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Information concerning the course 

 Lecture:  

 Monday,  2:15 pm - 3:45 pm in M12.25 

 Thursday, 2:15 pm - 3:45 pm in M12.25 

 Start: October 10th, 2019 

 

 Lecturer: Prof. Dr. Stefan Bock 

 Office: M12.02 

 Office hour: Monday, 4:00 pm - 6:00 pm (registration is 

mandatory (email to iwuester@winfor.de)) 

 Secretary office: M12.01  

 E-mail: sbock@winfor.de 
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Information concerning the course 

 Tutorial:  

 Wednesday, 2:00 pm - 4:00 pm in M.15.09 

 Start: October 16th, 2019 

 First assignment sheet is already available  

(moodle password is “oristtoll”) 

 Supervisor: Anna Katharina Janiszczak 

 Office: M12.33 

 Office hour: Wednesday, 4:00 pm-6:00 pm (after 

agreement (per email)) 

 E-mail: kjaniszczak@winfor.de 

 Coordinates the Tutorial 
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Information concerning the course 

 Weekly assignment sheet submission 

 Submit in Moodle as PDF or postbox in room M11.25 

 Write down course name and make sure you can 
identify your submission on return 

Mo Thu 

Lecture 

Assignments online in Moodle 

10 am: due date for assignment sheet 

submission  

2 pm: Tutorial: Assignment review 

Wed 
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Preliminary Agenda 

1. Linear programming  

1. Applications 

2. The Simplex Algorithm 

3. Geometry of the solution space 

4. How fast is the Simplex Method? 

5. Working with tableaus 

2. Duality 

1. Motivation and the dual problem 

2. The Dual Simplex Algorithm 

3. The possible cases 

4. Interpreting the dual solution 

5. Farkas’ Lemma 
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Preliminary Agenda 

3. Computational considerations 

1. The Revised Simplex Algorithm 

2. Analyzing the complexity of the Revised Simplex 

Algorithm 

3. Solving the Max Flow Problem by the Revised 

Simplex Algorithm 

4. The Dantzig-Wolfe Decomposition 

4. The Hitchcock Transportation Problem 

1. Using the standardized Simplex Algorithm 

2. The MODI Algorithm 

5. The Primal-Dual Simplex Algorithm 
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Preliminary Agenda 

6. Optimally solving the Shortest Path Problem 

1. Deriving the Dijkstra algorithm  

2. Bellman-Ford algorithm 

3. The Floyd-Warshall algorithm 

7. Max-Flow and Min Cut Problems 

1. Max-Flow Problems 

2. Min-Cut Problems 

3. A Primal-Dual algorithm 

4. The Ford-Fulkerson algorithm 

5. Analyzing the Ford-Fulkerson algorithm 

6. An efficient algorithm for the Max-Flow Problem 
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Preliminary Agenda 

8. Applying the Primal-Dual Simplex to the 

Transportation Problem – The alpha-beta 

algorithm 

1. Problem definition and analysis 

2. Analyzing the reduced primal (RP) 

3. Solving the DRP 

4. Complexity of the algorithm 

9. Integer programming 

1. Basics 

2. Cutting Plane Methods – algorithm of Gomory 

3. A Branch&Bound Algorithm 
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Preliminary Agenda 

10. Matrix Games 

1. Introducing examples 

2. Basic definitions 

3. Games and Linear Programming 
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Selected basic Literature 

 Brucker, P.; Knust, S. (2012): Complex Scheduling. 2. 
ed., Springer, Berlin, Heidelberg, New York.   

 Domschke, W.; Drexl, A.; Klein, R.; Scholl, A.; Voß, S. 
(2015): Übungen und Fallbeispiele zum Operations 
Research. 8. Aufl., Springer Gabler, 2015.   

 Domschke, W.; Drexl, A. (2015): Einführung in Operations 
Research. 9. Aufl., Springer Gabler.   

 Myerson, R.B. (1997): Game Theory.  Analysis of Conflict.  
Havard University Press.   

 Nemhauser,G.L.,&Wolsey,L.A.(1988).Integer and 
combinatorial optimization. JohnWiley&Sons, New York. 

 Papadimitriou, C.H.; Steiglitz, K. (1982, 1988): 
Combinatorial Optimization.  Algorithms and Complexity.  
Prentice-Hall, 1982 and Dover unabridged edition 1998. 
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Selected basic Literature 

 Suhl, L.; Mellouli, T. (2013): Optimierungssysteme. 3. 
Aufl., Springer Gabler. 

 Taha, H.A. (2010): Operations Research.  An 
Introduction.  9th ed, Pearson Education.   

 Chvátal, V. (2002): Linear Programming.  16th print.  W.H. 
Freeman and Company, New York.   

 Wolsey, L.A. (1998): Integer Programming.  John 
Wiley&Sons.   

 

And thousands of other good books dealing with 
Optimization, Linear Programming, or Combinatorial 
Optimization (references to further papers will be given in 
the respective sections) 
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Simplex calculators 

 Excel Solver 

 Can be activated under Extras⇢Add-Ins (2003 

Version), File⇢Options⇢Add-Ins (2010 Version) 

 Subsequently, you may use the Solver by 

Extras⇢Solver (2003 Version), Data⇢Solver (2010 

Version)  

 It is not powerful but nice to play around with our 

simple examples 

 

 Online Simplex calculator: 

 http://www.zweigmedia.com/RealWorld/simplex.html 
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1  Linear Programming 

 We deal with a large class of problems in this first 

section 

 These problems can be mapped as Linear 

Programs, i.e.,  

 We define continuous variables 

 We define linear constraints to be fulfilled by the values 

of the variables  

 We define an objective function that provides an 

evaluation of each solution found 

 We want to find optimal solutions, i.e., solutions that 

fulfill all restrictions (then we denote them as feasible) 

and maximize or minimize the objective function value 
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Linear Program – Main attributes 

 continuous decision variables 

 linear constraints that must be fulfilled by the values of the 

decision variables  

 objective function that provides an evaluation of each 

solution found 

 Finding an optimal solution 

 

Solution:   vector of decision variables 

Feasible solution: solution that fulfills all constraints 

Optimal solution:  feasible solution with maximal or  

   minimal objective function value 
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1.1 Linear Programming Applications 

 We commence our work with representative 

applications of Linear Programming 

 

 Production Program Planning 

 Hitchcock problem, i.e., standardized balanced 

transportation problem 

 Diet Problem 
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Application 1 – Production Program Planning 

 The production management of a plant of an 

orange juice producer plans the production 

program 

 There are two types of orange juices that are 

pressed and mixed in this plant 

 For simplicity reasons, let us denote them as A 

and B 

 Both are produced on 3 stages in a 

predetermined sequence, i.e., 1 – 2 – 3 is the 

production sequence for both product types 

 This is illustrated by the following figure 
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Production Program Planning - Illustration 

Stage 1 

Stage 2 

Stage 3 

A 

B 

10 $ 

 
Max. amount 

50 

8 $ 
 

Max. amount 

40 

Capacity 

240 h 

Capacity 

240 h 

Capacity 

100 h 
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… and just the values 

 All types are produced on all stages 

 Capacity on stages 1 and 3 are 240 h,  

 Capacity on stage 2 is 100 h 

 

 Product A 

 Price per gallon: 10$ 

 Variable costs per gallon: 5$ 

 Thus, we obtain a marginal profit of 5$ per gallon 

 Max. sales volume: 50 gallons 

 In order to produce one gallon of A  

 on stage 1, we need 2 hours, 

 on stage 2, 1 hour, 

 and on stage 3, 4 hours 
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… and product B 

 Product B 

 Price per gallon: 8$ 

 Variable costs per gallon: 2$ 

 Thus, we obtain a marginal profit of 6$ per gallon 

 Max. sales volume: 40 gallons 

 In order to produce one gallon of B  

 on stage 1, A gallon B requires 4 hours  

 on stage 2, A gallon B requires 2 hours, and  

 on stage 3, A gallon B requires 2 hours 
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Optimal production program 

 Clearly, we want to maximize our profit, i.e., the 
maximally obtainable total marginal profit 

 Thus, we analyze what we are able to sell 
maximally 
 Both types of orange juice are worth to produce 

 Each item of A brings us a marginal profit of 5$ per 
gallon 

 Each item of B even 6$ 

 Consequently, we want to produce as much as 
possible of both products 

 If the maximum volumes of sale can be 
produced, we have found the optimal production 
program 
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We calculate the maximum demand 

 We have the following demand levels 

 Stage 1: 50.2+40.4=260>240 

 Thus, since demand is larger than capacity, we have a 

bottleneck ! 

 

 Stage 2: 50.1+40.2=130>100 

 Thus, since demand is larger than capacity, we have a 

bottleneck ! 

 

 Stage 3: 50.4+40.2=280>240 

 Thus, since demand is larger than capacity, we have a 

bottleneck ! 
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What is to do? 

? 

Since B provides 
6$ instead of 5$, 

we produce as 
much as possible 
of B; and then we 

fill up the rest 
with A 
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If we do so, it turns out that … 

 B needs  

 on stage 1 4h. Maximally produce min{40, 240/4} = 40 

 on stage 2 2h. Maximally produce min{40, 100/2} = 40 

 on stage 3 2h. Maximally produce min{40, 240/2} = 40 

Thus, B can be produced in its maximum volume of sales 

 

 A needs  

 on stage 1 2h. Maximally produce min{50, (240-160)/2} = 40 

 on stage 2 1h. Maximally produce min{50, (100-80)/1=20/1} = 

20 

 on stage 3 4h. Maximally produce min{50, (240-80)/4=160/4} 

= 40 

Thus, 20 items of A can be additionally produced and sold 
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Results in 

a total profit of 

 

20.5$ + 40.6$ = 100$ + 240$ = 340$ 

 

 However, in order to analyze the problem more in 

detail, we want to formalize it 
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Linear Program of the production 

Decision variables: : Produced gallons of juice A

: Produced gallons of juice B

Objective function: Maximize 5 6 Maximize the total revenue

Constraints: subject to

50 Maximium volume of sales

40

A

B

A B

A

B

x

x

z x x

x

x

   





2 4 240 Production capacities

1 2 100

4 2 240

, 0 Non-negativity constraints

A B

A B

A B

A B

x x

x x

x x

x x

   

   

   


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Graphical solution xA 

100 50 75 25 

25 

50 

75 

100 
Restriction 1 

xB 

Restriction 3 
Z=500 Restriction 2 

Optimal solution 
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Optimal solution 

 Obviously, the optimal solution is located at the point of 

intersection of restriction 2 and 3 

 Thus, we have to solve 

 
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Results in 

a total (optimal) profit of 

 

26.6.6$ + 46.6.5$ = 233.3$ + 159.9$ = 393.3$ 
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Consequence 

OK ! 
I admit that I was wrong! 

However, what can we do if 
there are more than 2 

variables?? 

Then, we will 
formulate a general 
version of that LP 

and use the 
SIMPLEX 

ALGORITHM 

Business Computing and Operations Research 30 

Production Program Planning 

 

 

 

,

:  Marginal profit per item of product type 1,...,  MU/PU

: Production coefficient of product type 1,...,  on machine 

1,...,  CU/PU

: Maximum capacity of machine 1,...,  CU

: Maximum number

j

i j

i

j

p j n

c j n

i m

C i m

X









 

 

 

1

,

 of items of product type 1,...,  salable in 

the planning horizon PU

: Number of items of product type 1,...,  to be produced 

in the planning horizon PU

Maximize 

subject to 1,..., :

j

n

j j

j

i j

j n

x j n

p x

i m c









 



 

1

1,..., : 0

n

j i

j

j j

x C

j n x X



 

   


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Using Excel 

 The program Excel comprises a standard solver for Linear 

Programs 

 It is neither really high-performance nor convenient to use 

but available and sufficient for our exemplary problem 

constellations 

 Activate the Solver by Extras⇢Add-Ins (2003 Version), 

File⇢Options⇢Add-Ins (2010 Version) 

 Subsequently, you may use the Solver by Extras⇢Solver 

(2003 Version), Data⇢Solver (2010 Version)  

 Let us try it out… 
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Application 2 – The Hitchcock Problem 

 A service agent has three sales offices (CX, CY, and CZ) in 

Wuppertal 

 These offices are supplied by three local printing plants 

(PA, PB, and PC)  

 In order to satisfy the numerous soccer fans in Wuppertal, 

the service agent has an exclusive license of sale for the 

famous football/soccer club Borussia Mönchengladbach 

 While the tickets are printed in the printing plants at equal 

costs, the transport to the offices causes individual costs 

 Additional information 

 Each printing plant has an individual inventory for the next day.  

Note that this inventory is extremely perishable 

 Each sales office has an individual maximum amount of sales 
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The Hitchcock Problem – Illustration 

Printing  

Plant A 

4 pallets 

Printing  

Plant B 

7 pallets 

Printing  

Plant C 

2 pallets 

Sales Office X 

 
Demand: 2 pallets 

Sales Office Z 

 
Demand: 6 pallets 

Sales Office Y 

 
Demand: 5 pallets 
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The Matrix  

Producers 

A B C 

Supply 4 7 2 

Consumers 

X Y Z 

Demand 2 5 6 
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Transportation Distances 

Distance X Y Z 

A 2 3 4 

B 4 6 8 

C 5 2 7 
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What is the objective? 

