

Distance measures
 The distance measure determines for each known element of the given data set the similarity of this already classified case to cases currently not classified
 For this purpose, various distance measures can be applied
 For instance, the Euclidean distance measure is frequently applied, i.e.,
$\forall x, y \in \mathbb{R}^n : d(x, y) = x - y = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$
 By using existing weights for the different attributes, we obtain
$\forall x, y, w \in \mathbb{R}^n: d_w(x, y) = x - y = \sqrt{\sum_{i=1}^n w_i \cdot (x_i - y_i)^2}$
Stangers School Wirtschaftsinformatik und Operations Research WINEOR 176

Finding appropriate values for parameter k • The choice of the parameter k may have considerable consequences for the efficiency of the approach • Small values of k may not sufficiently eliminate the negative influence of erroneously classified cases in the data set • Large values of k may increase the impact of cases that are not representative for the case to be classified. This results from the fact that (more) remote cases are additionally integrated. As these farer away located cases do not provide adequate decision support for the classification of the currently considered case, the classification may be distorted Note that the latter problem can be mitigated by additionally applying distance-dependent weights (see below) 2 WINFOR 184 Wirtschaftsinformatik und Operations Research

The law of large numbers is helpful

- This can be illustrated by Monte Carlo simulations of tossing a slightly biased coin (51:49 for head)
- With a large number of coin tosses (>6,000) we observe that all conducted simulations attain a heads ratio of over 50 percent
- With other words, although that each classification is only slightly better than a 50:50 guess, a large number of independent repetitions results in a reliable classification whenever we decide for the majority of votes

Bagging (according to Breiman (1996))

- If y is numerical, we replace $\varphi(x, \mathcal{L})$ by the average of $\varphi(x, \mathcal{L}_k)$ over all generated learning sets \mathcal{L}_k . By theoretically considering all possible learning sets we approach the averaging value $\varphi_A(x) \coloneqq E_{\mathcal{L}}(\varphi(x, \mathcal{L}))$, with the expectation $E_{\mathcal{L}}$ over all learning sets \mathcal{L} for $\varphi(x, \mathcal{L})$
- If y is a class label, we conduct a voting of all predictors and take the one with the most votes, i.e., with
- $N_j = |\{\mathcal{L}_k \mid \varphi(x, \mathcal{L}_k) = j\}|, \forall j \in \{1, \dots, C\}, \text{ we set } \varphi_A(x) \coloneqq argmax\{N_j \mid j \in \{1, \dots, C\}\}$
- However, in real-world applications, we have only one learning set *L* without the luxury of replicates

Wirtschaftsinformatik und Operations Research

WINFOR 203

2

2.6.2 Bagging (according to Breiman (1996))

- We consider a learning set L = { (y_i, x_i) | i = 1, ..., N } with vectors of attribute values ∀i ∈ {1, ..., N}: x_i∈ ℝⁿ and a corresponding classification y_i that is either a class label (i.e., y_i ∈ {1, ..., C}, with C ∈ ℕ) or a numerical response (i.e., y_i ∈ ℝ).
- We assume there is a predictor $\varphi(x, \mathcal{L})$ that predicts the *y*-value according to the input $x \in \mathbb{R}^n$ and based on the learning set \mathcal{L}
- Now, we assume that there is a sequence of learning sets $\{\mathcal{L}_1, ..., \mathcal{L}_k, ...\}$ each consisting of N independent observations from the same underlying distribution as \mathcal{L}
- The mission is to use the learning sets {L₁, ..., L_k, ... } in order to obtain an improved predictor than the single learning set predictor φ(x, L) introduced above

Wirtschaftsinformatik und Operations Research

WINFOR 202

Bagging (according to Breiman (1996)) We do the following to imitate the aforementioned process Take repeated bootstrap samples {L^(B)} from L and form {φ(x, L^(B))} If y is numerical, we set φ_B(x) = av_B (φ(x, L^(B))) (i.e., we take the average value over all bootstrap samples {L^(B)}) If y is a class label, we let the predictors of set {φ(x, L^(B))} vote to determine φ_B(x) This procedure is denoted as "bootstrap aggregating" while the acronym bagging is used The bootstrap samples {L^(B)} each consisting of N' ≤ N cases are drawn at random from L, BUT with replacement (otherwise, for the common setting N' = N there would be all identical to L as this set also comprises N cases)

Thus, each item (y_n, x_n) ∈ L may appear repeated times or not at all in some L^(B)

Some facts

"Historic" development

- 1990 Boost-by-majority algorithm (Freund)
- 1995 AdaBoost (Freund & Schapire)
- 1997 Generalized version of AdaBoost (Schapire & Singer)
- 2001 AdaBoost in Face Detection (Viola & Jones)

Properties

2

- AdaBoost combines several (weak) classifiers
- AdaBoost is frequently able to reduce bias or variance
- AdaBoost is close to sequential decision making by producing a sequence of gradually more complex classifiers

Wirtschaftsinformatik und Operations Research

Given and sought
 Given: (x₁, y₁),, (x_m, y_m); ∀i ∈ {1,, m}: x_i∈ X, y_i ∈ {-1, +1} Sought: A predictor (final classifier) H(x) = sign(∑^T_{t=1} α_t · h_t(x)), with ∀x ∈ ℝ: sign(x) =
Wirtschaftsinformatik und Operations Research WINEOR 212

2.6.3.2 Optimizing α_t
• Our aim is to minimize $Z_t = \sum_{i=1}^m D_t(i) \cdot e^{-\alpha_t \cdot y_i \cdot h_t(x_i)}$ • Hence, we consider the first derivative of this function $\frac{dZ_t}{\alpha_t} = (-1) \cdot \sum_{i=1}^m D_t(i) \cdot y_i \cdot h_t(x_i) \cdot e^{-\alpha_t \cdot y_i \cdot h_t(x_i)}$ • Due to fact that $y_i \cdot h_t(x_i) = -1$ if $y_i \neq h_t(x_i)$ and $y_i \cdot h_t(x_i) = 1$ if $y_i = h_t(x_i)$, we conclude that $= \sum_{i \mid y_i \neq h_t(x_i)} D_t(i) \cdot e^{\alpha_t} - \sum_{i \mid y_i = h_t(x_i)} D_t(i) \cdot e^{-\alpha_t}$ • With $\epsilon_j = \sum_{i=1}^m D_t(i) [\![y_i \neq h_j(x_i)]\!]$, we obtain $= (1 - \epsilon_t) \cdot e^{\alpha_t} - \epsilon_t \cdot e^{-\alpha_t}$ • Now, we set this derivative to zero $(1 - \epsilon_t) \cdot e^{\alpha_t} - \epsilon_t \cdot e^{-\alpha_t} = 0 \Leftrightarrow (1 - \epsilon_t) \cdot e^{\alpha_t} = \epsilon_t \cdot e^{-\alpha_t}$ $\Leftrightarrow \ln(1 - \epsilon_t) + \alpha_t = \ln(\epsilon_t) - \alpha_t \Leftrightarrow \ln(1 - \epsilon_t) + 2\alpha_t = \ln(\epsilon_t)$ $\Leftrightarrow 2\alpha_t = \ln(\epsilon_t) - \ln(1 - \epsilon_t) \Leftrightarrow \alpha_t = \frac{1}{2} \cdot \ln\left(\frac{\epsilon_t}{1 - \epsilon_t}\right)$
Schumpeter School Wirtschaftsinformatik und Operations Research WINEOR 223

