
1

Wirtschaftsinformatik und Operations Research 173

2.5 Nearest neighbor methods

� Analogous to the linear perceptron, we consider a problem setting that is
characterized by a data set � of known cases

� Each case � ∈ � is defined as a vector � ∈ ℝ� of attribute values describing the
respective setting

� Moreover, each case is classified, i.e., the class of each case in the data set is
known

� Based on these cases, further cases have to be classified

� For this purpose, the learning algorithm of the linear perceptron iteratively
transforms the knowledge exhausted from the data set into a single weight
vector

� This is a significant compression of the available data into one separating
vector, i.e., from a considerable set of vectors into one vector that
separates the entire data set into two parts

� An alternative approach is to keep all available vectors (learning them by
heart) for the purpose of a direct detailed comparison with new cases in
order to derive a more reliable classification

Wirtschaftsinformatik und Operations Research 174

Nearest neighbor methods – motivation

� For this purpose, a considered vector to be classified is
categorized according to the known classification of its direct

neighborhood in the given data set

� The neighborhood of a vector results from an applied

distance measure

� As knowledge is not processed or transformed before it is
applied to classify new cases, this technique is categorized as a
special form of lazy learning with a significant memory

consumption

Wirtschaftsinformatik und Operations Research 175

Problem

� Given: Data set � with � vectors of the ℝ�, i.e., ��, �	, … , �� ∈ ℝ� with a known classification �: 1, … , � ↦ 1, … , � into � ∈ ℕ predetermined
classes and a new vector � ∈ ℝ�

� Sought: Classification of the vector � ∈ ℝ� by
comparing it with the known cases of the data set

� Possible applications

� Diagnosis systems in medical applications

� Pattern recognition (see the last example of the
perceptron algorithm)

� Classification of customers in social networks

Wirtschaftsinformatik und Operations Research 176

Distance measures

� The distance measure determines for each known element of the
given data set the similarity of this already classified case to cases
currently not classified

� For this purpose, various distance measures can be applied

� For instance, the Euclidean distance measure is frequently
applied, i.e.,

∀�, � ∈ ℝ�: � �, � = � − � = � �� − �� 	�
���

� By using existing weights for the different attributes, we obtain

∀�, �, � ∈ ℝ�: �� �, � = � − � = � �� ⋅ �� − �� 	�
���

2

Wirtschaftsinformatik und Operations Research 177

Nearest neighbor

� The nearest neighbor classifier determines the classification of
a given case � ∈ ℝ� solely by evaluating the classification of

its nearest neighbor � ∈ �
� Thus, we can formalize this method as follows:

� Given: Data set � ⊆ ℝ� with classification mapping �: 1, … , � ↦ 1, … , � into � ∈ ℕ predetermined classes, a
distance measure � �, � ∈ ℝ for two vectors �, � ∈ ℝ�, and a
new vector � ∈ ℝ� to be classified

Nearest Neighbor �, �� ≔ !"#$%& � �, � ∣ � ∈ � ;

return � �
Wirtschaftsinformatik und Operations Research 178

Voronoi diagram

� A Voronoi diagram of � points (denoted as seeds, sites, or generators) in
the ℝ� is a partitioning of the ℝ� such that

� Each seed constitutes a different subsets of the ℝ� and

� each point � ∈ ℝ� belongs to the subset constituted by the seed that is
closest located to � (of all seeds)

� Therefore, based on the given data set �, the nearest neighbor method
provides a partitioning (and subsequent clustering) of all unclassified
vectors according to the Voronoi diagram

� As each subset in a Voronoi diagram is obtained from the intersection of
half spaces, such subsets are convex polygons. Moreover, line segments of
the Voronoi diagram are all the points that are equidistant to the two
nearest seeds. The Voronoi vertices are the points equidistant to three (or
more) seeds

� Hence, separations done by the nearest neighbor method are much more
flexible than the linear separations of the linear perceptron

Wirtschaftsinformatik und Operations Research 179

Voronoi diagram – illustration

CC BY-SA 4.0
File:Euclidean Voronoi diagram.svg
Created: 22 February 2015

Wirtschaftsinformatik und Operations Research 180

Comparison with the linear perceptron

5 10 15 20

Executed Bitflips

1

0.8

0.6

0.4

0.2

25

Correctness

Perceptron

Nearest neighbor

(See Ertel (2016) p.210)

� By comparing the application of the nearest neighbor method to the
pattern recognition example (complicated by inverted bits) with the linear
perceptron, Ertel (2016) reports the correctness values depicted below in
dependence of the number of inverted bits

� It is worth mentioning that the Hamming distance between the second case
of set �(and the cases 4 and 5 (belonging to set �)) is 9

� Therefore, the 100 percent correctness significantly falls with increasing the
number of inverted bits to this threshold (* 8)

3

Wirtschaftsinformatik und Operations Research 181

Nearest neighbor – Easy to use

But, besides substantial
memory consumptions,

it may become
erroneous if your data

set possesses some
misclassified vectors

But, besides substantial
memory consumptions,

it may become
erroneous if your data

set possesses some
misclassified vectors

That is really a nice algorithm. All what you
have to do is to find the nearest neighbor.

Very efficient. And flexible!

That is really a nice algorithm. All what you
have to do is to find the nearest neighbor.

Very efficient. And flexible!

Wirtschaftsinformatik und Operations Research 182

One neighbor decisions may be erroneous

� Even if there is only a small number of erroneously classified vectors in the
data set, these few cases may spread out

� The following figure illustrates how falsely classified cases may spread out if
the vector to be newly classified (by the nearest neighbor method) is
closest located to such an erroneous case.

� Such an erroneous adaption is a form of overfitting

+

+

+

+

+
++

-
-

- -

-

-

-

-

-

��

�	

-

-

+

+

-

+

-

? �: to be classified

Wirtschaftsinformatik und Operations Research 183

,-nearest neighbor

� In order to reduce the number of misclassified cases, the nearest neighbor
method is often extended to the --nearest neighbor method

� Depending on the given parameter ,, this method classifies a new vector
according to the known classification of the - nearest neighbors

� Here, the classification is assigned that is most frequently present among
these , nearest neighbors

� This leads to the following modified procedure

,-Nearest Neighbor �, ,, �
Compute . ⊆ � as the set of , nearest neighbors of � in �;

Set ∀/ ∈ 1, … , � : .0: = � � ∈ . ∧ � � = /
Set $ ≔ !"#$!� .0 / ∈ 1, … , �
return $

Wirtschaftsinformatik und Operations Research 184

Finding appropriate values for parameter ,
� The choice of the parameter , may have considerable

consequences for the efficiency of the approach

� Small values of , may not sufficiently eliminate the negative
influence of erroneously classified cases in the data set

� Large values of , may increase the impact of cases that are not
representative for the case to be classified. This results from
the fact that (more) remote cases are additionally integrated.
As these farer away located cases do not provide adequate
decision support for the classification of the currently
considered case, the classification may be distorted

� Note that the latter problem can be mitigated by additionally
applying distance-dependent weights (see below)

4

Wirtschaftsinformatik und Operations Research 185

Approximation

� Another application problem of the ,-nearest neighbor method
emerges when the number of classes that the cases have to be assigned
to increase significantly

� Then, the classification is frequently complicated by the fact that, due
to the significant number of classes, the number of relevant known
cases is strongly limited

� Moreover, due to the numerous classes, the respective applications
may benefit from a continuous classification provided by a continuous
function

� For this purpose, the average value of the classification of all relevant ,
cases in set . = ��, �	, … , �2 ⊆ � is computed, i.e., we classify the
considered vector � by

� � = 1, ⋅ � � ��
2

���
Wirtschaftsinformatik und Operations Research 186

--nearest neighbor – Every case is significant?

Be careful. Alaska is
more than thousand

miles away. Better ask
your friends in

Wyoming that live near
by.

Be careful. Alaska is
more than thousand

miles away. Better ask
your friends in

Wyoming that live near
by.

I got a letter from my friend in Alaska. He
taught me to hunt in cold water. There are
the best fishes. I will adopt his strategies.

I got a letter from my friend in Alaska. He
taught me to hunt in cold water. There are
the best fishes. I will adopt his strategies.

Wirtschaftsinformatik und Operations Research 187

Considering the distance

� First of all, it has to be stated that the , considered neighbors
that are used by the ,-nearest neighbor approach for
classifying a considered case are equally weighted, i.e.,
irrespective of their significance or representativity all these
cases are equally handled

� Therefore, by increasing the parameter ,, the number of cases
(integrated in the classification) that possess a considerable
distance to the case to be classified may substantially increase

� Hence, the significance or representativity of these cases may
become quite small

Wirtschaftsinformatik und Operations Research 188

Integrating weights

� Therefore, for the determination of the sought class � � each
known case �� ∈ . is weighted according to its distance to �,
i.e., by the weight

�� = 11 + 4 ⋅ � �, ��
� The factor 4 determines how fast the influence of �� ∈ . is

reduced with an increased distance to �
� Hence, in case of the approximation, we obtain

� � = ∑ �� ⋅ � ��2���∑ ��2���
� In case of a discrete classification, it is possible to assign case x

to the class with a maximum total weight (see next slide)

5

Wirtschaftsinformatik und Operations Research 189

Discrete classification with weights

,-Nearest Neighbor �, ,, �
Compute . ⊆ � as the set of , nearest neighbors of � in �;

Set ∀/ ∈ 1, … , � : .0: = � � ∈ . ∧ � � = /
Set $ ≔ !"#$!� ∑ �6 ⋅ � �678∈9: / ∈ 1, … , �
return $

� A further extension is to integrate an approach of exponential
smoothing into the weighting of neighboring cases

� Specifically, depending on a discretization of the continuous

distance ; � �� , � , the weight of each case in the data set is
discounted exponentially with a discount rate 4�� = 11 + 4<(>(7?,7))

Wirtschaftsinformatik und Operations Research 190

Computational effort

� The k-nearest neighbor method requires a considerable memory
consumption since it is necessary to store all cases given by the
data set �

� Moreover, the classification of a currently considered case � may
become quite time consuming as the determination of the ,
closest located cases of set � (i.e., the determination of set .)
requires to consider each case, i.e., we have A � . Depending

on the used data structure, it can become to A � ⋅ /B#	 � .
In addition to this, the classification takes at least time
proportional to A � . Therefore, all in all, a minimum time
complexity of A(|�| + ,) occurs

� For application with large data sets, this may be too time
consuming, in particular, if a considerable number of
classifications have to be done in real-time

Wirtschaftsinformatik und Operations Research 191

Eager Learning – Lazy Learning

� As ,-nearest neighbor does not further process or modify the
given data set in order to exploit knowledge, all effort is

relinked to the final evaluation or classification step

� Therefore, the ,-nearest neighbor method is denoted as a lazy
learning approach

� In contrast to this, eager learning approaches spend much
more effort in the learning phase that exploits knowledge from
the given data set in order to enable fast classifications

� Eager Learning approaches are for instance:

� Perceptron

� Decision tree

� Bayes networks

� Neural networks

Wirtschaftsinformatik und Operations Research 192

Comparing eager and lazy learning

� Ertel (2016) gives the following comparison of eager and lazy learning

� Eager learning usually transforms the raw data in the data set into a
modeling

� I.e., eager learning compresses the data to a mathematical structure, as, for
instance, a linear function

� In contrast to this, nearest neighbor (as a lazy learning method) does a local
assignment that is often more precise (outperforms the ones done by eager
learning approaches)

20 50 100

Danger
levels

avalanches

1

2

3

4

5

https://www.natural-hazards.ch/home/dealing-with-natural-hazards/avalanches/danger-levels-avalanches.html

See Ertel (2016) p.214

Total fresh snow (last three days) in cm

150

Eager Learning (linear modeling)

Lazy Learning

6

Wirtschaftsinformatik und Operations Research 193

When to use nearest neighbor methods?

� Therefore, the nearest neighbor method can be reasonably
applied if the entire data set can be efficiently stored and
evaluated in the available time

� Particularly, if the classification has to guarantee a high local
precision the nearest neighbor method outperforms many
eager learning approaches

� However, if one of the first two requirements is not fulfilled or
if knowledge stored in the raw data set has to be transformed
into an understandable modeling (for analysis purposes),
nearest neighbor methods are not the best choice

Wirtschaftsinformatik und Operations Research 194

2.6 Ensemble Learning and Random Forests

� In what follows, we consider a somewhat surprising kind of
approaches

� These approaches are not original in terms of generating and
applying a new sophisticated technique that provides more
reliable classifications or predictions, but are innovative in the
sense that they propose to orchestrate a variety of known
approaches providing numerous results in parallel in order to
derive (out of these set of results) a more reliable decision

� First, we would like to motivate the basic idea behind this
concept

Wirtschaftsinformatik und Operations Research 195

2.6.1 Motivation – Playing a game

Do you want to play a
game with me?

We have 10 coins in a
bag. 6 are golden and

the others are silver. We
will draw per round one
coin with replacement.

You win when it is a
golden coin. I win if it is a
silver coin. You see you
have 60 percent chance

of winning!

Do you want to play a
game with me?

We have 10 coins in a
bag. 6 are golden and

the others are silver. We
will draw per round one
coin with replacement.

You win when it is a
golden coin. I win if it is a
silver coin. You see you
have 60 percent chance

of winning!

That is not bad. How
much money I am

allowed to bet? How
many rounds do we

play?

That is not bad. How
much money I am

allowed to bet? How
many rounds do we

play?

Wirtschaftsinformatik und Operations Research 196

Motivation – Three choices

You decide! I give you
three possible games:
First one: Single round

with 100 $ bet
Second one: 10 rounds

with 10 $ bet
Third one: 100 rounds

with 1 $ bet.
What do you prefer?

You decide! I give you
three possible games:
First one: Single round

with 100 $ bet
Second one: 10 rounds

with 10 $ bet
Third one: 100 rounds

with 1 $ bet.
What do you prefer?

As all games bring me an
identical expected profit

of 20 $, I take the first
one. It is the fastest way

to earn some money

As all games bring me an
identical expected profit

of 20 $, I take the first
one. It is the fastest way

to earn some money

7

Wirtschaftsinformatik und Operations Research 197

We analyze the three games

� Clearly, the expected values are identical in all games

� Expected Value Game 1: 0.60 ⋅ 100 + 0.40 ⋅ (−100) = 20
� Expected Value Game 2: (0.60 ⋅ 10 + 0.40 ⋅ (−10)) ∗ 10 = 20
� Expected Value Game 3: (0.60 ⋅ 1 + 0.40 ⋅ (−1)) ∗ 100 = 20

� But, the distributions are different in the three games

� This can be visualized by doing 10,000 Monte Carlo simulations
of the three games

� This is illustrated by the figure depicted on the following slide

(See Understanding Random Forest)

Wirtschaftsinformatik und Operations Research 198

The three distributions

(See Understanding Random Forest)

By comparing the distributions, it becomes clear that the bear makes money

in 60 % of the simulations playing game 1, in 63 % of the simulations playing
game 2, but even in 97 % of the simulations playing game 3

Wirtschaftsinformatik und Operations Research 199

Ensemble Learning – Motivation

� Although the expected values are identical, the positive effect
becomes significantly reliable by splitting the game into more
and more rounds

� This is the basic idea of ensemble learning

� By putting together various independent classifiers, we get a
much more reliable classification

� Note that this does not even require classifiers of high quality

� In order to understand this, let us consider various binary
classifiers that are independent and classify a given case into
one of the two possible classes

� We assume that each classifier correctly classifies with a
probability of only 51 percent, i.e., slightly better than guessing

Wirtschaftsinformatik und Operations Research 200

The law of large numbers is helpful

� This can be illustrated by Monte Carlo simulations of tossing a slightly
biased coin (51:49 for head)

� With a large number of coin tosses (>6,000) we observe that all conducted
simulations attain a heads ratio of over 50 percent

� With other words, although that each classification is only slightly better
than a 50:50 guess, a large number of independent repetitions results in a
reliable classification whenever we decide for the majority of votes

See Géron (2017) p.183

8

Wirtschaftsinformatik und Operations Research 201

Ensemble learning

� This is just the basic idea of ensemble learning

� Instead of applying one approach or method to decide about a
considered classification, apply numerous

� However, one main prerequisite (of applying the aforementioned law of
large numbers) is that these classifiers are independent

� Hence, Géron (2017, 2019) states

� Ensemble methods work best when the predictors are as independent from
one another as possible

� For this purpose, it is reasonable to train the classifiers by using very
different algorithms

� As this increases the chance that the classifiers will make very different
types of errors, the ensemble’s accuracy is improved

� Roughly speaking, in order to establish a variety of different predictors
(classifiers), ensemble learning proposes two concepts: Bagging and
Boosting

Wirtschaftsinformatik und Operations Research 202

2.6.2 Bagging (according to Breiman (1996))

� We consider a learning set ℒ = �� , �� % = 1, … , � with
vectors of attribute values ∀% ∈ 1, … , � : ��∈ ℝ� and a
corresponding classification �� that is either a class label (i.e., �� ∈ 1, … , � , with � ∈ ℕ) or a numerical response (i.e., �� ∈ ℝ).

� We assume there is a predictor K �, ℒ that predicts the �-value
according to the input � ∈ ℝ� and based on the learning set ℒ

� Now, we assume that there is a sequence of learning sets ℒ�, … , ℒ2 , … each consisting of � independent observations
from the same underlying distribution as ℒ

� The mission is to use the learning sets ℒ�, … , ℒ2 , … in order to
obtain an improved predictor than the single learning set
predictor K �, ℒ introduced above

Wirtschaftsinformatik und Operations Research 203

Bagging (according to Breiman (1996))

� If � is numerical, we replace K �, ℒ by the average of K �, ℒ2
over all generated learning sets ℒ2. By theoretically considering
all possible learning sets we approach the averaging value KL � ≔ Mℒ K �, ℒ , with the expectation Mℒ over all learning
sets ℒ for K �, ℒ

� If � is a class label, we conduct a voting of all predictors and take
the one with the most votes, i.e., with �6 = ℒ2 ∣ K �, ℒ2 = N , ∀N ∈ 1, … , � , we set KL � ≔!"#$!� �6 ∣ N ∈ 1, … , �

� However, in real-world applications, we have only one learning
set ℒ without the luxury of replicates

Wirtschaftsinformatik und Operations Research 204

Bagging (according to Breiman (1996))

� We do the following to imitate the aforementioned process

� Take repeated bootstrap samples ℒ O from ℒ and form K �, ℒ O
� If � is numerical, we set KO � = !PO K �, ℒ O (i.e., we take the

average value over all bootstrap samples ℒ O)

� If � is a class label, we let the predictors of set K �, ℒ O vote to

determine KO �
� This procedure is denoted as “bootstrap aggregating” while the acronym

bagging is used

� The bootstrap samples {ℒ O } each consisting of �S ≤ � cases are drawn

at random from ℒ, BUT with replacement (otherwise, for the common

setting �S = � there would be all identical to ℒ as this set also
comprises � cases)

� Thus, each item ��, �� ∈ ℒ may appear repeated times or not at all in

some ℒ O

9

Wirtschaftsinformatik und Operations Research 205

Bagging (according to Breiman (1996))

� Intention: The bootstrap samples {ℒ O } are replicate data sets
drawn from the bootstrap distribution approximating the
distribution underlying ℒ

� Frochte (2018) p.155 reports that, for the common setting �S = �, the
proportion of items of the original training set ℒ that are inserted in ℒ O
approximates 1 − �U for large values of �. These are about 0.63 percent.

