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3 Rule-based systems

� In what follows, we give a brief introduction to the 

mathematical definitions and applied algorithms of rule-based 

systems

� Rule-based systems comprise 

� a database that contains the current knowledge of the system. This 

may comprise current values or states of variables/parameters/sets

� a finite set of rules that enables the system to derive additional 

knowledge out of the given one by applying some rule

� an interference engine or algorithm that controls the interaction 

between the knowledge stored in the data base and the applicable 

rules

� The definition of the knowledge, the rules, and the applied 

interference engine is application-dependent and therefore 

requires a suitable formalization
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Rule-based systems

That seems to be a 

mantra. 

Not really a rule to 

follow…but at least it

defines a steady state

That seems to be a 

mantra. 

Not really a rule to 

follow…but at least it

defines a steady state

My rule is: 

I cannot get too much weight from fish as if I 

become too fat from fish I do not catch any 

more fish…

My rule is: 

I cannot get too much weight from fish as if I 

become too fat from fish I do not catch any 

more fish…
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Definition of rule-base systems

3.1 Definition

A rule-based system � consists of a tuple �, � with the data base � and a 

finite set of rules �. The elements are also denoted as (known) facts. The 

elements of � are tuples of parameters and values (denoted as terms). The set 

of parameters are denoted as � � and the set of values are � � . As 

parameters and values are connected in each tuple by some operator 

(functioning as a connector) =, <, ≤, or ≠ to a term � ∈ �, of the form 

� ∈ � � × =, ≠, <, ≤ × � � . 

A rule � ∈ � possesses the form IF � THEN � with a condition � that is 

recursively defined through

1. Each term � ∈ � is a condition

2. For �, � ∈ � the notations � ∧ � and � ∨ � are conditions

and a term � ∈ � that defines the conclusion (of the rule). 
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Conjunction and disjunction

� The symbol “∧” represents a conjunction of 

conditions. Hence, the fulfillment of the resulting 

(possibly partial) condition requires that both partial 

conditions are fulfilled by the current database 

entries

� The symbol “∨” represents a disjunction of 

conditions. Hence, the fulfillment of the resulting 

(possibly partial) condition requires that (at least) one 

partial condition is fulfilled by the current database 

entries
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Observation

� Conclusions do not comprise conjunctions of terms

� However, this can be replaced by additional rules

� Specifically, instead of defining IF � THEN �� ∧ �� ∧ ⋯ ∧

��, we insert the � rules IF � THEN ��, IF � THEN ��,…,

IF � THEN �� into �

� Note that the well-known NOT operation is not valid 

in Definition 3.1

� In what follows, we define the formal satisfaction of a 

condition 
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Satisfaction of conditions in rules

3.2 Definition

Given a rule-based system � = �, �  defined according to Definition 3.1.

Then, a condition � in a rule IF � THEN � in rule set � is satisfied by the current 

data base � if one of the following cases applies

1. If � is a single term � and � ∈ � holds

2. If � = �� ∧ �� and �� as well as �� are satisfied by the current data base �

3. If � = �� ∨ �� and �� or �� is satisfied by the current data base �

4. If � = ¬�� and �� is not satisfied by the current data base �

No further case exists.

A rule � = IF � THEN � in set � with a condition � that is satisfied according to 

Definition 3.2 is denoted as applicable to data base �. 

If the fourth case is not covered, we say that � = �, � is without negation. 
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Inference of terms

3.3 Definition

Given two rule-based systems � = �, �  and �� = ��, �� as 

defined in Definition 3.1.1. It holds that �, � ⊢�� ��, �� if and 

only if 

1. There exists a rule � ∈ � with � = IF � THEN � possessing a 

satisfied condition � and 

2. The data base is extended accordingly, i.e., �� = � ∪ �

We say that rule � ∈ � is applicable and term � can be inferred 

(derived) in � = �, �  with �

Shortcut: �, � ⊢�� �
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Commutative rule-based system

3.4 Definition

A rule-based system � = �, � is denoted as commutative if and 

only if for each data base � that can be inferred (derived) in �

with � it holds that each rule that can be applied in � for � can 

be also applied in  that can be derived from �, i.e., 

�, � ⊢�� �, � ⊢��  , � and ∀� ∈ �: � is applicable in � ⟹

� is applicable in  .
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Consequences

Then, please consider 

the subsequent 

interpretation provided 

by the following Lemma 

3.5!