And minimizing $Z_t(\alpha_t)$
$=\epsilon_t \cdot \sqrt{\frac{\epsilon_t}{1-\epsilon_t}} + (1-\epsilon_t) \cdot \sqrt{\frac{1-\epsilon_t}{\epsilon_t}} = \frac{\epsilon_t^2 + (1-\epsilon_t)^2}{\sqrt{\epsilon_t} \cdot \sqrt{1-\epsilon_t}}$
We consider the first derivative (the second is positive)
$\frac{\partial Z_t \left(\alpha_t = \frac{1}{2} \cdot ln \left(\frac{\epsilon_t}{1 - \epsilon_t} \right) \right)}{\epsilon_t} - \frac{4\epsilon_t^3 - 6\epsilon_t^2 + 1}{\epsilon_t^3 - 6\epsilon_t^2 + 1}$
$\partial \epsilon_t = 2(1-\epsilon_t)^3 \cdot x^3$
set it to zero, and obtain
$\epsilon_t = \frac{1}{2} \lor \epsilon_t = \frac{\sqrt{3} + 1}{2} > 1 \lor \epsilon_t = -\frac{\sqrt{3} - 1}{2} < 0$
Hence, the only feasible optimal solution for $0 \le \epsilon_t \le 1$ is
$\epsilon = \frac{1}{2}$
$e_t = \frac{1}{2}$
Schungeter Sdood Charles and State S

	Weak learner	
 We apply as a It considers b threshold to 	weak learner a simple stu both attributes and identifi separate all cases	ump es the best
 I.e., 40 possil separation is weighted err 	ble thresholds are compare i implemented that attains for	ed, while the a smallest
 In what follows program 	s, we consider the outpu	t of a Python
SchumpeterSchool	Wirtschaftsinformatik und Operations Research	WINFOR 231

			a	
Index	X-Coordinate	Y-Coordinate	Classification	Initial weigh
0	1./	3.5	1	0.05
1	4.4	2.2	1	0.05
2	9.5	3.7	1	0.05
3	13.0	4.5	1	0.05
4	16.2	5.9	1	0.05
5	0.5	6.1	1	0.05
6	11.3	6.8	1	0.05
7	4.3	8.3	1	0.05
8	3.0	10.5	1	0.05
g	3.9	15.5	1	0.05
10	8.5	3.5	-1	0.05
11	11.3	3.5	-1	0.05
12	14.0	6.5	-1	0.05
13	7.1	8.5	-1	0.05
14	14.0	8.8	-1	0.05
15	10.0	9.8	-1	0.05
16	14.2	11.8	-1	0.05
17	10.0	13.4	-1	0.05
18	16.3	14.4	-1	0.05
19	13.8	16.2	-1	0.05

•	X-coordinate Threshold x-coordinate=6.5
	Best Threshold X-coordinate quality=0.2 Threshold X-coordinate flag=-1 Y-coordinate
	 Threshold y-coordinate=8.3
	 Threshold y-coordinate quality=0.25 Threshold y-coordinate flag=-1
•	We take the x-coordinate. Flag=-1
•	Results of weak classifier
	 Case 2 NOT correctly classified. Current error=0.05
	 Case 3 NOT correctly classified. Current error=0.1
	 Case 4 NOT correctly classified. Current error=0.15
	 Case 6 NOT correctly classified. Current error=0.2
•	Total error=0.2
•	Current list of classifiers: [['x-coordinate', 0.2, 6.5, -1, 1]]
•	Current alphalist: [0.6931471805599453]
Schumpeter S of Basiness and B	Wirtschaftsinformatikund Operations Research WINEOR

Indov	V. Coordinate	V Coordinate	Classification	Moight
nuex	1 7	2 5	Lidssincation	0.02125
1	1.7	2.2	1	0.03125
2	9.5	3.7	1	0.12500
3	13.0	4.5	1	0.12500
4	16.2	5.9	1	0.12500
5	6.5	6.1	1	0.03125
6	11.3	6.8	1	0.12500
7	4.3	8.3	1	0.03125
8	3.0	10.5	1	0.03125
9	3.9	15.5	1	0.03125
10	8.5	3.5	-1	0.03125
11	11.3	3.5	-1	0.03125
12	14.0	6.5	-1	0.03125
13	7.1	8.5	-1	0.03125
14	14.0	8.8	-1	0.03125
15	10.0	9.8	-1	0.03125
16	14.2	11.8	-1	0.03125
17	10.0	13.4	-1	0.03125
18	16.3	14.4	-1	0.03125
19	13.8	16.2	-1	0.03125

	Iteration 2 – weak classifier
•	X-coordinate
	 Threshold x-coordinate=13.0
	 Best Threshold x-coordinate quality=0.281249999999999994 Threshold x-coordinate flag=-1
•	Y-coordinate
	 Threshold y-coordinate=8.3
	 Threshold y-coordinate quality=0.156249999999999997 Threshold y-coordinate flag=-1
•	We take the y-coordinate. Flag=-1
•	Results of weak classifier
	 Case 8 NOT correctly classified. Current error=0.03124999999999999993
	 Case 9 NOT correctly classified. Current error=0.0624999999999999986
	 Case 10 NOT correctly classified. Current error=0.0937499999999999997
	 Case 11 NOT correctly classified. Current error=0.12499999999999999997
	 Case 12 NOT correctly classified. Current error=0.1562499999999999997
•	Total error=0.156249999999999997
•	['y-coordinate', 0.15624999999999997, 8.3, -1, 2]
·	Current list of classifiers: [['x-coordinate', 0.2, 6.5, -1, 1], ['y-coordinate', 0.15624999999999997, 8.3, -1, 2]]
•	Current alphalist: [0.6931471805599453, 0.8431994767851144]
Schun	Wirtschaftsinformatik und Operations Research WINEOR 235

	Iteration 2 – Quality of the combined classifier
Γ	 Classified classification of case 0 1 1.5363466573450597 Correct
	 Classified classification of case 1 1 1.5363466573450597 Correct
	 Classified classification of case 2 1 0.15005229622516914 Correct
	 Classified classification of case 3 1 0.15005229622516914 Correct
	 Classified classification of case 4 1 0.15005229622516914 Correct
	 Classified classification of case 5 1 1.5363466573450597 Correct
	 Classified classification of case 6 1 0.15005229622516914 Correct
	 Classified classification of case 7 1 1.5363466573450597 Correct
	 Classified classification of case 8 -1 -0.15005229622516914 NOT correct!
	 Classified classification of case 9 -1 -0.15005229622516914 NOT correct!
	 Classified classification of case 10 1 0.15005229622516914 NOT correct!
	 Classified classification of case 11 1 0.15005229622516914 NOT correct!
	 Classified classification of case 12 1 0.15005229622516914 NOT correct!
	 Classified classification of case 13 -1 -1.5363466573450597 Correct
	 Classified classification of case 14 -1 -1.5363466573450597 Correct
	 Classified classification of case 15 -1 -1.5363466573450597 Correct
	 Classified classification of case 16 -1 -1.5363466573450597 Correct
	 Classified classification of case 17 -1 -1.5363466573450597 Correct
	 Classified classification of case 18 -1 -1.5363466573450597 Correct
	Classified classification of case 19 -1 -1.5363466573450597 Correct

Total error=0.25

Index	X-Coordinate	Y-Coordinate	Classification	Weight
0	1.7	3.5	1	0.018519
1	4.4	2.2	1	0.018519
2	9.5	3.7	1	0.074074
3	13.0	4.5	1	0.074074
4	16.2	5.9	1	0.074074
5	6.5	6.1	1	0.018519
6	11.3	6.8	1	0.074074
7	4.3	8.3	1	0.018519
8	3.0	10.5	1	0.100000
9	3.9	15.5	1	0.100000
10	8.5	3.5	-1	0.100000
11	11.3	3.5	-1	0.100000
12	14.0	6.5	-1	0.100000
13	7.1	8.5	-1	0.018519
14	14.0	8.8	-1	0.018519
15	10.0	9.8	-1	0.018519
16	14.2	11.8	-1	0.018519
17	10.0	13.4	-1	0.018519
18	16.3	14.4	-1	0.018519
19	13.8	16.2	-1	0.018519