The remaining 37 percent are repeated items

� If the setting �S < � is applied, the procedure is also denoted as
Subagging

Wirtschaftsinformatik und Operations Research 206

2.6.3 Boosting

� Boosting and Bagging are strongly related

� In both cases, the different classifications of various given
predictors are combined into one (hopefully better) prediction

� The basic idea of boosting is to generate a strong or stronger
predictor by using various weaker ones

� In contrast to bagging where all predictors are independently
generated in parallel, boosting derives the predictors

iteratively while using the temporary results provided by the

preceding steps in order to derive more reliable classifications

� By doing so, Boosting is a general method for improving the
performance of any learning algorithm (see Freund and
Schapire (1996))

Wirtschaftsinformatik und Operations Research 207

Decision stumps

� Are one-level decision trees that are used as predictors

� Thus, a stump comprises only one “inner node”, namely the root node itself

� This single node is directly connected with the terminal nodes

� Consequently, there is only one rule (one input feature) that is applied to
decide about a classification

� Depending on the classification, various settings are thinkable. For instance,
if there is a nominal feature there may be a stump with a leaf for each
possible value whereas, for continuous features, threshold values are
applied in order to separate the cases into items with attribute values
below or above the threshold

Size * 173 cm≤ 173 cm

Female Male

Wirtschaftsinformatik und Operations Research 208

Boosting approach AdaBoost

� In what follows, we consider in detail the AdaBoost algorithms originally
proposed by Freund and Schapire (see the papers: Freund and Schapire
(1996), Freund and Schapire (1997), and Freund and Schapire (1999)) as
well as extended and adpated by various authors

� For instance Friedman, J.; Hastie, T.; Tibshirani, R. (1998) state that
“Breiman (1996) (referring to a NIPS workshop) called AdaBoost with trees
the “best off-the-shelf classifier in the world”

� Therefore, the following part tries to provide an overview of and an
introduction to this specific approach

� First, AdaBoost is introduced and defined as a binary classifier (this part
is mainly adopted from the talks of Matas and Šochman and Šochman
and Matas

� Second, we consider/mention some extensions

� Third, the paper Freund and Schapire (1996) is considered as it
comprises an empirical comparison of boosting and bagging. Both
related methods are tested with different predictors

10

Wirtschaftsinformatik und Operations Research 209

Some facts

“Historic” development

� 1990 – Boost-by-majority algorithm (Freund)

� 1995 – AdaBoost (Freund & Schapire)

� 1997 – Generalized version of AdaBoost (Schapire & Singer)

� 2001 – AdaBoost in Face Detection (Viola & Jones)

Properties

� AdaBoost combines several (weak) classifiers

� AdaBoost is frequently able to reduce bias or variance

� AdaBoost is close to sequential decision making by producing a
sequence of gradually more complex classifiers

Wirtschaftsinformatik und Operations Research 210

Introducing AdaBoost

� First, we introduce AdaBoost as a binary classifier

� I.e., it predicts the classification of cases according to two
classes

� For technical reasons, in what follows, the two classes are
denoted by the values “+1” and “−1”

Wirtschaftsinformatik und Operations Research 211

AdaBoost covers non-linear classifications

Attribute 1

Attribute 2

Linear Non-linear

Wirtschaftsinformatik und Operations Research 212

Given and sought

� Given: ��, �� , … , �Y , �Y ; ∀% ∈ 1, … , $: ��∈ [, �� ∈ −1, +1
� Sought: A predictor (final classifier) \ � = �%#& ∑ 4] ⋅ ℎ] �_]�� , with

∀� ∈ ℝ: �%#& � = ` 1 %a� * 0 0 %a � = 0−1 %a � < 0
� Note that the “zero case” is infeasible since we require a binary

classification into −1, +1
� Therefore, this case is handled by randomly drawing −1 or 1 (each case has

probability 0.5)

11

Wirtschaftsinformatik und Operations Research 213

The basic procedure AdaBoost – Part 1

1. Initialize the weight in the first round of each case by setting b� % = �Y
Repeat the following steps for round c = 1, … , d:
2. Find a weak predictor ℎ]: [↦ −1, +1 that minimizes the resulting

error, i.e., if e denotes the set of all feasible predictor functions, ℎ] is
defined as follows: ℎ] = !"#$%& f6 f6 = ∑ b] % �� ≠ ℎ6 ��Y��� ∧ ℎ6 ∈ e ,

with for each predicate ! it holds that: ! = h1 %a ! %� c"ij0 %a ! %� &Bc c"ij
Thus, the chosen predictor ℎ] causes a prediction error f]

3. If f] ≥ �	 (not better than guessing) then stop

4. Set 4] = �	 /& �)lmlm

Wirtschaftsinformatik und Operations Research 214

The basic procedure AdaBoost – Part 2

5. Update the given distribution (i.e., the weights of the $ training cases)

b](� % = b] % ⋅ j)nm⋅o?⋅pm 7?q] = b] % ⋅ j)nm⋅o?⋅pm 7?q]
In this calculation q] is a normalization factor that ensures that b](�

provides a distribution of all cases, i.e., q] = ∑ b] % ⋅ j)nm⋅o?⋅pm 7?Y���
6. End of round c
7. Output the final classifier: \ � = �%#& ∑ 4] ⋅ ℎ] �_]��
Furthermore, we define a � = ∑ 4] ⋅ ℎ] �_]��

Wirtschaftsinformatik und Operations Research 215

Weak Learner

� The boosting algorithm has access to another unspecified learning
algorithm, called the weak learning algorithm (WeakLearn)

� The booster algorithm provides WeakLearn in each round c with a
derived distribution b] defined for the training set r

� In response, the classifier computes a classifier ℎ]: [↦ −1, +1 which
should correctly classify a fraction of the training set that has large
probability with respect to the distribution b]

� For this purpose, the goal of the weak learner is to find a classification
that minimizes the training error f] = s"Bt�∽v? ℎ] �� ≠ �� (this error

is generated according to the provided distribution b]
� The distribution is updated in each round in order to focus the

computation of the weak learner to the cases that are wrongly classified

� This process continues for d rounds, and, at last, the booster combines
the weak predictions ℎ�, … , ℎ_ into a single final combined one

Wirtschaftsinformatik und Operations Research 216

Updating the distribution wx
� With 4] = �	 /& �)lmlm , with

�)lmlm * 1 as f] < �	
� AdaBoost applies the update formula b](� % = vm � ⋅Uyzm⋅{?⋅|m }?~m
� If ℎ] �� ≠ �� (false classification) it either holds that ℎ] �� = 1 and �� = −1 or vice versa ℎ] �� = −1 and �� = 1. Hence, if ℎ] �� ≠ �� , we

have �� ⋅ ℎ] �� = −1 and b](� % = vm � ⋅Uzm~m = b] % ⋅ �)lmlm
�� * b] %

� Conversely, If ℎ] �� = �� (correct classification) it either holds that ℎ] �� = 1 and �� = 1 or vice versa ℎ] �� = −1 and �� = −1. Hence, if ℎ] �� = �� , we have �� ⋅ ℎ] �� = 1 and b](� % = vm � ⋅(Uyzm)~m = b] % ⋅
�)lmlm

)�� < b] %

12

Wirtschaftsinformatik und Operations Research 217

Updating the distribution wx
Idea behind this updating

� If the prediction ℎ] �� of the %th case is not correct, the
respective weight in the distribution is increased by the factor

�)lmlm
�� * 1. Due to a incorrect classification, it is interpreted as

complex. Hence, it has to spent more attention in the next
round

� Conversely, the weight of this case in the distribution is reduced
as this case is assumed to be less complex

� Moreover, all information about previously selected features is
captured in b]

Wirtschaftsinformatik und Operations Research 218

Quality of the approach

This is the next stepThis is the next step

Can we somehow
upper bound the

training error?

Can we somehow
upper bound the

training error?

Wirtschaftsinformatik und Operations Research 219

Upper bound of the training error

2.6.3.1 Theorem

By assuming the notation above, the following bound
holds on the training error of \1$ ⋅ % % ∈ 1, … , $ ∧ \ �� ≠ �� ≤ � q]

_
]��

Wirtschaftsinformatik und Operations Research 220

Proof of Theorem 2.6.3.1

� We have b_(� % = b� % ⋅ Uy ∑ zm⋅{?⋅|m }?�m��∏ ~m�m�� = Uy ∑ zm⋅{?⋅|m }?�m��Y⋅∏ ~m�m��
� We conclude that b_(� % = Uy{?⋅� }?Y⋅∏ ~m �m�� ⇒ b_(� % ⋅ $ ⋅ ∏ q] =_]�� j)o?⋅� 7? (*)

� If \ �� ≠ �� (false classification) it either holds that a �� * 0 and �� = −1 or
vice versa a �� < 0 and �� = 1. Hence, if \ �� ≠ �� , we have �� ⋅ a �� ≤ 0.

This implies j)o?⋅� 7? ≥ 1
� Thus, we obtain \ �� ≠ �� ≤ j)o?⋅� 7? (**)

� We use (*) and (**) in order to conclude1$ ⋅ % % ∈ 1, … , $ ∧ \ �� ≠ �� ≤ 1$ ⋅ � j)o?⋅� 7?Y
���= 1$ ⋅ � $ � q] _

]��
Y
��� ⋅ b_(� %

= � q] ⋅_
]�� � b_(� %Y

��� = � q] _
]��

13

Wirtschaftsinformatik und Operations Research 221

Quality of the approach

For this purpose, we
have to consider its

definition

For this purpose, we
have to consider its

definition

Hmmmh. One
problem causes

another problem.
How we can
minimize q]?

Hmmmh. One
problem causes

another problem.
How we can
minimize q]?

Wirtschaftsinformatik und Operations Research 222

Consequences

� The upper bound of the training error can be
minimized

� This can be done by minimizing q] in each training
round c
� For this purpose, we chose an optimal ℎ]
� and an optimal 4]

Wirtschaftsinformatik und Operations Research 223

2.6.3.2 Optimizing �x
� Our aim is to minimize q] = ∑ b] % ⋅ j)nm⋅o?⋅pm 7?Y���
� Hence, we consider the first derivative of this function�q]4] = −1 ⋅ � b] % ⋅ �� ⋅ ℎ] �� ⋅ j)nm⋅o?⋅pm 7?Y

���
� Due to fact that �� ⋅ ℎ] �� = −1 if �� ≠ ℎ] �� and �� ⋅ ℎ] �� = 1 if �� = ℎ] �� , we conclude that

= � b] % ⋅ jnm
� ∣ o?�pm 7?

− � b] % ⋅ j)nm
� ∣ o?�pm 7?

� With f6 = ∑ b] % �� ≠ ℎ6 ��Y��� , we obtain= 1 − f] ⋅ jnm − f] ⋅ j)nm
� Now, we set this derivative to zero1 − f] ⋅ jnm − f] ⋅ j)nm = 0 ⟺ 1 − f] ⋅ jnm = f] ⋅ j)nm⟺ /& 1 − f] + 4] = /& f] − 4] ⟺ /& 1 − f] + 24] = /& f]⟺ 24] = /& f] − /& 1 − f] ⟺ 4] = 12 ⋅ /& f]1 − f]

Wirtschaftsinformatik und Operations Research 224

Quality of the approach

Indeed! But there
are more smart

things in this
approach. Let us

consider the impact
of this choice of 4]!

Indeed! But there
are more smart

things in this
approach. Let us

consider the impact
of this choice of 4]!

Great! This is
just the

definition of 4]
in the algorithm!

Great! This is
just the

definition of 4]
in the algorithm!

14

Wirtschaftsinformatik und Operations Research 225

2.6.3.3 Substituting 4] = �	 ⋅ /& lm�)lm
� By using 4] = �	 ⋅ /& lm�)lm , we compute q]
� Thus, we obtainq] = � b] % ⋅ j)nm⋅o?⋅pm 7?Y

���= � b] % ⋅ jnm
� ∣ o?�pm 7?

+ � b] % ⋅ j)nm
� ∣ o?�pm 7?= f] ⋅ jnm + 1 − f]jnm = f] ⋅ j	nm + 1 − f]jnm

= f] ⋅ f]1 − f] + 1 − f]f]1 − f]
Wirtschaftsinformatik und Operations Research 226

And minimizing q] 4]
= f] ⋅ f]1 − f] + 1 − f] ⋅ 1 − f]f] = f]	 + 1 − f] 	

f] ⋅ 1 − f]
We consider the first derivative (the second is positive)�q] 4] = 12 ⋅ /& f]1 − f]�f] = − 4f]� − 6f]	 + 1

2 1 − f] �	 ⋅ ��	
set it to zero, and obtain

f] = 12 ∨ f] = 3 + 12 * 1 ∨ f] = − 3 − 12 < 0
Hence, the only feasible optimal solution for 0 ≤ f] ≤ 1 isf] = 12

Wirtschaftsinformatik und Operations Research 227

Quality of the approach

Be careful! It is not
the actual error of
the weak learner,
but the weighted

one caused by our
updating of the
applied weights!

Be careful! It is not
the actual error of
the weak learner,
but the weighted

one caused by our
updating of the
applied weights!

An error of 0.5?
This is just
guessing!

An error of 0.5?
This is just
guessing!

Wirtschaftsinformatik und Operations Research 228

Consequence

� By analyzing the derivation of 4] = �	 ⋅ /& lm�)lm , we set �q]4] = −1 ⋅ � b] % ⋅ �� ⋅ ℎ] �� ⋅ j)nm⋅o?⋅pm 7?Y
��� = 0

� This leads to

� b] % ⋅ jnm
� ∣ o?�pm 7?

− � b] % ⋅ j)nm
� ∣ o?�pm 7?

= 0
⇔ � b] % ⋅ jnm

� ∣ o?�pm 7?
= � b] % ⋅ j)nm

� ∣ o?�pm 7?
� With b](� % = vm � ⋅Uyzm⋅{?⋅|m }?~m , we obtain

⇔ � b](� % ⋅ q]� ∣ o?�pm 7?
= � b](� % ⋅ q]� ∣ o?�pm 7?⇔ ∑ b](� %� ∣ o?�pm 7? = ∑ b](� %� ∣ o?�pm 7? , with q] ≠ 0

� With other words, the sum of updated weights of the correctly classified cases
coincides with the sum of updated weights of the incorrectly classified cases

15

Wirtschaftsinformatik und Operations Research 229

Quality of the approach

That is just the
point!

That is just the
point!

I see. We correct the weights
such that we have again the
equal distribution between
positive and negative cases

I see. We correct the weights
such that we have again the
equal distribution between
positive and negative cases

Wirtschaftsinformatik und Operations Research 230

AdaBoost – Example

Index X-Coordinate Y-Coordinate Classification Initial weight

0 1.7 3.5 1 0.05
1 4.4 2.2 1 0.05
2 9.5 3.7 1 0.05

3 13.0 4.5 1 0.05
4 16.2 5.9 1 0.05
5 6.5 6.1 1 0.05
6 11.3 6.8 1 0.05

7 4.3 8.3 1 0.05
8 3.0 10.5 1 0.05
9 3.9 15.5 1 0.05

10 8.5 3.5 -1 0.05

11 11.3 3.5 -1 0.05
12 14.0 6.5 -1 0.05
13 7.1 8.5 -1 0.05
14 14.0 8.8 -1 0.05

15 10.0 9.8 -1 0.05
16 14.2 11.8 -1 0.05
17 10.0 13.4 -1 0.05
18 16.3 14.4 -1 0.05

19 13.8 16.2 -1 0.05

Wirtschaftsinformatik und Operations Research 231

Weak learner

� We apply as a weak learner a simple stump

� It considers both attributes and identifies the best
threshold to separate all cases

� I.e., 40 possible thresholds are compared, while the
separation is implemented that attains a smallest
weighted error

� In what follows, we consider the output of a Python
program

Wirtschaftsinformatik und Operations Research 232

Iteration 1 – weak classifier

� X-coordinate

� Threshold x-coordinate=6.5

� Best Threshold x-coordinate quality=0.2 Threshold x-coordinate flag=-1

� Y-coordinate

� Threshold y-coordinate=8.3

� Threshold y-coordinate quality=0.25 Threshold y-coordinate flag=-1

� We take the x-coordinate. Flag=-1

� Results of weak classifier

� Case 2 NOT correctly classified. Current error=0.05

� Case 3 NOT correctly classified. Current error=0.1

� Case 4 NOT correctly classified. Current error=0.15

� Case 6 NOT correctly classified. Current error=0.2

� Total error=0.2

� Current list of classifiers: [['x-coordinate', 0.2, 6.5, -1, 1]]

� Current alphalist: [0.6931471805599453]

16

Wirtschaftsinformatik und Operations Research 233

Iteration 1 – Quality of the combined classifier

� Classified classification of case 0 1 0.6931471805599453 Correct

� Classified classification of case 1 1 0.6931471805599453 Correct

� Classified classification of case 2 -1 -0.6931471805599453 NOT correct!

� Classified classification of case 3 -1 -0.6931471805599453 NOT correct!

� Classified classification of case 4 -1 -0.6931471805599453 NOT correct!

� Classified classification of case 5 1 0.6931471805599453 Correct

� Classified classification of case 6 -1 -0.6931471805599453 NOT correct!