Then, please consider 

the subsequent 

interpretation provided 

by the following Lemma 

3.5!

Awkward definition!

I admit, that I do not really understand how 

to apply or use it…

Awkward definition!

I admit, that I do not really understand how 

to apply or use it…
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Consequence

3.5 Lemma

A rule based system � = �, � is commutative if and only if the 

following attribute (%) is fulfilled for a data base � that can be 

inferred in � with �:

(%) Let �' ⊆ � be a subset of rules given in � that are applicable 

with data base �. Then, the data set that is inferable by applying 

these rules is invariant against the sequence in that the rules are 

applied. 
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Proof of Lemma 3.5

� Given a commutative rule-base system � = �, � and a data base � that can 

be inferred in � by using �, i.e., we have �, � ⊢�� �, �

� Moreover, we assume that �' = ��, … , �* ⊆ � is the set of applicable rules 

of set � with data base �

� Consequently, we define the set of terms +' = ��, … , �, that we obtain by 

applying rules of set �'

� Due to the assumed commutativity of � = �, � and since data base � can 

be inferred in � by using �, we know that all rules � ∈ �' can be also applied 

in � by using  (instead of �) with �, � ⊢�� �, � ⊢��  , � 

� This means that we can apply the respective rules � ∈ �'  in an arbitrary 

sequence and the set of inferable terms amounts to � ∪ +' = � ∪ ��, … , �,

� The latter results from the fact that the application of each rule inserts a term 

of +'
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Proof of Lemma 3.5

� Conversely, we assume that � is not commutative, but attribute (%) is fulfilled 

for a data base � that can be inferred in � by using �, i.e., �, � ⊢�� �, � 

� If two rules in � have identical conclusions we combine them into one rule by a 

disjunction in the condition. Hence all conclusions are disjoint

� Furthermore, we assume that �' = ��, … , �* ⊆ � is the set of applicable rules 

of set � with data base �

� Consequently, we define the set of terms +' = ��, … , �, that we obtain by 

applying rules of set �'

� As � is not commutative, we assume that � was chosen such that there exists a 

rule �- ∈ �' = ��, … , �* with  as the set of terms that is obtained by applying 

all applicable rules of set �' − �- while �- is not applicable in set  , but 

applicable in set �. By applying all rules of set �' − �- , we obtain the set +',-

� Since no other rule implies �-, we obtain a different data base / if we start with 

�, � and apply �- first as �- ∈ / but �- ∉ +',-. This contradicts attribute (%)
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Remark

� The derived definition of commutativity is analogously 

characterized by Nilsson (1982). He gives the 

following three attributes

� Each rule that is applicable for a given database D stays 

applicable for each database that is derivable from D

� Each condition that is fulfilled by D is also fulfilled by 

each database that is derivable from D

� Each database that can be derived from D is invariant 

against the sequence of the applied rules 
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Observation

3.6 Theorem

Rule-based systems without negation are commutative. 
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Proof of Theorem 3.6

� We consider a rule based system � = �, � without negation

� Let � be a data base with �, � ⊢�� �, � 

� �' = ��, … , �* ⊆ � is the set of applicable rules of set � with 

data base �, while it holds that �1 = IF �1  THEN �1, ∀2 ∈

1, … , 4

� Hence, �1  is true (i.e., fulfilled) in �

� Since there are only connectors of the form ∧ or ∨, the 

satisfaction of a condition only depends on the fact whether a 

specific term � is in the data base �

� As each rule application only adds additional terms to the data 

base, such a satisfaction does not change 

� Hence, � is commutative
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Conclusion

� Due to Theorem 3.6, for rule-based systems without 

negation, we know that the sequence of applied rules 

has no impact on the resulting set of terms in the 

derived data base

� Therefore, an applied inference algorithm do not 

need a specific selection rule for choosing the next 

applicable rule to be executed
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Derivable knowledge

3.7 Definition

Given a commutative rule-based system � = �, � . 