			_
 X-cc 	oordinate		
•	Inresnoid x-coordinate=6.5		
•	Best Threshold x-coordinate quality=0.2962962962962963 Threshold x-coordinate flag=-1		
 Y-CC 	oordinate		
•	Threshold y-coordinate=3.5		
•	Threshold y-coordinate quality=0.2666666666666666666666666666666666666		
• We	take the y-coordinate. Flag=1		
 Resi 	sults of weak classifier		
•	Case 2 NOT correctly classified. Current error=0.07407407407407407		
•	Case 3 NOT correctly classified. Current error=0.14814814814814814		
•	Case 4 NOT correctly classified. Current error=0.22222222222222222		
•	Case 5 NOT correctly classified. Current error=0.24074074074074073		
•	Case 6 NOT correctly classified. Current error=0.31481481481481477		
•	Case 7 NOT correctly classified. Current error=0.333333333333333326		
•	Case 8 NOT correctly classified. Current error=0.433333333333333324		
•	Case 9 NOT correctly classified. Current error=0.533333333333333332		
•	Case 10 NOT correctly classified. Current error=0.633333333333333332		
•	Case 11 NOT correctly classified. Current error=0.733333333333333332		
•	Total error=0.73333333333333333		
•	['y-coordinate', 0.2666666666666666666666666666666666666		
 Curr 	rrent list of classifiers:		
• [['x-	coordinate', 0.2, 6.5, -1, 1], ['y-coordinate', 0.156249999999999997, 8.3, -1, 2], ['y-coordinate', 0.266666666	666666666666666, 3.5,	1,
 Curr 	rrent alphalist: [0.6931471805599453, 0.8431994767851144, 0.50580045583924]		

	Iteration 3 – Quality of the combined	classifier	
Γ	Classified classification of case 0 1 1.0305462015058198 Correct		
	 Classified classification of case 1 1 1.0305462015058198 Correct 		
	 Classified classification of case 2 1 0.6558527520644092 Correct 		
	 Classified classification of case 3 1 0.6558527520644092 Correct 		
	 Classified classification of case 4 1 0.6558527520644092 Correct 		
	 Classified classification of case 5 1 2.0421471131842996 Correct 		
	 Classified classification of case 6 1 0.6558527520644092 Correct 		
	 Classified classification of case 7 1 2.0421471131842996 Correct 		
	 Classified classification of case 8 1 0.3557481596140709 Correct 		
	 Classified classification of case 9 1 0.3557481596140709 Correct 		
	 Classified classification of case 10 -1 -0.3557481596140709 Correct 		
	 Classified classification of case 11 -1 -0.3557481596140709 Correct 		
	 Classified classification of case 12 1 0.6558527520644092 NOT correct! 		
	 Classified classification of case 13 -1 -1.0305462015058198 Correct 		
	 Classified classification of case 14 -1 -1.0305462015058198 Correct 		
	 Classified classification of case 15 -1 -1.0305462015058198 Correct 		
	 Classified classification of case 16 -1 -1.0305462015058198 Correct 		
	 Classified classification of case 17 -1 -1.0305462015058198 Correct 		
	 Classified classification of case 18 -1 -1.0305462015058198 Correct 		
	 Classified classification of case 19 -1 -1.0305462015058198 Correct 		
	Total error=0.05		
	Schumenter School Wirtschaftsinformatik und Operations Research	WINFOR	239

		Iteration 3 -	- Undated	weight	c
			opuatea	weight	3
	Index	X-Coordinate	Y-Coordinate	Classification	Weight
	0	1.7	3.5	1	0.034722
	1	4.4	2.2	1	0.034722
	2	9.5	3.7	1	0.050505
	3	13.0	4.5	1	0.050505
	4	16.2	5.9	1	0.050505
	5	6.5	6.1	1	0.012626
	6	11.3	6.8	1	0.050505
	7	4.3	8.3	1	0.012626
	8	3.0	10.5	1	0.068182
	9	3.9	15.5	1	0.068182
	10	8.5	3.5	-1	0.068182
	11	11.3	3.5	-1	0.068182
	12	14.0	6.5	-1	0.187500
	13	7.1	8.5	-1	0.034722
	14	14.0	8.8	-1	0.034722
	15	10.0	9.8	-1	0.034722
	16	14.2	11.8	-1	0.034722
	17	10.0	13.4	-1	0.034722
	18	16.3	14.4	-1	0.034722
	19	13.8	16.2	-1	0.034722
numpeter School of Basiness and Economics	2. Ante	Wirtschaftsi	nformatik und Operations R	esearch	WINFOR

Index	X-Coordinate	Y-Coordinate	Classification	Weight
0	1.7	3.5	1	0.021756
1	4.4	2.2	1	0.021756
2	9.5	3.7	1	0.125000
3	13.0	4.5	1	0.125000
4	16.2	5.9	1	0.125000
5	6.5	6.1	1	0.007911
6	11.3	6.8	1	0.125000
7	4.3	8.3	1	0.007911
8	3.0	10.5	1	0.042722
9	3.9	15.5	1	0.042722
10	8.5	3.5	-1	0.042722
11	11.3	3.5	-1	0.042722
12	14.0	6.5	-1	0.117484
13	7.1	8.5	-1	0.021756
14	14.0	8.8	-1	0.021756
15	10.0	9.8	-1	0.021756
16	14.2	11.8	-1	0.021756
17	10.0	13.4	-1	0.021756
18	16.3	14.4	-1	0.021756
19	13.8	16.2	-1	0.021756

Iteration 5 – weak classifier
 X-coordinate Threshold x-coordinate=13.0 Threshold x-coordinate quality=0.2757120253164556 Threshold x-coordinate quality=0.2757120253164556 Threshold x-coordinate flag=-1 Y-coordinate Threshold y-coordinate quality=0.2883702531645569 Threshold y-coordinate flag=-1 We take the x-coordinate. Flag=-1 Results of weak classifier Case 4 NOT correctly classified. Current error=0.1279999999999994 Case 10 NOT correctly classified. Current error=0.1677215189873417 Case 11 NOT correctly classified. Current error=0.2321993670886075 Case 13 NOT correctly classified. Current error=0.23395569620253156 Case 17 NOT correctly classified. Current error=0.2757120253164556 Total error=0.2757120253164556 [[*ccordinate', 0.2, 6.5, -1, 1], ['x-coordinate', 0.1562499999999997, 8.3, -1, 2], ['y-coordinate', 0.2666666666666, 3.5, 1, 3], ['x-ccordinate', 0.2020202020202, 6.5, -3, -4], ['x-coordinate', 0.2757120253164556, 3.5, -1, 5]] Current alphalist: [0.6931471805599453, 0.8431994767851144, 0.50580045583924, 0.6868577894565153, 0.4829160669569937]
Stamper Show Wirtschaftsinformatik und Operations Research WINFOR 244

			a	
Index	X-Coordinate	Y-Coordinate	Classification	Weight
0	1./	3.5	1	0.015019
1	4.4	2.2	1	0.015019
2	9.5	3.7	1	0.086292
3	13.0	4.5	1	0.086292
4	16.2	5.9	1	0.226686
5	6.5	6.1	1	0.005461
6	11.3	6.8	1	0.086292
7	4.3	8.3	1	0.005461
8	3.0	10.5	1	0.029492
9	3.9	15.5	1	0.029492
10	8.5	3.5	-1	0.077475
11	11.3	3.5	-1	0.077475
12	14.0	6.5	-1	0.081103
13	7.1	8.5	-1	0.039455
14	14.0	8.8	-1	0.015019
15	10.0	9.8	-1	0.039455
16	14.2	11.8	-1	0.015019
17	10.0	13.4	-1	0.039455
18	16.3	14.4	-1	0.015019
19	13.8	16.2	-1	0.015019