� Classified classification of case 7 1 0.6931471805599453 Correct

� Classified classification of case 8 1 0.6931471805599453 Correct

� Classified classification of case 9 1 0.6931471805599453 Correct

� Classified classification of case 10 -1 -0.6931471805599453 Correct

� Classified classification of case 11 -1 -0.6931471805599453 Correct

� Classified classification of case 12 -1 -0.6931471805599453 Correct

� Classified classification of case 13 -1 -0.6931471805599453 Correct

� Classified classification of case 14 -1 -0.6931471805599453 Correct

� Classified classification of case 15 -1 -0.6931471805599453 Correct

� Classified classification of case 16 -1 -0.6931471805599453 Correct

� Classified classification of case 17 -1 -0.6931471805599453 Correct

� Classified classification of case 18 -1 -0.6931471805599453 Correct

� Classified classification of case 19 -1 -0.6931471805599453 Correct

Total error=0.2 (Clearly, is identical with the first weak classifier)

Wirtschaftsinformatik und Operations Research 234

Iteration 1 – Updated weights

Index X-Coordinate Y-Coordinate Classification Weight

0 1.7 3.5 1 0.03125
1 4.4 2.2 1 0.03125
2 9.5 3.7 1 0.12500

3 13.0 4.5 1 0.12500

4 16.2 5.9 1 0.12500

5 6.5 6.1 1 0.03125
6 11.3 6.8 1 0.12500

7 4.3 8.3 1 0.03125
8 3.0 10.5 1 0.03125
9 3.9 15.5 1 0.03125

10 8.5 3.5 -1 0.03125

11 11.3 3.5 -1 0.03125
12 14.0 6.5 -1 0.03125
13 7.1 8.5 -1 0.03125
14 14.0 8.8 -1 0.03125

15 10.0 9.8 -1 0.03125
16 14.2 11.8 -1 0.03125
17 10.0 13.4 -1 0.03125
18 16.3 14.4 -1 0.03125

19 13.8 16.2 -1 0.03125

Wirtschaftsinformatik und Operations Research 235

Iteration 2 – weak classifier

� X-coordinate

� Threshold x-coordinate=13.0

� Best Threshold x-coordinate quality=0.28124999999999994 Threshold x-coordinate flag=-1

� Y-coordinate

� Threshold y-coordinate=8.3

� Threshold y-coordinate quality=0.15624999999999997 Threshold y-coordinate flag=-1

� We take the y-coordinate. Flag=-1

� Results of weak classifier

� Case 8 NOT correctly classified. Current error=0.031249999999999993

� Case 9 NOT correctly classified. Current error=0.062499999999999986

� Case 10 NOT correctly classified. Current error=0.09374999999999997

� Case 11 NOT correctly classified. Current error=0.12499999999999997

� Case 12 NOT correctly classified. Current error=0.15624999999999997

� Total error=0.15624999999999997

� ['y-coordinate', 0.15624999999999997, 8.3, -1, 2]

� Current list of classifiers: [['x-coordinate', 0.2, 6.5, -1, 1], ['y-coordinate', 0.15624999999999997,
8.3, -1, 2]]

� Current alphalist: [0.6931471805599453, 0.8431994767851144]

Wirtschaftsinformatik und Operations Research 236

Iteration 2 – Quality of the combined classifier

� Classified classification of case 0 1 1.5363466573450597 Correct

� Classified classification of case 1 1 1.5363466573450597 Correct

� Classified classification of case 2 1 0.15005229622516914 Correct

� Classified classification of case 3 1 0.15005229622516914 Correct

� Classified classification of case 4 1 0.15005229622516914 Correct

� Classified classification of case 5 1 1.5363466573450597 Correct

� Classified classification of case 6 1 0.15005229622516914 Correct

� Classified classification of case 7 1 1.5363466573450597 Correct

� Classified classification of case 8 -1 -0.15005229622516914 NOT correct!

� Classified classification of case 9 -1 -0.15005229622516914 NOT correct!

� Classified classification of case 10 1 0.15005229622516914 NOT correct!

� Classified classification of case 11 1 0.15005229622516914 NOT correct!

� Classified classification of case 12 1 0.15005229622516914 NOT correct!

� Classified classification of case 13 -1 -1.5363466573450597 Correct

� Classified classification of case 14 -1 -1.5363466573450597 Correct

� Classified classification of case 15 -1 -1.5363466573450597 Correct

� Classified classification of case 16 -1 -1.5363466573450597 Correct

� Classified classification of case 17 -1 -1.5363466573450597 Correct

� Classified classification of case 18 -1 -1.5363466573450597 Correct

� Classified classification of case 19 -1 -1.5363466573450597 Correct

Total error=0.25

17

Wirtschaftsinformatik und Operations Research 237

Iteration 2 – Updated weights

Index X-Coordinate Y-Coordinate Classification Weight

0 1.7 3.5 1 0.018519
1 4.4 2.2 1 0.018519
2 9.5 3.7 1 0.074074

3 13.0 4.5 1 0.074074
4 16.2 5.9 1 0.074074
5 6.5 6.1 1 0.018519
6 11.3 6.8 1 0.074074

7 4.3 8.3 1 0.018519
8 3.0 10.5 1 0.100000

9 3.9 15.5 1 0.100000

10 8.5 3.5 -1 0.100000

11 11.3 3.5 -1 0.100000

12 14.0 6.5 -1 0.100000

13 7.1 8.5 -1 0.018519
14 14.0 8.8 -1 0.018519

15 10.0 9.8 -1 0.018519
16 14.2 11.8 -1 0.018519
17 10.0 13.4 -1 0.018519
18 16.3 14.4 -1 0.018519

19 13.8 16.2 -1 0.018519

Wirtschaftsinformatik und Operations Research 238

Iteration 3 – weak classifier

� X-coordinate

� Threshold x-coordinate=6.5

� Best Threshold x-coordinate quality=0.2962962962962963 Threshold x-coordinate flag=-1

� Y-coordinate

� Threshold y-coordinate=3.5

� Threshold y-coordinate quality=0.26666666666666666 Threshold y-coordinate flag=1

� We take the y-coordinate. Flag=1

� Results of weak classifier

� Case 2 NOT correctly classified. Current error=0.07407407407407407

� Case 3 NOT correctly classified. Current error=0.14814814814814814

� Case 4 NOT correctly classified. Current error=0.2222222222222222

� Case 5 NOT correctly classified. Current error=0.24074074074074073

� Case 6 NOT correctly classified. Current error=0.31481481481481477

� Case 7 NOT correctly classified. Current error=0.33333333333333326

� Case 8 NOT correctly classified. Current error=0.43333333333333324

� Case 9 NOT correctly classified. Current error=0.5333333333333332

� Case 10 NOT correctly classified. Current error=0.6333333333333332

� Case 11 NOT correctly classified. Current error=0.7333333333333332

� Total error=0.7333333333333332

� ['y-coordinate', 0.26666666666666666, 3.5, 1, 3]

� Current list of classifiers:

� [['x-coordinate', 0.2, 6.5, -1, 1], ['y-coordinate', 0.15624999999999997, 8.3, -1, 2], ['y-coordinate', 0.26666666666666666, 3.5, 1, 3]]

� Current alphalist: [0.6931471805599453, 0.8431994767851144, 0.50580045583924]

Wirtschaftsinformatik und Operations Research 239

Iteration 3 – Quality of the combined classifier

� Classified classification of case 0 1 1.0305462015058198 Correct

� Classified classification of case 1 1 1.0305462015058198 Correct

� Classified classification of case 2 1 0.6558527520644092 Correct

� Classified classification of case 3 1 0.6558527520644092 Correct

� Classified classification of case 4 1 0.6558527520644092 Correct

� Classified classification of case 5 1 2.0421471131842996 Correct

� Classified classification of case 6 1 0.6558527520644092 Correct

� Classified classification of case 7 1 2.0421471131842996 Correct

� Classified classification of case 8 1 0.3557481596140709 Correct

� Classified classification of case 9 1 0.3557481596140709 Correct

� Classified classification of case 10 -1 -0.3557481596140709 Correct

� Classified classification of case 11 -1 -0.3557481596140709 Correct

� Classified classification of case 12 1 0.6558527520644092 NOT correct!

� Classified classification of case 13 -1 -1.0305462015058198 Correct

� Classified classification of case 14 -1 -1.0305462015058198 Correct

� Classified classification of case 15 -1 -1.0305462015058198 Correct

� Classified classification of case 16 -1 -1.0305462015058198 Correct

� Classified classification of case 17 -1 -1.0305462015058198 Correct

� Classified classification of case 18 -1 -1.0305462015058198 Correct

� Classified classification of case 19 -1 -1.0305462015058198 Correct

Total error=0.05

Wirtschaftsinformatik und Operations Research 240

Iteration 3 – Updated weights

Index X-Coordinate Y-Coordinate Classification Weight

0 1.7 3.5 1 0.034722
1 4.4 2.2 1 0.034722
2 9.5 3.7 1 0.050505

3 13.0 4.5 1 0.050505

4 16.2 5.9 1 0.050505

5 6.5 6.1 1 0.012626

6 11.3 6.8 1 0.050505

7 4.3 8.3 1 0.012626

8 3.0 10.5 1 0.068182

9 3.9 15.5 1 0.068182

10 8.5 3.5 -1 0.068182

11 11.3 3.5 -1 0.068182

12 14.0 6.5 -1 0.187500
13 7.1 8.5 -1 0.034722
14 14.0 8.8 -1 0.034722

15 10.0 9.8 -1 0.034722
16 14.2 11.8 -1 0.034722
17 10.0 13.4 -1 0.034722
18 16.3 14.4 -1 0.034722

19 13.8 16.2 -1 0.034722

18

Wirtschaftsinformatik und Operations Research 241

Iteration 4 – weak classifier

� X-coordinate

� Threshold x-coordinate=6.5

� Threshold x-coordinate quality=0.202020202020202 Threshold x-coordinate flag=-1

� Y-coordinate

� Threshold y-coordinate=6.1

� Threshold y-coordinate quality=0.3358585858585858 Threshold y-coordinate flag=-1

� We take the x-coordinate. Flag=-1

� Results of weak classifier

� Case 2 NOT correctly classified. Current error=0.0505050505050505

� Case 3 NOT correctly classified. Current error=0.101010101010101

� Case 4 NOT correctly classified. Current error=0.1515151515151515

� Case 6 NOT correctly classified. Current error=0.202020202020202

� Total error=0.202020202020202

� ['x-coordinate', 0.202020202020202, 6.5, -1, 4]

� Current list of classifiers: [['x-coordinate', 0.2, 6.5, -1, 1], ['y-coordinate', 0.15624999999999997, 8.3, -1, 2], ['y-
coordinate', 0.26666666666666666, 3.5, 1, 3], ['x-coordinate', 0.202020202020202, 6.5, -1, 4]]

� Current alphalist: [0.6931471805599453, 0.8431994767851144, 0.50580045583924, 0.6868577894565153]

Wirtschaftsinformatik und Operations Research 242

Iteration 4 – Quality of the combined classifier

� Classified classification of case 0 1 1.717403990962335 Correct

� Classified classification of case 1 1 1.717403990962335 Correct

� Classified classification of case 2 -1 -0.03100503739210614 NOT correct!

� Classified classification of case 3 -1 -0.03100503739210614 NOT correct!

� Classified classification of case 4 -1 -0.03100503739210614 NOT correct!

� Classified classification of case 5 1 2.729004902640815 Correct

� Classified classification of case 6 -1 -0.03100503739210614 NOT correct!

� Classified classification of case 7 1 2.729004902640815 Correct

� Classified classification of case 8 1 1.0426059490705861 Correct

� Classified classification of case 9 1 1.0426059490705861 Correct

� Classified classification of case 10 -1 -1.0426059490705861 Correct

� Classified classification of case 11 -1 -1.0426059490705861 Correct

� Classified classification of case 12 -1 -0.0310050373921061 Correct

� Classified classification of case 13 -1 -1.717403990962335 Correct

� Classified classification of case 14 -1 -1.717403990962335 Correct

� Classified classification of case 15 -1 -1.717403990962335 Correct

� Classified classification of case 16 -1 -1.717403990962335 Correct

� Classified classification of case 17 -1 -1.717403990962335 Correct

� Classified classification of case 18 -1 -1.717403990962335 Correct

� Classified classification of case 19 -1 -1.717403990962335 Correct

Total error=0.2

Wirtschaftsinformatik und Operations Research 243

Iteration 4 – Updated weights

Index X-Coordinate Y-Coordinate Classification Weight

0 1.7 3.5 1 0.021756
1 4.4 2.2 1 0.021756
2 9.5 3.7 1 0.125000

3 13.0 4.5 1 0.125000

4 16.2 5.9 1 0.125000

5 6.5 6.1 1 0.007911
6 11.3 6.8 1 0.125000

7 4.3 8.3 1 0.007911
8 3.0 10.5 1 0.042722
9 3.9 15.5 1 0.042722

10 8.5 3.5 -1 0.042722

11 11.3 3.5 -1 0.042722
12 14.0 6.5 -1 0.117484
13 7.1 8.5 -1 0.021756
14 14.0 8.8 -1 0.021756

15 10.0 9.8 -1 0.021756
16 14.2 11.8 -1 0.021756
17 10.0 13.4 -1 0.021756
18 16.3 14.4 -1 0.021756

19 13.8 16.2 -1 0.021756

Wirtschaftsinformatik und Operations Research 244

Iteration 5 – weak classifier

� X-coordinate

� Threshold x-coordinate=13.0

� Threshold x-coordinate quality=0.2757120253164556 Threshold x-coordinate flag=-1

� Y-coordinate

� Threshold y-coordinate=8.3

� Threshold y-coordinate quality=0.2883702531645569 Threshold y-coordinate flag=-1

� We take the x-coordinate. Flag=-1

� Results of weak classifier

� Case 4 NOT correctly classified. Current error=0.12499999999999994

� Case 10 NOT correctly classified. Current error=0.1677215189873417

� Case 11 NOT correctly classified. Current error=0.21044303797468344

� Case 13 NOT correctly classified. Current error=0.2321993670886075

� Case 15 NOT correctly classified. Current error=0.25395569620253156

� Case 17 NOT correctly classified. Current error=0.2757120253164556

� Total error=0.2757120253164556

� [['x-coordinate', 0.2, 6.5, -1, 1], ['y-coordinate', 0.15624999999999997, 8.3, -1, 2], ['y-coordinate',
0.26666666666666666, 3.5, 1, 3], ['x-coordinate', 0.202020202020202, 6.5, -1, 4], ['x-coordinate',
0.2757120253164556, 13.0, -1, 5]]

� Current alphalist: [0.6931471805599453, 0.8431994767851144, 0.50580045583924, 0.6868577894565153,
0.4829160669569937]

19

Wirtschaftsinformatik und Operations Research 245

Iteration 5 – Quality of the combined classifier

� Classified classification of case 0 1 2.200320057919329 Correct

� Classified classification of case 1 1 2.200320057919329 Correct

� Classified classification of case 2 1 0.45191102956488755 Correct

� Classified classification of case 3 1 0.45191102956488755 Correct

� Classified classification of case 4 -1 -0.5139211043490999 NOT correct!

� Classified classification of case 5 1 3.211920969597809 Correct

� Classified classification of case 6 1 0.45191102956488755 Correct

� Classified classification of case 7 1 3.211920969597809 Correct

� Classified classification of case 8 1 1.5255220160275798 Correct

� Classified classification of case 9 1 1.5255220160275798 Correct

� Classified classification of case 10 -1 -0.5596898821135925 Correct

� Classified classification of case 11 -1 -0.5596898821135925 Correct

� Classified classification of case 12 -1 -0.5139211043490999 Correct

� Classified classification of case 13 -1 -1.2344879240053415 Correct

� Classified classification of case 14 -1 -2.200320057919329 Correct

� Classified classification of case 15 -1 -1.2344879240053415 Correct

� Classified classification of case 16 -1 -2.200320057919329 Correct

� Classified classification of case 17 -1 -1.2344879240053415 Correct

� Classified classification of case 18 -1 -2.200320057919329 Correct

� Classified classification of case 19 -1 -2.200320057919329 Correct

Total error=0.05

Wirtschaftsinformatik und Operations Research 246

Iteration 5 – Updated weights

Index X-Coordinate Y-Coordinate Classification Weight

0 1.7 3.5 1 0.015019
1 4.4 2.2 1 0.015019
2 9.5 3.7 1 0.086292

3 13.0 4.5 1 0.086292
4 16.2 5.9 1 0.226686

5 6.5 6.1 1 0.005461
6 11.3 6.8 1 0.086292

7 4.3 8.3 1 0.005461
8 3.0 10.5 1 0.029492
9 3.9 15.5 1 0.029492

10 8.5 3.5 -1 0.077475

11 11.3 3.5 -1 0.077475

12 14.0 6.5 -1 0.081103
13 7.1 8.5 -1 0.039455

14 14.0 8.8 -1 0.015019

15 10.0 9.8 -1 0.039455

16 14.2 11.8 -1 0.015019
17 10.0 13.4 -1 0.039455

18 16.3 14.4 -1 0.015019

19 13.8 16.2 -1 0.015019

Wirtschaftsinformatik und Operations Research 247

Iteration 6 – weak classifier

� X-coordinate

� Threshold x-coordinate=14.2

� Threshold x-coordinate quality=0.37383943200436914 Threshold x-coordinate flag=1

� Y-coordinate

� Threshold y-coordinate=3.5

� Threshold y-coordinate quality=0.2895823326466632 Threshold y-coordinate flag=1

� We take the y-coordinate. Flag=1

� Results of weak classifier

� Case 2 NOT correctly classified. Current error=0.08629164391043145

� Case 3 NOT correctly classified. Current error=0.1725832878208629

� Case 4 NOT correctly classified. Current error=0.39926908409059036

� Case 5 NOT correctly classified. Current error=0.40473058054061767

� Case 6 NOT correctly classified. Current error=0.49102222445104915

� Case 7 NOT correctly classified. Current error=0.49648372090107645

� Case 8 NOT correctly classified. Current error=0.5259758017312239

� Case 9 NOT correctly classified. Current error=0.5554678825613714

� Case 10 NOT correctly classified. Current error=0.6329427749573542

� Case 11 NOT correctly classified. Current error=0.710417667353337

� Total error=0.710417667353337

� ['y-coordinate', 0.2895823326466632, 3.5, 1, 6]

� Current list of classifiers: [['x-coordinate', 0.2, 6.5, -1, 1], ['y-coordinate', 0.15624999999999997, 8.3, -1, 2], ['y-coordinate',
0.26666666666666666, 3.5, 1, 3], ['x-coordinate', 0.202020202020202, 6.5, -1, 4], ['x-coordinate', 0.2757120253164556, 13.0, -1,
5], ['y-coordinate', 0.2895823326466632, 3.5, 1, 6]]

� Current alphalist: [0.6931471805599453, 0.8431994767851144, 0.50580045583924, 0.6868577894565153, 0.4829160669569937,
0.4487067041788279]

Wirtschaftsinformatik und Operations Research 248

Iteration 6 – Quality of the combined classifier

� Classified classification of case 0 1 1.751613353740501 Correct

� Classified classification of case 1 1 1.751613353740501 Correct

� Classified classification of case 2 1 0.9006177337437155 Correct

� Classified classification of case 3 1 0.9006177337437155 Correct

� Classified classification of case 4 -1 -0.06521440017027197 NOT correct!