Then, the set �∗ � is denoted as the maximum set of 

derivable terms in � if and only if it holds that

1. �, � ⊢�� �∗ � , � and 

2. ∀� with �, � ⊢�� �, � it holds that � ⊆ �∗ �
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Types of reasoning strategies

In order to check whether a specific data can be derived from a 

given rule-based system, two reasoning strategies are proposed: 

Forward chaining

� Starts with the available data currently stored in the data base

� It iteratively executes the rules that are applicable in order to 

derive additional knowledge 

� It terminates when a predefined goal (sought term) is reached

� If no predefined goal is given the algorithm stops when no 

further knowledge can be obtained from applying rules
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Types of reasoning strategies

Backward chaining

� This strategy works in opposite direction to the forward chaining

� Namely, it starts with the goal term that is sought

� This term is inserted into the set of goal terms /

� As long as the set of goal terms / is not empty do

� Take some term � out of /

� Consider the condition � of each rule of the form IF � THEN �

� Depending on the condition � insert new terms into / (this 

may include recursive function calls or the iterative 

constitution of different sets / and will be specified later on)
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3.8 Algorithm – Forward Chaining in Pseudo Code

Input: Database �:, set of rules � (no goal)

begin

� �∗ ≔ �:

� repeat

� � ≔ �∗ /* keeping the former state */

� �∗ ≔ <  � +=�> � ∈ � � 2� ��?@ AB� �

� �∗ ≔ �∗ ∪ � <  � +=�> � ∈ �∗

� until � = �∗ /* if a goal is given, we can check it here */

� Output: �∗

end
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(Very simple) example

RULE 1: IF AUDIO=croaks ∧ NUTRITION=insects - THEN

ANIMAL=frog

RULE 2: If AUDIO=öök ∧ NUTRITION=insects - THEN

ANIMAL=toad

RULE 3: If ANIMAL=frog - THEN COLOR=green

RULE 4: If ANIMAL=toad - THEN COLOR=brown
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Applying forward chaining

� Starting set �: = CD�<E = F�B%��, >D+�+<E> = 24�@F��

� Hence, �∗ = CD�<E = F�B%��, >D+�+<E> = 24�@F��

� Thus, we obtain 

�∗ = IF AUDIO=croaks ∧  NUTRITION=insects − THEN ANIMAL=frog

� And therefore 

�∗ = CD�<E = F�B%��, >D+�+<E> = 24�@F��, C><GCH = A�BI

� �∗ =
IF AUDIO=croaks ∧  NUTRITION=insects − THEN ANIMAL=frog,

IF ANIMAL=frog − THEN COLOR=I�@@4

� Finally, we obtain �∗ =
CD�<E = F�B%��, >D+�+<E> = 24�@F��, 

C><GCH = A�BI, �EHE� = I�@@4
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Forward chaining

3.9 Theorem

By being applied to a commutative rule-based system 

� = �, � , the algorithm forward chaining is correct 

and works in quadratic time of the size of the given rule-

based system � = �, �
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Proof of Theorem 3.9

Termination

� Clearly, the forward chaining algorithm (Algorithm 3.8) 

always terminates

� This results from the fact that � is assumed to be finite 

and therefore the derivable knowledge (terms located 

after a THEN statement) is finite

� Hence, the number of extensions of �∗ is limited by the 

number of rules in �

� Specifically, it holds that 

� ⊆ �∗ � ⊆ � ∪ � ∣ <  � +=�> � ∈ �

� Since at least one term is added during each iteration of 

the algorithm, we have at most � iterations
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Proof of Theorem 3.9

Correctness
� We first show that if the Algorithm 3.8 is called without a goal term it 

terminates with the output �∗ = �∗ �

� We first show that �∗ � ⊆ �∗

� For this purpose, we assume that ∃� ∈ �∗ � − �∗. Due to �∗ � ⊆ � ∪

� ∣ <  � +=�> � ∈ � and the finiteness of �, � can be derived within a finite 

number of rule applications

� Furthermore, � is defined such that its shortest derivation in  

�, � ⊢�� �∗ � , � requires a minimum number of rule applications. This 

minimum number is denoted as 2. With other words, no other term in 

�∗ � − �∗ can be derived with a smaller number of applied rules

� In what follows, the existence of � is disproven by induction over the number 

of iterations 2

� With other words, we prove that after 2 iterations �∗ contains all terms of set 