Iteration 6 – weak classifier
X-coordinate Threshold x-coordinate=14.2
Threshold x-coordinate guality=0.37383943200436914 Threshold x-coordinate flag=1
Y-coordinate
Threshold v-coordinate=3.5
 Threshold y-coordinate quality=0.2895823326466632 Threshold y-coordinate flag=1
We take the y-coordinate. Flag=1
Results of weak classifier
Case 2 NOT correctly classified. Current error=0.08629164391043145
Case 3 NOT correctly classified. Current error=0.1725832878208629
 Case 4 NOT correctly classified. Current error=0.39926908409059036
 Case 5 NOT correctly classified. Current error=0.40473058054061767
Case 6 NOT correctly classified. Current error=0.49102222445104915
Case 7 NOT correctly classified. Current error=0.49648372090107645
 Case 8 NOT correctly classified. Current error=0.5259758017312239
 Case 9 NOT correctly classified. Current error=0.5554678825613714
 Case 10 NOT correctly classified. Current error=0.6329427749573542
 Case 11 NOT correctly classified. Current error=0.710417667353337
 Total error=0.710417667353337
 ['y-coordinate', 0.2895823326466632, 3.5, 1, 6]
 Current list of classifiers: [[:\c-coordinate', 0.2, 6.5, -1, 1], [\v-coordinate', 0.1562499999999997, 8.3, -1, 2], [\v-coordinate', 0.266666666666666666666, 3.5, 1, 3], [\v-coordinate', 0.2020202020202, 6.5, -1, 4], [\v-coordinate', 0.2757120253164556, 13.0, -1, 5], [\v-coordinate', 0.29582332646656, 3.5, 1, 6]]
 Current alphalist: [0.6931471805599453, 0.8431994767851144, 0.50580045583924, 0.6868577894565153, 0.4829160669569937, 0.4487067041788279]
Schumpter School Wirtschaftsinformatik und Operations Research WINEOR 247

Iteration 6 – Quality of the combined classifier
Classified classification of case 0 1 1.751613353740501 Correct
Classified classification of case 1 1 1.751613353740501 Correct
Classified classification of case 2 1 0.9006177337437155 Correct
Classified classification of case 3 1 0.9006177337437155 Correct
 Classified classification of case 4 -1 -0.06521440017027197 NOT correct!
Classified classification of case 5 1 3.6606276737766366 Correct
 Classified classification of case 6 1 0.9006177337437155 Correct
 Classified classification of case 7 1 3.6606276737766366 Correct
Classified classification of case 8 1 1.9742287202064077 Correct
Classified classification of case 9 1 1.9742287202064077 Correct
 Classified classification of case 10 -1 -1.0083965862924205 Correct
Classified classification of case 11 -1 -1.0083965862924205 Correct
Classified classification of case 12 -1 -0.06521440017027197 Correct
Classified classification of case 13 -1 -0.7857812198265135 Correct
 Classified classification of case 14 -1 -1.751613353740501 Correct
 Classified classification of case 15 -1 -0.7857812198265135 Correct
Classified classification of case 16 -1 -1.751613353740501 Correct
Classified classification of case 17 -1 -0.7857812198265135 Correct
 Classified classification of case 18 -1 -1.751613353740501 Correct
 Classified classification of case 19 -1 -1.751613353740501 Correct
Total error=0.05
Schumpter School Wirtschaftsinformatik und Operations Research WINFOR 248

Index	X-Coordinate	Y-Coordinate	Classification	Weight
0	1.7	3.5	1	0.025932
1	4.4	2.2	1	0.025932
2	9.5	3.7	1	0.060733
3	13.0	4.5	1	0.060733
4	16.2	5.9	1	0.159544
5	6.5	6.1	1	0.003844
6	11.3	6.8	1	0.060733
7	4.3	8.3	1	0.003844
8	3.0	10.5	1	0.020757
9	3.9	15.5	1	0.020757
10	8.5	3.5	-1	0.054528
11	11.3	3.5	-1	0.054528
12	14.0	6.5	-1	0.140035
13	7.1	8.5	-1	0.068124
14	14.0	8.8	-1	0.025932
15	10.0	9.8	-1	0.068124
16	14.2	11.8	-1	0.025932
17	10.0	13.4	-1	0.068124
18	16.3	14.4	-1	0.025932
19	13.8	16.2	-1	0.025932

	X-coordinate
	Threshold x-coordinate=14.2
	 Threshold x-coordinate guality=0.3091976806419835 Threshold x-coordinate flag=1
	Y-coordinate
	 Threshold y-coordinate=6.1
	 Threshold y-coordinate quality=0.2151460337068737 Threshold y-coordinate flag=-1
•	We take the y-coordinate. Flag=-1
•	Results of weak classifier
	 Case 6 NOT correctly classified. Current error=0.06073303626577251
	 Case 7 NOT correctly classified. Current error=0.06457689932056825
	 Case 8 NOT correctly classified. Current error=0.08533375981646518
	 Case 9 NOT correctly classified. Current error=0.10609062031236212
	 Case 10 NOT correctly classified. Current error=0.16061832700961792
	 Case 11 NOT correctly classified. Current error=0.2151460337068737
	 Total error=0.2151460337068737
	 ['y-coordinate', 0.2151460337068737, 6.1, -1, 7]
	 Current list of classifiers: [["x-coordinate', 0.2, 6.5, -1, 1], ['y-coordinate', 0.1562499999999997, 8.3, -1, 2], ['y-coordinate', 0.2666666666666666666666, 3.5, 1, 3], ['x-coordinate', 0.20202020202020, 6.5, -1, 4], ['x-coordinate', 0.2757120253164555, 13.0, -1, 5], ['y-coordinate', 0.2895823326466632, 3.5, 1, 6], ['y-coordinate', 0.2151460337068737, 6.1, -1, 7]]
•	Current alphalist: [0.6931471805599453, 0.8431994767851144, 0.50580045583924, 0.6868577894565153]
Schump of Busin	Wirtschaftsinformatik und Operations Research WINEOR 25

Iteration 7 – Quality of the	e combined classifier
 Classified classification of case 0 1 2.398703676828247 	Correct
 Classified classification of case 1 1 2.398703676828247 	Correct
 Classified classification of case 2 1 1.547708056831461 	6 Correct
 Classified classification of case 3 1 1.547708056831461 	6 Correct
 Classified classification of case 4 1 0.581875922917474 	1 Correct
 Classified classification of case 5 1 4.307717996864382 	Correct
 Classified classification of case 6 1 0.253527410655969 	3 Correct
 Classified classification of case 7 1 3.013537350688890 	3 Correct
 Classified classification of case 8 1 1.327138397118661 	7 Correct
 Classified classification of case 9 1 1.327138397118661 	7 Correct
 Classified classification of case 10 -1 -0.3613062632046 	743 Correct
 Classified classification of case 11 -1 -0.3613062632046 	743 Correct
 Classified classification of case 12 -1 -0.7123047232580 	182 Correct
 Classified classification of case 13 -1 -1.4328715429142 	598 Correct
 Classified classification of case 14 -1 -2.3987036768282 	47 Correct
 Classified classification of case 15 -1 -1.4328715429142 	598 Correct
 Classified classification of case 16 -1 -2.3987036768282 	47 Correct
 Classified classification of case 17 -1 -1.4328715429142 	598 Correct
 Classified classification of case 18 -1 -2.3987036768282 	47 Correct
 Classified classification of case 19 -1 -2.3987036768282 	47 Correct
Total error=0.0	
Schumpeter School Wirtschaftsinformatik und Op	erations Research WINFOR 253

	ltera	ation 7 -	- Updated	weight	S
Inde	ex X-	Coordinate	Y-Coordinate	Classification	Weight
0		1.7	3.5	1	0.016521
1		4.4	2.2	1	0.016521
2		9.5	3.7	1	0.038691
3		13.0	4.5	1	0.038691
4		16.2	5.9	1	0.101639
5		6.5	6.1	1	0.002449
6		11.3	6.8	1	0.141144
7		4.3	8.3	1	0.008933
8		3.0	10.5	1	0.048239
9		3.9	15.5	1	0.048239
10		8.5	3.5	-1	0.126723
11		11.3	3.5	-1	0.126723
12		14.0	6.5	-1	0.089211
13		7.1	8.5	-1	0.043399
14		14.0	8.8	-1	0.016521
15		10.0	9.8	-1	0.043399
16		14.2	11.8	-1	0.016521
17		10.0	13.4	-1	0.043399
18		16.3	14.4	-1	0.016521
19		13.8	16.2	-1	0.016521
Impeter School		Wirtschaftsi	nformatik und Operations R	esearch	WINFOR