� Classified classification of case 5 1 3.6606276737766366 Correct

� Classified classification of case 6 1 0.9006177337437155 Correct

� Classified classification of case 7 1 3.6606276737766366 Correct

� Classified classification of case 8 1 1.9742287202064077 Correct

� Classified classification of case 9 1 1.9742287202064077 Correct

� Classified classification of case 10 -1 -1.0083965862924205 Correct

� Classified classification of case 11 -1 -1.0083965862924205 Correct

� Classified classification of case 12 -1 -0.06521440017027197 Correct

� Classified classification of case 13 -1 -0.7857812198265135 Correct

� Classified classification of case 14 -1 -1.751613353740501 Correct

� Classified classification of case 15 -1 -0.7857812198265135 Correct

� Classified classification of case 16 -1 -1.751613353740501 Correct

� Classified classification of case 17 -1 -0.7857812198265135 Correct

� Classified classification of case 18 -1 -1.751613353740501 Correct

� Classified classification of case 19 -1 -1.751613353740501 Correct

Total error=0.05

20

Wirtschaftsinformatik und Operations Research 249

Iteration 6 – Updated weights

Index X-Coordinate Y-Coordinate Classification Weight

0 1.7 3.5 1 0.025932
1 4.4 2.2 1 0.025932
2 9.5 3.7 1 0.060733

3 13.0 4.5 1 0.060733

4 16.2 5.9 1 0.159544

5 6.5 6.1 1 0.003844

6 11.3 6.8 1 0.060733

7 4.3 8.3 1 0.003844

8 3.0 10.5 1 0.020757

9 3.9 15.5 1 0.020757

10 8.5 3.5 -1 0.054528

11 11.3 3.5 -1 0.054528

12 14.0 6.5 -1 0.140035
13 7.1 8.5 -1 0.068124
14 14.0 8.8 -1 0.025932

15 10.0 9.8 -1 0.068124
16 14.2 11.8 -1 0.025932
17 10.0 13.4 -1 0.068124
18 16.3 14.4 -1 0.025932

19 13.8 16.2 -1 0.025932

Wirtschaftsinformatik und Operations Research 250

Iteration 7 – weak classifier

� X-coordinate

� Threshold x-coordinate=14.2

� Threshold x-coordinate quality=0.3091976806419835 Threshold x-coordinate flag=1

� Y-coordinate

� Threshold y-coordinate=6.1

� Threshold y-coordinate quality=0.2151460337068737 Threshold y-coordinate flag=-1

� We take the y-coordinate. Flag=-1

� Results of weak classifier

� Case 6 NOT correctly classified. Current error=0.06073303626577251

� Case 7 NOT correctly classified. Current error=0.06457689932056825

� Case 8 NOT correctly classified. Current error=0.08533375981646518

� Case 9 NOT correctly classified. Current error=0.10609062031236212

� Case 10 NOT correctly classified. Current error=0.16061832700961792

� Case 11 NOT correctly classified. Current error=0.2151460337068737

� Total error=0.2151460337068737

� ['y-coordinate', 0.2151460337068737, 6.1, -1, 7]

� Current list of classifiers: [['x-coordinate', 0.2, 6.5, -1, 1], ['y-coordinate', 0.15624999999999997, 8.3, -1, 2],
['y-coordinate', 0.26666666666666666, 3.5, 1, 3], ['x-coordinate', 0.202020202020202, 6.5, -1, 4], ['x-
coordinate', 0.2757120253164556, 13.0, -1, 5], ['y-coordinate', 0.2895823326466632, 3.5, 1, 6], ['y-
coordinate', 0.2151460337068737, 6.1, -1, 7]]

� Current alphalist: [0.6931471805599453, 0.8431994767851144, 0.50580045583924, 0.6868577894565153]

Wirtschaftsinformatik und Operations Research 251

Iteration 7 – Quality of the combined classifier

� Classified classification of case 0 1 2.398703676828247 Correct

� Classified classification of case 1 1 2.398703676828247 Correct

� Classified classification of case 2 1 1.5477080568314616 Correct

� Classified classification of case 3 1 1.5477080568314616 Correct

� Classified classification of case 4 1 0.5818759229174741 Correct

� Classified classification of case 5 1 4.307717996864382 Correct

� Classified classification of case 6 1 0.2535274106559693 Correct

� Classified classification of case 7 1 3.0135373506888903 Correct

� Classified classification of case 8 1 1.3271383971186617 Correct

� Classified classification of case 9 1 1.3271383971186617 Correct

� Classified classification of case 10 -1 -0.3613062632046743 Correct

� Classified classification of case 11 -1 -0.3613062632046743 Correct

� Classified classification of case 12 -1 -0.7123047232580182 Correct

� Classified classification of case 13 -1 -1.4328715429142598 Correct

� Classified classification of case 14 -1 -2.398703676828247 Correct

� Classified classification of case 15 -1 -1.4328715429142598 Correct

� Classified classification of case 16 -1 -2.398703676828247 Correct

� Classified classification of case 17 -1 -1.4328715429142598 Correct

� Classified classification of case 18 -1 -2.398703676828247 Correct

� Classified classification of case 19 -1 -2.398703676828247 Correct

Total error=0.0

Wirtschaftsinformatik und Operations Research 252

Iteration 7 – Updated weights

Index X-Coordinate Y-Coordinate Classification Weight

0 1.7 3.5 1 0.016521
1 4.4 2.2 1 0.016521
2 9.5 3.7 1 0.038691

3 13.0 4.5 1 0.038691
4 16.2 5.9 1 0.101639
5 6.5 6.1 1 0.002449
6 11.3 6.8 1 0.141144

7 4.3 8.3 1 0.008933
8 3.0 10.5 1 0.048239
9 3.9 15.5 1 0.048239

10 8.5 3.5 -1 0.126723

11 11.3 3.5 -1 0.126723
12 14.0 6.5 -1 0.089211
13 7.1 8.5 -1 0.043399
14 14.0 8.8 -1 0.016521

15 10.0 9.8 -1 0.043399
16 14.2 11.8 -1 0.016521
17 10.0 13.4 -1 0.043399
18 16.3 14.4 -1 0.016521

19 13.8 16.2 -1 0.016521

21

Wirtschaftsinformatik und Operations Research 253

Termination with error 0

As we have no remaining error within the training set,
the algorithm stops

Wirtschaftsinformatik und Operations Research 254

Quality of the approach

Be careful!
It produces no

errors anymore on
the training set.

No more!

Be careful!
It produces no

errors anymore on
the training set.

No more!

Cool! It really
works. The
classifier is
error-free!

Cool! It really
works. The
classifier is
error-free!

Wirtschaftsinformatik und Operations Research 255

Extensions

� Due to its impressive performance, the AdaBoost algorithm was extended
by many scientific contributions

� Enabling general classifications

� Instead of binary classifications, various authors propose AdaBoost
extensions that are able to deal with more than two classes (see Freund
and Schapire (1996), Zhu, Zou, Rosset and Hastie (2009))

� This will be considered more in detail in the next part of this section

� Online versions of ensemble learning

� In order to derive reliable predictors also under restrictive time
restrictions, various authors generated AdaBoost variants/extensions

� These versions derive the combined predictors by exploring the
available data sets only once or in a considerably reduced number of
iterations (see Oza (2001))

Wirtschaftsinformatik und Operations Research 256

Multi-class AdaBoost by Freund and Schapire (1996)

� In what follows, we consider a simple extension of
AdaBoost to general classifications

� For this purpose, the authors generate and introduce
two different approaches, namely

� AdaBoost.M1 and

� AdaBoost.M2

22

Wirtschaftsinformatik und Operations Research 257

AdaBoost.M1

Input:

� Sequence of m cases r = ��, �� , … , �Y , �Y with labels �� ∈ � = 1, … �
determining the respective classification of the case �� ∈ [= ��, … , �Y

� Weak learning algorithm (predictor) denotes as WeakLearn

� Integer d determining the number of iterations to be performed

Initialize b� % ≔ �Y (weights of the cases to be considered), ∀% ∈ 1, … , $
DO FOR ALL c = 1,2, … , d:
1. Call WeakLearn(b] 1 , … , b] &) /* based on the weights b] 1 , … , b] & */

2. Get back the prediction ℎ]: [↦ �
3. Calculate the error f] of the predictor ℎ] by the formula f] = ∑ b] %�∣pm 7? �o?
4. IF f] * �	 THEN set d ≔ c − 1; Abort loop;

5. Set �] = lm�)lm

Wirtschaftsinformatik und Operations Research 258

AdaBoost.M1 – Continuation

6. Update the current distribution (of weights):

b](� % ≔ vm �~m ⋅ h�] %a ℎ] �� = ��1 Bcℎj"�%�j
In this definition q] is a normalization constant in order to guarantee that b](� is a distribution

END DO FOR ALL

Output the final predictions of all generated predictors

ℎ��� � = !"#$!� � log 1�] ∣ � ∈ �]∣pm 7 �o

Wirtschaftsinformatik und Operations Research 259

Shortcomings of AdaBoost.M1

� AdaBoost.M1 forces the weak learner to give an unambiguous decision
concerning the classification of each training case. However, frequently it is
more realistic that the weak learner has reliable knowledge about some not
applying classifications, while vague knowledge is given concerning some
other cases that are much more likely to apply. Such a situation can be
mapped adequately by using a set of “plausible” labels

� For this purpose, AdaBoost.M2 will indicate a “degree of plausibility”

� One further main disadvantage of AdaBoost.M1 is that this procedure is

unable to handle weak predictions with an error exceeding
�	

� Note that this is acceptable for binary classifications only (pure guessing
would attain 50 percent), but if the number of classes increases, this
limitation is quite restrictive. Here, the expected error of simple guessing

one of � classes would be 1 − ��
� All these shortcomings leads to the generation of AdaBoost.M2

Wirtschaftsinformatik und Operations Research 260

AdaBoost.M2

Input:

� Sequence of m cases ��, �� , … , �Y, �Y with labels �� ∈ � = 1, … � determining
the respective classification of the case �� ∈ [= ��, … , �Y

� Weak learning algorithm (predictor) denotes as WeakLearn

� Integer d determining the number of iterations to be performed

Let � ≔ %, � % ∈ 1, … , $ ∧ � ∈ � ∧ � ≠ �� /* all possible mislabels */

Initialize b� %, � ≔ �O (weights of the mislabels to be considered), ∀ %, � ∈ �
DO FOR ALL c = 1,2, … , d:
1. Call WeakLearn(b] %, �) /* based on the mislabel weights b] %, � , ∀ %, � ∈ � */

2. Get back the prediction ℎ]: [× � ↦ 0,1
3. Calculate the pseudo-loss f] of the predictor ℎ] by the formula

f] = 12 ⋅ � b] %, � ⋅ 1 − ℎ] ��, �� + ℎ] ��, ��,o ∈O
4. Set �] = lm�)lm

23

Wirtschaftsinformatik und Operations Research 261

AdaBoost.M2 – Continuation

5. Update the current distribution (of weights of pseudo-losses):

b](� %, � ≔ vm �,o~m ⋅ �]
��⋅ �)pm 7?,o? (pm 7?,o

In this definition q] is a normalization constant in order to guarantee that b](� is a distribution

END DO FOR ALL

Output the final predictions of all generated predictors

ℎ��� � = !"#$!� � log 1�] ⋅ ℎ] �, � ∣ � ∈ �_
]��

Wirtschaftsinformatik und Operations Research 262

Derivation of the pseudo-loss computation

� In each iteration, the weak learner generates ℎ]: [× � ↦ 0,1
� I.e., ℎ] �, � measures the degree to which it is believed that � is the correct

label associated with instance �. Note that ℎ] is not a distribution

� Thus, if for a given � ∈ [we have ℎ] �, � is identical for all � ∈ �, we say that
the hypothesis is uninformative on instance �

� On the other side, any deviation from strict equality is potentially informative,
because it predicts some labels to be more plausible than others

� In order to motivate the pseudo-loss computation of AdaBoost.M2, we pose for
each incorrect label � ≠ �� the question: “Which is the label of �� : �� or �?”

� To answer the question, we have to transform the degrees of ℎ] into expected
classification values, i.e., we have to find a modeling of using these degrees

� For this purpose, we do the following game

� We draw a bit t] �, � ∈ 0,1 randomly such that t] �, � is one with probability ℎ] �, � and 0 otherwise, i.e., with probability 1 − ℎ] �, � .

� We do the same for ℎ] �, ��

Wirtschaftsinformatik und Operations Research 263

Derivation of the pseudo-loss computation

� Clearly, if both randomly drawn bits are unequal, we got a decision

� If t] �, � = 1 = 1 − t] �, �� applies, the incorrect classification � is assumed

� If t] �, � = 0 = 1 − t] �, �� applies, the correct classification �� is assumed

� However, if both bits are of equal values, i.e., t] �, � = t] �, �� , the classification

is done randomly on the basis of a uniform distribution, i.e., with a probability of
�	

in both cases, � or �� is chosen

� Therefore, due to these (game) assumptions, the probability of choosing the
incorrect answer � to the question above is the probability of the case t] �, � =1 ∧ t] �, �� = 0 plus half of the probability of the case t] �, � = t] �, ��

� Hence, we can computeℎ] ��, � ⋅ 1 − ℎ] ��, �� +12 ⋅ ℎ] ��, � ⋅ ℎ] ��, �� + 1 − ℎ] ��, � ⋅ 1 − ℎ] ��, ��
= ℎ] ��, � − ℎ] ��, � ⋅ ℎ] ��, �� + 12 ℎ] ��, � ⋅ ℎ] ��, ��

+ �	 − �	 ℎ] ��, � − �	 ℎ] ��, �� + �	 ℎ] ��, � ⋅ ℎ] ��, ��

Wirtschaftsinformatik und Operations Research 264

Derivation of the pseudo-loss computation

= ℎ] �� , � − ℎ] ��, � ⋅ ℎ] ��, �� + 12 ℎ] ��, � ⋅ ℎ] �� , ��
+ 12 − 12 ℎ] ��, � − 12 ℎ] ��, �� + 12 ℎ] ��, � ⋅ ℎ] ��, ��

= 12 ℎ] �� , � − ℎ] ��, � ⋅ ℎ] ��, �� + ℎ] ��, � ⋅ ℎ] ��, �� + 12 − 12 ℎ] ��, ��
= 12 ℎ] ��, � + 12 − 12 ℎ] ��, �� = 12 ⋅ 1 − ℎ] ��, �� + ℎ] ��, �

24

Wirtschaftsinformatik und Operations Research 265

Pseudo loss – Observations

� We consider the pseudo-loss computation for �� ∈ [with � classifications
and state the following

� If ∀� ∈ � it holds that ℎ] �� , � = �� we obtain12 ⋅ 1 − ℎ] �� , �� + ℎ] �� , � = 12 ⋅ 1 − 1� + 1� = 12
� Hence, if this holds for all �� ∈ [(uninformative case), we obtain

f] = 12 ⋅ � b] %, � ⋅ 1 − ℎ] �� , �� + ℎ] �� , ��,o ∈O= �	 ⋅ ∑ b] %, � ⋅ 1 − �� + ���,o ∈O = �	 ⋅ ∑ b] %, ��,o ∈O = �	
� Moreover, if we have f] * �	 we can modify ℎ] by setting ∀� ∈�: ℎ] �� , � ≔ 1 − ℎ] �� , � and obtain the pseudo-loss 1 − f] < �	
� Hence, we can assume that f] ≤ �	 holds

Wirtschaftsinformatik und Operations Research 266

Pseudo loss – Observations

� We assume that
�	 ⋅ 1 − ℎ] �� , �� + ℎ] �� , � * �	 holds

� Then, we conclude that 1 − ℎ] �� , �� + ℎ] �� , � * 1
� Thus, we obtain −ℎ] �� , �� + ℎ] �� , � * 0 and ℎ] �� , �� − ℎ] �� , � < 0
� Hence, we obtain 12 ⋅ 1 − 1 − ℎ] �� , �� + 1 − ℎ] �� , �

= 12 ⋅ 1 + ℎ] �� , �� − ℎ] �� , �
≤ 12 + 12 ⋅ ℎ] �� , �� − ℎ] �� , � < 12

� Therefore, as stated above, by setting ∀� ∈ �: ℎ] �� , � ≔ 1 − ℎ] �� , � ,

we obtain the pseudo-loss 1 − f] < �	

Wirtschaftsinformatik und Operations Research 267

AdaBoost.M2 vs AdaBoost.M1

� The main difference between both approaches is that the second
version gives the weak learner more expressive power concerning
the classification of the training cases

� The error measurement

� This requires a more sophisticated assessment of the performance

� Specifically, instead of measuring the error, i.e., the total weighted
incorrect classification f] = ∑ b] %�∣pm 7? �o?),

� AdaBoost.M2 sums up the total weighted pseudo-loss

f] = 12 ⋅ � b] %, � ⋅ 1 − ℎ] �� , �� + ℎ] �� , ��,o ∈O

Wirtschaftsinformatik und Operations Research 268

AdaBoost.M2 vs AdaBoost.M1

� Moreover, the update of the distribution is adapted accordingly

� By using the computed error or pseudo-loss f], both approaches

generate the factor �] = lm�)lm ≤ 1.