 Obviously, we have to decide about the quantities to be 
transported along each relation between a printing plant 
and a ticket office 

 Specifically, we determine the precise number of product 
units that are transported along each relation 

 Since quality is assumed to be negligible, a transportation 
cost minimization is appropriate to compare generated 
assignments 

 

 Thus, a solution is solely rated by the incurred 
transportation costs 



13 

Business Computing and Operations Research 37 

Let’s solve the problem 

 When you try something out, you usually provide 
a heuristic solution 

 Heuristic solutions do not always guarantee a 
certain quality  

 Usually, their performance is empirically 
validated or roughly anticipated for worst case 
scenarios 

 In the following, we want to obtain some insights 
into the problem structure by applying some 
well-known simple heuristics 
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Minimum Method 

 Basic idea:  

 “Find the least possible combination of costs and 

use it exhaustively. Afterwards, proceed with the 

second lowest one,…” 

 

 Let us do so… 
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Minimum Method 

Distance X D:2 Y D:5 Z D:6 

A S:4 (2) 0 (3) 0 (4) 0 

B S:7 (4) 0 (6) 0 (8) 0 

C S:2 (5) 0 (2) 0 (7) 0 
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Minimum Method 

Distance X D:0 Y D:5 Z D:6 

A S:2 (2) 2 (3) 0 (4) 0 

B S:7 (4) 0 (6) 0 (8) 0 

C S:2 (5) 0 (2) 0 (7) 0 
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Minimum Method 

Distance X D:0 Y D:3 Z D:6 

A S:2 (2) 2 (3) 0 (4) 0 

B S:7 (4) 0 (6) 0 (8) 0 

C S:0 (5) 0 (2) 2 (7) 0 
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Minimum Method 

Distance X D:0 Y D:1 Z D:6 

A S:0 (2) 2 (3) 2 (4) 0 

B S:7 (4) 0 (6) 0 (8) 0 

C S:0 (5) 0 (2) 2 (7) 0 
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Minimum Method 

Distance X D:0 Y D:1 Z D:6 

A S:0 (2) 2 (3) 2 (4) 0 

B S:7 (4) 0 (6) 0 (8) 0 

C S:0 (5) 0 (2) 2 (7) 0 
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Minimum Method 

Distance X D:0 Y D:1 Z D:6 

A S:0 (2) 2 (3) 2 (4) 0 

B S:7 (4) 0 (6) 0 (8) 0 

C S:0 (5) 0 (2) 2 (7) 0 
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Minimum Method 

Distance X D:0 Y D:1 Z D:6 

A S:0 (2) 2 (3) 2 (4) 0 

B S:7 (4) 0 (6) 0 (8) 0 

C S:0 (5) 0 (2) 2 (7) 0 



16 

Business Computing and Operations Research 46 

Minimum Method 

Distance X D:0 Y D:0 Z D:6 

A S:0 (2) 2 (3) 2 (4) 0 

B S:6 (4) 0 (6) 1 (8) 0 

C S:0 (5) 0 (2) 2 (7) 0 
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Minimum Method 

Distance X D:0 Y D:0 Z D:6 

A S:0 (2) 2 (3) 2 (4) 0 

B S:6 (4) 0 (6) 1 (8) 0 

C S:0 (5) 0 (2) 2 (7) 0 
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Minimum Method 

Distance X D:0 Y D:0 Z D:0 

A S:0 (2) 2 (3) 2 (4) 0 

B S:0 (4) 0 (6) 1 (8) 6 

C S:0 (5) 0 (2) 2 (7) 0 

Total costs = 68 
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Vogel’s Approximation Method 

 Basic Idea:  

 “Avoid larger deteriorations by identifying critical 

relations” 

 

 Specifically, calculate the differences between 

the best and the second best relation for all 

producers and all consumers 

 Select the best relation for the one with the 

largest difference  

 Proceed until a complete solution is found 
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Vogel’s Approximation Method 

Distance 
X D:2 

Diff: 2 

Y D:5 

Diff: 1 

Z D:6 

Diff: 3 

A S:4 

Diff: 1 
(2) 0 (3) 0 (4) 0 

B S:7 

Diff: 2 
(4) 0 (6) 0 (8) 0 

C S:2 

Diff: 3 
(5) 0 (2) 0 (7) 0 
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Vogel’s Approximation Method 

Distance 
X D:2 

Diff: 1 

Y D:5 

Diff: 4 
Z D:2 

Diff: 1 

A S:0 

Diff: 0 
(2) 0 (3) 0 (4) 4 

B S:7 

Diff: 2 
(4) 0 (6) 0 (8) 0 

C S:2 

Diff: 3 
(5) 0 (2) 0 (7) 0 
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Vogel’s Approximation Method 

Distance 
X D:2 

Diff: 0 

Y D:3 

Diff: 0 

Z D:2 

Diff: 0 

A S:0 

Diff: 0 
(2) 0 (3) 0 (4) 4 

B S:7 

Diff: 2 
(4) 0 (6) 0 (8) 0 

C S:0 

Diff: 0 
(5) 0 (2) 2 (7) 0 
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Vogel’s Approximation Method 

Distance 
X D:0 

Diff: 0 

Y D:3 

Diff: 0 

Z D:2 

Diff: 0 

A S:0 

Diff: 0 
(2) 0 (3) 0 (4) 4 

B S:5 

Diff: 2 
(4) 2 (6) 0 (8) 0 

C S:0 

Diff: 0 
(5) 0 (2) 2 (7) 0 
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Vogel’s Approximation Method 

Distance 
X D:0 

Diff: 0 

Y D:0 

Diff: 0 

Z D:2 

Diff: 0 

A S:0 

Diff: 0 
(2) 0 (3) 0 (4) 4 

B S:2 

Diff: 2 
(4) 2 (6) 3 (8) 0 

C S:0 

Diff: 0 
(5) 0 (2) 2 (7) 0 
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Vogel’s Approximation Method 

Distance 
X D:0 

Diff: 0 

Y D:0 

Diff: 0 

Z D:0 

Diff: 0 

A S:0 

Diff: 0 
(2) 0 (3) 0 (4) 4 

B S:0 

Diff: 2 
(4) 2 (6) 3 (8) 2 

C S:0 

Diff: 0 
(5) 0 (2) 2 (7) 0 

Total costs = 62 
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Local Improvement Operations 

 We may improve an existing solution by applying 
specific transformation moves, i.e., we slightly modify 
a current solution in a way that 

 feasibility is maintained, and  

 solution quality is improved 

 A simple example is the pairwise shift  

 Specifically, we select two consumer-producer 
relations (P1&C1, P2&C2) and ask for the change in 
costs by… 

 transporting one unit from P1 to C2 rather than from P1 
to C1 

 For P2, we simultaneously consider the same 

 Note that feasibility is ensured by the simultaneous 
consideration of both constellations 

Business Computing and Operations Research 57 

Pairwise shift 

Distance X D:0 Y D:0 Z D:0 

A S:0 (2) 2 (3) 2 (4) 0 

B S:0 (4) 0 (6) 1 (8) 6 

C S:0 (5) 0 (2) 2 (7) 0 

Total Costs = 68 
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Pairwise shift 

Distance X D:0 Y D:0 Z D:0 

A S:0 (2) 0 (3) 2 (4) 2 

B S:0 (4) 2 (6) 1 (8) 4 

C S:0 (5) 0 (2) 2 (7) 0 

Total Costs are 68-4=64 
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Pairwise shift 

Distance X D:0 Y D:0 Z D:0 

A S:0 (2) 0 (3) 2 (4) 2 

B S:0 (4) 2 (6) 1 (8) 4 

C S:0 (5) 0 (2) 2 (7) 0 

Total Costs = 64 
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Pairwise shift 

Distance X D:0 Y D:0 Z D:0 

A S:0 (2) 0 (3) 0 (4) 4 

B S:0 (4) 2 (6) 3 (8) 2 

C S:0 (5) 0 (2) 2 (7) 0 

Total Costs are 64-2=62 
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The (balanced) Transportation Problem 

 

 

 

,

,

: Delivery costs for each product unit that is transported from 

 supplier 1,...,  to customer 1,...,  CU/PU

:  Total supply of  1,...,   PU

:  Total demand of  1,...,  PU

: Quantity that su

i j

i

j

i j

c

i m j n

a i m

b j n

x

 





 

 

 

   

, ,

1 1

,

1

,

1

,

pplier 1,...,  delivers to the customer 1,...,  PU

Minimize 

subject to 1,..., :

1,..., :

1,..., : 1,..., : 0

m n

i j i j

i j

n

i j i

j

m

i j j

i

i j

i m j n

c x

i m x a

j n x b

i m j n x

 





 



  

  

    






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The balanced Transportation Problem 

Printing  

Plant A 

a[A]: 4 pallets 

Printing  

Plant B 

a[B]: 7 pallets 

Printing  

Plant C 

a[C]: 2 pallets 

Sales Office X 

 

b[x]: 2 pallets 

Sales Office Z 

 

b[z]: 6 pallets 

Sales Office Y 

 

b[y]: 5 pallets 

 

   

,

2 3 4

4 6 8

5 2 7

4 2

7 5

2 6

i j

i j

c

a b

 
 


 
 
 

   
   

 
   
   
   
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The (balanced) Transportation Problem 

     ,

2 3 4 4 2

4 6 8 ; 7 ; 5

5 2 7 2 6

i j i jc a b

     
     

       
     
     

1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3Minimize  2 3 4 4 6 8 5 2 7x x x x x x x x x                

1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3

1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3

1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3

1,1

1 1 1 0 0 0 0 0 0 4

0 0 0 1 1 1 0 0 0 7

0 0 0 0 0 0 1 1 1 2

1 0

x x x x x x x x x

x x x x x x x x x

x x x x x x x x x

x

                 

                 

                 

  1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3

1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3

1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3

1,1 1,2 1,3

0 1 0 0 1 0 0 2

0 1 0 0 1 0 0 1 0 5

0 0 1 0 0 1 0 0 1 6

, , ,

x x x x x x x x

x x x x x x x x x

x x x x x x x x x

x x x x

               

                 

                 

2,1 2,2 2,3 3,1 3,2 3,3, , , , , 0x x x x x 

subject to 

With the previously defined parameters our problem is as 

follows:  
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Alternative depiction 

     ,

2 3 4 4 2

4 6 8 ; 7 ; 5

5 2 7 2 6

i j i jc a b

     
     

       
     
     

1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3

1,1 1,2 1,3

2,1 2,2 2,3

3,1 3,2 3,3

1,1 2,1 3,1

1,2 2,2 3,2

1,3

Minimize  2 3 4 4 6 8 5 2 7

subject to

1 1 1 4

1 1 1 7

1 1 1 2

1 1 1 2

1 1 1 5

1 1

x x x x x x x x x

x x x

x x x

x x x

x x x

x x x

x

                

     

     

     

     

     

  2,3 3,3

1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3

1 6

, , , , , , , , 0

x x

x x x x x x x x x

   


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The (balanced) Transportation Problem 

 

 

1

1,1 1, 2,1 2, ,1 ,

 Minimize 

subject to

1

...1

...... ...

1

,..., , ,..., ,..., ,..., 0

T

T

n

T

n

T

mn

n n n n n

T

n n m m n

P c x

a

x

a

bE E E E E

x x x x x x x



   
   
   
    
   
   

  
  

 

We identify the characteristic structure of the problem. 
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Application 3 – The Diet Problem 

 Susan wonders how much money she has to spend on food in order 

to get the energy that brings her through the day 

 Now, she thinks it is time to analyze… 

 Altogether, she chooses six foods that seem to be cheap sources of 

the nutrients her body needs 

Food Size per 

serving 

Energy 

(kcal) 

Protein (g) Calcium 

(mg) 

Price  

($ Cents) 

Oatmeal 28 g 110 4 2 3 

Chicken 100 g 205 32 12 24 

Eggs 2 large 160 13 54 13 

Whole milk 237 cc 160 8 285 9 

Cherry pie 170 g 420 4 22 20 

Pork with beans 260 g 260 14 80 19 
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Additional information 

 Susan needs per day 
 2,000 kcal 

 55 g protein 

 800 mg calcium 

 Iron and vitamins are satisfied by pills 

 Consequently, 10 servings of pork and beans are 
sufficient per day… 
 Imagine, 10 times pork and beans per day… 

 This is disgusting 

 Ok…We need to impose servings-per-day limits 
 Oatmeal: at most 4 servings per day 

 Chicken: at most 3 servings per day 

 Eggs: at most 2 servings per day 

 Milk: at most 8 servings per day 

 Cherry pie: at most 2 servings per day 

 Pork with beans: at most 2 servings per day 
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The Diet Problem 

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

1

, , , , ,  servings per day of the respective food

Minimize 3 24 13 9 20 19

subject to

0 4 0 3 0 2 0 8 0 2 0 2

110 205 160 160 420 260 2000

4

x x x x x x

x x x x x x

x x x x x x

x x x x x x

x

          

                

           

 2 3 4 5 6

1 2 3 4 5 6

32 13 8 4 14 55

2 12 54 285 22 80 800

x x x x x

x x x x x x

          

           
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…and in general 

, : Amount of th nutrient in a serving of the th food, 

1 1 .

: Daily requirement for the th nutrient, 1 .

: Cost per serving for the th food, 1 .

: Maximum number on

i j

i

j

j

a i j

i ,...,m, j ,...,n

r i i ,...,m

c j j ,...,n

X

 





1

 servings of the th food, 1 .