<text><list-item><list-item><list-item><list-item><list-item><list-item><table-container> **Multi-class AdaBoost by Freund and Schapire (1996)** • n what follows, we consider a simple extension of AdaBoost to general classifications • for this purpose, the authors generate and introduce two different approaches, namely • AdaBoost.M1 and • AdaBoost.M2

AdaBoost.M2						
Input:						
Sequence of m cases $((x_1, y_1),, (x_m, y_m))$ with labels $y_i \in Y = \{1,, C\}$ determining the respective classification of the case $x_i \in X = \{x_1,, x_m\}$						
 Weak learning algorithm (predictor) denotes as WeakLearn 						
 Integer T determining the number of iterations to be performed 						
Let $B \coloneqq \{(i, y) \mid i \in \{1,, m\} \land y \in Y \land y \neq y_i\} /*$ all possible mislabels */						
Initialize $D_1(i, y) \coloneqq \frac{1}{ B }$ (weights of the mislabels to be considered), $\forall (i, y) \in B$						
DO FOR ALL $t = 1, 2,, T$:						
1. Call WeakLearn $(D_t(i, y))$ /* based on the mislabel weights $D_t(i, y)$, $\forall (i, y) \in B$ */						
2. Get back the prediction $h_t: X \times Y \mapsto [0,1]$						
3. Calculate the pseudo-loss ϵ_t of the predictor h_t by the formula						
$\epsilon_t = \frac{1}{2} \cdot \sum_{(i,y) \in B} D_t(i,y) \cdot \left(1 - h_t(x_i, y_i) + h_t(x_i, y)\right)$						
4. Set $\beta_t = \frac{\epsilon_t}{1 - \epsilon_t}$						
Wirtschaftsinformatik und Operations Research 260						

Weak learners tested by Freund and Schapire (1996)

FindAttrTest

- Searches for the single attribute test that causes minimal error (or pseudoloss when AdaBoost.M2 is applied)
- E.g., for a binary classifier, an attribute *a* with a value *v* is determined such that each new case *x* is classified as follows:
 - If case x does not possess a value of attribute a the classification is randomly chosen
 - If attribute a is discrete and case x possesses the value v for attribute a the classification is p_0
 - If attribute a is continuous and case x possesses a value smaller or equal to v for attribute a the classification is p₀
 - In all other cases, the classification is p₁
- FindAttrTest searches exhaustively for the classifier of the form given above with minimum error or pseudo-loss with respect to the distribution provided by the booster

Wirtschaftsinformatik und Operations Research

Weak learners tested by Freund and Schapire (1996)

FindAttrTest

2

- Hence, this method has to check exhaustively all attributes and cases in the training set
- Therefore, with *m* training cases and *n* attributes this search can be executed with an asymptotic running time O(n · m). For extensions dealing with *k* classes, we have to add a factor of O(k)

Wirtschaftsinformatik und Operations Research

WINFOR 271

Weak learners tested by Freund and Schapire (1996)

FindDecRule

- This algorithm requires an unweighted training set, so we use the resampling version of boosting
- First, the given training set is randomly divided into a growing set using 70% of the data, and a pruning set with the remaining 30% of given cases
- First phase

- The growing set of cases of the data set is used to grow a list of attribute-value tests. The latter is initially empty, i.e., does not contain any test criterion
- Analogous to FindAttrTest, each test compares a chosen attribute a to a value v
- The procedure adds only one test at a time. An entropy-based potential function is used to decide about the growth of the list of tests. Specifically, the test is added that causes the greatest drop in potential
- After the test is chosen, only one branch is expanded, namely, the branch with the highest remaining potential. The list continues to be grown in this fashion until no test remains which will further reduce the potential

Wirtschaftsinformatik und Operations Research

WINFOR 272

Weak learners tested by Freund and Schapire (1996)

C4.5

2

- This is the sophisticated decision tree algorithm proposed by <u>Quinland</u> (<u>1993</u>) and introduced in this course
- During the tests, all the default options including pruning are turned on
- As C4.5 expects an unweighted training sample, resampling is applied
- Moreover, AdaBoost.M2 is not applied as C4.5 is designed to minimize error, not pseudo-loss. Note that Freund and Schapire (1996) argue that pseudo-loss is not really helpful when using a weak learning algorithm as strong as C4.5, since such an algorithm will usually be able to find a hypothesis with error less than $\frac{1}{2}$

Wirtschaftsinformatik und Operations Research

WINFOR 274

WINFOR 276

Boosting with trees in sklearn The FindAttrTest learner tested by Freund and Schapire (1996) extends the idea of decision stumps in order to provide a suitable plausibility function Unfortunately, the provided description of the implementation details is rather vague (see the preceding slides summarizing the description provided by the paper) Therefore, we will present an approach actually implemented in the python library *scikit learn*, which utilizes decision trees to generate the needed plausibility function This approach should be very similar to the one described by Freund and Schapire (1996)

 We do not go into detail of these approaches and merely use the weighted class probability estimates as the plausibility estimates h_t(x_i, y) in the AdaBoost.M2 approach

Wirtschaftsinformatik und Operations Research

WINFOR 277

2

	An example (continued)													
	The needed plausibility values $h(x_i,y)$ are determined for each x_i according to the probability values of the leaf nodes													
				Summa	ary for no	de p_0			Summa	ry for	nod	e p_1		
				male	female	child	total		male	fema	ale	child	total	
				1	2	2	5		3	1		0	4	
		norr	n.	0.2	0.4	0.4	1.0	norm.	0.75	0.2	5	0	1.0	
	Sia	ze 🛛	1	.25	143	150	163	167	17	73	18	0	182	187
	Gro	up	cl	hild	male	child	female	e femal	e ma	ale	ma	le	female	male
	No	de	1	0 ₀	p_0	p_0	p_0	p_0	р	1	p	L	p_1	p_1
	$h(x_i)$	m)	C).2	0.2	0.2	0.2	0.2	0.7	75	0.7	5	0.75	0.75
	$h(x_i, f)$		C).4	0.4	0.4	0.4	0.4	0.2	25	0.25		0.25	0.25
	$h(x_{l}, c)$ 0.4 0.4 0.4 0.4 0.4 0.0 0.0 0.0 0.0								0.0					
S	Schungeter School Control Wirtschaftsinformatik und Operations Research WINEOR 282													

	The re	eal-	wo	rld p	oro	ble	ems	of the benchmark
	nama soybean-small laboriones profiliationes profiliationes profiliationes profiliationes profiliationes profiliationes votes 1 crx breast-concer-w breast-con	# exan train 47 57 106 150 155 208 214 226 303 307 351 435 690 699 768 846 528 846 528 81000 23100 23163 3163 3163 3163 3163	nples test - - - - - - - - - - - - - - - - - - -	# classes 4 2 3 2 2 7 2 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	# attri disc. 35 8 57 - - - - - - - - - - - - - - - - - -	butes cont. - - - - - - - - - - - - - - - - - - -	values · · · · · · · · · · · · ·	See Freund and Schapire (1996) p.5
	satimage agaricus-lepiot letter-recognit	4435 8124 16000	2000 - 4000	6 2 26	22	36 - 16	-	and https://archive.ics.uci.edu/ml/index.php
Schumpeter Sch of Basisse and Bor	nool Juny-S			Wirtso	haftsinf	ormatik	und Open	ations Research WINFOR 288

