m* ones) belonging to the right/left branch of b_l • The **Gini impurity of the branching candidate** $b_l \in B$ is defined by $G(b_l) = \frac{\#(b_l, l)}{m} \cdot \sum_{i=1}^{k} \sum_{j=1, j \neq i}^{k} N(i, b_l, l) \cdot N(j, b_l, l) + \frac{\#(b_l, r)}{m} \cdot \sum_{i=1}^{k} N(i, b_l, r) \cdot N(j, b_l, r)$ $= \frac{\#(b_l, l)}{m} \cdot \sum_{l=1}^{k} N(i, b_l, l) \cdot \sum_{j=1, j \neq i}^{k} N(j, b_l, l) + \frac{\#(b_l, r)}{m} \cdot \sum_{l=1}^{k} N(i, b_l, r) \cdot N(j, b_l, r)$ $= \frac{\#(b_l, l)}{m} \cdot \sum_{l=1}^{k} N(i, b_l, l) \cdot \sum_{j=1, j \neq i}^{k} N(j, b_l, l) + \frac{\#(b_l, r)}{m} \cdot \sum_{l=1}^{k} N(i, b_l, r) \cdot \sum_{j=1, j \neq i}^{k} N(j, b_l, r)$ $= \frac{\#(b_l, l)}{m} \cdot \sum_{l=1}^{k} N(i, b_l, l) \cdot \sum_{j=1, j \neq i}^{k} N(j, b_l, l) + \frac{\#(b_l, r)}{m} \cdot \sum_{l=1}^{k} N(i, b_l, r) \cdot \sum_{j=1, j \neq i}^{k} N(j, b_l, r)$ $= \frac{\#(b_l, l)}{m} \cdot \sum_{l=1}^{k} N(i, b_l, l) \cdot \sum_{j=1, l \neq i}^{k} N(j, b_l, l) + \frac{\#(b_l, r)}{m} \cdot \sum_{l=1}^{k} N(i, b_l, r) \cdot \sum_{j=1, l \neq i}^{k} N(j, b_l, r)$ $= \frac{\#(b_l, l)}{m} \cdot \sum_{l=1}^{k} N(i, b_l, l) \cdot \sum_{j=1, l \neq i}^{k} N(j, b_l, l) + \frac{\#(b_l, r)}{m} \cdot \sum_{l=1}^{k} N(i, b_l, r) \cdot \sum_{j=1, l \neq i}^{k} N(j, b_l, r)$ $= \frac{\#(b_l, l)}{m} \cdot \sum_{l=1}^{k} N(i, b_l, l) \cdot \sum_{j=1, l \neq i}^{k} N(i, b_l, r) \cdot \sum_{l=1}^{k} N(i, b_l, r) \cdot \sum_{l=1}^{k} N(i, b_l, r) \cdot \sum_{l=1}^{k} N(b_l, r) \cdot \sum_{l=1}^{k} N$

Branch alt	ernative b_1 – Gini in	npurity
• Left branch: $N(no, b_1)$ • Right branch: $N(no, b_1)$ • Hence, we obtain $G(b_1) = \frac{\#(b_1, l)}{m} \cdot \left(1 - \frac{4}{10} \cdot \left(1 - \frac{3}{20}\right)\right)$	$ (l) = \frac{3}{4}, N(yes, b_1, l) = \frac{1}{4}, \text{ and } \frac{4}{7} $ $ (l) = \frac{3}{4}, N(yes, b_1, l) = \frac{1}{4}, \text{ and } \frac{4}{7} $ $ (l) = \frac{1}{6}, N(yes, b_1, r) = \frac{4}{6}, \text{ and } $ $ (l) = \frac{1}{16} + \frac{6}{10}, (l) = \frac{2}{16}, (l) = \frac{2}{16}$	$\frac{\frac{k(b_1,l)}{m} = \frac{4}{10}}{\frac{m}{m} = \frac{6}{10}}$ $-\sum_{i=1}^{k} N(i,b_1,r)^2 \\ = \frac{6}{0} \cdot \left(\frac{4}{9}\right)$ $1\overline{6}.$
Schumpeter School	Wirtschaftsinformatik und Operations Research	WINFOR 125

We consider the following data set										
Item	1	2	3	4	5	6	7	8	9	10
A_1	0.6	1.8	0.7	0.2	1.1	2.9	2.5	2.2	2.8	2.5
A_2	0.2	0.3	1.1	1.3	2.3	0.4	1.2	1.6	2.0	3.0
Class?	No	No	No	No	No	Yes	Yes	Yes	Yes	Yes
 By testing all thresholds for the two attributes, we obtain 20 theoretical branching alternatives However, we focus here on the most promising one and an alternative one for comparison reasons First, we consider for attribute A₂ the threshold 1.15 (say b₁) Hence, the left branch contains the items 1,2,3,and 6. The right 4,5,7,8,9, and 										