Decision variables:

: Daily consumption of the th food, 1 . A diet 

is denoted by a choice of a vector 0 .

Objective function: Minimize 

sub

j

n

n

j j

j

j j ,...,n

x j j ,...,n

x , x IR

c x






 



 

 

,

1

ject to 1,..., :

1,..., : 0

n

i j j i

j

j j

i m a x r

j n x X



   

   


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Consequence 

 All applications are completely different, but their 

mathematical definitions are somehow strongly 

related 

 All LPs have in common that… 

 …the variables are continuous 

 …the objective function is linear  

 …the restrictions are linear 

 …the objective function is either a maximization or 

minimization 

 …restrictions require the fulfillment of a minimum or 

maximum bound 
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LP in general 

 In what follows, we introduce general forms in order to 

define what a Linear Program (LP) is  

 In Literature, different forms of LPs are distinguished.  

Specifically, it can be found for instance 

 LP in general form 

 LP in canonical form 

 LP in standard form 

 The Reader should be warned that this classification is far 

away from being unambiguous 

 Moreover, what we will denote as a Linear Program in 

standard form is frequently introduced as the LP in 

canonical form 
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General Form 

 
1

Let  with   , 1 , and .

Furthermore, let  be the set of row indices corresponding to equality 

constraints, and let  be the set of row indices correspo

T

m n n m

i

T

m

a

A IR A ... a IR i ,...,m b IR

a

M

M



 
 

      
  

nding to inequality 

constraints. Additionally, let  be the set of column indices corresponding 

to constrained variables, and let  be the set of column indices corresponding 

to unrestricted variables

N

N

 

 

 

. Then, the feasible solution space  is

: 0 : : .

Furthermore, for , we pursue the maximization of  .

Note that  and  form a partition of  1 . Mo

n T T

j i i i i

n T

P

P x IR | j N x i M a x b i M a x b

c IR z x c x

M M ,...,m

             

  

 

reover,  and  are a

partition of  1 .

N N

,...,n
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Canonical Form 

 

Let  and :

Then, the set of feasible solutions is defined as follows:

0 and 

Solutions that belong to  are denoted as feasible. 

In order to evaluate a solution  that is found

m n m

n

A IR b IR

P x IR | x A x b

P

x

 

    

 

, we introduce an additional 

vector. Hence, let : .

In the following, we pursue the maximization of z 

under the constraints 0 and .

n Tc IR z x c x

x A x b

  

  
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Standard Form 

 

Let  and :

Then, the set of feasible solutions is defined as follows:

0 and 

Solutions that belong to  are denoted as feasible. 

In order to evaluate solution that is found, we

m n m

n

A IR b IR

P x IR | x A x b

P

 

    

 

 introduce an additional 

vector.  Hence, let :   .

In the following, we pursue the minimization or maximization 

of  under the constraints 0 and .

n Tc IR z x c x

z x A x b

  

  
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Problem transformations 

 In order to prove that it is sufficient to consider 

LPs in standard form only, we have to think 

about problem transformations 

 Obviously, in particular, the diet problem does not 

correspond to our class 

 In addition, what about equalities? 

 And what about unrestricted variables, i.e., 

variables that may become negative? 

 This is briefly considered in the following 
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Transformation – Equality I 

     i

n

j

ji,j

n

j

iji,j

n

j

iji,j

bxa

bxa

bxa


































11

esinequaliti  by two    Replace

1

1

1
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Transformation – Equality II 

1

1

Replace    by introducing a 

new (positive) variable that is called a :

0

We call all variables  that belong to the original

problem 

n

i, j j i

j

n

i, j j i i i

j

a x b

a x y b y

x





 

    





slack variable

structure variables to distinguish them from

the slack variables.
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Transformation – Objective function 

 

1

1

Just replace the original objective function

Minimize 

by the modified equivalent objective function

Maximize 1

n

j j

j

n

j j

j

c x

c x







  




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Transformation – Free variables 

Create two additional variables 0, 0 for each unrestricted variable 

,  and substitute .

This leads to a doubling of the corresponding th column in  and in  while the added 

colu

j j

j j j j

T

x x

x IR x x x

j c A
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... ...
...

,..., , ,...

j

j n j j j n j n j

j

n n

n

j j

x
x x

x
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 
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 
 
 
 
 
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Conclusion 

 Since all forms of LPs are equivalent, we switch 

between them arbitrarily  

 I.e., we always use the form that seems to be 

most useful  
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1.2 The Simplex Method 

 Coming back to the Production Program Planning, we 

consider now the following problem constellation 

 This time, a producer has to decide about 3 product types 

(1,2, and 3) to be produced on 3 stages 

 Product 1 

 Marginal Profit: 5 

 Production Coefficients: 2, 4, and 3 

 Product 2 

 Marginal Profit: 4 

 Production Coefficients: 3, 1, and 4 

 Product 3 

 Marginal Profit: 3 

 Production Coefficients: 1, 2, and 2 
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Altogether, we get 

0,,        

8243        

11214        

5132    s.t.

345Max 

321

321

321

321

321











xxx

xxx

xxx

xxx

zxxx
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Getting equalities by slack variables 

Max 

s.t.    

        

        

        , ,

z x x x

x x x

x x x

x x x

x x x

     

     

     

     



1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

5 4 3

2 3 1 5

4 1 2 11

3 4 2 8

0

Max 

s.t.    

        

        

        , , , , ,

z x x x

x x x x

x x x x

x x x x

x x x x x x

     

      

      

      



1 2 3

1 2 3 4

1 2 3 5

1 2 3 6

1 2 3 4 5 6

5 4 3

2 3 1 5

4 1 2 11

3 4 2 8

0

 The variables in the original LP are denoted as structure 
variables 

 In contrast to this, the variables that are additionally 
introduced in the second LP (with equalities) are denoted 
as slack variables 
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Getting a first solution 

1 2 3

4 1 2 3

5 1 2 3

6 1 2 3

1 2 3 4 5 6

Max 5 4 3

s.t.    5 2 3 1

        11 4 1 2

        8 3 4 2

        , , , , , 0

This is a .

We call the  variables that appear on the right

z x x x

x x x x

x x x x

x x x x

x x x x x x

n m

     

      

      

      





dictionary

4 5 6

-hand side

 and set their value to zero. 

The  variables on the left-hand side (i.e., )

form a : 5 11 8 0.

We call the objective function no

m

x x x z      

non - basic variables

the basic variables

basic solution

w .reduced costs
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Quality of the solution found… 

 …is obviously not really convincing (z=0) 

 How can we improve it? 
 The value is not surprising 

 Only slack variables are unequal to zero 

 Slack variables which are unequal to zero do not provide any benefit 
according to the objective function value 

 Let us consider the set of variables 

 For this purpose, we consider the objective function coefficients 

belonging to the current solution 

 Owing to positive coefficients, an increase of x1, x2, or x3 will raise z. 

Since x1 has the largest positive coefficient, we first try it out. We call 

this pivoting strategy the largest coefficient rule 

 How much can we increase x1? 

zxxx  321 345Max 
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How much can we increase x1? 

 

1 2 3

4 1 2 3 1 1

5 1 2 3 1 1

6 1 2 3 1 1

1

Max 5 4 3

5s.t.    5 2 3 1 0 5 2
2

11        11 4 1 2 0 11 4 0
4

8        8 3 4 2 0 8 3 0
3

5 8 511min , ,
2 4 3 2

x x x z

x x x x x x

x x x x x x

x x x x x x

x

     

            

             

             

  
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And now? 

! 

BUT, how can we 
keep the structure…? 
We want to introduce  

x1 on the left-hand 
side. 

 

This is only 
possible  

for the first 
restriction. 
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Transforming the dictionary 

 
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 
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xxxxxx

xxxxxx

xxxxxx

xxxx

zxxxxx
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Consider the solution 

 The objective function reveals us that we can 

improve the solution further. 

 This is possible by increasing x3. 

 Again, we ask for bounds limiting the increase of 

this variable. 

 For this purpose, we have to consider the 

dictionary. 

zxxx  432 2
5

2
1

2
7

2
52Max 
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How much can we increase x3? 

  11,5min        

10
2

3
2

1
2

1
2

1        

0251        

50
2

1
2

1
2

3
2

5    s.t.

2
5

2
1

2
7

2
52Max 

3

34326

425

34321

432











x

xxxxx

xxx

xxxxx

zxxx
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Transforming the dictionary 

 

 

131120,,,,,        

231        

251        

222    s.t.

331Max 

23131112        

251        

2
1231

2
1

2
3

2
5    s.t.

2
5231

2
1

2
7

2
52Max 

531654321

6423

425

6421

642

64234326

425

464221

46422



















zxxxxxxxxx

xxxx

xxx

xxxx

zxxx

xxxxxxxx

xxx

xxxxxx

zxxxxx
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And now? 

! 

Since there remains 
no variable promising 

to increase z, we 
have found an 

optimal solution. 
 

Consider the  
objective function 

           
 

zxxx  642331
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Calculation with dictionaries 

 Left-hand side 

 Variables that are allowed to be unequal to zero 

 Here, we have altogether m variables  

 We call these variables basic variables 

 Right-hand side 

 Variables that are equal to zero 

 Here, we have altogether at least n-m variables 

 We call these variables non-basic variables 

 Objective function 

 Positive coefficients increase the objective function value and vice versa. 

 Later on, coefficients that belong to structure variables are denoted as 
reduced costs 

 We execute a swap of a basic and a non-basic variable in each step.  

 By doing so, we try to improve the solution quality. 

 Moreover, we jump along the edge of the solution space. More 
specifically, from corner point to corner point 
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The solution space and the Simplex Algorithm 

A corner point 

Feasible solution space 

Iteration 1 

Iteration 0 

Iteration 2 

xA 

xB 

Optimal solution 
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The Primal Simplex Algorithm with Dictionaries 

1. Transform the problem into a canonical form and generate equations. 

2. Initialization with a feasible basic solution. 

3. Are there strictly positive reduced cost coefficients in the current solution? 

 “Yes”: Iteration: 

  - Largest coefficient rule: Choose a variable xB that has the largest  

  positive reduced cost coefficient. 

  - Determine a positive upper bound on xB. 

  - If there exists an upper bound on feasible values for xB, set xB to the  

  minimal upper bound that is given by equation i ; otherwise terminate 

  since the solution space is unbounded and no optimal solution exists. 

  - Transform equation i such that xB appears on the left-hand side. 

  - Substitute xB in all other equations as well as in the objective function 

  with the obtained equation i. 

  - Rearrange the equation system. 

  - Go to step 3. 

 “No”:  Termination. An optimal basic solution is found. 
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Pitfalls and how to avoid them 

 The presented calculation went pretty smoothly 

 The danger that may occur was not pointed out 

 Three kinds of pitfalls have to be considered 

 Initialization 
 Obviously, we need an initial solution 

 Are there constellations thinkable where this is not possible? 

 Iteration 
 Is there a danger of getting stuck throughout the calculation? 

 Is it always possible to swap from one basic solution to the 
next one? 

 Termination 
 Is the calculation always finite? 

 Are cyclical computations possible? 
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Initialization 

 For what follows, we need at first a feasible 

solution to the LP. Fortunately, this is quite simple 

to provide 

 If b is positive, we may just make use of the 

introduction of slack variables; i.e., all structure 

variables are set to zero and slack variables 

equal the right-hand side b 

 Otherwise, we apply the simple procedure that is 

depicted on the following slides 
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Pitfall: Initialization with a feasible solution 

 If b≥0, take the trivial solution: all structure variables are set 

to zero and all slack variables equal the right-hand side b 

 If there is an i with bi<0, apply the Two-Phase Method 

 

  

 

0

0

0

1 0

1 0

1. Auxiliary LP: Maximize 

subject to 1

, 0

2. Initial solution to the auxiliary LP: ,..., ,

with ... 0 min | 0 1,...,

Since 1,...,  exists wit

 

   





        



m

T
ini ini ini ini

n

ini ini ini

n i i

z x

A x x b

x x

x x x x

x x x b b i m

i m

*

h 0,   is feasible

3. Solve the auxiliary LP and get its optimal solution 

4. If >0, terminate (this procedure) because the original LP is not solvable

5. Initial feasible solution to the origina

 ini

ib x

x

z

 * * *

1l LP: ,...,
T

nx x x
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Two-Phase Method – Conclusions I 

1.2.1 Observation: Since the objective function value is lower  

bounded by zero, the auxiliary LP is solvable 

 

1.2.2 Lemma: If and only if the optimal solution to the auxiliary  

problem has the objective function value zero, the  

original LP is solvable  

 

Proof: “”: Since z=0 holds x0=0 follows. The optimal  

auxiliary LP solution yields a feasible solution to the original LP 

“”: If the original problem is solvable, we have x0=0 and,  

therefore, z=0 

 



34 

Business Computing and Operations Research 100 

Two-Phase Method – Conclusions II 

Optimal auxiliary LP solution:  

 x0>0 is basic:  

 The original LP is not solvable because at least one 
constraint is violated 

 x0 is non-basic or x0=0 is basic:  

 Erase x0 and switch to the original LP with the feasible 
solution just generated  

 

 Special case here: 

 x0=0 is basic: Consider the next-to-last step where the 
objective function becomes zero. Here, x0 was decreased 
to zero. Consequently, in this step x0 was a candidate for 
being erased. Hence, we can adjust this step accordingly  
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Initialization – Example I 

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

0

1 2 3 0 4

1 2 3 0 5

1 2 3 0 6

Max 

s.t.    2 2 4

        2 3 5

        2 1

        , , 0

Max 

s.t.    2 2 4

        2 3 5 min

        2 1

   

x x x z

x x x

x x x

x x x

x x x

x z

x x x x x

x x x x x

x x x x x

  

    

     

     



 

      

        

       

0 1 2 3 4 5 6     , , , , , , 0x x x x x x x 
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Initialization – Example II 

 

 

 

0,,,,,,        

4343        

325        

92    s.t.