Test	er	ror	' ra	ite	5 O	fva	ario	ous	s al	go	ritl	hm	S
		Fi	ndAttr	Fest			Fi	ndDecR	ule			C4.5	
		error		pseud	o-loss		error		pseud	o-loss		error	
name	-	boost	bag	boost	bag	-	boost	bag	boost	bag	-	boost	bag
soybean-small	57.6	56.4	48.7	0.2	20.5	51.8	56.0	45.7	0.4	2.9	2.2	3.4	2.2
labor	25.1	8.8	19.1			24.0	7.3	14.6			15.8	13.1	11.3
promoters	29.7	8.9	16.6			25.9	8.3	13.7			22.0	5.0	12.7
iris	35.2	4.7	28.4	4.8	7.1	38.3	4.3	18.8	4.8	5.5	5.9	5.0	5.0
hepatitis	19.7	18.6	16.8			21.6	18.0	20.1			21.2	16.3	17.5
sonar	25.9	16.5	25.9			31.4	16.2	26.1			28.9	19.0	24.3
glass	51.5	51.1	50.9	29.4	54.2	49.7	48.5	47.2	25.0	52.0	31.7	22.7	25.7
audiology.stand	53.5	53.5	53.5	23.6	65.7	53.5	53.5	53.5	19.9	65.7	23.1	16.2	20.1
cleve	27.8	18.8	22.4			27.4	19.7	20.3			26.6	21.7	20.9
soybean-large	64.8	64.5	59.0	9.8	74.2	73.6	73.6	73.6	7.2	66.0	13.3	6.8	12.2
ionosphere	17.8	8.5	17.3			10.3	6.6	9.3			8.9	5.8	6.2
house-votes-84	4.4	3.7	4.4			5.0	4.4	4.4			3.5	5.1	3.6
votes1	12.7	8.9	12.7			13.2	9.4	11.2			10.3	10.4	9.2
crx	14.5	14.4	14.5			14.5	13.5	14.5			15.8	13.8	13.6
breast-cancer-w	8.4	4.4	6.7			8.1	4.1	5.3			5.0	3.3	3.2
pima-indians-di	26.1	24.4	26.1			27.8	25.3	26.4			28.4	25.7	24.4
vehicle	64.3	64.4	57.6	26.1	56.1	61.3	61.2	61.0	25.0	54.3	29.9	22.6	26.1
vowel	81.8	81.8	76.8	18.2	74.7	82.0	72.7	71.6	6.5	63.2	2.2	0.0	0.0
german	30.0	24.9	30.4			30.0	25.4	29.6			29.4	25.0	24.6
segmentation	75.8	75.8	54.5	4.2	72.5	73.7	53.3	54.3	2.4	58.0	3.6	1.4	2.7
hypothyroid	2.2	1.0	2.2			0.8	1.0	0.7			0.8	1.0	0.8
sick-euthyroid	5.6	3.0	5.6			2.4	2.4	2.2			2.2	2.1	2.1
splice	37.0	9.2	35.6	4.4	33.4	29.5	8.0	29.5	4.0	29.5	5.8	4.9	5.2
kr-vs-kp	32.8	4.4	30.7			24.6	0.7	20.8			0.5	0.3	0.6
satimage	58.3	58.3	58.3	14.9	41.6	57.6	56.5	56.7	13.1	30.0	14.8	8.9	10.6
agaricus-lepiot	11.3	0.0	11.3			8.2	0.0	8.2			0.0	0.0	0.0
letter-recognit	92.9	92.9	91.9	34.1	93.7	92.3	91.8	91.8	30.4	93.7	13.8	3.3	6.8
							See	Freu	nd and	I Scha	apire ((1996)	p.7
2											1	A/11	
ant to			Win	tschafts	informa	atik und	I Operat	tions Re	esearch		_	V V	VL

Finding appropriate values for \tilde{n}

- <u>Frochte (2018)</u> p.155 reports that appropriate values for a sufficiently reliable approach are $\tilde{n} = \lfloor \log_2 n \rfloor$ or $\tilde{n} = \lfloor \sqrt{n} \rfloor$
- By considering current libraries, for instance scikitlearn (Python), this choice depends on the sought classification
 - For class labels, $\tilde{n} = \lfloor \sqrt{n} \rfloor$ is proposed as a default value

Wirtschaftsinformatik und Operations Research

2

• For numerical classifications, the default value is $\tilde{n} = n$

WINFOR 299

A possible random forest procedure

- Let n be the number of available attributes in the training set *L* (formerly denoted as the data set M). The training set comprises |*L*| = N cases
- 2. Determine the number of decision trees (classifiers) |B| to be generated
- 3. For i = 1 to |B| do
 - Generate randomly by **b**ootstrap **agg**regating the training set $\mathcal{L}^{(i)}$
 - Select randomly $\tilde{n} \leq n$ attributes from training set $\mathcal L$ and insert it into set $\mathcal M^{(l)}$
 - Train CART on training set $\mathcal{L}^{(i)}$ by solely using the attributes of set $\mathcal{M}^{(i)}$

Wirtschaftsinformatik und Operations Research

- No pruning is applied
- 4. End For

	2.7.1 Basics	
 We define th A pattern (f clustering a measureme Each scalar attribute) The parame A pattern se patterns. Ea pattern set A class refer process in s source of pa probability of 	e following terms and notations eature vector) x is a single item used b gorithm. It is usually defined by a vect nts, i.e., $x = (x_1, x_2,, x_d)$ component x_i of a pattern x is denote ter d gives the dimensionality of the p et is denoted by $\mathcal{H} = \{x_1, x_2,, x_n\}$ a ch pattern x_i is denoted by $(x_{i,1}, x_{i,2},, x_n)$ to be clustered can be viewed as an n s to a state of nature that governs the pome cases. More concretely, a class ca itterns whose distribution in feature sp density specific to the class	by the applied for of d d as a feature (or an pattern space nd comprises n , $x_{i,d}$), i.e., a $\times d$ pattern matrix e pattern generation in be viewed as a pace is governed by a
of Basines and Reserveds	Wirtschaftsinformatik und Operations Research	WINFOR 312

- A hard clustering assigns a class label l_i to each pattern x_i that identifies its class unambiguously. The set of all labels for a pattern set $\mathcal{H} = \{x_1, x_2, \dots, x_n\}$ is denoted as $\mathcal{L}(\mathcal{H}) =$ $\{l_1, l_2, \dots, l_n\}$ with $l_i \in \{1, 2, \dots, k\}$ giving the index of the cluster x_i is assigned to while k determines the total number of clusters
- Fuzzy clustering procedures assign to each pattern x_i a fractional degree of membership $f_{i,i}$ in each output cluster $j \in \{1, 2, \dots, k\}$
- A distance measure (a specialization of a proximity measure) is a metric (or quasi-metric) on the feature space used to quantify the similarity of patterns

WINFOR 313

Metric 2.7.1.1 Definition A metric on a set X is a function (also denoted as a distance function or just a distance) $d: X \times X \mapsto [0, \infty) \subseteq \mathbb{R}$ with $[0, \infty)$ being all positive real numbers such that the following restrictions are fulfilled 1. $\forall x, y \in X: d(x, y) \ge 0$ 2. $\forall x, y \in X: d(x, y) = 0 \Rightarrow x = y$ 3. $\forall x, y \in X: d(x, y) = d(y, x)$ 4. $\forall x, y, z \in X: d(x, y) \leq d(x, z) + d(z, y)$ 2 WINFOR 315