�∗ �  that are derivable by the application of at most 2 rules
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Proof of Theorem 3.9

� Start of induction with 2 = 0. In this case, we have �∗ � = � as 

no application of a rule is allowed

� Hence, as the Algorithm 3.8 sets �∗ = �, we have �∗ � = � =

�∗ and � does not exist with 2 = 0

� Therefore, it remains to consider the case 2 > 0

� Then, by induction and the definition of term �, after conducting 

2 − 1 iterations of Algorithm 3.8, the set �∗ contains all terms of 

set �∗ � derivable by at most 2 − 1 rule applications

� Consequently, as �∗ � ⊆ � ∪ � ∣ <  � +=�> � ∈ � holds 

and since � is not derivable within 2 − 1 rule applications, we 

conclude due to the commutativity of � = �, � there must be 

a rule <  � +=�> � in set � such that the terms of �∗ � that 

are derivable within at most 2 − 1 rule applications fulfill �
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Proof of Theorem 3.9

� However, as, by induction, this set (the terms of �∗ � that are 

derivable within at most 2 − 1 rule applications) is subset of �∗

� Therefore, <  � +=�> � is applicable during the 2-th iteration 

of the Algorithm 3.8 and � is also inserted into �∗

� Hence, � does not exist

� As �∗ � ⊆ � ∪ � ∣ <  � +=�> � ∈ � holds and � is finite, 

each term � ∈ �∗ � − �∗ is derivable in a finite number of 

rule applications

� Thus, �∗ � − �∗ = ∅ holds as � ∈ �∗ � − �∗ exists, 

otherwise and that was excluded before

� This proves �∗ � ⊆ �∗
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Proof of Theorem 3.9

� We show that �∗ ⊆ �∗ �

� This results directly from the fact that the Algorithm 

3.8 only adds terms by applying rules of set �

� Consequently, it holds that �, � ⊢�� �∗, �

� This implies �∗ ⊆ �∗ �

� Therefore, we obtain �∗ = �∗ �

� This completes the proof of the correctness
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Proof of Theorem 3.9

Worst case running time

� Due to �∗ = �∗ � ⊆ � ∪ � ∣ <  � +=�> � ∈ � , 

there are at most � iterations

� In each iteration at most each term in �∗ and each 

rule has to be enumerated. By using a sophisticated 

data structure this is possible in time O �

� Thus, all in all, we obtain an asymptotic running time 

of O � �
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Observation

� The average running time of the Algorithm 3.8 can be 

improved by erasing each applied rule from set �
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3.10 Algorithm – Forward Chaining with goal term

Input: Database �:, set of rules �, goal term is �∗

begin

� �∗ ≔ �:

� repeat

� � ≔ �∗ /* keeping the former state */

� �∗ ≔ <  � +=�> � ∈ � � 2� ��?@ AB� �

� �∗ ≔ �∗ ∪ � <  � +=�> � ∈ �∗

� until � = �∗ or �∗ ∈ �∗

� Output: If �∗ ∈ �∗ then write (“�∗ is derivable”) else 

write (“�∗ is NOT derivable”)

end

Wirtschaftsinformatik und Operations Research 442

Excluding disjunctions

� By analyzing a rule-based systems, we can state that 

disjunctions can be excluded without restricting the 

knowledge and rules in a rule-based systems

� This results from the fact that we can replace a rule 

� IF �� ∨ �� THEN �P

by the two following rules

� IF �� THEN �P

� IF �� THEN �P

that are equivalent, i.e., the set of derivable terms is 

unchanged
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Examples

� IF C = 1 ∧ Q = 1 ∨ � = 0 THEN R = 1

Is equivalent to the two rules

� IF C = 1 ∧ Q = 1 THEN R = 1

� IF � = 0 THEN R = 1

� IF C = 1 ∨ Q = 1 ∧ � = 0 THEN R = 1

Is equivalent to 

� IF C = 1 ∧ � = 0 ∨ Q = 1 ∧ � = 0 THEN R = 1

And equivalent to the two rules

� IF C = 1 ∧ � = 0 THEN R = 1

� IF Q = 1 ∧ � = 0 THEN R = 1
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Comment