325Max 

0,,,,,,        

13252        

325        

432522    s.t.

325Max 

6543210

65321

53210

5432

5321

6543210

65321321

53210

45321321

5321





















xxxxxxx

xxxxx

xxxxx

xxxx

zxxxx

xxxxxxx

xxxxxxxx

xxxxx

xxxxxxxx

zxxxx
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Initialization – Example III 

0,,,,,,        

10443434        

3
5035325        

2
902929    s.t.

325Max 

 Introduce0,,,,,,        

3434        

325        

29    s.t.

325Max 

6543210

22653216

22053210

2245324

5321

26543210

53216

53210

5324

5321





















xxxxxxx

xxxxxxxx

xxxxxxxx

xxxxxxx

zxxxx

xxxxxxxx

xxxxx

xxxxx

xxxx

zxxxx
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Initialization – Example IV 

 
 

 

36543210

65312

65310

65314

6531

6543210

65312

53653110

5365314

5365311

 Introduce0,,,,,,        

4
1

4
1

4
3

4
31        

4
3

4
1

4
5

4
12        

2
1

2
1

2
5

2
37    s.t.

4
3

4
1

4
5

4
12Max 

0,,,,,,        

4
1

4
1

4
3

4
31        

4
1

4
1

4
3

4
31325        

0
4

1
4

1
4

3
4

3129    s.t.

4
1

4
1

4
3

4
31325Max 

xxxxxxxx

xxxxx

xxxxx

xxxxx

zxxxx

xxxxxxx

xxxxx

xxxxxxxx

xxxxxxx

zxxxxxxx




















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Initialization – Example V 

solution feasible a is 
5

8,
5

11,0   0,,,,,,        

5
1

5
2

5
3

5
3

5
11        

5
3

5
1

5
4

5
1

5
8        

23    s.t.

0Max 

0,,,,,,        

3
40

4
1

4
1

4
3

4
31        

5
80

4
3

4
1

4
5

4
12        

5
147

2
50

2
1

2
1

2
5

2
37    s.t.

4
3

4
1

4
5

4
12Max 

3216543210

65012

65013

6014

0

6543210

365312

365310

3365314

6531





















xxxxxxxxxx

xxxxx

xxxxx

xxxx

zx

xxxxxxx

xxxxxx

xxxxxx

xxxxxxx

zxxxx
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Initialization – Example VI 

   1 2 3 1 1 5 6 1 5 6

1 5

Consequently, we resume with the Simplex applied to the following dictionary 

in order to solve the original problem

3 8 311 2 1 1 1Max Max 
5 5 5 5 5 5 5 5

3 1 1 2Max 
5 5 5 5

x x x x x x x x x x

x x

                

       6

4 1 6

3 1 5 6

2 1 5 6

1 2 3 4 5 6

s.t.    3

8 31 1        
5 5 5 5

311 2 1        
5 5 5 5

        , , , , , 0

x z

x x x

x x x x

x x x x

x x x x x x

 

  

      

      


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Cases to be distinguished 

 Altogether, we have to deal with the following 
cases after solving the auxiliary problem 
1. x0 is non-basic, i.e., we have the simple case where 

we can directly switch to the original problem with the 
feasible solution justly generated. x0 is erased  

2. x0>0 is basic, i.e., the original problem is not solvable 
at all because at least one constraint is violated 

3. x0=0 is basic, i.e., this variable can be erased from 
the basis without affecting the solution quality. In 
order to make this obvious, consider the next-to-last 
step where the objective function becomes zero.  
Here, x0 was decreased to zero. Consequently, in this 
step x0 was a candidate for being erased. Hence, we 
can adjust this step accordingly  

Business Computing and Operations Research 108 

Pitfall: Iteration and Termination 

 In each iteration, we erase one variable from the basis 
and replace it by another variable with a positive 
contribution to the objective function value 

 However, this choice is ambiguous  
 There may be more than one non-basic candidate for entering the 

basis 

 Thus, we may choose the one with the largest improvement factor 

 If there is no candidate at all, the current solution is optimal (this 
point will be addressed thoroughly in Section 1.3) 

 In addition, the choice of the leaving variable is 
ambiguous as well 
 If there is no candidate, the solution is unbounded, i.e., we can 

improve the solution arbitrarily 

 Otherwise, if there are several equal bounds, we have alternative 
choices. But, here we obtain a degenerate solution 
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Primal Degeneration – Example I 

1 2 3

4 3

5 1 2 3

6 1 2 3 1 2 3 5 6

3

1 2 3

Consider the following dictionary

Max 2 8

s.t.    1 2

        3 2 4 6

        2 3 4 ,  with , , , , 0

We introduce  into the basis

Max 2 8

s.t.    

x x x z

x x

x x x x

x x x x x x x x x

x

x x x z

x

    

  

      

      

    

4 3 3

5 1 2 3 3

6 1 2 3 3 1 2 3 5 6

11 2 0
2

1        3 2 4 6 0
2

1        2 3 4 0 ,  with , , , , 0
2

x x

x x x x x

x x x x x x x x x x

     

         

         
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Primal Degeneration – Example II 

0,,,, with ,230        

20        

2
1

2
1    s.t.

424Max 

653213216

215

43

421









xxxxxxxxx

xxx

xx

zxxx

 We observe that we have two basic variables (x5, x6) with 
value zero 

 Although this is not harmful in its own right, it may have 
annoying side effects 

 Specifically, primal degeneracy may cause cyclical 
calculations, i.e., in this case it prevents termination 
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Termination 

 Termination may be prevented by cyclical 

calculations 

 Note that cycling is only a rare phenomenon.  

Specifically, such kind of instances are hard to 

generate 

 But, how does cycling become possible? 

 Primal degeneration may cause non-improving moves 

 Specifically, a basic variable with value zero leaves the 

basis and is replaced by a non-basic one 

 Note that a calculation that only comprises improving 

moves cannot cycle 
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Smallest subscript rule (rule of Bland) 

 The rule proposed by Bland (Bland (1976)) is a relatively 
late development in the history of linear programming. 
 It is a very simple rule that allows for proving the termination of the 

simplex calculation  

 It bases on the so-called smallest subscript rule 

 Pivoting strategy (smallest subscript rule): Choose the 
non-basic variable with the smallest index that has 
positive reduced costs to become a basic variable 

 Choose the basic variable with the smallest index to 
become a non-basic variable from all equations that 
provides the minimal upper bound on the new basic 
variable 
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Termination of the Simplex algorithm 

1.2.3 Theorem: 

 The Simplex Method terminates as long as the entering 
and leaving variables are selected by the smallest 
subscript rule 

 

Proof by contradiction:  

 Assume that the opposite holds (i.e., there is a cycle with 
the smallest subscript rule applied) and show that this 
leads to a logical contradiction 
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Proof of Theorem 1.2.3 – Basics  

 Let us assume that we have a cycle of 

dictionaries D0-D1-…-Dk, with D0=Dk 

 A variable is denoted as volatile if this variable is 

basic as well as non-basic throughout these 

dictionaries 

 Let xt be the volatile variable with the largest subscript 

 D is the dictionary where xt is basic and becomes non-

basic in the next dictionary 

 xs is non-basic in D and becomes basic in the next 

dictionary 

 Further along in the sequence, there is a dictionary D* 

where xt becomes basic again 
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Proof of Theorem 1.2.3 – Illustration 

D 

xt is basic 

D’ 

xt leaves the basis 

xt is non-basic 

xs enters the basis 

xs is non-basic xs is basic 

D* 

xt enters the basis 

xt is about to become basic again 

…… 
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Proof of Theorem 1.2.3 – Dictionaries D, D* 

 ,

Consider the calculation from  to . Since we have a cycle, all 

these dictionaries are degenerate and the objective function value 

is kept unchanged. 

i i i j j

j B

j j

j B

*

x b a x i B

z v c x

D D





    

            

  





*Hence, we obtain for the dictionary  the 

objective function ,  with  as the basis of .j j

j B

D

z v c x B D


  



  
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Dictionaries D and D* 

...

, with 0  

This dictionary  is generated by algebraic manipulations out of 

. Therefore, each feasible solution of  is feasible for  and 

thus for each 

j j j

j

z v c x c , j B

D

D D D

  





                    

     

feasible solution of  it holds:

j j

j

D

z v c x  
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We know that  enters basis  in dictionary  (next to ).  By introducing 

 as the new value for , we generate the following solution  for each 

chosen value of ,  which is derived from  by alg

s

s

x B D' D

y x x

y D

 

 

,

ebraic operations:

0,

We substitute all new basic variables of this solution in the objective function

of the dictionaries  and *  and obtain:

i i i s

s

i

s j j

j s

j B j s

x b a y i B

x y

x i B i s

D D

z x v c y c x


   

    



    

     

: 0 : 0

: 0

j j

j

s j j s

j B

x j B c

s j j s j j

j s j B

j B j s x

v c y c x v c y

v c y c x v c y c x



   

   

 

    

       

         



 

Proof of Theorem 1.2.3 – A new solution 
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 

 

,

,

,

Is a consta

Therefore, we obtain:

,  with 0,s s j j j

j B

s s j j

j B

s s j j j s

j B

s s j j j j s

j B j B

s s j j s j j

j B j B

v c y v c y c x c j B

c y c y c x

c y c y c b a y

c c y c b c a y

c c c a y c b

   



 



 



  

 

  

 

         

     

       

       

 
       

 







 

 

nt independent of y

Proof of Theorem 1.2.3 – Transforming 
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,

Is independent of constant for all chosen values of 

,

Consequently, both sides have the value zero.  

Thus, 0

Since  enters the basis i

  

 



 



 
      

 



   

 



s s j j s j j

j B j B

y y

s s j j s

j B

s

c c c a y c b

c c c a

x n , it holds 0. Thus, 

 is volatile and therefore . Since  not enters the 

basis in ,  it holds 0.   







s

s s

s

D c

x s t x

D c

Proof of Theorem 1.2.3 – Conclusion 
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,

,

Since 0 0 0

0 0 0

Since ,   is basic in .  

Since 0,  we know that  is volatile.

Note that . Since  enters in ,  we 

have 0. In 

  



  

 





       

         



  





s s j j s s s

j B

s s r r s r

r

r r

t

c c c a c c

c c r B : c a c

r B x D

c r B x

r t t D

c

,

, ,

, , ,

0

, , , ,

addition,  is leaving in  and 

thus, we conduct the following transformation 

0 0 0

     



  

         

           

 
t jt t

t t t s s t j j s j

j B j s j B j st s t s t s

t s r r s r r s t t s

t D

ab x
x b a x a x x x

a a a

a c a c a c a t r

Proof of Theorem 1.2.3 – Conclusion 
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Proof of Theorem 1.2.3 – Conclusion 

, ,

Consequently, , but  has not entered in . 

Although  is not basic in ,  has entered in .

0,actually, 0 since 0 0

Since all solutions between  and  are degenerate,



 

  





      

r

r t

r r r r s r s

r t x D

x D x D

c c c a a

D D

 

 and  and  are 

volatile, we have in all solutions 0.

0 0 in dictionary  and both  and  were candidates 

for leaving the basis .  

But, we choose  although . This violates the 

 

   



r t

r t

r t t r

t

x x

x x

b b D x x

B

x t r Smallest Subscript rule 

and is therefore a contradiction.  

This completes the proof.  
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What we know so far… 

 We have learned how to solve general LPs by applying 

the Simplex procedure that explores a sequence of basic 

solutions 

 We have seen that under certain circumstances (i.e., if we 

make use of a specific subscript rule) this algorithm 

always terminates  

 We have learned to deal with problems where an initial 

solution is not directly available 

 In order to do this, we have generated the Two-Phase Method 

 It terminates either with an initial solution or with the cognition that 

the problem is not solvable at all 

 In what follows, we will show why it is sufficient to 

concentrate the search process to basic solutions  
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1.3 The Geometry of the solution space 

 In what follows, we have to do a little bit mathematics 

 By doing so, we get (hopefully!) some insights into the 

problem structure 

 First of all, we focus on convexity  

 Then, we learn about the solution space that it is sufficient to focus 

our search on the corner points 

 Therefore, let the solution space P be given as defined 

above in the standard form 

 Convexity is a very convenient attribute of solution 

spaces. Note that it causes – among other advantages – 

that each local optimum is also a global optimum 
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Minimization problem 

 In what follows, we consider minimization 

problems 

 I.e., unless it is indicated differently, we consider 

minimization problems of the following structure 

 

 bxAxIRxP

P,xIRcx, cxz

n

nT





 and 0| and

,with  Minimize
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Convex combinations 

1.3.1 Definition  

(Convex combination) 

 

1

1 1

1

1

Let ,...,  and ,..., , 0. Then, 

is denoted as a non-negative linear combination and as a 

convex combination if additionally 1. If 1 : 0,

then  is a 

kk n i

k i ii

k

i ii

k i

ii

a a IR IR α a

α i ,...,n α

α a

  






   

   







 strict convex combination.
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Illustration – Convex combinations 

strict convex combination 

convex combination 
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Convex sets 

1.3.2 Definition 

 
  . and between  connectiondirect   thedenotes ,2 if

,..., of nscombinatioconvex  all ofset   thedenotes ,...,

2121

11

aa,aa Ck

aaaaC kk



1.3.3 Definition 

  . i.e., , points of pairs of

 nscombinatioconvex  all containsit  if  is set A 

Sx,yS, x,yCSx,y

IRS n



 convex

Business Computing and Operations Research 129 

Examples – Who is convex, who not? 