� By using this factor, the distribution of the preceding round is updated

� Update in AdaBoost.M1

b](� % ≔ vm �~m ⋅ h�] %a ℎ] �� = ��1 Bcℎj"�%�j
� Update in AdaBoost.M2

b](� %, � ≔ b] %, �q] ⋅ �]
�	⋅ �)pm 7?,o? (pm 7?,o

25

Wirtschaftsinformatik und Operations Research 269

Computational validations

� Freund and Schapire (1996) report the measured computational results
attained by the proposed approaches for various experiments taken from
the UCI benchmark

� As mentioned above, these tests provide the following:

� A comparison between Ada.Boost.M1 and Ada.Boost.M2, i.e.,
particularly, the impact of replacing error by pseudo-loss

� A comparison of boosting and bagging on the basis of different weak
learners

� A consideration of the performance of the decision-tree approach C4.5
with and without boosting

� A study of the performance of a learning algorithm which combines
AdaBoost and a variant of the nearest neighbor classifier

� Firstly, we briefly introduce (sketch) the various weak learners applied by
Freund and Schapire (1996) in the computational tests

Wirtschaftsinformatik und Operations Research 270

Weak learners tested by Freund and Schapire (1996)

FindAttrTest

� Searches for the single attribute test that causes minimal error (or pseudo-
loss when AdaBoost.M2 is applied)

� E.g., for a binary classifier, an attribute ! with a value P is determined such
that each new case � is classified as follows:

� If case � does not possess a value of attribute ! the classification is randomly
chosen

� If attribute ! is discrete and case � possesses the value P for attribute ! the
classification is ��

� If attribute ! is continuous and case � possesses a value smaller or equal to P
for attribute ! the classification is ��

� In all other cases, the classification is ��
� FindAttrTest searches exhaustively for the classifier of the form given above

with minimum error or pseudo-loss with respect to the distribution
provided by the booster

Wirtschaftsinformatik und Operations Research 271

Weak learners tested by Freund and Schapire (1996)

FindAttrTest

� Hence, this method has to check exhaustively all attributes and cases in the
training set

� Therefore, with $ training cases and & attributes this search can be
executed with an asymptotic running time A & ⋅ $. For extensions dealing
with , classes, we have to add a factor of A ,

Wirtschaftsinformatik und Operations Research 272

Weak learners tested by Freund and Schapire (1996)

FindDecRule

� This algorithm requires an unweighted training set, so we use the
resampling version of boosting

� First, the given training set is randomly divided into a growing set using 70%
of the data, and a pruning set with the remaining 30% of given cases

� First phase

� The growing set of cases of the data set is used to grow a list of attribute-value
tests. The latter is initially empty, i.e., does not contain any test criterion

� Analogous to FindAttrTest, each test compares a chosen attribute ! to a value P
� The procedure adds only one test at a time. An entropy-based potential

function is used to decide about the growth of the list of tests. Specifically, the
test is added that causes the greatest drop in potential

� After the test is chosen, only one branch is expanded, namely, the branch with
the highest remaining potential. The list continues to be grown in this fashion
until no test remains which will further reduce the potential

26

Wirtschaftsinformatik und Operations Research 273

Weak learners tested by Freund and Schapire (1996)

FindDecRule

� Second phase

� The list is pruned by selecting the prefix of the list with minimum error (or
pseudo-loss) on the pruning set

� I.e., a sequence of test criteria is determined that causes minimum error

Wirtschaftsinformatik und Operations Research 274

Weak learners tested by Freund and Schapire (1996)

C4.5

� This is the sophisticated decision tree algorithm proposed by Quinland
(1993) and introduced in this course

� During the tests, all the default options including pruning are turned on

� As C4.5 expects an unweighted training sample, resampling is applied

� Moreover, AdaBoost.M2 is not applied as C4.5 is designed to minimize
error, not pseudo-loss. Note that Freund and Schapire (1996) argue that
pseudo-loss is not really helpful when using a weak learning algorithm as
strong as C4.5, since such an algorithm will usually be able to find a

hypothesis with error less than
�	

Wirtschaftsinformatik und Operations Research 275

Adapting the weak learners – integrating plausibility

� The algorithm Adaboost.M2 introduced above requires that a
weak learner generates a more detailed output function ℎ]: [× � ↦ 0,1

� However, so far, the learning algorithms presented in this
lecture predict only an assigned single class label, but do not
generate a detailed function defining the plausibility of the
identified class label and all other (dismissed) class labels

� Fortunately, these learning algorithms can be modified or
utilized accordingly in order to provide the required extended
plausibility function

� For this purpose, we give an example how the FindAttrTest
approach can be utilized

Wirtschaftsinformatik und Operations Research 276

Boosting with trees in sklearn

� The FindAttrTest learner tested by Freund and Schapire (1996)
extends the idea of decision stumps in order to provide a
suitable plausibility function

� Unfortunately, the provided description of the implementation
details is rather vague (see the preceding slides summarizing
the description provided by the paper)

� Therefore, we will present an approach actually implemented
in the python library scikit learn, which utilizes decision trees
to generate the needed plausibility function

� This approach should be very similar to the one described by
Freund and Schapire (1996)

27

Wirtschaftsinformatik und Operations Research 277

Boosting in scikit learn

� The python library scikit learn implements the so called
AdaBoost-SAMME and AdaBoost-SAMME.R approaches
presented in Zhu et. al (2006) and Zhu et. al (2009)

� The second approach, SAMME.R uses similar to
AdaBoost.M2 real-valued confidence-rated predictions
such as weighted probability estimates, to update the
weights

� We do not go into detail of these approaches and merely
use the weighted class probability estimates as the
plausibility estimates ℎ] �� , � in the AdaBoost.M2
approach

Wirtschaftsinformatik und Operations Research 278

A rough implementation sketch

� The actual implementation of the scikit learn library is not easily readable
on a slide

� Thus, we provide only a code snippet
Given:
X: list of lists with feature values of the items
Y: list of known classes of the items in X (coded as integers 0,...,k)
tree = DecisionTreeClassifier(...)
tree.fit(X,Y) # builds a decision stump
prediction = tree.predict(X) # returns predicted classes (dtype=int)
nodes = tree.apply(X) # returns a list containing a node index for each

element x of X, indicating the node x is
classified by

proba = []
for i,x in enumerate(X):
proba_x = [0.] * no_classes
leaf = nodes[i]
for j,x in enumerate(nodes):
if x == leaf:
proba_x[Y[j]] += 1.

s = sum(proba_x)
proba_x = [x / s for x in proba_x]
proba.append(proba_x)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

Wirtschaftsinformatik und Operations Research 279

An example

Size 125 143 150 163 167 173 180 182 187

Group child male child female female male male female male

• In the following example, we determine probability estimates for a decision
stump using the attribute “size” with value 170 as a threshold

• Adult individuals are classified by their gender „male“ or „female“, while
children are classified simply as „child“

• Since for the attribute “size” there are no unknown values we commence
with a binary decision tree with nodes �� and ��

Size

�� ��
≤ 170 * 170

Wirtschaftsinformatik und Operations Research 280

An example (continued)

Size 125 143 150 163 167 173 180 182 187

Group child male child female female male male female male

Node �� �� �� �� �� �� �� �� ��

Given the decision tree below we can classify our items as either �� or ��

• Probability estimates for an item �� with class �� can now be derived from
this result by computing the probability as the fraction of items of class �
classified by the leaf node which also classifies ��

Size

�� ��
≤ 170 * 170

28

Wirtschaftsinformatik und Operations Research 281

An example (continued)

Size 125 143 150 163 167 173 180 182 187

Group child male child female female male male female male

Node �� �� �� �� �� �� �� �� ��

Size

�� ��
≤ 170 * 170

Summary for node ��
male female child total

1 2 2 5
norm. 0.2 0.4 0.4 1.0

Summary for node ��
male female child total

3 1 0 4
norm. 0.75 0.25 0 1.0

Wirtschaftsinformatik und Operations Research 282

An example (continued)

Size 125 143 150 163 167 173 180 182 187

Group child male child female female male male female male

Node �� �� �� �� �� �� �� �� ��ℎ ��, � 0.2 0.2 0.2 0.2 0.2 0.75 0.75 0.75 0.75ℎ ��, � 0.4 0.4 0.4 0.4 0.4 0.25 0.25 0.25 0.25ℎ ��, 0.4 0.4 0.4 0.4 0.4 0.0 0.0 0.0 0.0

Summary for node ��
male female child total

1 2 2 5
norm. 0.2 0.4 0.4 1.0

Summary for node ��
male female child total

3 1 0 4
norm. 0.75 0.25 0 1.0

The needed plausibility values ℎ �� , � are determined for each �� according to
the probability values of the leaf nodes

Wirtschaftsinformatik und Operations Research 283

Further implementation issues

� Many learning algorithms can be modified to handle examples that are
weighted by a distribution such as the one created by the boosting
algorithm

If this applies, the booster’s distribution b] is supplied directly to the weak
learner (denoted as boosting by reweighting)

� However, some learning algorithms require an unweighted set of examples

� In this case, a set of examples is chosen from the given data set
independently at random according to the given distribution b] with
replacement

� Note that the number of examples to be chosen on each round is a
matter of discretion

� Freund and Schapire (1996) chose $ examples on each round, where $
is the size of the original training set

� This method is denoted as boosting by resampling

Wirtschaftsinformatik und Operations Research 284

Further implementation issues

� Note that boosting by resampling is also possible
when using the pseudo-loss (Freund and Schapire
(1996) p.4)

� In this case, a set of mislabels are chosen from the set � of all mislabels with replacement according to the
given distribution b]

� Freund and Schapire (1996) used a sample of size � = $ ⋅ � − 1

29

Wirtschaftsinformatik und Operations Research 285

The tested bagging approach

� The bagging algorithm is the one proposed by Breiman (1996)

� The method works by training each copy of the algorithm on a
bootstrap sample, i.e., a sample of size $ chosen uniformly at
random with replacement from the original training set

� The multiple hypotheses that are computed are then combined
using simple voting, i.e.,

the final composite hypothesis classifies an example � to the class
most often assigned by the underlying “weak” hypotheses

� In order to compare AdaBoost.M2, which uses pseudo-loss, to
bagging, we also extended bagging in a natural way for use with a
weak learning algorithm that minimizes pseudo-loss rather than
ordinary error

� Such a weak learning algorithm expects to be provided with a
distribution over the set � of all mislabels

Wirtschaftsinformatik und Operations Research 286

The tested bagging approach

� On each round of bagging, we construct this distribution using the
bootstrap method; that is, we select � mislabels from � (chosen
uniformly at random with replacement) and assign each mislabel

weight
�O times the number of times it was chosen

� The weak learner then provides the classification by combining the
voting in a natural manner; namely, given �, the combined
hypothesis outputs the label � which maximizes ∑ ℎ] �, �]

Wirtschaftsinformatik und Operations Research 287

Differences between bagging and boosting

For either error or pseudo-loss, it can be summarized
the following

1. bagging always uses resampling rather than
reweighting

2. bagging does not modify the distribution over
examples or mislabels, but instead always uses the
uniform distribution

3. in forming the final hypothesis, bagging gives equal
weight to each of the weak hypotheses

Wirtschaftsinformatik und Operations Research 288

The real-world problems of the benchmark

See Freund and Schapire (1996) p.5

and https://archive.ics.uci.edu/ml/index.php

30

Wirtschaftsinformatik und Operations Research 289

Error vs. pseudo-loss with Boosting and Bagging

� Firstly, the two weak learners with boosting and bagging are directly compared
for the two criteria error and pseudo-loss (average values of multiple
repetitions) by the resulting errors (each point is one benchmark)

� It becomes obvious that boosting using pseudo-loss clearly outperforms
boosting using error

See Freund and Schapire (1996) p.5

Wirtschaftsinformatik und Operations Research 290

Error vs. pseudo-loss with Boosting and Bagging

� For boosting, it becomes obvious that using pseudo-loss did dramatically
better than error on every non-binary problem (except it did slightly worse on
“iris” with three classes)

� As the figure shows, using pseudo-loss with bagging gave mixed results in
comparison to ordinary error. Overall, pseudo-loss gave better results, but
occasionally, using pseudo-loss hurt considerably

See Freund and Schapire (1996) p.5

Wirtschaftsinformatik und Operations Research 291

Boosting versus Bagging

� For boosting, the error rate achieved using pseudo-loss is given. For
bagging, the error rate achieved using either error or pseudo-loss,
whichever gave the better result on that particular benchmark, is reported

� For the binary problems, and experiments with C4.5, only error was used

See Freund and Schapire (1996) p.6

Wirtschaftsinformatik und Operations Research 292

Boosting versus Bagging

� For the simpler weak learning algorithms (FindAttr-Test and FindDecRule),
boosting did significantly and uniformly better than bagging

� The boosting error rate was worse than the bagging error rate (using either
pseudo-loss or error) on a very small number of benchmark problems, and on
these, the difference in performance was quite small

� On average, for FindAttrTest, boosting improved the error rate over using
FindAttrTest alone by 55.2%, compared to bagging which gave an improvement
of only 11.0% using pseudo-loss or 8.4% using error. For FindDecRule, boosting
improved the error rate by 53.0%, bagging by only 18.8% using pseudo-loss,
13.1% using error

� When using C4.5 as the weak learning algorithm, boosting and bagging seem
more evenly matched, although boosting still seems to have a slight advantage.
On average, boosting improved the error rate by 24.8%, bagging by 20.0%.
Boosting beat bagging by more than 2% on 6 of the benchmarks, while bagging
did not beat boosting by this amount on any benchmark. For the remaining 20
benchmarks, the difference in performance was less than 2%

31

Wirtschaftsinformatik und Operations Research 293

C4.5 versus Boosting and Bagging

� Using boosting with FindAttrTest does quite well as a learning algorithm in
its own right, in comparison to C4.5.

� This algorithm beat C4.5 on 10 of the benchmarks (by at least 2%), tied on
14, and lost on 3

See Freund and Schapire (1996) p.6

Wirtschaftsinformatik und Operations Research 294

C4.5 versus Boosting and Bagging

� C4.5’s improvement in performance over FindAttrTest was 49.3%

� Using boosting with FindDecRule did somewhat better

� The win-tie-lose numbers for this algorithm (compared to C4.5) were

� 13-12-2,

� and its average improvement over FindAttrTest was 58.1%

See Freund and Schapire (1996) p.6

Wirtschaftsinformatik und Operations Research 295

Test error rates of various algorithms

See Freund and Schapire (1996) p.7

Wirtschaftsinformatik und Operations Research 296

2.6.4 Random Forest

� Instead of applying various methods, Random Forest
approaches solely uses decision trees as predictors

� In order to increase the variability of these trees and
their predictions, besides randomly generating the
training sets, the attributes assigned to inner nodes
are also randomly chosen and are therefore tree-
dependent

32

Wirtschaftsinformatik und Operations Research 297

From tree to forest

This is funny as it is
somehow a correct

description of the idea
of this approach

This is funny as it is
somehow a correct

description of the idea
of this approach

Like in a biology class about flora. First comes
the trees and after that the forest…here, we

have a random one…

Like in a biology class about flora. First comes
the trees and after that the forest…here, we

have a random one…

Wirtschaftsinformatik und Operations Research 298

A possible random forest procedure

1. Let & be the number of available attributes in the training set ℒ (formerly denoted as the data set �). The training set
comprises ℒ = � cases

2. Determine the number of decision trees (classifiers) � to be
generated

3. For % = 1 to � do

� Generate randomly by bootstrap aggregating the training set ℒ �
� Select randomly &¡ ≤ & attributes from training set ℒ and insert it into

set ℳ �
� Train CART on training set ℒ � by solely using the attributes of set ℳ �
� No pruning is applied

4. End For

Wirtschaftsinformatik und Operations Research 299

Finding appropriate values for &¡
� Frochte (2018) p.155 reports that appropriate values

for a sufficiently reliable approach are &¡ = log	 & or &¡ = &
� By considering current libraries, for instance scikit-

learn (Python), this choice depends on the sought
classification

� For class labels, &¡ = & is proposed as a default
value

� For numerical classifications, the default value is &¡ = &

Wirtschaftsinformatik und Operations Research 300

Optimizing the number of generated trees �
� Besides choosing the number of drawn attributes, the size of the forest,

i.e., the number of generated trees is another important parameter of
the random forest algorithm

� Due to the random generation of the different training sets ℒ � , … , ℒ O , we face the situation that each tree is trained on the

basis of a specific set ℒ � , but this set does not comprise all cases.
Hence, remaining cases of other sets can be used for parameter tuning
or testing

� For Optimizing the number of generated trees |�|, Frochte (2018) p.156
illustrates three possible approaches

� First, we generate the so-called out-of-bag error of cases �� that belong to

some set ℒ � by testing trees N ≠ % that do not have trained on ��, i.e., �� ∉ ℒ 6 . By doing so for all cases in all generated sets, we obtain an
average error. As long as this error is decreased by adding a tree, we do so
(i.e., by setting � ≔ � + 1)

33

Wirtschaftsinformatik und Operations Research 301

Optimizing the number of generated trees �
� Second, as trees can be generated in parallel by

different resources (Computers, CPUs, or cores), an
obvious limitation of the number of generated trees
may be also the number of available computational
resources that are available for the time in question

� Third, if there are experiences with applications of the
random forest approach, it is reasonable to consider
these empirical values

Wirtschaftsinformatik und Operations Research 302

Evaluation of Random Forest

� Frochte (2018) reports on page 159 some measured
computational results comparing the performance of
a single CART decision tree, a random forest with up
to 24 trees generated by bagging, and a random
forest with up to 24 trees generated by subagging

� Subagging is conducted with 50% (perc=0.5), i.e., only
50 percent of the cases is randomly drawn for each
generated tree

Wirtschaftsinformatik und Operations Research 303

Evaluation of Random Forest

20

22

24

26

28

30

32

34

1 3 8 10 16 20 24

CART

Bagging

Subagging

See Frochte (2018) p.159

Wirtschaftsinformatik und Operations Research 304

Evaluation of Random Forest – Results

� The generation of a considerable number of decision
trees by applying bagging and subagging proves to be
a promising approach for improving the validity of
decision tree classifiers

� Particularly, the full bagging approach reduces the
average error from 31,76 produced by CART with a
single tree to 25,27 attained by the bagging approach
using 24 trees

� By using only 50 percent of the stored cases in the
data set, subagging averagely attains 26,27 errors
with 24 generated trees

34

Wirtschaftsinformatik und Operations Research 305

2.7 Clustering approaches

� Data clustering is a process that tries to identify groups or clusters within
multidimensional data (the following general depictions are based on Jain,
Murty, and Flynn (1999) and Omram, Engelbrecht, and Salman, A. (2007))

� For this purpose, similarity between items (cases) is determined by
suitable application-dependent distance measures

� Clustering approaches have various applications in Artificial Intelligence
approaches. Among others, these are, for instance,

� image segmentation

� vector and color image quantization (data compression techniques)

� data mining, or machine learning

� Each cluster itself is characterized by the assigned items (cases) and the
resulting cluster center (also denoted as the barycenter or centroid of the
cluster)

� Clustering comprises considerable complexity as it is an unsupervised
approach that has to identify and exploit possible patterns in the data

Wirtschaftsinformatik und Operations Research 306

Clustering – Illustration

See Jain, A.K.; Murty, M.N.; Flynn, P.J. (1999) p.266

Wirtschaftsinformatik und Operations Research 307

Clustering steps

Basic steps (see Jain, A.K.; Murty, M.N.; Flynn, P.J. (1999) p.267)

1. pattern representation (optionally including feature extraction and/or
selection)

2. definition of a pattern proximity measure appropriate to the data domain,

3. clustering or grouping,

4. data abstraction (if needed), and

5. assessment of output (if needed)

See Jain, A.K.; Murty, M.N.; Flynn, P.J. (1999) p.267

Wirtschaftsinformatik und Operations Research 308

Clustering steps – some details

� Pattern representation comprises the determination of the

� Number of classes

� Number of available patterns

� Number, type, and scale of the features

� Note that some of these information may not be controllable, but
externally given by the data set

� Feature selection has to identify the most effective subset of the original
features to use in clustering

� Feature extraction is the use of one or more transformations of the input
features to produce new salient features

� Pattern proximity is usually measured by a distance function defined on
pairs of patterns. The literature provides a variety of distance measures

� Grouping step provides a clustering of cases into groups. This clustering can
be hard or fuzzy (with variable degree of membership). There are various
grouping algorithms in the literature

35

Wirtschaftsinformatik und Operations Research 309

Clustering steps – some details

� Data abstraction is the process of extracting a simple and compact
representation of a data set. This is done either from

� the perspective of automatic analysis (so that a machine can perform further
processing efficiently)

� or it is human-oriented (so that the representation obtained is easy to comprehend
and intuitively appealing)

� In the clustering context, a typical data abstraction is a compact description of
each cluster, usually in terms of cluster prototypes or representative patterns
such as the centroid

� Cluster validity analysis assesses the output quality of a clustering approach.
Note that a clustering output is valid if it cannot reasonably have occurred by
chance. There are three basic types of validation studies

� external assessment of validity compares the recovered structure to an a priori
structure

� internal examination tries to determine whether the structure is intrinsically
appropriate for the data

� relative test compares two structures and measures their relative merit

Wirtschaftsinformatik und Operations Research 310

What is different about clustering?

