
1

Wirtschaftsinformatik und Operations Research 411

3 Rule-based systems

� In what follows, we give a brief introduction to the

mathematical definitions and applied algorithms of rule-based

systems

� Rule-based systems comprise

� a database that contains the current knowledge of the system. This

may comprise current values or states of variables/parameters/sets

� a finite set of rules that enables the system to derive additional

knowledge out of the given one by applying some rule

� an interference engine or algorithm that controls the interaction

between the knowledge stored in the data base and the applicable

rules

� The definition of the knowledge, the rules, and the applied

interference engine is application-dependent and therefore

requires a suitable formalization

Wirtschaftsinformatik und Operations Research 412

Rule-based systems

That seems to be a

mantra.

Not really a rule to

follow…but at least it

defines a steady state

That seems to be a

mantra.

Not really a rule to

follow…but at least it

defines a steady state

My rule is:

I cannot get too much weight from fish as if I

become too fat from fish I do not catch any

more fish…

My rule is:

I cannot get too much weight from fish as if I

become too fat from fish I do not catch any

more fish…

Wirtschaftsinformatik und Operations Research 413

Definition of rule-base systems

3.1 Definition

A rule-based system � consists of a tuple �, � with the data base � and a

finite set of rules �. The elements are also denoted as (known) facts. The

elements of � are tuples of parameters and values (denoted as terms). The set

of parameters are denoted as � � and the set of values are � � . As

parameters and values are connected in each tuple by some operator

(functioning as a connector) =, <, ≤, or ≠ to a term � ∈ �, of the form

� ∈ � � × =, ≠, <, ≤ × � � .

A rule � ∈ � possesses the form IF � THEN � with a condition � that is

recursively defined through

1. Each term � ∈ � is a condition

2. For �, � ∈ � the notations � ∧ � and � ∨ � are conditions

and a term � ∈ � that defines the conclusion (of the rule).

2

Wirtschaftsinformatik und Operations Research 414

Conjunction and disjunction

� The symbol “∧” represents a conjunction of

conditions. Hence, the fulfillment of the resulting

(possibly partial) condition requires that both partial

conditions are fulfilled by the current database

entries

� The symbol “∨” represents a disjunction of

conditions. Hence, the fulfillment of the resulting

(possibly partial) condition requires that (at least) one

partial condition is fulfilled by the current database

entries

Wirtschaftsinformatik und Operations Research 415

Observation

� Conclusions do not comprise conjunctions of terms

� However, this can be replaced by additional rules

� Specifically, instead of defining IF � THEN �� ∧ �� ∧ ⋯ ∧

��, we insert the � rules IF � THEN ��, IF � THEN ��,…,

IF � THEN �� into �

� Note that the well-known NOT operation is not valid

in Definition 3.1

� In what follows, we define the formal satisfaction of a

condition

Wirtschaftsinformatik und Operations Research 416

Satisfaction of conditions in rules

3.2 Definition

Given a rule-based system � = �, � defined according to Definition 3.1.

Then, a condition � in a rule IF � THEN � in rule set � is satisfied by the current

data base � if one of the following cases applies

1. If � is a single term � and � ∈ � holds

2. If � = �� ∧ �� and �� as well as �� are satisfied by the current data base �

3. If � = �� ∨ �� and �� or �� is satisfied by the current data base �

4. If � = ¬�� and �� is not satisfied by the current data base �

No further case exists.

A rule � = IF � THEN � in set � with a condition � that is satisfied according to

Definition 3.2 is denoted as applicable to data base �.

If the fourth case is not covered, we say that � = �, � is without negation.

3

Wirtschaftsinformatik und Operations Research 417

Inference of terms

3.3 Definition

Given two rule-based systems � = �, � and �� = ��, �� as

defined in Definition 3.1.1. It holds that �, � ⊢�� ��, �� if and

only if

1. There exists a rule � ∈ � with � = IF � THEN � possessing a

satisfied condition � and

2. The data base is extended accordingly, i.e., �� = � ∪ �

We say that rule � ∈ � is applicable and term � can be inferred

(derived) in � = �, � with �

Shortcut: �, � ⊢�� �

Wirtschaftsinformatik und Operations Research 418

Commutative rule-based system

3.4 Definition

A rule-based system � = �, � is denoted as commutative if and

only if for each data base � that can be inferred (derived) in �

with � it holds that each rule that can be applied in � for � can

be also applied in that can be derived from �, i.e.,

�, � ⊢�� �, � ⊢�� , � and ∀� ∈ �: � is applicable in � ⟹

� is applicable in .