1 

2 

3 

4 

5 
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Solution space of LPs is convex 

 
 

        

 

 

Consider two elements 0 .

Then, consider  with 0 1 and 1 .

Obviously, 0.

1 1

1

0 .

Additionally, since 0 1 

n

n

y,z P x | x IR x A x b

λ λ λ y λ z x

x

A x A λ y λ z λ A y λ A z

λ b λ b b

x  P x | x IR x A x b

λ

       

      



             

     

        

 

 

and 0,  

it holds 1 0.

y,z

λ y λ z



    
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Intersection 

1.3.4 Lemma 

 The intersection of any number of convex sets Si 
is convex. 

 

Proof: 

 Let us consider two elements of the set ∩Si. 
Then, each convex combination belongs to 
every set Si. Consequently, it also belongs to the 
intersection of all sets ∩Si. This completes the 
proof. 
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Linear combinations in convex sets 

1.3.5 Lemma 

 1 1Let  be a convex set and ,..., ,  then ,..., .k kS a a S C a a S 

We provide this proof by induction 

 Beginning of induction: 

 Show that the lemma holds for k=2. This is obviously trivial. 

 

 Induction step: k>2 

 The proposition is held for all values up to k-1 

 Let us now consider k 



45 

Business Computing and Operations Research 133 

Proof of Lemma 1.3.5 

 

   

1

1 1 1

1 1

1 1

Let us now consider:  1 1

Thus, by assumption of induction:

1
 
1 1

Consequently, it holds: 1

We get: 1 1

k k k
i

i i k i

i i i

k k
i ii

i

i ik k

k

k k

k

k k k

α a ,   α α α

α
α a a a S

α α

α a α a S

α a α a α



  

 

 

    

     
 

    

      

  

 

1

1

1

1 1

1

k
i ki

k

i k

k k
i k i

i k i

i i

α
a α a

α

α a α a α a







 

 
    

 

    



 
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Hyperplanes 

   

    

1 2

1 2 1

Let \ 0  and . Then, |  is 

denoted as a hyperplane.

Hyperplanes are obviously convex. This can be easily shown:

Let ,0 1.  

Let us now consider:

1 1

n n T

T T T

a IR α IR H x IR a x α

 x ,x H

a x x a x a x



   

     

  

           

 

2

1 .         
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Half spaces 

   

  

1 2

1 2 1

Let 0  and . Then,  is 

denoted as a half space.

Half spaces are obviously convex. This can be easily shown as 

follows:

Let 0 1

Let us consider:

1

n n T

T T

a IR \ α IR H x IR | a x α

 x ,x H , λ . 

a λ x λ x λ a x





     

  

          

 

21

1

Tλ a x

λ α λ α α.

  

     
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Observation 

 A hyperplane in an n-dimensional space has the 

dimension n-1  

 A hyperplane defines two separated half spaces, 

i.e., it divides the space into two parts 

 
 

 αxa|IRxH

αx|aIRxH

αx|aIRxHIR

Tn

Tn

Tnn











2

1  and  spaces half  twothe

 determines  hyperplane  the, In the
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Convex hull 

1.3.6 Definition 

    1 1,..., | ,..., ,   

is denoted as the convex hull to .

k k

n

CH M C a a a a M k IN

M IR

  



1.3.7 Observation 

   

 

It holds: |  convex ,  i.e., 

 is the smallest convex set that contains .

CH M K M K K

CH M M

  

The set CH(M) is convex since a convex combination 

of two convex combinations of elements of set M is 

again a convex combination of elements of set M 
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Proof of Observation 1.3.7 

 

   

 

   

   

 

Let  be the smallest convex set that contains 

1. :

This is correct since  is the smallest convex set that contains 

,  is convex, and it holds that .

2. :

Consider . 

SCH M M

SCH M CH M

SCH M

M CH M M CH M

CH M SCH M

x CH M









 

 

 

1

1

Then, we know  with  

and .

By applying Lemma 1.3.5 and the convexity of set , 

we obtain .

k
i k

i

i

x α a , a ,...,a M

M SCH M

SCH M

x SCH M



  






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Illustration – convex hull 

1 

2 
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Extreme points 

1.3.8 Definition 

 

A point  convex is denoted as an extreme point 

of  if it is not defineable by a strict convex combination.  

Let  be the set of all extreme points of .

nx K,K IR

K

ε K K

 
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Important attributes of extreme points 

1.3.9 Observation 

 

 

 

0

0 0 0

0 0

0

The following propositions are equivalent

1.   is an extreme point

2.  

3.  \ 0 :

4.    is convex

n

x

a,b K,x C a,b ab x a x b

y IR x y K x y K

K \ x

       

      
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Proof of Observation 1.3.9 

 

   

 

0 0

0 0

0

1 2 :

trivial, since if , i.e., if , , ,

we can conclude that this convex combination is not 

strict. Thus, 0 0.

2 3:

Let us assume 2  holds and , \ 0 . 

Consider 

n

x C a,b x a a b b a b IR

a b

x y K x y K y IR

x y



     

  



     

      

 

 

0

0 0 0 0

0

0 0 0

1 ,0 1

2

1 2 .

Let 0.5 0.5 0.5

This contradicts 2

x y

x y x y x y x y y

x y

a x y b x y x a b

 

    





    

             

    

           
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Proof of Observation 1.3.9 

   

     

 

0

0 0

0

0

0

3 4 :

Consider , \  and 1 ,  with 0 1. We have to distinguish two cases:

1. 1 , then we know 1 \  due to the convexity of 

 if 0,5
2. 1 , then we set 

 o

a b K x a b

a b x a b K x K

a x
a b x y

b x

  

   


 



      

         

 
     



   

 

0

0 0

0

. In both cases we have 0 if 0< 1. 
therwise

 if 0,5 2 2 1 2 2  if 0,5
We consider: 

 otherwise 2 2 1 2          otherwise

Since all weights are positive an

y

a a x a b
x y x y

b b x a b



   

 


 



          
     

       

     

     

 

0 0 0

0 0

d 2 1 2 2 2 1 2 1,  we conclude that 

.This contradicts 3 . Hence, we obtain 1 \

4 1:

Let  and  be convex. We assume that  is not an extreme point, 

i.e., : , 0

x y K x y K a b K x

K K \ x x

a,b K a b IR

   

 

      

         



    

   

 

0 0 0

0 0 0

0

: 1

But then it holds: 

1 , 0

This contradicts the convexity of 

a a b b x a b a x b x

a,b K \ x a a b b x K \ x a b a b

K \ x

          

           
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Examples of extreme points 

    

 
    
   









1| 4.

1|1| 3.

 2.

00| 1.

2

22

xIRx

xIRxxIRx

H

xIRx

n

nn

n








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Bounded sets 

Let ⋅ :ℝ𝑛 → ℝ,  

𝑥1

⋮
𝑥𝑛

↦ 𝑥1
2 + …+ 𝑥𝑛

2    

 

This mapping is denoted as the Euclidean norm and satisfies the norm 

properties, i.e.,  

 

• 𝑥 = 0 ⇔ 𝑥 = 0 

• 𝜆𝑥 = 𝜆 𝑥     ∀ 𝜆 ∈ ℝ and ∀𝑥 ∈ ℝ𝑛       

• 𝑥 + 𝑦 ≤ 𝑥 + 𝑦      ∀ 𝑥 ∈ ℝ𝑛 and ∀ 𝑦 ∈ ℝ𝑛. 

 

The mapping | ⋅ |: ℝ → ℝ,     𝑥 ↦  
𝑥,   𝑖𝑓 𝑥 ≥ 0 
−𝑥,       𝑒𝑙𝑠𝑒  

     

is denoted as the absolute value function. 

 

A set 𝑀 ⊆ ℝ𝑛 is called bounded, if there is an arbitrary, but fixed positive real  

number 𝑟, such that  

 

𝑥 ≤ 𝑟   ∀ 𝑥 ∈ M. 
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Convex polyhedron 

1.3.10 Definition 

 A convex polyhedron is an intersection of a finite number 

of half spaces, i.e., 

 

 

 
 

1

0 0

|

If  (bounded), then  is a convex polytope.

A hyperplane  is significant if 

 and  for one half space.

If , then  is denoted as a c











   

   

    

       

 

m

i

T n

T n

P H x A x b

P P P

H x | a x a IR

H P P H x | a x a IR

H P x x orner point.

If , then  is denoted as an edge. H P ab ab
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Convex polyhedron - Examples 

Consider a two-dimensional solution space P 

 

 

 

 

 

 

unbounded empty polytope, which is 

polyhedron  polyhedron  a bounded and 

   non-empty polyhedron 

    

2
x

1
x
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Polytope – Example 

𝑃 = 𝑥 ∈ ℝ𝑛 𝐴𝑥 ≥ 𝑏 ˄ 𝑥 ≥ 0  

𝐴 =
−1 −2
−2
−1

−6
  3

 𝑏 =
−5
−12
−3

 

𝑆5 = 𝑥 ∈ ℝ𝑛   𝑥 ≤ 5} 

𝑃 

𝑆5 

Since 𝑃 ⊆ 𝑆5, the  

polyhedron 𝑃 is bounded.  

Business Computing and Operations Research 149 

Conclusion 

1.3.11 Theorem 

 Let P be a convex polyhedron. Then, all corner 

points are extreme points. 
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Proof of Theorem 1.3.11 

   

0

0

0 0 0 0

Let  be a corner point of . In addition, let 

|  a significant hyperplane with .

We now make use of Observation 1.3.9 and consider  

with 

Thus, it h

n T

n

x P

H x IR a x P H x

y IR

x y P x y P x y H x y H



 

     



          

   

 

 

 

0 0 0 0

0

0

0 0

0 0 0 0

olds: 

and since 

0

Therefore, it holds: 

0

T T T T T T

T T

T T T

a x y a x a y a x y a x a y

P H x

α a x a y

a x y a x a y α

x y H x y P x y P H x y

               

 

    

      

            
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Basic solutions 

 In what follows, we are able to bridge the gap to 

basic solutions, i.e., it is now possible to provide 

a definition of basic solutions 

 Recall that these are just the solutions the Simplex 

Algorithm is focusing on 

 We feel that basic solutions are just corner points or 

extreme points of the solution space 
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Basic solutions and corner points 

1.3.12 Definition 

       
       

        

.0 if , of (bfs)solution  feasible basic

 a as denoted is  Then, .0 and Let 

 matrix. invertible

an  , and

,...,1,...,1,...,1 with injective

 ,...,1,...,1:,,...,1,...,2,1:Let 

1

11























xbxA

x

x
xxbAx

IR,...,a aIR,...,aaA

nmnNmB

nmnNnmB

N

B

NBB

mmBBmmmBB

B
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Observations 

 

 
 

     mmBB

B

NNBB

NNBB

NNBB

N

B

NB

IRaaA

bbxAbAA

xAbAA

xAxA
x

x
AAxA

 of base a is ,..., invertible is  2.

0

, 1.

:holdsit  Obviously,

1

1

1




















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Conclusions 

1.3.13 Theorem 

 

 

 

0

0

0

Let  with  and let .  

Furthermore, let | 0 and ,  

for . The following propositions are equivalent:

1.  is an extreme point of 

2. | 0  are linearly independen

m n m

n

j

j

A IR rank A m n b IR

P x IR x A x b

x P

x P

a x

   

    





0

0

t

3.  is a basic feasible solution (bfs)

4.  is a corner point of 

x

x P
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Proof of Theorem 1.3.13 

   

 

1

0

1 1

0 0

1 2 :

Let us consider ... . We sort the entries so that it holds:

,..., 0 and ,..., 0

0

0. Then, | 0 . By definition, this set is a 

set of linearly independent 

n

r r n

j

j

x

x

x

x x x x

r

x a x





 
 

  
 
 

 



   

Case 1 :

vectors.
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Proof of Theorem 1.3.13 

 

 

1

1

1

0 0 0

0 0

0 0

0

We introduce 0

Now, consider 0 0

We compute  i.e., 

Consider 0

Thus, it holds: 

r
i

r i

i

T n

r

r

α ,...,α IR : α a

y α ,...,α , ,..., IR

x y,x y, x y

A x y A x A y b b

x y,x y P





  

 

  

        

  



Case 2 :
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Proof of Theorem 1.3.13 

0 0

0

1

Thus, it holds: 

Since  is an extreme point and we are making use 

of Observation 1.3.9, we can conclude that

0  are linearly independent.r

x y,x y P

x

y a ,...,a

  

 
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Proof of Theorem 1.3.13 

   

 

 

 

1

1

2 3

We assume that  are linearly independent.