Be careful! It is done in
an unsupervised way!

Be careful! It is done in
an unsupervised way!

Clustering….what is the difference
to separating?

Clustering….what is the difference
to separating?

Wirtschaftsinformatik und Operations Research 311

From tree to forest

You do not know who is
a bear and who is a
mouse beforehand!

You do not know who is
a bear and who is a
mouse beforehand!

And this means?And this means?

Wirtschaftsinformatik und Operations Research 312

2.7.1 Basics

� We define the following terms and notations
� A pattern (feature vector) � is a single item used by the applied

clustering algorithm. It is usually defined by a vector of d
measurements, i.e., ¤ = ��, �	, … , �>

� Each scalar component �� of a pattern � is denoted as a feature (or an
attribute)

� The parameter � gives the dimensionality of the pattern space

� A pattern set is denoted by ℋ = ¤�, ¤	, … , ¤� and comprises &
patterns. Each pattern ¤� is denoted by ��,�, ��,	, … , ��,> , i.e., a

pattern set to be clustered can be viewed as an & × � pattern matrix

� A class refers to a state of nature that governs the pattern generation
process in some cases. More concretely, a class can be viewed as a
source of patterns whose distribution in feature space is governed by a
probability density specific to the class

36

Wirtschaftsinformatik und Operations Research 313

Basic parameters

� A hard clustering assigns a class label /� to each pattern ¤� that
identifies its class unambiguously. The set of all labels for a
pattern set ℋ = ¤�, ¤	, … , ¤� is denoted as ℒ ℋ =/�, /	, … , /� with /� ∈ 1,2, … , , giving the index of the
cluster ¤� is assigned to while , determines the total number
of clusters

� Fuzzy clustering procedures assign to each pattern ¤� a
fractional degree of membership a�,6 in each output cluster N ∈ 1,2, … , ,

� A distance measure (a specialization of a proximity measure) is
a metric (or quasi-metric) on the feature space used to
quantify the similarity of patterns

Wirtschaftsinformatik und Operations Research 314

Distance measures (or metric)

� As mentioned above, clustering has to group items into clusters in order to
attain the following objectives

� Inner cluster homogeneity: Items that are assigned to the same cluster possess
similar attribute values

� Inter cluster heterogeneity: The attribute values of items that are assigned to
different clusters differ considerably. As a consequence, cluster centers or
centroids are distinguishable and enable to derive significant cognitions

� For this purpose, we have to mathematically define what is similarity, or,
with other words, how can we differences between our items (cases) in the
data set

� This requires the introduction and application of a metric

Wirtschaftsinformatik und Operations Research 315

Metric

2.7.1.1 Definition

A metric on a set [is a function (also denoted as a distance
function or just a distance) �: [× [↦ 0, ∞ ⊆ ℝ with 0, ∞
being all positive real numbers such that the following restrictions
are fulfilled1. ∀�, � ∈ [: � �, � ≥ 02. ∀�, � ∈ [: � �, � = 0 ⇒ � = �3. ∀�, � ∈ [: � �, � = � �, �4. ∀�, �, § ∈ [: � �, � ≤ � �, § + � §, �

Wirtschaftsinformatik und Operations Research 316

2.7.1.2 The Minkowski distance

� One general distance measure is the well-known Minkowski distance

�n ¤�, ¤	 = � ��,6 − �	,6 n>
6��

�/n

� Due to the parameter 4, it allows for various applications

� For instance, by setting 4 to 2, we obtain the Euclidean distance measure

�	 ¤�, ¤	 = � ��,6 − �	,6 	>
6�� = ¤� − ¤	

� Alternatively, if we set 4 to 1, we obtain the Rectangular distance measure
(also denoted as the Manhattan distance measure)

�� ¤�, ¤	 = � ��,6 − �	,6>
6��

37

Wirtschaftsinformatik und Operations Research 317

Illustration

� The Rectangular distance measure just adds the distances over all attribute
value pairs

� In contrast to this, the Euclidean distance measures the direct distance
between the vectors

Direct distance amounts to(142 + 92)0.5 = (196 + 81)0.5 = 16.64
Rectangular

distance amounts to 14 + 9 = 23
(1,1)

(15,10)

Wirtschaftsinformatik und Operations Research 318

Illustration

We consider the ℝ	 and illustrate all points ��, �	 ∈ ℝ	 with distance �n 0, ¤ = 1 to the origin 0,0

4 ↦ ∞

4 = 2

4 = 0.3

4 = 1.8
4 =1

Wirtschaftsinformatik und Operations Research 319

Consequences

2.7.1.3 Lemma

The Minkowski distance is a metric for 4 ≥ 1, but not for 4 < 1.

Proof:

We start with 4 ≥ 1. Please note that the following proof (copied from a
former script) denotes the Minkowski distance �n by /ª:

() () ()

()

()
()

() 01

,,,:

21 ≥⋅−⋅=
∂
∂
∂

∧⋅=
∂
∂

>

≥≥=

≥+∈∀

−− pp

p

ppp

n

tpp
t

t

tf

tp
t

tf
 :0t for since

1p and 0t all for convex is ttf

function the that Note,

zxlzylyxlIRzy,x,

: showto have weNow,

Wirtschaftsinformatik und Operations Research 320

Proof of Lemma 2.7.1.3 – 4 ≥ 1

()()p
sltl ⋅−+⋅ 1

() pp sltl −+⋅ 1

Due to the convexity, we obtain that ∀/ ∈ ℝ with 0 ≤ / ≤ 1, it
holds that / ⋅ c + 1 − / ⋅ � ª ≤ / ⋅ cª + 1 − / ⋅ �ª
Illustration:

38

Wirtschaftsinformatik und Operations Research 321

Proof of Lemma 2.7.1.3 – 4 ≥ 1
() ()

()
() ()

()

()

�
()

()

�

()

�
()

()

�

()
()

() ()
()

()

p

p

ii

p

p

ii

p

p

ii

p

ii

p

zyl

zy

p

yxl

yx

p

zyl

zy

yxl

yx

pp

p

p

ii

p

ii

zyl

zy
l

yxl

yx
l

zyl

zy
l

yxl

yx
l

sltlsltl1l0:IRl

:formula modified following the receive therefore, and

zylyxl

yxl
l and

zyl

zy
s

yxl

yx
t

:e substitutWe

p

ii

p

ii

p

ii

p

ii










 −
⋅−+









 −
⋅≤









 −
⋅−+

−
⋅⇔

−+⋅≤



















⋅−+⋅≤≤∈∀

+
=

−
=

−
=

−−−−

,
1

,,
1

,

11:

,,

,

,
,

,

,,,,

Wirtschaftsinformatik und Operations Research 322

Proof of Lemma 2.7.1.3 – 4 ≥ 1
()

()
() ()

()
()

()
() ()

()
() () ()

()
() () ()

()
() () ()

()
() () ()

() () () ()

()
() () ()

()
() () ()

p

p

ii

pp

p

p

p

ii

pp

p

p

pp

ii

pp

ii

p

p

ii

pp

p

p

p

ii

pp

p

p

p

ii

pp

p

p

ii

pp

p

pp

p

p

p

ii

p

p

ii

p

p

ii

p

ii

zyl

zy

zylyxl

zyl

yxl

yx

zylyxl

yxl

zylyxl

zy

zylyxl

yx

zyl

zy

zylyxl

zyl

yxl

yx

zylyxl

yxl

zyl

zy

zylyxl

zyl

yxl

yx

zylyxl

yxl

zylyxl

yxl
l Substitute

zyl

zy
l

yxl

yx
l

zyl

zy
l

yxl

yx
l










 −
⋅

+
+









 −
⋅

+
≤












+

−
+

+

−
⇔










 −
⋅

+
+









 −
⋅

+
≤










 −
⋅

+
+

−
⋅

+
⇔

+
=










 −
⋅−+









 −
⋅≤









 −
⋅−+

−
⋅⇔

,,,

,

,,,

,

,,,,

,,,

,

,,,

,

,,,

,

,,,

,

:
,,

,

,
1

,,
1

,

Wirtschaftsinformatik und Operations Research 323

Proof of Lemma 2.7.1.3 – 4 ≥ 1
() ()

()
()

()
()

() ()

() ()

()
()

()
()

() ()

() () () ()

()
()

()
()

() ()

() ()

()
()

()
()

() ()zylyxl

zyl

zy
zyl

yxl

yx
yxl

zylyxl

zx

zylyxl

zyl

zy
zyl

yxl

yx
yxl

zylyxl

zyyx

zylyxl

zx

zylyxl

zyl

zy
zyl

yxl

yx
yxl

zylyxl

zyyx

zylyxl

zyl

zy
zyl

yxl

yx
yxl

zylyxl

zyyx

pp

p

p

p

ii

pp

p

p

ii

pp

pp

ii

pp

p

p

p

ii

pp

p

p

ii

pp

pp

iiii

p

pp

ii

pp

p

p

p

ii

pp

p

p

ii

pp

pp

iiii

pp

p

p

ii

p

p

p

ii

pp

pp

iiii

,,

,
,

,
,

,,

,,

,
,

,
,

,,,,

,,

,
,

,
,

,,

,,

,
,

,
,

,,

+

−
⋅+

−
⋅

≤










+

−
⇔

+

−
⋅+

−
⋅

≤










+

−+−
≤











+

−
⇔

+

−
⋅+

−
⋅

≤










+

−+−
⇔

+










 −
⋅+









 −
⋅

≤










+

−+−
⇔

Wirtschaftsinformatik und Operations Research 324

Proof of Lemma 2.7.1.3 – 4 ≥ 1
() ()()

()
()

()
()

() ()

()
() ()()

() ()
()

() ()
()

() ()

()
() ()()

() ()
() ()

() () ()()
() () () ...,,,

,,,

1
,,

,,

,,

,

,,

,

,
,

,

,
,

,,

,

,,

,
,

,
,

,,

deqzylyxlzxl

zylyxlzxl

zylyxl

zylyxl

zylyxl

zxl

zylyxl

zyl

zyl
zyl

yxl

yxl
yxl

zylyxl

zxl

:get wen..., 1,2,i over Summing

zylyxl

zyl

zy
zyl

yxl

yx
yxl

zylyxl

zx

ppp

p

pp

p

p

pp

pp

p

pp

p

p

pp

p

p

p

p

pp

p

p

p

p

p

pp

p

p

pp

p

p

p

ii

pp

p

p

ii

p

p

pp

p

ii

+≤⇔

+≤⇔

=
+

+
≤

+
⇔

+

⋅+⋅

≤
+

⇔

=

+

−
⋅+

−
⋅

≤
+

−
⇔

39

Wirtschaftsinformatik und Operations Research 325

Proof of Lemma 2.7.1.3 – 4 ≥ 1
As �n also fulfills the first three remaining restrictions of
Definition 2.7.1.1, �n is a metric for 4 ≥ 1

Wirtschaftsinformatik und Operations Research 326

Proof of Lemma 2.7.1.3 – 4 < 1
� We consider the case 4 < 1 and the distance between 0,0 and 1,1
� Obviously, it holds that �n 0,0 , 1,1 = 1n + 1nz = 2z = 2� z⁄ * 2,

as, due to 4 < 1, it holds that � n⁄ * 1
� However, the additional vector 0,1 possesses the distance 1 to both,

namely to 0,0 and 1,1
� �n 0,0 , 0,1 = 0n + 1nz = 1z = 1
� �n 0,1 , 1,1 = 1n + 0nz = 1z = 1

� Hence, it holds that 2 = �n 0,0 , 0,1 + �n 0,1 , 1,1 < �n 0,0 , 1,1
� Therefore, the fourth restriction of Definition 2.7.1.1 is not fulfilled and �n

is not a metric for 4 < 1

Wirtschaftsinformatik und Operations Research 327

Considering limn↦® �n ¤�, ¤	
2.7.1.3 Lemma∀¤�, ¤	 ∈ ℝ>: limn↦® �n ¤�, ¤	 = max ��,6 − �	,6 1 ≤ N ≤ �
Proof:

We denote as �± = ��,6 − �	,6 = max ��,2 − �	,2 , ∈ 1, … , � , N ∈ 1, … , �
limn↦® �n ¤�, ¤	 = limn↦® ∑ ��,6 − �	,6 n>6�� �/n = limn↦® �±n ⋅ ∑ 7�,8)7�,8 z²8�� >³z

�/n =
limn↦® �± ⋅ ∑ 7�,8)7�,8 z²8�� >³z

�z ≤ limn↦® �± ⋅ ∑ >³z²8��>³z
�z ≤ limn↦® �± ⋅ ∑ 1>6�� �z ≤ limn↦® �± ⋅ �z

Hence, we conclude that limn↦® �± ⋅ 1�n ≤ limn↦® �n ¤�, ¤	 ≤ limn↦® �± ⋅ �z

⟺ �± ⋅ limn↦®1�z ≤ limn↦® �n ¤�, ¤	 ≤ �± ⋅ limn↦® �z
⟺ �± ≤ limn↦® �n ¤�, ¤	 ≤ �±

And thus, we obtain limn↦® �n ¤�, ¤	 = �±

Wirtschaftsinformatik und Operations Research 328

2.7.2 ,-means clustering

� The well-known k-means clustering approach is widely used in practice and
science

� Therefore, there are various variants and extensions

� In the classic version, one is given an integer , ∈ ℕ and a set e ⊂ ℝ> of &
data points defined by vectors of attribute values in the ℝ>

� The goal is to determine , center points (building the set µ) such that the
squared Euclidean distance of each data point to the closest located chosen
center point is minimized. Hence, it holds that

¶ = � min¸∈µ � − � 	
7∈e

� Clearly, the determination defines a clustering of the data points as we
assign each data point to the closest located chosen center

� Unfortunately, solving this problem exactly is NP-hard (see Drineas, Frieze,
Kannan, Vempala and Vinay (2004)), even with just two clusters

40

Wirtschaftsinformatik und Operations Research 329

The basic ,-means algorithm

We give the description of this basic algorithm that can be found in the paper
of Arthur and Vassilvitskii (2007). This description bases on the method
originally proposed by Lloyd (1982)

Note that �� defines a set of points, while �� gives its current center of mass

1. Arbitrarily choose , initial centers µ = ��, �	, … , �2
2. For each % ∈ 1, … , , , update the cluster �� to be the set of points in e

that are closer to �� than they are to �6 for all N ≠ %
3. For each % ∈ 1, … , , , set �� to the center of mass of all points currently

assigned to set ��, i.e., compute �� = ��? ⋅ ∑ �7∈�?
4. Repeat the steps 2 and 3 as long as � changes during the last iteration

Originally, it was standard practice to choose the initial centers uniformly at
random from e.

Wirtschaftsinformatik und Operations Research 330

Observations

� For Step 2, ties may be broken arbitrarily, as long as the method is consistent

� The execution of the steps 2 and 3 guarantee to decrease ¶
� This results from the following cognitions

2.7.2.1 Lemma

Let r be a set of points in the ℝ> with a mass denoted as � r . Moreover, let §
be an arbitrary point in the ℝ>. Then, it holds that∑ � − § 	 −7∈¹ ∑ � − � r 	7∈¹ = r ⋅ � r − § 	

Wirtschaftsinformatik und Operations Research 331

Reduction of the objective value by step 3

� We make use of Lemma 2.7.2.1 in order to show that step 3 reduces the
objective solution value

� For this purpose, we consider step 3 and assume that § is the initial center of a
cluster r. Then, ∑ � − § 	7∈¹ gives the contribution of all current members of r to ¶. By adding a new element � (§S is the center of its previous cluster), the
center moves to � r ∪ {�} and we obtain the reduction by step 3

� − §′ 	 + � � − § 	 −7∈¹ � − � r ∪ {�} 	 − � � − � r ∪ {�} 	
7∈¹* � � − § 	 −7∈¹∪{o} � � − � r ∪ {�} 	

7∈¹∪{o}= r + 1 ⋅ � r ∪ {�} − § 	 ≥ 0 (Lemma 2.7.2.1)

as � − §S 	 * � − § 	 ≥ � − � r ∪ {�} 	 holds for the former center §′ of
the cluster that � was assigned to before

Wirtschaftsinformatik und Operations Research 332

Observations

� Hence, the algorithm iteratively makes local
improvements to an arbitrary clustering until it is no
longer possible to do so

� Arthur and Vassilvitskii (2007) state that “the k-means
algorithm is attractive in practice because it is simple
and it is generally fast. Unfortunately, it is guaranteed
only to find a local optimum, which can often be quite
poor.”