Wirtschaftsinformatik und Operations Research 419

Consequences

Then, please consider

the subsequent

interpretation provided

by the following Lemma

3.5!

Then, please consider

the subsequent

interpretation provided

by the following Lemma

3.5!

Awkward definition!

I admit, that I do not really understand how

to apply or use it…

Awkward definition!

I admit, that I do not really understand how

to apply or use it…

4

Wirtschaftsinformatik und Operations Research 420

Consequence

3.5 Lemma

A rule based system � = �, � is commutative if and only if the

following attribute (%) is fulfilled for a data base � that can be

inferred in � with �:

(%) Let �' ⊆ � be a subset of rules given in � that are applicable

with data base �. Then, the data set that is inferable by applying

these rules is invariant against the sequence in that the rules are

applied.

Wirtschaftsinformatik und Operations Research 421

Proof of Lemma 3.5

� Given a commutative rule-base system � = �, � and a data base � that can

be inferred in � by using �, i.e., we have �, � ⊢�� �, �

� Moreover, we assume that �' = ��, … , �* ⊆ � is the set of applicable rules

of set � with data base �

� Consequently, we define the set of terms +' = ��, … , �, that we obtain by

applying rules of set �'

� Due to the assumed commutativity of � = �, � and since data base � can

be inferred in � by using �, we know that all rules � ∈ �' can be also applied

in � by using (instead of �) with �, � ⊢�� �, � ⊢�� , �

� This means that we can apply the respective rules � ∈ �' in an arbitrary

sequence and the set of inferable terms amounts to � ∪ +' = � ∪ ��, … , �,

� The latter results from the fact that the application of each rule inserts a term

of +'

Wirtschaftsinformatik und Operations Research 422

Proof of Lemma 3.5

� Conversely, we assume that � is not commutative, but attribute (%) is fulfilled

for a data base � that can be inferred in � by using �, i.e., �, � ⊢�� �, �

� If two rules in � have identical conclusions we combine them into one rule by a

disjunction in the condition. Hence all conclusions are disjoint

� Furthermore, we assume that �' = ��, … , �* ⊆ � is the set of applicable rules

of set � with data base �

� Consequently, we define the set of terms +' = ��, … , �, that we obtain by

applying rules of set �'

� As � is not commutative, we assume that � was chosen such that there exists a

rule �- ∈ �' = ��, … , �* with as the set of terms that is obtained by applying

all applicable rules of set �' − �- while �- is not applicable in set , but

applicable in set �. By applying all rules of set �' − �- , we obtain the set +',-

� Since no other rule implies �-, we obtain a different data base / if we start with

�, � and apply �- first as �- ∈ / but �- ∉ +',-. This contradicts attribute (%)

5

Wirtschaftsinformatik und Operations Research 423

Remark

� The derived definition of commutativity is analogously

characterized by Nilsson (1982). He gives the

following three attributes

� Each rule that is applicable for a given database D stays

applicable for each database that is derivable from D

� Each condition that is fulfilled by D is also fulfilled by

each database that is derivable from D

� Each database that can be derived from D is invariant

against the sequence of the applied rules

Wirtschaftsinformatik und Operations Research 424

Observation

3.6 Theorem

Rule-based systems without negation are commutative.

Wirtschaftsinformatik und Operations Research 425

Proof of Theorem 3.6

� We consider a rule based system � = �, � without negation

� Let � be a data base with �, � ⊢�� �, �

� �' = ��, … , �* ⊆ � is the set of applicable rules of set � with

data base �, while it holds that �1 = IF �1 THEN �1, ∀2 ∈

1, … , 4

� Hence, �1 is true (i.e., fulfilled) in �

� Since there are only connectors of the form ∧ or ∨, the

satisfaction of a condition only depends on the fact whether a

specific term � is in the data base �

� As each rule application only adds additional terms to the data

base, such a satisfaction does not change

� Hence, � is commutative

6

Wirtschaftsinformatik und Operations Research 426

Conclusion

� Due to Theorem 3.6, for rule-based systems without

negation, we know that the sequence of applied rules

has no impact on the resulting set of terms in the

derived data base

� Therefore, an applied inference algorithm do not

need a specific selection rule for choosing the next

applicable rule to be executed

Wirtschaftsinformatik und Operations Research 427

Derivable knowledge

3.7 Definition

Given a commutative rule-based system � = �, � .