VarNr.	Description	Values of domain
1	Age	Continuous
2	Sex (1 D male, 2 D female)	1, 2
3	Dolor Quadrant 1	0, 1
4	Dolor Quadrant 2	0, 1
5	Dolor Quadrant 3	0, 1
6	Dolor Quadrant 4	0, 1
7	Muscular defense (local)	0, 1
8	Muscular defense (general)	0, 1
9	Dolor during leaving hold of	0, 1
10	Agitation	0, 1
11	Dolor during rectal examination	0, 1
12	Temperature axial	Continuous
13	Temperature rectal	Continuous
14	Leucocytes	Continuous
15	Diabetes mellitus	0, 1
16	Diagnosis: appendicitis (yes or no)	0, 1

two values may be sufficient

Density profiles of the correlation coefficients

7 910 14 By considering the density profiles (detailed values can be found in Ertel (2016) p.199), it becomes obvious that the attributes 7,9,10, and 14 possess the strongest correlation

However, the attributes 9 and 10 are also highly correlated (0.53). Therefore, one of the

(0.33, 0.38, 0.32, and 0.44) with the sought classification (attribute 16)

= -1: is black

= 1: is white

See Ertel (2016) p.199

WINFOR 132

Coming back to the AND function
The sets M_{-} and M_{+} are absolutely linearly separable by using the hyperplane
$H = \left\{ x \in \mathbb{R}^n \mid \begin{pmatrix} 1 \\ 1 \end{pmatrix} \cdot x = \theta = 1.5 \right\} \text{ as we have for}$ $x_0 = \begin{pmatrix} 0 \\ 0 \end{pmatrix} : \begin{pmatrix} 1 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 0 \end{pmatrix} = 0 < \theta, \text{ for } x_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix} : \begin{pmatrix} 1 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix} = 1 < \theta, \text{ and for } x_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} : \begin{pmatrix} 1 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} = 1 < \theta, \text{ while for}$ $x_3 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} : \begin{pmatrix} 1 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix} = 2 > \theta \text{ as claimed by Definition}$ 2.4.4.
Wirtschaftsinformatik und Operations Research WINEOR 141

Consequence 2.4.5 Lemma Two finite sets of points, M_- and M_+ , in *n*-dimensional space are linearly separable if and only if there are also absolutely linearly separable. Hence, linear separability and absolute linear separability are equivalent.

Perceptron		
2.4.6 Definition		
Given a weight vector $\omega = (w_1, w_2,, w_n) \in \mathbb{R}^n$ and $x \in \mathbb{R}^n$ an input vector.		
A perceptron is a mapping $P \colon \mathbb{R}^n \mapsto \{0,1\}$ such that		
$P_{\omega}(x) = \begin{cases} 1 & if \omega \cdot x = \sum_{i=1}^{n} w_i \cdot x_i > 0\\ 0 & otherwise \end{cases}$		
In order to additionally consider the threshold value $ heta$, both		
vectors are extended by adding $w_{n+1} = -\theta$ and $x_{n+1} = 1$, respectively.		
Then, we obtain $\omega \cdot x - \theta \cdot 1 = -\theta + \sum_{i=1}^{n} w_i \cdot x_i$ and if $P_{\omega}(x) = 1$ holds, we have $\sum_{i=1}^{n} w_i \cdot x_i > \theta$		
Wirtschaftsinformatik und Operations Research WINE 145		

Observations	
 As mentioned in <u>Rojas (1996)</u> it can be stated that the accelerated algorithm is an example of corrective learning 	
 The weight vector is not just enforced, but completely corrects the currently observed error 	
• A variant of this rule is correction of the weight vector using a proportionality constant γ as the learning factor in so far that at each update the vector $\gamma \cdot (\delta + \epsilon) \cdot x$ is added to the current weight vector w . In this updating the learning constant falls to zero when learning progresses	
Schuzgeer School Wirtschaftsinformatik und Operations Research WINEOR 160	