Considering $\lim_{\alpha\mapsto\infty} d^{\alpha}(\mathbb{X}_1,\mathbb{X}_2)$						
2.7.1.3 Lemma $\forall \mathbb{X}_1, \mathbb{X}_2 \in \mathbb{R}^d: \lim_{\alpha \to \infty} d^{\alpha}(\mathbb{X}_1, \mathbb{X}_2) = \max\{ x_{1,j} - x_{2,j} \mid 1 \le j \le d \}$						
Proof: We denote as $\hat{d} = x_{1,j} - x_{2,j} = \max\{ x_{1,k} - x_{2,k} k \in \{1,, d\}\}, j \in \{1,, d\}$						
$\lim_{\alpha \to \infty} d^{\alpha}(\mathbf{x}_1, \mathbf{x}_2) = \lim_{\alpha \to \infty} \left(\sum_{j=1}^d x_{1,j} - x_{2,j} ^{\alpha} \right)^{1/\alpha} = \lim_{\alpha \to \infty} \left(d^{\alpha} \cdot \frac{\sum_{j=1}^d x_{1,j} - x_{2,j} ^{\alpha}}{d^{\alpha}} \right)^{1/\alpha} =$						
$\lim_{\alpha \mapsto \infty} \hat{d} \cdot \left(\frac{\sum_{j=1}^{d} x_{1,j} - x_{2,j} ^{\alpha}}{\hat{d}^{\alpha}} \right)^{\frac{1}{\alpha}} \le \lim_{\alpha \mapsto \infty} \hat{d} \cdot \left(\frac{\sum_{j=1}^{d} \hat{d}^{\alpha}}{\hat{d}^{\alpha}} \right)^{\frac{1}{\alpha}} \le \lim_{\alpha \mapsto \infty} \hat{d} \cdot \left(\sum_{j=1}^{d} 1 \right)^{\frac{1}{\alpha}} \le \lim_{\alpha \mapsto \infty} \hat{d} \cdot \sqrt[n]{d}$						
Hence, we conclude that $\lim_{a \to \infty} d \cdot 1^{\frac{1}{\alpha}} \le \lim_{\alpha \to \infty} d^{\alpha}(\mathbf{x}_{1}, \mathbf{x}_{2}) \le \lim_{\alpha \to \infty} d \cdot \sqrt[\alpha]{d}$						
$\Leftrightarrow \hat{d} \cdot \lim_{\alpha \to \infty} n^{\frac{1}{\alpha}} \le \lim_{\alpha \to \infty} d^{\alpha}(\mathbf{x}_{1}, \mathbf{x}_{2}) \le \hat{d} \cdot \lim_{\alpha \to \infty} \sqrt[\alpha]{d}$						
And thus, we obtain $\lim_{\alpha \to \infty} d^{\alpha}(\mathbf{x}_1, \mathbf{x}_2) = \hat{d}$						
Wirtschaftsinformatik und Operations Research WINFOR 327						

Observations						
 Hence, the algorithm iteratively makes local improvements to an arbitrary clustering until it is no longer possible to do so 						
 <u>Arthur and Vassilvitskii (2007)</u> state that "the k-means algorithm is attractive in practice because it is simple and it is generally fast. Unfortunately, it is guaranteed only to find a local optimum, which can often be quite poor." 						
Wirtschaftsinformatik und Operations Research WINEOR 332						

Main theoretical result of k++ Arthur and Vassilvitskii (2007) prove that the following Theorem holds even after conducting the step 1 (the modified step) **2.7.3.1 Theorem** If the clustering C is constructed with k-means++, then the corresponding objective function ϕ satisfies $E[\phi] \leq 8(ln(k) + 2) \cdot \phi_{OPT}$, with ϕ_{OPT} being the objective value of the optimal clustering Note that Arthur and Vassilvitskii (2007) also show that – within a constant factor – this bound is tight

Average φ Minimum φ Average T k k-means		Results – <i>Cloud</i> data set $(n = 4,601, d = 58)$								
k k-means k-means++ k-means k-means++ k-means++ 10 3.698 · 10 ⁴ 49.43% 3.684 · 10 ⁴ 54.59% 2.36 69.00% 25 3.288 · 10 ⁴ 88.76% 3.280 · 10 ⁴ 89.58% 7.36 79.84% 50 3.183 · 10 ⁴ 95.35% 2.384 · 10 ⁴ 94.30% 12.20 75.76% • In almost all settings, k-means++ clearly outperforms k-means for all measured criteria, i.e., k-means++ consistently outperformed k-means, both by achieving a lower potential value, in some cases by several orders of magnitude, and also by having a faster running time • The D ² seeding is slightly slower than uniform seeding, but it still leads to a faster algorithm since it helps the local search converge after fewer iterations • Arthur and Vassilvitskii (2007) report that the synthetic example is a case where the standardized k-means algorithm performs very badly. Although there is an "obvious" clustering, the uniform seeding will inevitably merge some of these clusters, and the local search will never be able to split them apart	Г	Average ϕ Minimum ϕ Average T								
 10 3.698 ⋅ 10⁴ 49.43% 3.684 ⋅ 10⁴ 54.59% 2.36 69.00% 25 3.288 ⋅ 10⁴ 88.76% 3.280 ⋅ 10⁴ 89.58% 7.36 79.84% 50 3.183 ⋅ 10⁴ 95.35% 2.384 ⋅ 10⁴ 94.30% 12.20 75.76% In almost all settings, k-means++ clearly outperforms k-means for all measured criteria, i.e., k-means++ clearly outperforms k-means for all measured criteria, i.e., k-means++ clearly outperforms k-means for all measured criteria, i.e., k-means++ clearly outperforms k-means for all measured criteria, i.e., k-means++ clearly outperforms k-means for all measured criteria, i.e., k-means++ clearly outperforms k-means for all measured criteria, i.e., k-means++ clearly outperforms k-means for all measured criteria, i.e., k-means++ clearly outperforms k-means for all measured criteria, i.e., k-means++ clearly outperforms k-means for all measured criteria, i.e., k-means++ clearly outperforms k-means for all measured criteria, i.e., k-means++ clearly outperforms k-means for all measured criteria, i.e., k-means++ clearly outperforms k-means for all measured criteria, i.e., k-means++ consistently outperforms k-means, both by achieving a lower potential value, in some cases by several orders of magnitude, and also by having a faster running time The D² seeding is slightly slower than uniform seeding, but it still leads to a faster algorithm since it helps the local search converge after fewer iterations Arthur and Vassilvitskii (2007) report that the synthetic example is a case where the standardized k-means algorithm performs very badly. Although there is an "obvious" clustering, the uniform seeding will inevitably merge some of these clusters, and the local search will never be able to split them apart 		k	k-means	k-means++	k-means	k-means++	k-means	k-means++		
25 3.288 ⋅ 10 ⁴ 88.76% 3.280 ⋅ 10 ⁴ 89.58% 7.36 79.84% 50 3.183 ⋅ 10 ⁴ 95.35% 2.384 ⋅ 10 ⁴ 94.30% 12.20 75.76% • In almost all settings, k-means++ clearly outperforms k-means for all measured criteria, i.e., k-means++ consistently outperformed k-means, both by achieving a lower potential value, in some cases by several orders of magnitude, and also by having a faster running time • The D ² seeding is slightly slower than uniform seeding, but it still leads to a faster algorithm since it helps the local search converge after fewer iterations • Arthur and Vassilvitskii (2007) report that the synthetic example is a case where the standardized k-means algorithm performs very badly. Although there is an "obvious" clustering, the uniform seeding will inevitably merge some of these clusters, and the local search will never be able to split them apart.		10	$3.698 \cdot 10^{4}$	49.43%	$3.684 \cdot 10^{4}$	54.59%	2.36	69.00%		
 50 3.183 ⋅ 10⁴ 95.35% 2.384 ⋅ 10⁴ 94.30% 12.20 75.76% In almost all settings, k-means++ clearly outperforms k-means for all measured criteria, i.e., k-means++ clearly outperformed k-means, both by achieving a lower potential value, in some cases by several orders of magnitude, and also by having a faster running time The D² seeding is slightly slower than uniform seeding, but it still leads to a faster algorithm since it helps the local search converge after fewer iterations Arthur and Vassilvitskii (2007) report that the synthetic example is a case where the standardized k-means algorithm performs very badly. Although there is an "obvious" clustering, the uniform seeding will inevitably merge some of these clusters, and the local search will never be able to split them apart. 	1	25	$3.288 \cdot 10^{4}$	88.76%	$3.280\cdot10^4$	89.58%	7.36	79.84%		
 In almost all settings, k-means++ clearly outperforms k-means for all measured criteria, i.e., k-means++ consistently outperformed k-means, both by achieving a lower potential value, in some cases by several orders of magnitude, and also by having a faster running time The D² seeding is slightly slower than uniform seeding, but it still leads to a faster algorithm since it helps the local search converge after fewer iterations Arthur and Vassilvitskii (2007) report that the synthetic example is a case where the standardized k-means algorithm performs very badly. Although there is an "obvious" clustering, the uniform seeding will inevitably merge some of these clusters, and the local search will never be able to split them apart 		50	$3.183\cdot10^4$	95.35%	$2.384\cdot 10^4$	94.30%	12.20	75.76%		
	 measured criteria, i.e., k-means++ consistently outperformed k-means, both by achieving a lower potential value, in some cases by several orders of magnitude, and also by having a faster running time The D² seeding is slightly slower than uniform seeding, but it still leads to a faster algorithm since it helps the local search converge after fewer iterations Arthur and Vassilvitskii (2007) report that the synthetic example is a case where the standardized k-means algorithm performs very badly. Although there is an "obvious" clustering, the uniform seeding will inevitably merge some of these clusters, and the local search will never be able to split them apart 									