Then, the set �∗ � is denoted as the maximum set of

derivable terms in � if and only if it holds that

1. �, � ⊢�� �∗ � , � and

2. ∀� with �, � ⊢�� �, � it holds that � ⊆ �∗ �

Wirtschaftsinformatik und Operations Research 428

Types of reasoning strategies

In order to check whether a specific data can be derived from a

given rule-based system, two reasoning strategies are proposed:

Forward chaining

� Starts with the available data currently stored in the data base

� It iteratively executes the rules that are applicable in order to

derive additional knowledge

� It terminates when a predefined goal (sought term) is reached

� If no predefined goal is given the algorithm stops when no

further knowledge can be obtained from applying rules

7

Wirtschaftsinformatik und Operations Research 429

Types of reasoning strategies

Backward chaining

� This strategy works in opposite direction to the forward chaining

� Namely, it starts with the goal term that is sought

� This term is inserted into the set of goal terms /

� As long as the set of goal terms / is not empty do

� Take some term � out of /

� Consider the condition � of each rule of the form IF � THEN �

� Depending on the condition � insert new terms into / (this

may include recursive function calls or the iterative

constitution of different sets / and will be specified later on)

Wirtschaftsinformatik und Operations Research 430

3.8 Algorithm – Forward Chaining in Pseudo Code

Input: Database �:, set of rules � (no goal)

begin

� �∗ ≔ �:

� repeat

� � ≔ �∗ /* keeping the former state */

� �∗ ≔ < � +=�> � ∈ � � 2� ��?@ AB� �

� �∗ ≔ �∗ ∪ � < � +=�> � ∈ �∗

� until � = �∗ /* if a goal is given, we can check it here */

� Output: �∗

end

Wirtschaftsinformatik und Operations Research 431

(Very simple) example

RULE 1: IF AUDIO=croaks ∧ NUTRITION=insects - THEN

ANIMAL=frog

RULE 2: If AUDIO=öök ∧ NUTRITION=insects - THEN

ANIMAL=toad

RULE 3: If ANIMAL=frog - THEN COLOR=green

RULE 4: If ANIMAL=toad - THEN COLOR=brown

8

Wirtschaftsinformatik und Operations Research 432

Applying forward chaining

� Starting set �: = CD�<E = F�B%��, >D+�+<E> = 24�@F��

� Hence, �∗ = CD�<E = F�B%��, >D+�+<E> = 24�@F��

� Thus, we obtain

�∗ = IF AUDIO=croaks ∧ NUTRITION=insects − THEN ANIMAL=frog

� And therefore

�∗ = CD�<E = F�B%��, >D+�+<E> = 24�@F��, C><GCH = A�BI

� �∗ =
IF AUDIO=croaks ∧ NUTRITION=insects − THEN ANIMAL=frog,

IF ANIMAL=frog − THEN COLOR=I�@@4

� Finally, we obtain �∗ =
CD�<E = F�B%��, >D+�+<E> = 24�@F��,

C><GCH = A�BI, �EHE� = I�@@4

Wirtschaftsinformatik und Operations Research 433

Forward chaining

3.9 Theorem

By being applied to a commutative rule-based system

� = �, � , the algorithm forward chaining is correct

and works in quadratic time of the size of the given rule-

based system � = �, �

Wirtschaftsinformatik und Operations Research 434

Proof of Theorem 3.9

Termination

� Clearly, the forward chaining algorithm (Algorithm 3.8)

always terminates

� This results from the fact that � is assumed to be finite

and therefore the derivable knowledge (terms located

after a THEN statement) is finite

� Hence, the number of extensions of �∗ is limited by the

number of rules in �

� Specifically, it holds that

� ⊆ �∗ � ⊆ � ∪ � ∣ < � +=�> � ∈ �

� Since at least one term is added during each iteration of

the algorithm, we have at most � iterations

9

Wirtschaftsinformatik und Operations Research 435

Proof of Theorem 3.9

Correctness
� We first show that if the Algorithm 3.8 is called without a goal term it

terminates with the output �∗ = �∗ �

� We first show that �∗ � ⊆ �∗

� For this purpose, we assume that ∃� ∈ �∗ � − �∗. Due to �∗ � ⊆ � ∪

� ∣ < � +=�> � ∈ � and the finiteness of �, � can be derived within a finite

number of rule applications

� Furthermore, � is defined such that its shortest derivation in

�, � ⊢�� �∗ � , � requires a minimum number of rule applications. This

minimum number is denoted as 2. With other words, no other term in

�∗ � − �∗ can be derived with a smaller number of applied rules

� In what follows, the existence of � is disproven by induction over the number

of iterations 2

� With other words, we prove that after 2 iterations �∗ contains all terms of set