� As each formula in propositional logic can be 

transformed in a equivalent formula in so-called 

Disjunctive Normal Form (DNF), i.e., into the form

 = ⋁ ⋀ H1,-
,U

-V�
*
1V� , with H1,- ∈ C�, C�, … ∪

¬C�, ¬C�, … , we can always exclude all disjunctions 

in a set of rules

� Thus, for the backward chaining algorithm, we solely 

consider rule-based systems without disjunctions

Wirtschaftsinformatik und Operations Research 445

3.11 Backward Chaining with goal term and DFS

function W@X�Y(t: list of terms): boolean;

begin

if � = ><H then return(��?@)  /* Nothing to check anymore, goal is attainable */

else /* There are still terms (i.e., conditions) to check */

set �∗ to the first term in list � /* first term to be checked */

define FZ as a list of conditions of rules (i.e., list of list of terms) with conclusion “THEN �∗”

if �∗ ∈ �

then FZ: = %XX@4W(><H − Z2��, FZ) /* NIL-list is an empty (i.e., true) condition */

��BX = A%Z�@

while (FZ ≠ ><H) and (not ��BX) do

set FZ∗ to the first condition in FZ

4@[IB%Z ≔ %XX@4W(FZ∗, �@��(�)) /* This has to be checked next (DFS) */

if W@X�Y(4@[IB%Z) then stop:=true else FZ ≔ �@��(FZ) end if

end while /* FZ is a list of conditions. One of them has to be fulfilled to fulfill �∗ */

if stop then return(��?@) else return(false) end if

end if

end if
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Call of the procedure – main program

Input: Database �:, set of rules � (no disjunction), goal term is �∗

begin

if W@X�Y �∗ then write(“�∗ is derivable”)

else write(“�∗ is NOT derivable”)

end if

end
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Corresponding graph

3.12 Definition

Given a rule-based system � = �, � . For the set of rules, we define 

the following corresponding graph \ � = � � , � � as follows:

1. For each term � occurring in a condition or conclusion of a rule 

� ∈ � there exists a corresponding node ]^ ∈ � �

2. For each rule � ∈ � there exists a corresponding node ]� ∈ � �

3. For each rule � = <  F� ∧ ⋯ ∧ F*  +=�> � ∈ � there exist 4

corresponding edges ]_U
, ]^ ∈ � � , ∀2 ∈ 1, … , 4 and an 

additional edge ]� , ]^ ∈ � �

4. Aside from the results by applying the preceding steps 1,2, and 3,  

there are no further nodes and arcs in � �
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Acyclic rule-based systems

3.13 Definition

A given rule-based system � = �, � is denoted as 

acyclic if and only if the corresponding graph \ � =

� � , � � is acyclic. 

3.14 Comment

Given a directed graph \ = `, � . The test of whether 

graph \ is acyclic can be done in linear time of the size 

of the set of arcs. 
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Correctness of the algorithm

3.15 Theorem

Algorithm 3.11 is correct for acyclic rule-based systems
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Proof of Theorem 3.15

� We assume that a given term � can be derived by a rule based 

system � = �, �

� Then there exists a shortest existing derivation �, � ⊢�� �∗, �

with � ∈ �∗ and we prove by induction of the number of applied 

rules Z in the above shortest derivation that W@X�Y [�] = true, i.e., 

Algorithm returns the correct result

� Start of induction Z = 0

� In this case no rule is necessary for the derivation of � ∈ �∗

� Hence, it holds that � ∈ �

� In this case A2��� � ∈ � holds and the first entry of FZ is the empty list

� Therefore, 4@[IB%Z becomes to NIL and W@X�Y ><H is called

� Then, W@X�Y(4@[IB%Z) is true and ��BX is set to ��?@

� Consequently, the Algorithm 3.11 returns the correct result “�∗ is 

derivable”
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Proof of Theorem 3.15