Example – The OR function
$\begin{aligned} x_0 &= \begin{pmatrix} 0\\0 \end{pmatrix}, x_1 = \begin{pmatrix} 0\\1 \end{pmatrix}, x_2 = \begin{pmatrix} 1\\0 \end{pmatrix}, x_3 = \begin{pmatrix} 1\\1 \end{pmatrix}, \text{ with } M = \{x_0\} \text{ and } M_+ = \{x_1, x_2, x_3\} \\ \text{In order to compute a linear separator, we have to extend the vectors to} \\ x_0 &= \begin{pmatrix} 0\\0\\1 \end{pmatrix}, x_1 = \begin{pmatrix} 0\\1\\1 \end{pmatrix}, x_2 = \begin{pmatrix} 1\\0\\1 \end{pmatrix}, \text{ and } x_3 = \begin{pmatrix} 1\\1\\1 \end{pmatrix} \text{ and start the calculation with} \\ w_0 &= \begin{pmatrix} 0\\0\\0 \end{pmatrix} \text{ and set } \epsilon = 0.1. \text{ Then, we obtain with update formula } w_{t+1} = w_t + \frac{\delta^+ \epsilon}{\ x\ ^2} \cdot x \\ \text{ and } \delta = -w_t \cdot x: \end{aligned}$
1. $w_0 \cdot x_0 = 0$: This is not correctly classified and we update with $\delta = 0$ to $w_1 := w_0 + \frac{0 - 0.1}{1} \cdot \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ -0.1 \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ 0 \\ -0.1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ -0.1 \end{pmatrix}$
2. $w_1 \cdot x_1 = -0.1$ this is not correctly classified and we update with $\delta = 0.1$ to $w_2 \coloneqq w_1 + \frac{0.1+0.1}{2} \cdot \begin{pmatrix} 0\\1\\1 \end{pmatrix} = \begin{pmatrix} 0\\0\\-0.1 \end{pmatrix} + \begin{pmatrix} 0\\0.1\\0.1 \end{pmatrix} = \begin{pmatrix} 0\\0.1\\0 \end{pmatrix}$
Schumpeter School Wirtschaftsinformatik und Operations Research WINFOR 161

Example – The OR function
$x_0 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, x_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, x_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, x_3 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, with $M = \{x_0\}$ and $M_+ = \{x_1, x_2, x_3\}$
In order to compute a linear separator, we have to extend the vectors to
$x_0 = \begin{pmatrix} 0\\0\\1 \end{pmatrix}, x_1 = \begin{pmatrix} 0\\1\\1 \end{pmatrix}, x_2 = \begin{pmatrix} 1\\0\\1 \end{pmatrix}, \text{ and } x_3 = \begin{pmatrix} 1\\1\\1 \end{pmatrix} \text{ and start the calculation with } w_0 = x_1 + \frac{1}{2} = $
$x_2 + x_3 - x_0 = \begin{pmatrix} 2 \\ 2 \\ 2 \end{pmatrix}$ and set $\epsilon = 0.1$. Then, we obtain with update formula $w_{t+1} = w_t + \frac{1}{2}$
$\frac{\delta^+\epsilon}{\ x\ ^2} \cdot x$ and $\delta = -w_t \cdot x$:
1. $w_0 \cdot x_0 = 2$: This is not correctly classified and we update with $\delta = -2$ to $w_1 := w_0 + \frac{-2-0.1}{1} \cdot \begin{pmatrix} 0\\0\\2\\2 \end{pmatrix} + \begin{pmatrix} 0\\0\\-2.1 \end{pmatrix} = \begin{pmatrix} 2\\2\\-0.1 \end{pmatrix}$
2. $w_1 \cdot x_1 = 1.9$: This is correctly classified and we have no update
3. $w_1 \cdot x_2 = 1.9$: This is correctly classified and we have no update
4. $w_1 \cdot x_3 = 3.9$: This is correctly classified and we have no update
Wirtschaftsinformatik und Operations Research WINE 165

The pocket algorithm	
 Initialize the weight vector w randomly 	
 Set w_s: = w; 	
• Set $h_s \coloneqq 0$;	
Iterate:	
 Update w using a single iteration of the perceptron learning algorithm; 	
 Keep track of the number h of consecutively successfully tested vectors. 	
• If at any moment $h > h_s$ THEN set $w_s \coloneqq w$; $h_s \coloneqq h$;	
 Go to iterate 	
Wirtschaftsinformatik und Operations Research 169	

	Observations
 The algorithm can weight vector for information from considered 	an occasionally change a good stored r an inferior one, since only n the last run of selected examples is
 The probability smaller and smaller 	of this happening, however, becomes ller as the number of iterations grows
 If the training searce rational, it converges to an (see Gallant (19)) 	t is finite and the weights and vectors an be shown that this algorithm optimal solution with probability 1 90))
Schumpeter School	Virtschaftsinformatik und Onerations Research WINFOR 170