�∗ � that are derivable by the application of at most 2 rules

Wirtschaftsinformatik und Operations Research 436

Proof of Theorem 3.9

� Start of induction with 2 = 0. In this case, we have �∗ � = � as

no application of a rule is allowed

� Hence, as the Algorithm 3.8 sets �∗ = �, we have �∗ � = � =

�∗ and � does not exist with 2 = 0

� Therefore, it remains to consider the case 2 > 0

� Then, by induction and the definition of term �, after conducting

2 − 1 iterations of Algorithm 3.8, the set �∗ contains all terms of

set �∗ � derivable by at most 2 − 1 rule applications

� Consequently, as �∗ � ⊆ � ∪ � ∣ < � +=�> � ∈ � holds

and since � is not derivable within 2 − 1 rule applications, we

conclude due to the commutativity of � = �, � there must be

a rule < � +=�> � in set � such that the terms of �∗ � that

are derivable within at most 2 − 1 rule applications fulfill �

Wirtschaftsinformatik und Operations Research 437

Proof of Theorem 3.9

� However, as, by induction, this set (the terms of �∗ � that are

derivable within at most 2 − 1 rule applications) is subset of �∗

� Therefore, < � +=�> � is applicable during the 2-th iteration

of the Algorithm 3.8 and � is also inserted into �∗

� Hence, � does not exist

� As �∗ � ⊆ � ∪ � ∣ < � +=�> � ∈ � holds and � is finite,

each term � ∈ �∗ � − �∗ is derivable in a finite number of

rule applications

� Thus, �∗ � − �∗ = ∅ holds as � ∈ �∗ � − �∗ exists,

otherwise and that was excluded before

� This proves �∗ � ⊆ �∗

10

Wirtschaftsinformatik und Operations Research 438

Proof of Theorem 3.9

� We show that �∗ ⊆ �∗ �

� This results directly from the fact that the Algorithm

3.8 only adds terms by applying rules of set �

� Consequently, it holds that �, � ⊢�� �∗, �

� This implies �∗ ⊆ �∗ �

� Therefore, we obtain �∗ = �∗ �

� This completes the proof of the correctness

Wirtschaftsinformatik und Operations Research 439

Proof of Theorem 3.9

Worst case running time

� Due to �∗ = �∗ � ⊆ � ∪ � ∣ < � +=�> � ∈ � ,

there are at most � iterations

� In each iteration at most each term in �∗ and each

rule has to be enumerated. By using a sophisticated

data structure this is possible in time O �

� Thus, all in all, we obtain an asymptotic running time

of O � �

Wirtschaftsinformatik und Operations Research 440

Observation

� The average running time of the Algorithm 3.8 can be

improved by erasing each applied rule from set �

11

Wirtschaftsinformatik und Operations Research 441

3.10 Algorithm – Forward Chaining with goal term

Input: Database �:, set of rules �, goal term is �∗

begin

� �∗ ≔ �:

� repeat

� � ≔ �∗ /* keeping the former state */

� �∗ ≔ < � +=�> � ∈ � � 2� ��?@ AB� �

� �∗ ≔ �∗ ∪ � < � +=�> � ∈ �∗

� until � = �∗ or �∗ ∈ �∗

� Output: If �∗ ∈ �∗ then write (“�∗ is derivable”) else

write (“�∗ is NOT derivable”)