41

Wirtschaftsinformatik und Operations Research 333

2.7.3 ,-means++ algorithm

� Arthur and Vassilvitskii (2007) propose the following
extension of the k-means algorithm

� The main intention was to improve the performance
of ,-means by augmenting it with a very simple,
randomized seeding technique

� Specifically, the initialization of the k-means
procedure is done by choosing random starting
centers with very specific probabilities

Wirtschaftsinformatik und Operations Research 334

,-means++ clustering – Replacing step 1

Step 1:

a. Choose an initial center �� uniformly at random from set e
b. Choose the next center �� , selecting �� = �S ∈ e with probability v 7¼ �

∑ v 7 �}∈e
c. Repeat step 1.b until altogether , centers are chosen

The steps 2-4 are identical with the ones of the original k-means clustering
approach

The abbreviation b � (used in step 1.b) denotes the shortest distance of data
point � ∈ e to the closest center already generated in the previous iterations
of the steps 1.a and 1.b.

Arthur and Vassilvitskii (2007) denote the weighting in step 1.b as the b	-
weighting

Wirtschaftsinformatik und Operations Research 335

Main theoretical result of ,++

Arthur and Vassilvitskii (2007) prove that the following Theorem
holds even after conducting the step 1 (the modified step)

2.7.3.1 Theorem

If the clustering � is constructed with ,-means++, then the
corresponding objective function ¶ satisfies M ¶ ≤ 8 /& , + 2 ⋅¶½¾_, with ¶½¾_ being the objective value of the optimal clustering

Note that Arthur and Vassilvitskii (2007) also show that – within a
constant factor – this bound is tight

Wirtschaftsinformatik und Operations Research 336

Computational results – ,-means versus ,++

� Arthur and Vassilvitskii (2007) evaluated the performance of k-
means and k-means++ on four data sets, namely

� Norm25 is a synthetic data set, i.e., 25 “true” centers are
uniformly drawn at random from a 15-dimensional
hypercube of side length 500. Then, points are added from
Gaussian distributions of variance 1 around each true
center. This procedure resulted in a number of well
separated Gaussians with the true centers providing a good
approximation to the optimal clustering

� In contrast to this, the remaining datasets from real-world
examples off the UC-Irvine Machine Learning Repository

� Cloud data set: 1,024 points in 10 dimensions, and it is
Philippe Collard’s first cloud cover data base

42

Wirtschaftsinformatik und Operations Research 337

Computational results – ,-means versus ,-means++

� Intrusion data set consists of 494,019 points in 35
dimensions, and it represents features available to an
intrusion detection system

� Spam data set consists of 4,601 points in 58 dimensions,
and it represents features available to an e-mail spam
detection system

� For each data set, the authors tested the settings , = 10, 25,
and 50.

� Since randomized seeding processes are tested, 20 trials for each
case were conducted, while the minimum and the average
potential (actually divided by the number of points), as well as the
mean running time are reported

� Percentage improvements are 100 ⋅ 1 − 2)YU¿�À((Á¿0ÂU2)YU¿�À Á¿0ÂU (%)

Wirtschaftsinformatik und Operations Research 338

Results – ,-means versus ,-means++

� Cloud data set (& = 1,024, � = 10)

� Norm25 data set (see above)

Wirtschaftsinformatik und Operations Research 339

Results – Cloud data set (& = 4,601, � = 58)

� In almost all settings, ,-means++ clearly outperforms ,-means for all
measured criteria, i.e., ,-means++ consistently outperformed ,-means, both
by achieving a lower potential value, in some cases by several orders of
magnitude, and also by having a faster running time

� The b	 seeding is slightly slower than uniform seeding, but it still leads to a
faster algorithm since it helps the local search converge after fewer iterations

� Arthur and Vassilvitskii (2007) report that the synthetic example is a case
where the standardized ,-means algorithm performs very badly. Although
there is an “obvious” clustering, the uniform seeding will inevitably merge
some of these clusters, and the local search will never be able to split them
apart

Wirtschaftsinformatik und Operations Research 340

Applying ,-means – example 1

See Frochte (2018) p.311

43

Wirtschaftsinformatik und Operations Research 341

Applying ,-means – example 1

� This first example shows that although the starting
values are not useful, the algorithm was able to
identify suitable clusters

� This was possible by conducting only four iterations

Wirtschaftsinformatik und Operations Research 342

Validation of the approach

GREAT!GREAT!

Now, we consider a mouse data set, i.e.,
YOUR data set

Now, we consider a mouse data set, i.e.,
YOUR data set

Wirtschaftsinformatik und Operations Research 343

Applying ,-means – example 2

� Mouse data set (can you identify the mouse?)

� Separation of ears and face by predetermining the finding of three clusters

� Result shows that ,-means has a tendency towards equally sized clusters

� As a consequence, the ears include parts of the face

See Frochte (2018) p.312

Wirtschaftsinformatik und Operations Research 344

Validation of the approach

DEFINITELY Mouse !DEFINITELY Mouse !

May be it is a bear data setMay be it is a bear data set

44

Wirtschaftsinformatik und Operations Research 345

Applying ,-means – example 3

� Although the graphical result confuses the human visual impression, it
results from the definition of the applied distance function

� More intuitive would be a clustering that addresses density issues

� In this case, the both paths would be interpreted as the respective clusters

� Further examples can be found in Frochte (2018) on page 312

See Frochte (2018) p.312

Wirtschaftsinformatik und Operations Research 346

2.7.4 Fuzzy �-means

� The k-means and k-means++ algorithms assign each case (point)
unambiguously to one cluster

� I.e., the clustering is deterministic

� However, in many applications, such a deterministic assignment is not
useful

� For instance, if we group existing cities into, let say, four categories that
assess their meaning and size

� Metropolis (world city)

� Meaningful center

� Medium-sized

� Small-sized

� In this case, an assignment is not always clear

� The assignment of New York City or Peking seems to be quite clear. But,
what about Berlin, Munich, or Madrid?

Wirtschaftsinformatik und Operations Research 347

Applying a fuzzy assignment

� For this purpose, a Fuzzy variant of the ,-means algorithm is
originally proposed by Dunn (1973)

� Note that various extensions to this basic approach exist

� To introduce this algorithm, we define

� Given

� There are & cases (i.e., data points �6 with N ∈ 1, … , &) to be

clustered into groups. Each data point is a vector of $ attribute values.
However, the clustering is done in a fuzzy way

� � clusters to be build by assigning subsets of data points

� Sought

� Matrix Ã = ��,6 �Ä�Ä�,�Ä6Ä� indicating the degree of membership by

which the Nth case (point) belongs to cluster %
� It holds that ∀% ∈ 1, … , � : ∀N ∈ 1, … , & : 0 ≤ ��,6 ≤ 1 and ��,6 ∈ ℝ

Wirtschaftsinformatik und Operations Research 348

Objective function and restrictions

� The procedure coincides with the basic ideas applied by the ,-means
clustering procedure while the pursued objective function is modified to

Å = � � ��,6 Y�
6�� ⋅ � �6 , Æ�

�
���

� with $ * 1 defining a predetermined parameter (frequently denoted as
the fuzzifier) for weighting the degree of membership

� As the membership of each relation is defined by ��,6 these entries of the

matrix Ã have to be updated during each iteration, while the following
restrictions have to be obeyed

1. No cluster is empty, i.e., it holds that ∀% ∈ 1, … , � : ∑ ��,6 * 0�6��
2. The membership of each case over all clusters is a distribution, i.e., it holds

that ∀N ∈ 1, … , & : ∑ ��,6���� = 1
� Clearly, while restriction 1 deals with the rows of matrix Ã, the second

restriction considers its columns

45

Wirtschaftsinformatik und Operations Research 349

The procedure

1. Initialize � clusters by defining Æ� for % ∈ 1, … , �
2. Compute the current membership degree of each case N according to

every cluster % by calculating

��,6 = �
∑ }8yÇ?}8yÇÈ

�Éy�ÊÈ��
= �

78)Ë? �Éy�⋅∑ 78)ËÈ y�Éy�ÊÈ��
3. Update the new barycenters Æ� for % ∈ 1, … , � of the � clusters by

computing

Æ� = � ��,6 Y
∑ ��,6 Y�6�� ⋅ �6�

6�� = 1∑ ��,6 Y�6�� ⋅ � ��,6 Y ⋅ �6�
6��

Wirtschaftsinformatik und Operations Research 350

Checking the first restriction

We compute ∀% ∈ 1, … , � :
∑ ��,6 =�6�� ∑ �

∑ }8yÇ?}8yÇÈ
�Éy�ÊÈ��

= ∑ �
78)Ë? �Éy� ⋅ ∑ �6 − Æ2 �Éy��2���6���6��

= ∑ �6 − Æ2 	Y)� * 0�2��
∑ �6 − Æ� 	Y)� * 0�6��

* 0
Thus, the update of the membership values fulfills the first restriction

Wirtschaftsinformatik und Operations Research 351

Checking the second restriction

We compute ∀N ∈ 1, … , & :
∑ ��,6 =���� ∑ �

∑ }8yÇ?}8yÇÈ
�Éy�ÊÈ��

= ∑ �
78)Ë? �Éy� ⋅ ∑ �6 − Æ2 �Éy��2����������

= ∑ �6 − Æ2 	Y)��2��
∑ �6 − Æ� 	Y)�����

= 1
Thus, the update of the membership values fulfills the second restriction

Wirtschaftsinformatik und Operations Research 352

Updating the membership values - simple example

� Let us assume that for $ = 2 and three clusters (i.e., � = 3), we consider case
1 that possesses a small distance (let say f) to cluster 1 and a much larger
distance 1 to the other two clusters 2 and 3

� Then, the update results to ��,� = �ÌÌ �(Ì� �(Ì� �
� Due to the fact that f is very small in comparison to 1, we obtain a value for ��,� close to one, i.e., indicating that the assignment of case 1 to cluster 1 is

quite sure

� For instance, if we set f = 0.01 we obtain ��,� = �� �(�.���	 = ��.���	 = ��,�����,��	
� The other degrees of membership of the first case (data point) are as follows

�	,� = ��,� = ��Ì �(�� �(�� � = ��Í.Í� �(�(� = ���,��	
� It holds that

��,�����,��	 + 2 ⋅ ���,��	 = ��,���(��,��	 = ��,��	��,��	 = 1

46

Wirtschaftsinformatik und Operations Research 353

Updating the membership values - simple example

� However, if we have an equal distance of, let say ½, to all three clusters, we
obtain the following degrees of membership that are not surprising��,� = �	,� = ��,� = 11/21/2 	 + 1/21/2 	 + 1/21/2 	 = 13

Wirtschaftsinformatik und Operations Research 354

The probabilities obtained for the mouse data set

See Frochte (2018) p.317

“Face cluster”

“Right ear cluster”

“Left ear cluster”

The edges can be
identified by smaller

degrees of
membership

No clear membership
can be identified

Wirtschaftsinformatik und Operations Research 355

Validation of the approach

Your seaworthiness is
not in a good condition!

Better contact an
oculist!

Your seaworthiness is
not in a good condition!

Better contact an
oculist!

The similarity to a bear is obvious!The similarity to a bear is obvious!

Wirtschaftsinformatik und Operations Research 356

2.7.5 Density-Based Spatial Clustering (with noise)

� In what follows, we consider the Density-Based Algorithm for Discovering
Clusters (DBSCAN)

� It was originally proposed by Ester, Kriegel, Sander, and Xu (1996)

� This basic approach was extended by other studies

� In what follows, the basic approach proposed by Ester, Kriegel, Sander, and
Xu (1996) is introduced

� The procedure addresses the knowledge discovery in spatial databases
(KDD)

47

Wirtschaftsinformatik und Operations Research 357

Motivation of the approach

� By briefly analyzing the sample sets of points depicted above, we can easily
detect clusters of points and noise points not belonging to any of those
clusters

� The main reason why we recognize the clusters is that within each cluster
we have a typical density of points which is considerably higher than
outside of the cluster

� Furthermore, the density within the areas of noise is lower than the density
in any of the clusters

Wirtschaftsinformatik und Operations Research 358

Requirements (see Ester, Kriegel, Sander, and Xu (1996) p.226)

Clustering algorithms are attractive for the task of class
identification. However, the application to large spatial databases
rises the following requirements for clustering algorithms (see
Ester, Kriegel, Sander, and Xu (1996) p.226)

1. Minimal requirements of domain knowledge to determine the
input parameters, because appropriate values are often not known
in advance when dealing with large databases

2. Discovery of clusters with arbitrary shape, because the shape of
clusters in spatial databases may be spherical, drawn-out, linear,
elongated etc.

3. Good efficiency on large databases, i.e. on databases of
significantly more than just a few thousand objects

Wirtschaftsinformatik und Operations Research 359

Î-neighborhood of a point

2.7.5.1 Definition: (f-neighborhood of a point)

The f-neighborhood of a point �, denoted by �l � is a
subset of the data set D that is defined by �l � =Ï ∈ b ∣ �%�c �, Ï < f
One may think that it is enough to require for each point
in a cluster that there are at least sY�� points in an f-
neighborhood of that point

This is too naive since there are two kinds of points in a
cluster, namely, points inside of the cluster (core points)
and points on the border of the cluster (border points).

Wirtschaftsinformatik und Operations Research 360

Direct density reachability

2.7.5.2 Definition: (directly density-reachable)

A point � is directly density-reachable from a point Ï
with respect to f and sY�� if the following two criteria
are fulfilled1. � ∈ �l Ï and 2. �l Ï ≥ sY��

48

Wirtschaftsinformatik und Operations Research 361

Border points and core points

� Obviously, the criterion “directly density-reachable” is not
symmetric if both core and border points are considered (this
obviously results from the second criterion not fulfilled by
border points)

� But, it is symmetric for two core points

� See Ester, Kriegel, Sander, and Xu (1996) p.228

Core point

Border point

Core point

Border point

Wirtschaftsinformatik und Operations Research 362

Density reachable

2.7.5.3 Definition: (density-reachable)

A point � is density reachable from a point Ï with
respect to f and sY�� if there is a chain of points Ï = ��, �	, … , ��)�, �� = � such that ��(� is directly
density-reachable from �� for all % ∈ 1, … , & − 1 .

Density-reachability is a canonical extension of direct
density-reachability. This relation is transitive, but it is
not symmetric.

See Ester, Kriegel, Sander, and Xu (1996) p.228

Wirtschaftsinformatik und Operations Research 363

Density reachable – Non-symmetric relation

� � is density-reachable from Ï� as Ï	 is directly density-
reachable from Ï�, Ï� is directly density-reachable from Ï	,
and � is directly density-reachable from Ï�

� But, Ï� is NOT density-reachable from � as a border point does
not fulfill the second criterion of Definition 2.7.5.2

Core points Ï�, Ï	, and Ï�

Border point �

Wirtschaftsinformatik und Operations Research 364

Density connected

2.7.5.4 Definition: (density-connected)

A point � is density connected to a point Ï with respect
to f and sY�� if there is a point B such that both, � and Ï are density-reachable from B with respect to f and sY��.

Density-connectivity is a symmetric relation. For density

reachable points, the relation of density-connectivity is
also reflexive, i.e., it holds that each point � is density
connected to � as � is density-reachable from �

49

Wirtschaftsinformatik und Operations Research 365

Density connectivity – Symmetric relation

� � is density connected to Ï� as � is directly density-reachable
from Ï� and Ï� is directly density-reachable from Ï�

� Ï� is density connected to � as � is directly density-reachable
from Ï� and Ï� is directly density-reachable from Ï�

Core points Ï�, Ï	, and Ï�

Border point �

Wirtschaftsinformatik und Operations Research 366

Definition of a density cluster

2.7.5.5 Definition: (cluster)

Let b be a database of points. A cluster � with respect
to f and sY�� is a non-empty subset of b, i.e., � ⊆ b
such that the following two restrictions are fulfilled:1. ∀�, Ï: if � ∈ � and Ï is density-reachable from � with

respect to f and sY�� then Ï ∈ � (Maximality
restriction)2. ∀�, Ï ∈ �: � is density-connected to Ï with respect
to f and sY�� (Connectivity restriction)

See Ester, Kriegel, Sander, and Xu (1996) p.228

Wirtschaftsinformatik und Operations Research 367

Definition of noise

2.7.5.6 Definition: (noise)

Let ��, … , �2 be the clusters of the database b with
respect to f and sY��, % = 1, … , ,.

Then, we define the noise as the set of points in the
database b not belonging to any cluster ��, … , �2
Thus, it holds that &B%�j = � ∈ b ∣ � ∉ �� ∪ �	 ∪ ⋯ ∪ �2

Wirtschaftsinformatik und Operations Research 368

Observation

� Each cluster � with respect to f and sY�� contains at least sY�� points due to the following facts

� � ⊆ b is a non-empty subset of the database

� Thus, there is a point � ∈ �
� Thus, � is at least density connected to itself by a point B ∈ � (note that this covers the case B = �)

� But, then node B fulfills the second criterion of Definition
2.7.5.2 and we obtain �l B ≥ sY�� with B ∈ �

� Then, there are �l B points that are directly density
reachable from B ∈ �

� Thus, all these nodes also belong to � and we conclude that � ≥ sY��

50

Wirtschaftsinformatik und Operations Research 369

Conclusions

� The following Lemmata are important for validating
the correctness of the clustering algorithm

� Intuitively, they state the following

� Given the parameters f and sY��, we can discover a
cluster in a two-step approach

� First, choose an arbitrary point from the database
satisfying the core point condition as a seed

� Second, retrieve all points that are density-reachable
from the seed obtaining the cluster containing the seed

Wirtschaftsinformatik und Operations Research 370

Conclusions

2.7.5.7 Lemma

Let � be a point in b and �l � ≥ sY��. Then, the set Ñ = B ∣ B ∈ b ∧ B %� �j&�%c� − "j!�ℎ!t/j a"B$ �
with respect to f and sY��

is a cluster with respect to f and sY��. It is not obvious
that a cluster � with respect to f and sY�� is uniquely
determined by any of its core points. However, each
point in � is density-reachable from any of the core
points of � and, therefore, a cluster � contains exactly
the points which are density-reachable from an arbitrary
core point of �.

Wirtschaftsinformatik und Operations Research 371

Conclusions

2.7.5.8 Lemma

Let � be a cluster with respect to f and sY�� and let �
be any point in � fulfilling �l � ≥ sY��.