If  since , we altogether have  linearly independent 

columns in . Let  be this set. Then, w.l.o.g., we can assume 

. We 

r

r

a ,...,a

r m rank A m m

A li A

a ,...,a li A



 



   1

1 1 0 1 0 0 0

0 0 0

define  and  accordingly. If ,  we define 

. Then, it holds:

 is invertible and it holds: 

Since , we know 0 and, therefore,  is t

r

m m

B

B B B B B N N B

B N r m

li A a ,...,a

A IR

A b A A x A A x A x x

x P x x



  







         

  he basic 

feasible solution.
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Proof of Theorem 1.3.13 

   

 

0

0

0

 elements  elements

3 4

We assume that  is the basic feasible solution.

Let 0,...,0 , 1,...,1 . Furthermore, let 

| 0 .

We can conclude the following:

1. Let :

B

N

m n m

n T

T T

B

x
x

x

a

H x IR a x

x P a x a





 
  
 

 
   
 

   

    0 since 0T T

B N N N Nx a x a x x

x H P H 

     

   
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Proof of Theorem 1.3.13 

 

0 0 0 0

0

1 0

0 0

2. Consider 0

Thus, 

3. We consider 0. Since 

0,  it holds 0

Additionally, it holds:

Consequent

T T T

B B N N

B T

N N

N

N

B B N N B B B B B

a x a x a x x H

x H P

y
y H P a y

y

y y

b A y A y A y A y y A b x

y x H P x



       

 

 
      
 

 

           

    

0ly,  is a corner pointx
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Proof of Theorem 1.3.13 

   

 

0

0

4 1

Assuming  is a corner point. 

| 0 |

0

Obviously,  is a convex polyhedron (Definition 1.3.10).

Since  is the corner point and (due to Th

n n

x

A b

P x IR x A x b x IR A x b

E

P

x P



    
    

               
    

    



0

eorem 1.3.11) 

all corner points in  are extreme points,  is an extreme point.P x
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Conclusions 

1.3.14 Observation 
 

 

   

1. 0 0

This is true due to the fact that if 0 0 fulfills Restriction 

2  of Theorem 1.3.13 0 is a corner point

2. | 0

In order to conceive this proposition, we again make use of 

Theorem 1

i i

P P

P

x P x x m





  

 



   

 
 

 
 

0.3.13. Owing to the fact that | 0  are 

linearly independent and  , the proposition 

immediately follows

!
3.  Binomial coefficient

! !

j

ja x

rank A m

n n
P

m m m n






 
  

 



55 

Business Computing and Operations Research 163 

Degeneration 

1.3.15 Definition 

 

 

A basic feasible solution  is denoted as degenerated 

if | 0 .i i

x P

x x m



 

1.3.16 Observation 

 

The respective set of base vectors is unambiguously defined 

for each non-degenerate basic feasible solution .x P
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The structure of the solution space 

 In what follows, we are able to provide a very 
compact and fundamental definition for the 
solution space P 

 For this purpose, however, we have to distinguish 
if the solution space is  
 bounded or  

 unbounded  

 Consequently, if the latter case applies, an infinite 
number of new elements of P can be generated 
iteratively 
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Preliminary Definitions 

1.3.17 Definition 

   Let | : 0 : for .nD P y IR x P x y P , P           

1.3.18 Lemma 

   00|  yAyIRyPD n

 

In what follows, we consider an LP with a solution space

| 0nP x IR x A x b     
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Proof of Lemma 1.3.18 

   

   

 

1. | 0 0

Let 0

for .

Then, it holds: 0

0

0

0. 

In addition, we know that 0

     

         

 

      

   

                

  

      

n

n

D P y IR y A y

y D P y IR | x P : λ : x λ y P , 

P

x P : λ : x λ y P

x P : λ :

A x λ y A x λ A y b λ A y b λ A y

A y

x P : λ : x λ y

 

   

0

0 | 0 0

| 0 0

        

      

n

n

y y y IR y A y

D P y IR y A y
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Proof of Lemma 1.3.18 

   

 

 

 

2. | 0 0

Let | 0 0 .

Consider , 0. Then, it holds: 

0

0 since 0 0 .

n

n

y IR y A y D P

y y IR y A y

x λ y x P λ

A x λ y A x λ A y b λ b

x λ y x λ y y D P

     

     

    

           

         
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Final result – The solution space 

     

 

 

|

A non - empty polyhedron  is represented by a

convex combination  of  its  

and by . If  0, then  is called a .

nP x IR x y z y C P z D P

P

y P

z D P z z





       

 

extreme (corner) points

ray

1.3.19 Theorem 
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0

1

2

0 1 2

x1

x
2

Theorem 1.3.19 – Example I 

1 1

0 0
 with 0.5

1 1
 

   
     

   

2 2

1 1
 with 0.5

0 2
 

   
     

   

 

 

1 1

2 2

1 2 1 2

1 1 1 0 1
Let 0 . It is ,  and 

2 1 2 1 0

0 1 0
, 0  that is an infinite set.

1 2 0

x x
P P

x x

D P



   

                
                                 

         
             

         
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Theorem 1.3.19 – Example II 

   
 

  1

Since  in , Lemma 1.3.18 becomes | 0 0 . 

Note that this is satisfied by all . Theorem 1.3.19 states that 

 is equivalently written as

0 1 0
| 1

1 0 1

n

n

A x b P D P y IR y A y

y D P

P

P x IR x   

       



     
             

     

 

2 1 2

1
, 0

2

0
Note that  is omitted in the representation of   because it

0

is neutral to .

D P P

x

  
  

     
  

 
 

 
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Proof of Theorem 1.3.19 

     

     
    

 

 

1

1

1

01 1

1

1. |

Let 

,  

with: ..., 1

0

Addition

n

n

K

k k

k

K

K k

k

K K

k k k

k kb

x IR x y z y C P z D P P

x x IR | x y λ z y C ε P z D P

x y z y C ε P z D P

A y z A y A z A y A z

y , y ε P

A y A z b A z b b







 





 



       

        

      

 
            

 

  

 
            

 
 





 

ally, it holds: 0x y z  
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Proof of Theorem 1.3.19 

     
 

 

   PDyPε,...,xxλyxλx

IR:,...,λλ:nP:lxIN:l

xjn

PDzPCyzyxIRxP

k
k

i

i

k

i

i

i

kx

jx

n












1

11

1

1

0 :show We

0|by induction by  conducted is proof The

| 2.
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Proof of Theorem 1.3.19 

 

     

 

We commence with 0 0

|

Now, we assume that the proposition holds for all  

with . Consider  with . Obviously, if 

, the proposition immediately follows.

x

n

x x

n x x P

x x IR x y z y C P z D P

x P

n l x P n l

x P







     

       



  

   
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Proof of Theorem 1.3.19 

 

   

 

 

Consequently, we assume   

Since ,  it holds: 0

Therefore, we can assume 

We compute 

0

0

Thus, it holds:   

n

j j

x ε P .

x ε P y IR : x y P

x y P y x , j

A y A y A x A x A x y A x

b b

A x λ y A x λ A y b b, λ IR

x λ



     

     

           

  

            

  0y P x λ y    
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Proof of Theorem 1.3.19 

 

    

1

0

Calculate max | 0 1,

ˆ

...

0Furthermore, let: 0

...

ˆ

Obviously, it holds: ,

j j

j

j j

j

j
j

n

xx
Induction

x y

xx
y

y y

x

x
x x y x y

y

x

n n x v w v C P w D P









 



 

  
        

  

 
 
 
 

        
 
 
 
 

      

Case 1 :
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Proof of Theorem 1.3.19 

  

 

  

   

     

Obviously, it holds: ,

,

Note that 0 0 0 and

0 0 0

|

xx
Induction

n

n n x v w v C P

w D P

x x y v w x y

x v w y v C P

λ y w y

A w y A w A y w y D P

x x IR x y z y C P z D P



 

 

 

  







  



  

  

    

 

       

     

       

              

        
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Proof of Theorem 1.3.19 

 

    

1

0

Calculate min | 0 1,

ˆ

...

0Furthermore, let: 0

...

ˆ

Obviously, it holds: ,

j j

j

j j

j

j
j

n

xx
Induction

y

xx
y

y y

x

x
x x y x y

y

x

n n x v w v C P w D P









 





  
       

  

 
 
 
 

        
 
 
 
 

      

Case 2 :
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Proof of Theorem 1.3.19 

    

  

 

   

     

Obviously, it holds: 

,

,

Note that 0 0 since 0 and

0 0 0

|

xx

Induction

n

n n

x v w v C P w D P

x x y v w x y x v w y v C P

λ w y y

A w y A w A y w y D P

x x IR x y z y C P z D P



   



  







   

 

  



     

             

     

              

        
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Proof of Theorem 1.3.19 

 

 

1

: 0 0

Calculate min | 0 1,

Calculate max | 0 , 1

ˆ

...

0Furthermore, let: 0

...

ˆ

j i

j j

j

j j

j j

j

j j

j

j
j

n

j i y y

xx
y

y y

xx
y

y y

x

x
x x y x y

y

x











 

    

  
       

  

  
        

  

 
 
 
 

        
 
 
 
 

Case 3 :
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Proof of Theorem 1.3.19 

    

 

1

Obviously, it holds: ,

ˆ

...

0Furthermore, let: 0 

...

ˆ

since the considered entries of  are 0

Obviously, it holds: 

xx
Induction

j

j
j

n

xx
Ind

n n x a b a C P b D P

x

x
x x y x y

y

x

y

n n











   

 

      

 
 
 
 

        
 
 
 
 



      ,
uction

x a b a C P b D P

       
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 

 

   

Consider the following convex combination 

(note that 0 0)

. 

λ

x x x y

x y

x y x y

x y y x
x

 

  


     




 

     

   

       

   

  

  
  

     




 

     

   

       

   

   

      
  

   


       
 

 

         
  

 

Proof of Theorem 1.3.19 
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   

   0 0

Thus, we know:

C P A b b A b A b

x x x a b a b

a a b b

   
       





   

       

   

       
   

          





   
 

          

   

          

 
                   




         
   

 
        

    

 

     

     

|

|

b b D P

n

n

x x IR x y z y C P z D P

P x IR x y z y C P z D P



  







   
   



       

        

Proof of Theorem 1.3.19 
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Now, we are almost done with it 

! 

We have shown that each 
solution in the solution space is 

a convex combination of the 
corner points 

…and this enables the main 
cognition “…if there is an 

optimal solution…then 
there is a corner point 

with an identical objective 
function value” 
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Important consequence 

1.3.20 Observation 

 1. 

2. If there is an optimal solution in , there exists a corner 

point with identical optimal costs,i.e., there is also an 

optimal corner point

3. If  and if there is no optimal solution in

P P

P

P

  



 

  

 

: 0

4.  bounded 

T

P

y D P c y

P P P C P

    

   

Business Computing and Operations Research 185 

Proof of Observation 1.3.20 

     
    

     
 

     

       
    

1. 

Case 1: 0

0

Case 2: 0

0

0

Since it holds that 0,  we concl

n

n

n

n

P x x IR | x y z y C ε P z D P

x y z y C ε P z D P

x IR | x y z y C ε P z D P

ε P

x IR | x y z y C ε P z D P

x x IR | x y z y C ε P z D P

x y z y C ε P z D P

A z

          

      

       

 

       

          

       

     
1

ude 
k

i i

i

i

y P y α a , a ε P ε P


      
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Proof of Observation 1.3.20 

   

  

    

 

12 3. Let . We introduce  as the 

corner point that possesses maximal objective function 

value, i.e., max |

Consider now  

Calculate

k j

T j T i i

T T T T

x ,...,x ε P x

c x c x x ε P

x P x y z y C P z D P

c x c y z c y c z



 

   

       

       
1

1 1

,  

with 1

k
T i T

i

i

k k
T i T T j T

i i

i i

c x c z

c x c z c x c z



 



 

 
     

 

 
          

 



 
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Proof of Observation 1.3.20 

 

We know 0

Thus, we have to distinguish

Case 1: 0

There are optimal solutions in . Specifically, 

 is one of them.

Case 2: 0

There is no optimal solution in .

T

j

T

A z x ξ z P

c z

P

x ε P

c z

P

     

  



  
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Proof of Observation 1.3.20 

     

 
  PCx

z,λPDzλzA

PDzPCyzyxIRxPx

PP

n











00 know  we,0 Since

|

bounded  4.
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Correctness has been proven 

! 

That is great! 
We have proven the 
correctness of the 
Simplex procedure! 

 

…BUT: 
 

How fast is 
it? 
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1.4 How fast is the Simplex Method? 

 We consider average practical problems of the general 

form  

    0:1:1  s.t.