end

Wirtschaftsinformatik und Operations Research 442

Excluding disjunctions

� By analyzing a rule-based systems, we can state that

disjunctions can be excluded without restricting the

knowledge and rules in a rule-based systems

� This results from the fact that we can replace a rule

� IF �� ∨ �� THEN �P

by the two following rules

� IF �� THEN �P

� IF �� THEN �P

that are equivalent, i.e., the set of derivable terms is

unchanged

Wirtschaftsinformatik und Operations Research 443

Examples

� IF C = 1 ∧ Q = 1 ∨ � = 0 THEN R = 1

Is equivalent to the two rules

� IF C = 1 ∧ Q = 1 THEN R = 1

� IF � = 0 THEN R = 1

� IF C = 1 ∨ Q = 1 ∧ � = 0 THEN R = 1

Is equivalent to

� IF C = 1 ∧ � = 0 ∨ Q = 1 ∧ � = 0 THEN R = 1

And equivalent to the two rules

� IF C = 1 ∧ � = 0 THEN R = 1

� IF Q = 1 ∧ � = 0 THEN R = 1

12

Wirtschaftsinformatik und Operations Research 444

Comment

� As each formula in propositional logic can be

transformed in a equivalent formula in so-called

Disjunctive Normal Form (DNF), i.e., into the form

 = ⋁ ⋀ H1,-
,U

-V�
*
1V� , with H1,- ∈ C�, C�, … ∪

¬C�, ¬C�, … , we can always exclude all disjunctions

in a set of rules

� Thus, for the backward chaining algorithm, we solely

consider rule-based systems without disjunctions

Wirtschaftsinformatik und Operations Research 445

3.11 Backward Chaining with goal term and DFS

function W@X�Y(t: list of terms): boolean;

begin

if � = ><H then return(��?@) /* Nothing to check anymore, goal is attainable */

else /* There are still terms (i.e., conditions) to check */

set �∗ to the first term in list � /* first term to be checked */

define FZ as a list of conditions of rules (i.e., list of list of terms) with conclusion “THEN �∗”

if �∗ ∈ �

then FZ: = %XX@4W(><H − Z2��, FZ) /* NIL-list is an empty (i.e., true) condition */

��BX = A%Z�@

while (FZ ≠ ><H) and (not ��BX) do

set FZ∗ to the first condition in FZ

4@[IB%Z ≔ %XX@4W(FZ∗, �@��(�)) /* This has to be checked next (DFS) */

if W@X�Y(4@[IB%Z) then stop:=true else FZ ≔ �@��(FZ) end if

end while /* FZ is a list of conditions. One of them has to be fulfilled to fulfill �∗ */

if stop then return(��?@) else return(false) end if

end if

end if

Wirtschaftsinformatik und Operations Research 446

Call of the procedure – main program

Input: Database �:, set of rules � (no disjunction), goal term is �∗

begin

if W@X�Y �∗ then write(“�∗ is derivable”)

else write(“�∗ is NOT derivable”)

end if

end

13

Wirtschaftsinformatik und Operations Research 447

Corresponding graph

3.12 Definition

Given a rule-based system � = �, � . For the set of rules, we define

the following corresponding graph \ � = � � , � � as follows:

1. For each term � occurring in a condition or conclusion of a rule

� ∈ � there exists a corresponding node]^ ∈ � �

2. For each rule � ∈ � there exists a corresponding node]� ∈ � �

3. For each rule � = < F� ∧ ⋯ ∧ F* +=�> � ∈ � there exist 4

corresponding edges]_U
,]^ ∈ � � , ∀2 ∈ 1, … , 4 and an

additional edge]� ,]^ ∈ � �

4. Aside from the results by applying the preceding steps 1,2, and 3,

there are no further nodes and arcs in � �

Wirtschaftsinformatik und Operations Research 448

Acyclic rule-based systems

3.13 Definition

A given rule-based system � = �, � is denoted as

acyclic if and only if the corresponding graph \ � =

� � , � � is acyclic.

3.14 Comment

Given a directed graph \ = `, � . The test of whether

graph \ is acyclic can be done in linear time of the size

of the set of arcs.

Wirtschaftsinformatik und Operations Research 449

Correctness of the algorithm

3.15 Theorem

Algorithm 3.11 is correct for acyclic rule-based systems

14

Wirtschaftsinformatik und Operations Research 450

Proof of Theorem 3.15

� We assume that a given term � can be derived by a rule based

system � = �, �

� Then there exists a shortest existing derivation �, � ⊢�� �∗, �

with � ∈ �∗ and we prove by induction of the number of applied

rules Z in the above shortest derivation that W@X�Y [�] = true, i.e.,

Algorithm returns the correct result

� Start of induction Z = 0

� In this case no rule is necessary for the derivation of � ∈ �∗

� Hence, it holds that � ∈ �

� In this case A2��� � ∈ � holds and the first entry of FZ is the empty list

� Therefore, 4@[IB%Z becomes to NIL and W@X�Y ><H is called

� Then, W@X�Y(4@[IB%Z) is true and ��BX is set to ��?@

� Consequently, the Algorithm 3.11 returns the correct result “�∗ is

derivable”