Then, C equals to the set

Ñ = B ∣ B %� �j&�%c� − "j!�ℎ!t/j a"B$ �
with respect to f and sY��

Wirtschaftsinformatik und Operations Research 372

Parameters

� b Cases (i.e., data points) in

� sY�� Minimum size of a cluster (to be
predetermined by the user)

� f Minimum distance between two clusters
(to be predetermined by the user)

51

Wirtschaftsinformatik und Operations Research 373

Algorithm – DBSCAN w, Î, Ò��Ó
1. �ÔÕ = 0
2. FOR all unvisited � ∈ b DO

1. Label � as a visited node

2. Set � = �S ∈ b ∣ �S − � < f
3. IF � < sY��

THEN label � as a noise node

ELSE �ÔÕ = �ÔÕ + 1;

Add node � to cluster with id �ÔÕ
ExpandCluster(�, �ÔÕ, f, sY��)

END IF

3. END FOR

END OF FUNCTION

Wirtschaftsinformatik und Operations Research 374

Procedure ExpandCluster Ö, ×�Ø, Î, Ò��Ó
FOR all � ∈ � DO

IF � is not visited (labeled)

THEN label � as visited �o: = § ∈ b ∣ § − � < f
IF �o ≥ sY��

THEN � ≔ � ∪ �o
END IF

IF � is not assigned to a cluster

THEN Assign � to cluster ��>
Overwrite a potential noise label of �

END IF

END IF

END FOR

Wirtschaftsinformatik und Operations Research 375

Derivation of the parameters – 1

� Ester, Kriegel, Sander, and Xu (1996) propose the following
procedure to derive the needed values for the applied
parameters f and sY��

� This procedure considers the “thinnest” cluster in the considered
database

� For this, purpose,
� let � be the distance of a point � to its ,th nearest neighbor

� Thus, the �-neighborhood of point � comprises at least , + 1 nodes
altogether

� But, note that it is quite unlikely that the �-neighborhood of point �
comprises more than , + 1 nodes as this is only possible if there are
several nodes with equal distance to �

� Furthermore, we can state that changing the parameter , for a node in a
cluster frequently does not result in large changes of the resulting �-value

Wirtschaftsinformatik und Operations Research 376

Derivation of the parameters – 2

� The latter results from the fact that clusters possesses a significant density
and such a significant change of � would imply that all points are located
more or less on a straight line which is in general not true for a cluster

� For a given ,, a function �2 is introduced with �2: b → ℝ
� This function defines for each node � ∈ b the distance of the ,th nearest

neighbor

� By sorting all nodes � in set b in sequence of non-increasing �2-values, we
can define a graph of these values starting with the one that possesses the
largest �2-value

� Note that this graph (sorted �2 graph) may give us some hint concerning
the density distribution in the considered data set

� Specifically, if we choose a node �, set the parameter f to �2 � and sY��
to ,, all nodes Ï with �2 Ï ≤ �2 � are core points

� Ester, Kriegel, Sander, and Xu (1996) propose to find a threshold node �
possessing the maximal �2 value in the thinnest cluster of set b

52

Wirtschaftsinformatik und Operations Research 377

Derivation of the parameters – 3

� This threshold point determines the first “valley” of the sorted �2 graph

� This is illustrated by the figure given below

� All nodes on the left of the threshold point � (i.e., nodes with larger �2 value) are considered as noise

� All other nodes are considered as cluster nodes

clustersnoise

Points of set b sorted according
to their �2-values

threshold point �

Wirtschaftsinformatik und Operations Research 378

Derivation of the parameters – 4

� Ester, Kriegel, Sander, and Xu (1996) state that in general it is very
difficult to detect the first "valley" automatically, but it is relatively
simple for a user to see this valley in a graphical representation

� Therefore, Ester, Kriegel, Sander, and Xu (1996) propose to follow an
interactive approach for determining the threshold point

� DBSCAN needs two parameters, f and sY��.

� However, Ester, Kriegel, Sander, and Xu (1996) state that their
conducted experiments indicate that the sorted �2 graphs for , * 4
do not significantly differ from the sorted �Ú graphs and,
furthermore, they need considerably more computation.

� Therefore, Ester, Kriegel, Sander, and Xu (1996) propose to set sY�� = 4 thus, eliminating this parameter for all databases (for the
two-dimensional data).

Wirtschaftsinformatik und Operations Research 379

Derivation of the parameters – 5

� Ester, Kriegel, Sander, and Xu (1996) propose the following
interactive approach for determining the remaining parameter f of DBSCAN

� The system computes and displays the sorted �Ú graphs for
the database

� If the user can estimate the percentage of noise, this
percentage is entered and the system derives a proposal for
the threshold point from it

� The user either accepts the proposed threshold or selects
another point as the threshold point. The sorted �Ú graphs
value of the threshold point is used as the f-value for
DBSCAN

Wirtschaftsinformatik und Operations Research 380

Illustration of the DBSCAN computation - 1

� Start with the black point as its neighborhood is large enough

� Now, we have to check for each point of this neighborhood
whether these points are also corner points

� This is done by calling the procedure ExpandCluster

See Frochte (2018) p.318

53

Wirtschaftsinformatik und Operations Research 381

Illustration of the DBSCAN computation - 2

� As the neighborhood is too tittle, the two nodes
within the dotted circle are not labeled as new core
points

� However, this does not apply to the next node (see
the next slide)

See Frochte (2018) p.318

Wirtschaftsinformatik und Operations Research 382

Illustration of the DBSCAN computation - 3

� A second core node is identified

� Therefore, its neighborhood is scanned by a second call of the
procedure ExpandCluster

� All new nodes of this neighborhood are inserted into the
cluster

� Hence, one node remains and is labeled as noise

See Frochte (2018) p.318

Wirtschaftsinformatik und Operations Research 383

Illustration of the DBSCAN computation - 4

� The cluster is completely generated in this small
example

� One node is classified as noise

� All other nodes belong to the cluster

See Frochte (2018) p.318

Wirtschaftsinformatik und Operations Research 384

Overview

See Frochte (2018) p.318

54

Wirtschaftsinformatik und Operations Research 385

Validation of the approach

It is still a MOUSE data
set…!!!

It is still a MOUSE data
set…!!!

And what about its performance attained for
the bear data set?

And what about its performance attained for
the bear data set?

Wirtschaftsinformatik und Operations Research 386

Applied to the illustrative data sets

� Mouse data set:

� Applied setting is f = 0.4 and sY�� = 10. Then, noise was about 3.8 percent

� However, if f is increased while keeping sY�� = 10, the left ear is integrated
into the face cluster

� Moon data set:

Applied setting is f = 0.08 and sY�� = 5. Then, no noise was observed

See Frochte (2018) p.323

Wirtschaftsinformatik und Operations Research 387

Two moons data set – Further results

� It can be observed that the obtained results are quite sensitive concerning
the predetermined parameter values

� In case of f = 0.07 the upper moon is divided into two clusters

� This separation is continued if f is further decreased

Results for f = 0.06 (left) and f = 0.07 (right), see Frochte (2018) p.323

6 clusters found 3 clusters found

Wirtschaftsinformatik und Operations Research 388

Two moon data sets – detailed results

ϵ Number of clusters Noise

0.02 5 95 %

0.03 24 66 %

0.04 38 16 %

0.05 11 1.4 %

0.06 6 0 %

0.07 3 0 %

0.08 2 0 %

� This table further underscores the sensitivity of the attained results form
choosing suitable parameter values

� The expected (human eye corresponding) result with two distinctive
clusters is attained by setting f = 0.08

55

Wirtschaftsinformatik und Operations Research 389

2.7.6 Hierarchical Clustering

� In what follows, we consider a different technique applied for clustering

� It generates clusters hierarchically, i.e., it decides about a combination of
groups of cases (points) by measuring the similarity of their members

� Hierarchical clustering can be found, for instance, in biology where animal
species are hierarchically grouped according to characterizing attributes

� Group of animals

� Invertebrates

� Fish

� Amphibians

� Reptiles

� Birds

� Mammals

� Clearly, all these subgroups are further separated into smaller groups

� Hence, in order to apply such a clustering, distance measures have to be
extended to groups of cases (instead of comparing just single cases)

Wirtschaftsinformatik und Operations Research 390

Extending distance measures to groups

In literature, there a various proposals for such a
necessary extension. Among them, the following
approaches are frequently applied in hierarchical
clustering approaches:

� Single Linkage

� Complete Linkage

� Average Linkage

� Centroid method

In what follows, we introduce and consider the four
alternative measures more in detail

Wirtschaftsinformatik und Operations Research 391

Single Linkage

� This approach measures the distance between two
groups (clusters) by the smallest distance between
two members

� Therefore, the highest similarity of two members is
identified and applied

� Specifically, single linkage uses the minimal distance
between two nodes of different clusters in question,
i.e., by considering the clusters �� and �	, we obtain

bÀ0 ��, �	 = min � !, t ∣ ! ∈ �� ∧ t ∈ �	
Wirtschaftsinformatik und Operations Research 392

Problem of single linkage – chain building

� Due to the orientation towards the mutually closest located nodes, it can be
frequently observed that the clusters are not really of compact shape but
may degenerate to chains

� This is depicted by the above figures that are taken from the textbook of
Frochte (2018)

� Possible extensions would be to consider for a suitably chosen parameter , ∈ ℕ, the ,th nearest tuple or the average distance of the , nearest tuples

See Frochte (2018) p.325

56

Wirtschaftsinformatik und Operations Research 393

Complete Linkage

� In contrast to the single linkage approaches, complete linkage
methods measure the distance between two groups of nodes
by identifying the tuple of nodes with maximum distance

� Thus, similarity is determined by the distance between the two
most dissimilar elements of the respective groups

� Specifically, complete linkage defines the distance between the
two clusters in question, i.e., between �� and �	, by calculating
the maximum distance of two nodes in these clusters, i.e.,

b¸0 ��, �	 = $!� � !, t ∣ ! ∈ �� ∧ t ∈ �	

Wirtschaftsinformatik und Operations Research 394

Average Linkage

� A straightforward compromise between single and complete
linkage is the so-called average linkage that determines the
distance between two groups of nodes by the average distance
between all occurring pairs of nodes

� Specifically, the distance measure of average linkage between
two clusters, i.e., between the clusters �� and �	, is defined
through

b¿0 ��, �	 = 1�� ⋅ �	 ⋅ � � � !, tÜ∈��¿∈��

Wirtschaftsinformatik und Operations Research 395

Centroid method

� This method starts the distance measuring process by
identifying the centroid of the two clusters, let say �� and �	,
by generating the mean values of each stored attribute

� Subsequently, the distance between these two centroids is
taken as the distance value of the two clusters

� By assuming that each node ! in the two clusters is defined by
a vector of altogether $ attributes, it can be unambiguously
defined through ! = !�, !	, … , !Y

� Hence we haveb¸Y ��, �	 = � � �� , � �	 with

� � = ��, �	, … , �Y where ∀% ∈ 1, … , $: �� = �� ⋅ ∑ !�¿∈�
Wirtschaftsinformatik und Operations Research 396

Illustration

� The figures given above try to illustrate the three distance
measure computations single linkage, complete linkage, and
the centroid method

� Due to the large number of possible tuples, an illustration of
the average linkage approach is not provided

See Frochte (2018) p.325

Single linkage Complete linkage Centroid method

57

Wirtschaftsinformatik und Operations Research 397

Computational aspects

� As all pairs of nodes have to be considered, a trivial approach would lead to
an asymptotical effort of A &	 ⋅ & = A &�

� However, by using specific settings and applying some specifically designed
data structures, special cases can by handled in quadratic time for single
linkage (see Sibson (1973)) and complete linkage (see Defays (1977))

See Frochte (2018) p.325

Single linkage Complete linkage Centroid method

Wirtschaftsinformatik und Operations Research 398

Computational aspects – Updating

� Due to the significant computational effort, it is useful to reuse existing
(i.e., already computed) distance values in later iterations

� For this purpose, the well-known update formula of Lance and Williams can
be applied

� Situation

� Two clusters, namely �� and �	 were united during the last iteration

� Then, depending on the applied approach (single linkage or complete linkage),
the distances between the new cluster and all other clusters can be updated by
using the current distance values of the preceding iteration

� This is done by using the following updating formula:

b �� ∪ �	, �� =4� ⋅ � ��, �� + 4	 ⋅ � �	, �� + � ⋅ � ��, �	 + Ý ⋅ � ��, �� − � �	, ��

Wirtschaftsinformatik und Operations Research 399

Values for the formula of Lance and Williams

Method �� �Þ ß à
Single linkage 12 12 0 − 12

Complete linkage 12 12 0 12
Average ���� + �	

�	�� + �	
0 0

Centroid
(Euclidean
distance)

���� + �	
�	�� + �	

�� ⋅ �	�� + �	 	 0

Wirtschaftsinformatik und Operations Research 400

Single linkage

� � �� ∪ �	, �� = 0.5 ⋅ � ��, �� + 0.5 ⋅ � �	, �� − 0.5 ⋅ � ��, �� − � �	, ��
� Clearly, it either holds that � �� ∪ �	, �� = � ��, �� or � �� ∪ �	, �� = � �	, ��
� We assume (without limiting the generality of the foregoing) � �� ∪ �	, �� = � ��, ��
� Hence, we obtain 0.5 ⋅ � ��, �� + 0.5 ⋅ � �	, �� − 0.5 ⋅ � ��, �� − � �	, ��= 0.5 ⋅ � ��, �� + 0.5 ⋅ � �	, �� − 0.5 ⋅ � �	, �� − � ��, ��= 0.5 ⋅ � ��, �� + 0.5 ⋅ � ��, ��= � ��, �� ×�

×�
×Þ

58

Wirtschaftsinformatik und Operations Research 401

Complete linkage

� � �� ∪ �	, �� = 0.5 ⋅ � ��, �� + 0.5 ⋅ � �	, �� + 0.5 ⋅ � ��, �� − � �	, ��
� Clearly, it either holds that � �� ∪ �	, �� = � ��, �� or � �� ∪ �	, �� = � �	, ��
� We assume (without limiting the generality of the foregoing) � �� ∪ �	, �� = � ��, ��
� Hence, we obtain 0.5 ⋅ � ��, �� + 0.5 ⋅ � �	, �� + 0.5 ⋅ � ��, �� − � �	, ��= 0.5 ⋅ � ��, �� + 0.5 ⋅ � �	, �� + 0.5 ⋅ � ��, �� − � �	, ��= 0.5 ⋅ � ��, �� + 0.5 ⋅ � ��, ��= � ��, �� ×�

×�
×Þ

Wirtschaftsinformatik und Operations Research 402

Average linkage

� � �� ∪ �	, �� = ���� + �� ⋅ � ��, �� + ���� + �� ⋅ � �	, ��
� Clearly, it holds that � �� ∪ �	, ��= � ��, �� ⋅ �� ⋅ ���� + �	 ⋅ �� + � �	, �� ⋅ �	 ⋅ ���� + �	 ⋅ ��= � ��, �� ⋅ ���� + �	 + � �	, �� ⋅ �	�� + �	= ���� + �	 ⋅ � ��, �� + �	�� + �	 ⋅ � �	, ��
� Hence, this is just the formula defined above

Wirtschaftsinformatik und Operations Research 403

Centroid method with Euclidean distance

� It holds that � �� ∪ �	, ��= ���� + �	 ⋅ � ��, �� + �	�� + �	 ⋅ � �	, �� − �� ⋅ �	�� + �	 	 ⋅ � ��, �	
� The new centroid of �� ∪ �	 will be at

� �� ∪ �	 = �� ⋅ � ���� + �	 + �	 ⋅ � �	�� + �	 = �� ⋅ � �� + �	 ⋅ � �	�� + �	
� Thus, we obtain the Euclidean distance between �� ∪ �	 and �� as

� �� ∪ �	, �� = � �� − �� ⋅ � �� + �	 ⋅ � �	�� + �	
	

And by multiplying up and rearranging, we finally obtain

= ���� + �	 ⋅ � �� − � �� 	 + �	�� + �	 ⋅ � �� − � �	 	
− ���� + �� ⋅ ���� + �� ⋅ � �� − � �	 	

= ���� + �	 ⋅ � ��, �� + �	�� + �	 ⋅ � �	, �� − �� ⋅ �	�� + �	 	 ⋅ � ��, �	

Wirtschaftsinformatik und Operations Research 404

Centroid method – illustration of the updating

×�

×� ×Þ

59

Wirtschaftsinformatik und Operations Research 405

Agglomerative or divisive clustering approaches

� Agglomerative clustering approaches

� It is a bottom up approach that starts with a setting where
each case (node) constitutes an individual cluster

� The two closest located clusters are united to one cluster as
long as a predetermined criterion is not met

� Such a predefined criterion may be

� a minimum number of required clusters

� a maximum distance value (exceeded also by the closest
located clusters)

� a maximum number of allowed conducted cluster unifications

� …

Wirtschaftsinformatik und Operations Research 406

Agglomerative or divisive clustering approaches

� Divisive clustering approaches
� These approaches are just the opposite of agglomerative procedures

� Specifically, divisive approaches start with one cluster comprising all
cases (nodes) of the considered data set

� At each stage of the algorithm, one cluster is divided into two new
clusters

� For this purpose, divisive clustering approaches require a sophisticated
method to efficiently identify a suitable cluster and the respective
subsets of cases in this cluster

� Note that an exhaustive enumeration of all possible separations for &
clusters possessing approximately $ elements, we have a prohibitive
effort of A & ⋅ 2Y − 1 possibilities to be considered

� Clearly, for real-world applications, this requires the application of
sophisticated approaches reducing the computational effort

Wirtschaftsinformatik und Operations Research 407

Divisive clustering approaches

� Despite its computational burdens, bisecting divisive clustering
approaches are quite attractive in many applications as (see
Savaresi et al. (2002))

� by recursively using a bisecting divisive clustering
procedure, the data-set can be partitioned into any given
number of clusters.

� Interestingly enough, the so-obtained clusters are
structured as a hierarchical binary tree (or a binary
taxonomy)

� As a consequence, specific approaches are proposed that
pursue the finding of an efficient separation of given clusters

Wirtschaftsinformatik und Operations Research 408

Validation – Two moons set

� From left to right, the results attained by applying single linkage, complete
linkage, and average linkage for 2 clusters

� Clearly, single linkage directly follows the shape of the two moons and
provides the expected two moons

� In contrast to this, the approaches complete and average linkage separate
at least one of the two moons as the distance measure considers the
situation in a more global perspective

See Frochte (2018) p.330

60

Wirtschaftsinformatik und Operations Research 409

Validation of the approach

Grmpf!Grmpf!

And now, we take a look at the performance
attained for the bear data set!

And now, we take a look at the performance
attained for the bear data set!

Wirtschaftsinformatik und Operations Research 410

Validation – Mouse data set

� Again, from left to right, the results attained by applying single linkage,
complete linkage, and average linkage for 3 clusters

� The single linkage result produces almost one chain and therefore mainly
one single cluster. In contrast to the two moon example, in case of the
mouse data set, this is not reasonable

� Best results are attained by applying the average linkage approach

� But, this result does not attain the quality reached by applying the DBSCAN
approach