 Maximize

1

1













j

n

j

iji,j

n

j

jj

x,...,njbxa,...,mi

xc

 Dantzig (1963) reported that the number of iterations that 

the Simplex procedure conducts is usually less than 3m/2 

and only rarely going to 3m (m<50 and m+n<200) 

 In fact, recent empirical findings underline that the 

average running time of the Simplex procedure is linear 

 Specifically, it increases proportionally to m  
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1.4.1 Analyzing the average case 

 Some investigations reveal that for fixed m the average 

total number of iterations to be conducted is upper 

bounded by log(n) 

 Thus, if each iteration is executed efficiently, modern 

computers are able to solve problems with about 100 

constraints and variables in a few seconds 

 Even cases with n and m of size 1,000 can be solved 

efficiently 

 However, as a prerequisite, this requires an efficient 

implementation of each iteration, i.e., each basis changes 

 For this purpose, two attributes are decisive… 

 an appropriate pivot strategy 

 an efficient update handling 
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1.4.2 Analyzing the worst case 

 An open question for a long time was whether the solving 
of an Linear Program is in P 

 Based on the findings of Klee and Minty (1972), we 
construct a worst case polytope 

 We introduce the following parameters 

 

 

 Moreover, we introduce the following LP (LP 1.4.2.1) 

1 1

1 1

1

1

min  

1

0,  2,3,...,

1,  2,3,...,  with , , 0,  1,...,

d

j j j

j j j j j j

x

x r

x s

x x r j d

x x s j d x r s j d













 

 

     

        

1 1 1

1
For some 0< < :  1   and  1 ,  2,3,...,

2
j j jx x x x j d            
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The basic feasible solutions (bfs) 

1.4.2.1 Lemma 

 

 

 

 

Proof of Lemma 1.4.2.1: 

 

 1 1 1

The set of feasible bases of the LP 1.4.2.1  is the set of subsets of 

,..., , ,..., , ,...,  containing all x-variables and exactly one of 

,  for each 1,..., . Furthermore, all these bases 

d d d

j j

x x r r s s

s r j d are nondegenerate. 

1 1Because  and ,  1,..., 1,  we conclude that in each feasible solution 

we have 0. Hence, all feasible bases must contain all  columns corresponding to 

the -variables. 

Moreover, a

j j

j

j

x x x j d

x d

x

 



     

 

 

1 1 1 1 1 1

1

ssume that 1,..., : 0.

Case 1: 1 Since ,  it holds that  and through 1,  it holds that 1.

However, this implies 1 and contradicts the assumed parameter setting of .

j jj d r s

j x r x x s x

x

 

 

   

       

 
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Proof of Lemma 1.4.2.1 

1 1

1 1 1 1 1

1 1 1 1

1

Case 2: 1 Since 0 1,  it holds that 

 and 1 1 2 1.

Since 1 and 1,  we have 

1
1. Due to ,  we have a c

2

j j j j j j

j j j j j j j

j j j j j

j

j x x r x x s

x x x x x x x

x s x x s x x

x

 

    

 



 

    

 



          

             

        

 

 

1

1

ontradiction to 2 1.

This results from 2 2 1.

Therefore, each feasible basis must contain one of the columns corresponding to 

 and  for every 1,..., . However, there are already 2

j

j

j j

x

x

s r j d d



 





  

    

  elements in 

the basis. Moreover, since all these variables are non-zero, these solutions are 

nondegenerate. 

m
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The set of basic feasible solutions 

 In what follows, we write a bfs of the LP (1.4.2.1) 

as x(S) with S giving a subset of set {1,…,d} that 

indicates the nonzero r’s in x(S) 

 The value of the xj-variable in x(S) is abbreviated 

by xj(S) 

 Based on these abbreviations, we formulate the 

following Lemma 
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Comparing the objective values 

1.4.2.2 Lemma 

 

Proof: 

   

     

Suppose that  but ;  then . Moreover, if 

additionally ,  we have 1 .

d d

d d

d S d S x S x S

S S d x S x S

   

    

       

     

         

1 1

1 1

1 1 1

Since ,  we have 0 Due to 1,  

it holds that 1 . Since , , 0 and 0,  we have 1.

1 1
By  and 1 ,  we conclude that 1 1

2 2

d d d d d d

d d j j j d

d d d d d

d S s x S x S s x S x S

x S x S x r s x S

x S x S x S x S x S

 

 

  

 

 

  

         

     

         

   

           

     

 

1

1 1

1 1

1

1

2

Moreover, since ,  we have 0. And by 0,  we have 

1
0 . Consequently, we have .

2

If ,  we have  and it holds that

d d d d

d d d d d d

d d

d d

d S r x S x S r

x S x S x S x S x S x S

S S d x S x S

x S x



 





 

 





       

           

   

              

     

1 1

1
1 1 1 1 1 ,  with 

2

2 1

d d d d

d d d

S x S x S x S x S

x S x S x S

  
          

    
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Comparing the objective values 

1.4.2.3 Lemma 

 

 

 

Proof: 

 

     

   

1 2 2

1

We assume that the subsets of set 1,...,  are enumerated in such a way that 

... . Then, the inequalities are strict, and the basic 

feasible solutions  and  are adjacent for 1,

dd d d

j j

d

x S x S x S

x S x S j

  

 2,..., 2 1.d 

      1 1 1 1 1 1 1

We give the proof by induction:

1:  In this case there are two basic feasible solutions, namely 

, , ,0,1 , 1,1 ,0  since we have  and 1. 

Clearly, the solutions have unequal nonzero 

d

x r s x r x s   



      

1-values and are adjacent since 

exactly two columns are exchanged. 

x
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Proof of Lemma 1.4.2.3 

 

 

1 2

1

1:  We assume that the proposition holds for . Therefore, there 

is the appropriate enumeration ,...,  of subsets of set 1,..., . 

Clearly, these are also subsets of set 1,..., , 1 . Due to 0



 

d

d

d d

S S d

d d r

       

     

1 1

1 1 1 2 1 2

 in the 

corresponding solutions and 0, we have .

By applying the induction hypothesis, we conclude that

.... .

Furthermore, we consider the remaining s

  

  

     



   d

d j d j d d j d j

d d d

x S x S r x S x S

x S x S x S

 

     

       

   

1 1 1

1 1 1 2

1 1

ubsets of set 1,..., , 1 ,  namely, 

1 , i.e., with 0. By applying 1,  we obtain

1 . By Lemma 1.4.2.3, we have  and 

1  with 





  

  

  



         

     

  

d

j j d d j d j d

d j d j d j d

d j d j d

d d

S S d s x S x S s

x S x S x S x S

x S x S x  

             

1

1 1 1 2 1 1 1 1 2 1 12 2 2 1

1
. Thus, we have 

2

.... .... .      



          d d d

j

d d d d d d d

S

x S x S x S x S x S x S x S
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Proof of Lemma 1.4.2.3 

   

   

   

1

1

1

By induction hypothesis, we know that  and  are 

adjacent for 1,...., 2 1.

Also  and  are adjacent for 1,...., 2 1 since, 

again by induction hypothesis,  and  are adjacent.

j j

d

d

j j

j j

x S x S

j

x S x S j

x S x S







 

   

    12 2

1

 

Moreover,  and  are adjacent since  is added to 

the basis while  leaves the basis. 

This completes the proof. 

d d d

d

x S x S r

s






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Main result 

1.4.2.4 Theorem 

 

 

 

Proof: 

For every 1 there is an LP with 2d equations, 3d variables, and integer 

coefficients with absolute value bounded by 4, such that the simplex algorithm 

may take 2 1 iterations to find the optimal so



d

d

lution. 

 

1
We set =  and multiply all equations of the LP (1.4.2.1) by 4. 

4

Therefore, all coefficients become integer. Since the objective is to maximize 

 min , the exponentially long chain of 2  adjacent d

d dx x



  bfs's whose 

existance is established by Lemma 1.4.2.4 has decreasing costs. 

This proves the Theorem. 
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Consequences 

 Results similar to Theorem 1.4.2.4 are known for 

all variations of simplex algorithms, including 

several heuristic pivoting rules 
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Another worst case example 

    0:1100102:1  s.t.

10 Maximize

1
1

1

1

































j

i

i

i

j

j

ji

n

j

j

jn

x,...,njxx,...,ni

x

0,,

000,1020200100201  s.t.

10100 Maximize

:3

321

321211

321









xxx

xxxxxx

xxx

n
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Using the largest coefficient rule 

zxxx

xxxx

xxx

xx











321

6321

521

41

10100

000,1020200

10020

1
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Using the largest coefficient rule 

zxxx

xxxx

xxx

xx











321

3216

215

14

10100

20200000,10

20100

1
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Using the largest coefficient rule 

1 4

5 4 2

6 4 2 3

4 2 3

1

80 20

9,800 200 20

100 100 10

x x

x x x

x x x x

x x x z

 

   

     

                  

     

Iteration 1 
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Using the largest coefficient rule 

zxxx

xxxx

xxx

xx











354

3546

542

41

10100900

20200200,8

2080

1

Iteration 2 
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Using the largest coefficient rule 

zxxx

xxxx

xxx

xx











351

3516

512

14

10100000,1

20200000,8

20100

1

Iteration 3 
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Using the largest coefficient rule 

4 1

2 1 5

3 1 5 6

1 5 6

1

100 20

8 000 200 20

9 000 100 10

x x

x x x

x , x x x

, x x x z

 

   

     

                  

     

Iteration 4 
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Using the largest coefficient rule 

1 4

2 4 5

3 4 5 6

4 5 6

1

80 20

8 200 200 20

9 100 100 10

x x

x x x

x , x x x

, x x x z

 

   

     

                  

     

Iteration 5 

Business Computing and Operations Research 210 

Using the largest coefficient rule 

zxxx

xxxx

xxx

xx











624

6243

245

41

10100900,9

20200800,9

2080

1

Iteration 6 
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Using the largest coefficient rule 

solution! Optimal

10100000,10

20200000,10

20100

1

621

6213

215

14













zxxx

xxxx

xxx

xx

Iteration 7 
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Assessing this calculation 

Hmmmpffff! 
For solving this tiny problem, we 

have conducted 7 iterations! 
 

Moreover, we were quite 
stupid. If we had applied 
the largest improvement 

rule, we would have 
succeeded in just a single 

iteration! 
! 
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Largest improvement rule 

 

4 1

5 1 2

6 1 2 3

1 2 3

1

1

100 20

10,000 200 20

100 10

1,..., : 0 : Improvement min 0, 1,...,

100 10,000
min 1, , min 1,5,50 1 Improvem

20 200

i
j j j ij

ij

x x

x x x

x x x x

x x x z

b
j n c c a i m

a

x

 

   

     

                  

    

         


  

 
     

 

 

 

1

2 2

3 3

3

ent = 100

10,000
min 100, min 100,500 100 Improvement = 1,000

20

min 10,000 10,000 Improvement = 10,000

Choose the variable with the largest improvement

x

x

x

 
    

 

  


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Largest improvement rule 

solution! Optimal

10100000,10

20200000,10

20100

1

621

6213

215

14













zxxx

xxxx

xxx

xx

Iteration 1 
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Alternative pivoting rules 

 Two efficiency aspects to be considered for assessing 
pivoting rules 
 Number of iterations that are induced by the application of the rule 

 Effort of each iteration  

 Generally, it can be stated that the number of iterations 
required by the largest improvement rule is usually 
smaller than the number of iterations caused by the 
largest coefficient rule  

 This was underlined empirically 

 However, the costs caused by each iteration are 
increased by the largest improvement rule 

 Nevertheless, in a direct comparison the reduced number 
of iterations prevails and therefore the largest 
improvement rule outperforms the largest coefficient rule 
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Attention 

 However, as already mentioned, each rule has 

its own specific worst case scenario 

 Thus, according to worst case considerations, 

there is no real distinction between different 

pivoting rules 

 In modern software packages, pivoting rules are 

chosen according to the handling of large sized 

problems on a computer 

 However, it can be shown that LP is polynomially 

solvable. But this is done by using a different 

solution strategy 
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Complexity of Linear Programming 

 Until 1979, the open question whether there can be any 

polynomial-time algorithm for LP was a most perplexing 

question (Papadimitriou and Steiglitz (1982,1988), p.170) 

 Specifically, there was conflicting evidence about the 

possible answer  

 On the one hand, LP was certainly one of the problems (together with 

the TSP and many others) which seemed to defy all reasonable 

attempts at the development of a polynomial-time algorithm.  

 However, on the other hand, LP had two positive features that made 

it completely different from the other classical hard problems  

 First, LP has a strong duality theory, which is conspicuously lacking for 

all the other hard combinatorial problems 

 Secondly, LP has an algorithm, the simplex method, which – although 

exponential in its worst case – certainly works empirically on instances of 

seemingly unlimited size. 
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Complexity of Linear Programming 

 In the spring of 1979 the Soviet mathematician L.G. 

Khachian proposed an exact polynomial-time 

solution algorithm for LP (see the paper of 

Khachian, L. G. (1979)), the so-called ellipsoid 

algorithm 

 Therefore, it was proven that LP is well solvable (in 

the language of the Complexity Theory), i.e., 𝐿𝑃 ∈ 𝑃 

 This important work was assessed, evaluated and 

further extended by the papers of Aspvall and Stone 

(1980), Dantzig, G.B. (1979), and Goldfarb, D., 

Todd, M.J. (1980) 
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Performance of the ellipsoid algorithm 

 Despite the great theoretical value of the ellipsoid 

algorithm (for worst case scenarios), this 

algorithm seems to be not very useful in practice 

 The most obvious among many obstacles is the large 

precision that is required by the conducted 

computations 

 Hence, average running times are not competitive, i.e., 

it is outperformed by the Simplex algorithm for real-

world problems 
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Interior point methods 

 In 1984, however, Karmarkar, N. (1984) proposes a 

further polynomial exact solution algorithm for Linear 

Programming 

 In contrast to the Simplex algorithm that moves from edge 

point to edge point, this procedure finds an optimal 

solution by iteratively moving through the interior of the 

solution space until optimality was proven 

 Interior methods are also very efficient in practice and are 

competitive with the Simplex algorithm 

 This applies in particular to LP with sparsely populated matrices 

 However, the Simplex algorithm is superior if a series of problems 

has to be solved (e.g., applied as a subroutine within a 

Branch&Bound algorithm for integer problems) 
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1.5 How to work with tableaus 

 In order to provide a direct understanding of the Simplex 

procedure, we have illustrated its calculations on the 

basis of dictionaries 

 However, in what follows, we make use of tableaus 

 Tableaus are directly derived from the use of matrices in 

order to solve Linear Programs 

 By making use of them, we are able to illustrate several 

aspects of the matrix transformations executed during the 

conduction of the Simplex procedure 

 Moreover, matrix operations play a crucial role for 

implementing the Simplex Method as efficiently as 

possible 

 This is done by the so called Revised Simplex Method 
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1.5.1 Basis change 

0

0 0 1 0

0

0

0

Consider a basic feasible solution ,  with 0

and additionally a feasible solution  with . Furthermore, let 

 with 0 and it holds: .