� We consider the case Z > 0

� Hence, as the considered derivation is a shortest one, there 

exists a rule IF F� ∧ ⋯ ∧ F* THEN � in set � that was used by 

the considered derivation �, � ⊢�� �∗, � with � ∈ �∗

� Hence, by induction we have ∀2 ∈ 1, … , 4 : W@X�Y [F1] =

��?@

� As � ∈ � holds, FZ is extended by appending the list 

F�, … , F*

� As � = �, � is assumed to be acyclic, in the considered 

case, the Algorithm will either terminate before reaching 

this part of the list FZ (other proving is possible) or after 

checking W@X�Y F�, … , F* . The latter results from the 

assumption of the induction
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Proof of Theorem 3.15

� We assume that a given term � cannot be derived by a rule-based 

system � = �, �

� Then, there is no �, � ⊢�� �∗, � with � ∈ �∗

� This, in turn, means that there is no possibility to trace back the term 

� to the initial entries of set �

� Therefore, W@X�Y(><H) cannot be reached throughout the 

computation

� Since � = �, � is assumed to be acyclic, each rule is chosen once 

and the Algorithm 3.11 will terminate after finite time as W@X�Y is 

not called in a recursion more than once for a list starting with the 

same term. Hence, the number of calls is bounded and the algorithm 

never reaches an empty list

� Thus Algorithm 3.11 returns the correct result “�∗ is NOT derivable”
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3.16 Example with cycle in R

� We consider the following rule-based system � = �, � with

� � = �P , � = ��: <  �� +=�> ��, ��: <  �� +=�> ��, �P: <  �P +=�> ��

� There is a cycle as the corresponding graph reveals

]��
 ]��

 ]�P
 

]^�
 ]^�

 ]^P
 

]��
 ]��

 ]�P
 

]^�
 ]^�

 ]^P
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Applying the Algorithm 3.11 with W@X�Y([��])

[��]

[��]

��

[��]

��

…

�P

��

[]

�P

[]

NIL lists
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Complexity

3.17 Lemma

The worst case running time of the Algorithm 3.11 is not 

polynomial even for acyclic rule-based systems 

� = �, �
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Proof of Lemma 3.17

� We consider the following rule-based system

� �* = �, �* with

� � = �: and 

� �* =

<  F1,� ∧ F1,� +=�> �1 ,

<  �1f� +=�> F1,�

<  �1f� +=�> F1,�

∣ 1 ≤ 2 ≤ 4

� The rule-based system �* = �, �*  comprises 34

rules and terms

� We count the number of calls h 4 of the function 

W@X�Y with the goal term �*
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Proof of Lemma 3.17 – 4 = 0, 4 = 1

� h 0 = 2 as �: ∈ � and after calling W@X�Y [�:] , we 

have a second and final call W@X�Y [] that is 

successful

� h 1 = 5 as shown below

� W@X�Y [��]

� W@X�Y [F�,�, F�,�]

� W@X�Y [�:, F�,�]

� W@X�Y [F�,�]

� W@X�Y [�:]
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Proof of Lemma 3.17 – 4 > 1

� We have always the situation that 

� W@X�Y [�*]

� W@X�Y [F*,�, F*,�]

� W@X�Y [�*f�, F*,�]

� …

� W@X�Y [F*,�]

� …

� W@X�Y [�:]
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Proof of Lemma 3.17 – Conclusion

� For 4 > 1, it holds that h 4 = 3 + 2 ⋅ h 4 − 1

� Therefore, we conclude that

� h 4 > 2* since it holds that 

� h 0 = 2 > 2: = 1,

� h 1 = 5 > 2� = 2, and 

� h 4 = 3 + 2 ⋅ h 4 − 1 > 3 + 2 ⋅ 2*f� = 3 + 2* > 2*

� This completes the proof
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Remark

� The exponential running time and the problems with 

cyclical rule sets can be avoided by using breath first 

search

� However, this may lead to exhaustive memory 

consumptions