Wirtschaftsinformatik und Operations Research 451

Proof of Theorem 3.15

� We consider the case Z > 0

� Hence, as the considered derivation is a shortest one, there

exists a rule IF F� ∧ ⋯ ∧ F* THEN � in set � that was used by

the considered derivation �, � ⊢�� �∗, � with � ∈ �∗

� Hence, by induction we have ∀2 ∈ 1, … , 4 : W@X�Y [F1] =

��?@

� As � ∈ � holds, FZ is extended by appending the list

F�, … , F*

� As � = �, � is assumed to be acyclic, in the considered

case, the Algorithm will either terminate before reaching

this part of the list FZ (other proving is possible) or after

checking W@X�Y F�, … , F* . The latter results from the

assumption of the induction

Wirtschaftsinformatik und Operations Research 452

Proof of Theorem 3.15

� We assume that a given term � cannot be derived by a rule-based

system � = �, �

� Then, there is no �, � ⊢�� �∗, � with � ∈ �∗

� This, in turn, means that there is no possibility to trace back the term

� to the initial entries of set �

� Therefore, W@X�Y(><H) cannot be reached throughout the

computation

� Since � = �, � is assumed to be acyclic, each rule is chosen once

and the Algorithm 3.11 will terminate after finite time as W@X�Y is

not called in a recursion more than once for a list starting with the

same term. Hence, the number of calls is bounded and the algorithm

never reaches an empty list

� Thus Algorithm 3.11 returns the correct result “�∗ is NOT derivable”

15

Wirtschaftsinformatik und Operations Research 453

3.16 Example with cycle in R

� We consider the following rule-based system � = �, � with

� � = �P , � = ��: < �� +=�> ��, ��: < �� +=�> ��, �P: < �P +=�> ��

� There is a cycle as the corresponding graph reveals

]��
]��

]�P

]^�
]^�

]^P

]��
]��

]�P

]^�
]^�

]^P

Wirtschaftsinformatik und Operations Research 454

Applying the Algorithm 3.11 with W@X�Y([��])

[��]

[��]

��

[��]

��

…

�P

��

[]

�P

[]

NIL lists

Wirtschaftsinformatik und Operations Research 455

Complexity

3.17 Lemma

The worst case running time of the Algorithm 3.11 is not

polynomial even for acyclic rule-based systems

� = �, �

16

Wirtschaftsinformatik und Operations Research 456

Proof of Lemma 3.17

� We consider the following rule-based system

� �* = �, �* with

� � = �: and

� �* =

< F1,� ∧ F1,� +=�> �1 ,

< �1f� +=�> F1,�

< �1f� +=�> F1,�

∣ 1 ≤ 2 ≤ 4

� The rule-based system �* = �, �* comprises 34

rules and terms

� We count the number of calls h 4 of the function

W@X�Y with the goal term �*

Wirtschaftsinformatik und Operations Research 457

Proof of Lemma 3.17 – 4 = 0, 4 = 1

� h 0 = 2 as �: ∈ � and after calling W@X�Y [�:] , we

have a second and final call W@X�Y [] that is

successful

� h 1 = 5 as shown below

� W@X�Y [��]

� W@X�Y [F�,�, F�,�]

� W@X�Y [�:, F�,�]

� W@X�Y [F�,�]

� W@X�Y [�:]

Wirtschaftsinformatik und Operations Research 458

Proof of Lemma 3.17 – 4 > 1

� We have always the situation that

� W@X�Y [�*]

� W@X�Y [F*,�, F*,�]

� W@X�Y [�*f�, F*,�]

� …

� W@X�Y [F*,�]

� …

� W@X�Y [�:]

17

Wirtschaftsinformatik und Operations Research 459

Proof of Lemma 3.17 – Conclusion

� For 4 > 1, it holds that h 4 = 3 + 2 ⋅ h 4 − 1

� Therefore, we conclude that

� h 4 > 2* since it holds that

� h 0 = 2 > 2: = 1,

� h 1 = 5 > 2� = 2, and

� h 4 = 3 + 2 ⋅ h 4 − 1 > 3 + 2 ⋅ 2*f� = 3 + 2* > 2*

� This completes the proof

Wirtschaftsinformatik und Operations Research 460

Remark

� The exponential running time and the problems with

cyclical rule sets can be avoided by using breath first

search

� However, this may lead to exhaustive memory

consumptions