Results – k-means versus k-means++

Norm25 data set (see above)

	Aver	age ϕ	Minir	$\operatorname{num} \phi$	Average T		
k	k-means	k-means++	k-means	k-means++	k-means	k-means++	
10	$1.365 \cdot 10^{5}$	8.47%	$1.174 \cdot 10^{5}$	0.93%	0.12	46.72%	
25	$4.233\cdot 10^4$	99.96%	$1.914\cdot 10^4$	99.92%	0.90	87.79%	
50	$7.750 \cdot 10^3$	99.81%	$1.474 \cdot 10^{1}$	0.53%	2.04	-1.62%	

Cloud data set (n = 1,024, d = 10)

		Aver	age ϕ	Minir	$\operatorname{num}\phi$	Average T		
	k	k-means	k-means++	k-means	k-means++	k-means	k-means++	
	10	$7.921 \cdot 10^{3}$	22.33%	$6.284 \cdot 10^{3}$	10.37%	0.08	51.09%	
	25	$3.637\cdot 10^3$	42.76%	$2.550 \cdot 10^3$	22.60%	0.11	43.21%	
	50	$1.867\cdot 10^3$	39.01%	$1.407\cdot 10^3$	23.07%	0.16	41.99%	
of Basines a	er School ad Essentias	2	Wirtschaf	tsinformatik und Ope	rations Research	WIN	IFOR 33	

ϵ -neighborhood of a point 2.7.5.1 **Definition**: (ϵ -neighborhood of a point) The ϵ -neighborhood of a point p, denoted by $N_{\epsilon}(p)$ is a subset of the data set D that is defined by $N_{\epsilon}(p) =$ $\{q \in D \mid dist(p,q) < \epsilon\}$ One may think that it is enough to require for each point in a cluster that there are at least P^{min} points in an ϵ neighborhood of that point This is too naive since there are two kinds of points in a cluster, namely, points inside of the cluster (core points)

and points on the border of the cluster (border points). WINFOR 359 Wirtschaftsinformatik und Operations Research

2

Direct density reachability 2.7.5.2 **Definition**: (directly density-reachable) A point p is **directly density-reachable** from a point q with respect to ϵ and P^{min} if the following two criteria are fulfilled 1. $p \in N_{\epsilon}(q)$ and 2. $|N_{\epsilon}(q)| \ge P^{min}$ 2 **WINFOR** 360 Wirtschaftsinformatik und Operations Research

	Observation				
 Each cluster C w P^{min} points due 	with respect to ϵ and P^{min} co	ntains at least			
• $C \subseteq D$ is a no	on-empty subset of the data	base			
 Thus, there is 	s a point $p \in C$				
 Thus, p is at least density connected to itself by a point o ∈ C (note that this covers the case o = p) 					
 But, then not 2.7.5.2 and w 	de o fulfills the second criterive obtain $ N_\epsilon(o) \geq P^{min}$ wi	on of Definition th $o \in C$			
• Then, there are $ N_{\epsilon}(o) $ points that are directly density reachable from $o \in C$					
• Thus, all thes $ C \ge P^{min}$	se nodes also belong to C and	d we conclude that			
or Bankans and Tomoretic	Wirtschaftsinformatik und Operations Research	WINFOR 368			

Conclusions 2.7.5.7 Lemma Let p be a point in D and $|N_{\epsilon}(p)| \ge P^{min}$. Then, the set $(o \mid o \in D \land o \text{ is density} - reachable from p)$ 0 =with respect to ϵ and P^{min} is a cluster with respect to ϵ and P^{min} . It is not obvious that a cluster C with respect to ϵ and P^{min} is uniquely determined by any of its core points. However, each point in *C* is density-reachable from any of the core points of *C* and, therefore, a cluster *C* contains exactly the points which are density-reachable from an arbitrary core point of C. 2 WINFOR 370 Wirtschaftsinformatik und Operations Research

	Parameters	
• D	Cases (i.e., data points) in	
■ P ^{min}	Minimum size of a cluster (to predetermined by the user)	o be
• €	Minimum distance between (to be predetermined by the	two clusters user)
Schumpater School 🖉		
of Basilies and Examinia	Wirtschaftsinformatik und Operations Research	WINFOR 372

Two moon data sets – detailed results									
€ Number of clusters Noise									
0.02	5	95 %							
0.03	24	66 %							
0.04	38	16 %							
0.05	0.05 11 1.4%								
0.06	0.06 6 0 %								
0.07	3	0 %							
0.08	2	0 %							
 This table further underscores the sensitivity of the attained results form choosing suitable parameter values The expected (human eye corresponding) result with two distinctive clusters is attained by setting ε = 0.08 									
of Basilion and Tournelo	Wirtschaftsinformatik und Operations Researc	h WINFOR 388							

Values for the formula of <u>Lance and Williams</u>				
Method	α_1	α2	β	γ
Single linkage	$\frac{1}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$
Complete linkage	$\frac{1}{2}$	$\frac{1}{2}$	0	$\frac{1}{2}$
Average	$\frac{ \mathcal{C}_1 }{ \mathcal{C}_1 + \mathcal{C}_2 }$	$\frac{ C_2 }{ C_1 + C_2 }$	0	0
Centroid (Euclidean distance)	$\frac{ \mathcal{C}_1 }{ \mathcal{C}_1 + \mathcal{C}_2 }$	$\frac{ \mathcal{C}_2 }{ \mathcal{C}_1 + \mathcal{C}_2 }$	$\frac{ C_1 \cdot C_2 }{(C_1 + C_2)^2}$	0
Schumpeter School Wirtschaftsinformatik und Operations Research WINFOR 39				

Centroid method with Euclidean distance				
• It holds that $d(C_1 \cup C_2, C_i)$ $= \frac{ C_1 }{ C_1 + C_2 } \cdot d(C_1, C_i) + \frac{ C_2 }{ C_1 + C_2 } \cdot d(C_2, C_i) - \frac{ C_1 \cdot C_2 }{(C_1 + C_2)^2} \cdot d(C_1, C_2)$ • The new centroid of $C_1 \cup C_2$ will be at $c(C_1 \cup C_2) = \frac{ C_1 \cdot c(C_1)}{ C_1 + C_2 } + \frac{ C_2 \cdot c(C_2)}{ C_1 + C_2 } = \frac{ C_1 \cdot c(C_1) + C_2 \cdot c(C_2)}{ C_1 + C_2 }$ • Thus, we obtain the Euclidean distance between $C_1 \cup C_2$ and C_i as $d(C_1 \cup C_2, C_i) = \left(c(C_i) - \frac{ C_1 \cdot c(C_1) + C_2 \cdot c(C_2)}{ C_1 + C_2 }\right)^2$ And by multiplying up and rearranging, we finally obtain $= \frac{ C_1 }{ C_1 + C_2 } \cdot (c(C_i) - c(C_1))^2 + \frac{ C_2 }{ C_1 + C_2 } \cdot (c(C_i) - c(C_2))^2$ $- \frac{ C_1 }{ C_1 + C_2 } \cdot \frac{ C_2 }{ C_1 + C_2 } \cdot (c(C_1) - c(C_2))^2$				
$= \frac{ c_1 }{ C_1 + C_2 } \cdot d(C_1, C_i) + \frac{ c_2 }{ C_1 + C_2 } \cdot d(C_2, C_i) - \frac{ c_1 \cdot c_2 }{(C_1 + C_2)^2} \cdot d(C_1, C_2)$				
Virtschaftsinformatik und Operations Research WINFOR 403				