Then, since 0,  it

B

B B N

N

n

N

x
x x A b x

x

x A x b

y IR A y x x y

x


 

     
 

 

    



1 1

1

1 1

 obviously holds: . 

Additionally, we derive: 

0 0

0 .

We define the basis vectors by  and the remaining vect

N N

B B N N B B B B N N

B N N

B B N N B B N N

N

x y

A y A y A x A A y A A x

A A x
y A A x y A A x y

x

B

 



 



            

   
             

 

ors by .N
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Basis change 

   

1

1

1 1 1 1

In the following, we introduce the component    in the basis.

We introduce the shortcut ,  

with ,  ,..., ,..., ,  with .

Note that 





  



    
    
   

 

    

B B N N

N N

B

m m n n j m

B B

B

y A A x
y

y x

t

A A A

A IR A a a A a a a IR

A

0

0

1

Position 

.

Let us now set: 0,...,0, 1 ,0,....,0 .

  



    

 
   

 

m m m n m n

T

k n m

N

k

IR A IR A IR

x e IR
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Basis change 

 

 

 

  000

000

1
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0Let 
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Conducting a basis change 

     

 

0 0

0

0

0

,

0

min | 0  if :  0

0 otherwise

Note that 0 is feasible for these values of . Let us consider the 

result of our calc
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  
 

    
 
   
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Observation 

 By setting λ to a maximal feasible value, we 

erase the corresponding variable out of the basis 

and introduce the tth entry instead 

 In the following, we examine a simple example 
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Basis change – An illustrative example I 

 

      43,32,21set  ,

5

12

10

10012

01043

00152

3020,Min 

5323 have We

    

512

1243

1052

25050100

600200150

500250100





























































BBBbA

babaf

nm

ba

ba

ba

ba

ba

ba
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     



































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
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
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
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








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
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






























































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5

41005

50108

10012
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43,32,21set  ,

5

12

10

10012

01043

00152

11

1

bAAA

AA

BBBbA

BB

BB

Basis change – An illustrative example II 
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 

     

We introduce column , i.e., 

min , ,

 and obtain , ,

t

B

k

t

a
x x

e

B B B

 



 
               

 

 
 

     
          
           
     

     
        

 
 
 

0

0

1 1

5 15 8 8

2 8 5 5

8

50 1
9

5 2
58

1 2 2 3 3 115 8
115

8 5
5

0 0 0

0

Basis change – An illustrative example III 

Business Computing and Operations Research 230 

     

1

1 1

2 5 1 0 0 10

3 4 0 1 0 12 , set 1 2, 2 3, 3 4

2 1 0 0 1 5

5 1 0 0 0 1

4 0 1 1 0 5

1 0 0 0 1 4

2 1 0 0 1 5

8 0 1 0 5 15

5 0 0 1 4 8

Instead of introducing 

B B

B B

A b B B B

A A

A A A b



 

   
   

         
      

   
   

       
      

   
   

         
      

column 1, now, we try column 5, i.e., 5t 

Basis change – An illustrative example IV 
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 

0

5

0

Thus, we obtain:

1

5 0

4

0 0 0

5 1 5

0 15 5 15 5

8 4 8 4

0 1

and yield a ray.

t

B

k

a

a
x x

e





   





 
 

   
 
  

     
     

       
                  
       

        
     
     

Basis change – An illustrative example V 
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Direct consequences 

1.5.2 Theorem 

   

   

0

00

0

0

0

1. If there exists an  with 0,  then min | 0  , 

and  is a basic feasible solution (bfs) of . Basis 

is B/ .

2. If 0,  then  with ,

B iB it t

i it t

i i

Bt t

B

N

xx
i a a

a a

x x x y P

i t

y
a y y a

y







  
    

  

   



 
    

 

0

0

 and  greater equal 0 

and, therefore, it holds: , 0

k

Ny e

x x y P  



     
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Proof of Theorem 1.5.2 

 
 

 

  

 

 

0

0

1

       if 
1. Define  by .

  otherwise

1,..., :

0 0

Since 0 , .

We replace  by  in the basis. Thus,  arises.

.

 is basic feasible solu

j N

t t t t t

i B B

N i i i
N N i

B i

x x y j N n m

x x

a a A a a A a

B i t B

A x b

x





 
 


      

  

     

 

 tion for .

2. trivial

P
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Kinds of degeneration 

 Primal degeneration of x0:  

 If λ0=0, then one basic variable equals zero. The 

objective function value is kept unchanged  

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8 9 10

x[1]

x
[2

]

1 2

1 2

2

1

1 2

7

. . 5

2

3

, 0

Maximize x x

s t x x

x

x

x x



 






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Observation 

 Consider the example 

 We have five variables altogether (two structure 

variables and three slack variables) 

 Since m=3, we have always three basic variables 

 Clearly, one slack variable becomes zero in the 

optimal solution  

 Note that this is not restricted to optimal solutions 
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Kinds of degeneration 

 Dual degeneration of x0:  

 If for one non-basic variable the relative costs are zero, 

we are facing a constellation of dual degeneration, i.e., all 

solutions integrating this variable into the basis yield the 

same objective function value 

0

1

2

3

0 1 2 3 4 5 6 7 8 9 10

x[1]

x
[2

]

1 2

1 2

1 2

1 2

3

. . 2 5

2 6 12

, 0

Maximize x x

s t x x

x x

x x



 

 


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Neighboring basic feasible solution 

1.5.3 Definition 

 Two basic feasible solutions that can be mutually 

transformed in each other by changing a single 

basis vector are denoted as neighboring basic 

feasible solutions. 
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Basis change and objective function value  

0

0 0 1 0

0

0 1

0

Let ,  with , 0 a basic feasible solution.  

Assuming it holds: ,  

for  with .

We calculate:  

B

B B N

N

B B

B B N N

N N

N N

T T T T

B B N N

T

x
x x A b x

x

x y
x x y A A x

x y

y x  x A x b

c x c x c y c y

c





 
    
 

   
          
   

  

      

 

 

0 1

0 1

0 1

T T

B B N N N N

T T T

B B N N N N

T T T

N B B N N

x c A A x c y

c x c A A x c x

c x c c A A x







     

       

      
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 
 

 

NB

T

B

T

N

T

BBB

T

BBB

T

B

T

B

N

T

N

T

N

T

NNB

T

B

T

N

T

TT

B

T

B

T

AAcz

cAAcAAcz

xzcxc

xAAccxc

AπzAcπ



















1

11

0

10

1  and   introduce We

Substitution  
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   0 0

0

0

Altogether, we get

.

Thus,

 defines the  change 

(or reduced costs/prices) when  is transformed into .   

Specifically, it holds: 

T T T T T T T

N N N

T T T

T T T

c x c x c z x c x c z x

c c z

x x

c x c x c x

          

 

    

relative costs

.

Relative cost change  
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Optimality criterion 

1.5.4 Theorem 

0

0

1. By moving between neighboring basic feasible 

solutions as introduced above, the objective function 

value is modified by .

2. If 0,  then  is an optimal solution for a 

minimization problem. 

N

t
c

c x





ote that 0 is the optimality criterion for maximization 

problems.

c 

Business Computing and Operations Research 242 

Proof of Theorem 1.5.4 

   

 

0 0

0 0

1

1. Calculate

, since ,

2. Consider an arbitrary solution  and a minimization problem

0

We assume 0 0



            



            

     

    

T T T T T k

N N N t N

T T T T

T T

T T

B B

c x c x c z x c x c x e N k t

x P

A x b x c x c x z x z x

c c x z x

z x c A

 

0 0 0 0

0 0 0

0 0

0

0 :  is optimal

     

        

      

       

T T

T T T T

B B N N

T T T

B B B B

T T

A x π A x π b

π A x z x z x z x

z x c x c x

c x P c x c x x
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Summary 

  0

Assuming an LP Problem is given in standard form, 

i.e., minimize  with respect to 0 .

Furthermore, we assume  and that  is a 

basic feasible solution (bfs). 

We are transforming the p

Tc x x A x b

rank A m x

    



   

1

1

1

roblem by . Denote  as

an  elementary matrix.

We introduce 

0,  and .

B m

B B N m N

T T T

B B

A E

m×m

A A A A ,A E ,A ,

b A b x c c π A







   

      
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Summary 

 

   

   

1

1 1

1

0 0

By multiplying , we get the following equivalent problem:

Minimize ,   s.t. 

B

T

B B

T T T T T T T

T T T T T T

B B

T T T T T T

A

c x A A x A b A x b

c x c x z x z x c z x z x

c z x c A A x π b c z x

π A x c z x z x c z x



 



       

           

           

          

    

   

0 0 0

0 0 0

0T T T T T T T

B B N N B B

T T T T T T T T

B B

z x z x c z x z x c z x

c x c z x c x c z x c x c x

           

             
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3 Cases may occur 

 

0

1 1 0

1 0

0

1. 0  is an optimal solution to 

2. 0 0 The objective function is not bounded 

against 

3. 0 0

If 0 it holds 

Note that there are constellatio

t

t

t T T

t j

T T

c x P

t : c a

t : j : c a x ε P : c x c x . 

λ c x c x

 

    



          

   

ns possible where cases 2 and 3 

apply, simultaneously. Furthermore, it is worth mentioning that 

all results are directly derived from Theorem 1.5.4.
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1.5.5 The Tableau 

 In order to obtain a basic feasible solution, the following 
transformation is conducted 

 This is illustrated by the following tableaus 

 Specifically, the modifications are stepwise done by 
ordinary row transformations, i.e., we produce the matrix 
Em out of A and 0 out of cT for the basis vectors of AB

-1.A 

0 cT 

b A 

-cTx0 

 

 cT = cT-cB
T.AB

-1.A 

  = cT-zT 

b = AB
-1.b A = AB

-1.A 
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The Primal Simplex Algorithm 

1. Transform the primal problem into canonical form, generate equations and a 

minimization objective function. 

2. Initialization with a feasible basic solution to the primal problem. 

3. Are there strictly negative cost coefficients    in the current solution? 

 “Yes”: Iteration 

 Pivot column t: - Largest coefficient rule  
 

  - Smallest subscript rule 

 

  - Largest improvement rule 

 

 If                             , then terminate since the solution space is unbounded.  
 

 Pivot row s:                                                   that is an upper bound on xt. 
 

 Basis change: xt enters the basis and xB(s) becomes a non-basic variable. 

 Apply a linear transformation of the constraint equalities by the Gauß-Jordan algorithm 

to yield a unit vector with ast=1 at the pivot element (i.e., es in column t). Go to step 3. 

 “No”: Termination. An optimal basic solution to the primal problem is found. 

 min 1,..., 0
j

j n c 

 min 0 1,...,
j

c j n  

 min / 1,..., : 0
i it it

b a i m a  

max min : 0 : 0i
j ij j

ij

b
c i a j c

a

    
      

    

c

0 1,...,
it

a i m  
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Calculation with tableaus – Example I.I 

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

Consider the example from the calculation with dictionaries.

Max 5 4 3

s.t.    2 3 1 5

        4 1 2 11

        3 4 2 8

        , , 0

Introducing the slack variabl

x x x z

x x x

x x x

x x x

x x x

     

     

     

     



4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

es , , , we transform the problem.

Min 5 4 3 0 0 0

s.t.    2 3 1 1 0 0 5

        4 1 2 0 1 0 11

        3 4 2 0 0 1 8

       

x x x

x x x x x x z

x x x x x x

x x x x x x

x x x x x x

             

           

           

           

1 2 3 4 5 6
 , , , , , 0x x x x x x 

Business Computing and Operations Research 249 

Calculation with tableaus – Example I.II 

     

3

We commence with the basis 1 4 2 5 3 6 

1 0 0

0 1 0 .  The trivial initial solution is feasible,

0 0 1

and the start tableau is as follows :

0

0 5 4 3 0 0 0 0

5 2 3 1 1 0 0 0

11 4 1 2 0 1 0 5

8 3 4 2 0 0 1 11

8

B

B B B

A E

x

    

 
 

    
 
 




   


  





    5, 4, 3,0,0,0TP c





    




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Calculation with tableaus – Example I.III 

 

 

0 1

Applying the largest coefficient rule, a further improvement is possible.

We try to introduce 1 into the basis

5 8 5111 since min , ,
2 4 3 2

25 7 510 0 0
2 2 2 20 5 4 3 0 0 0

5 3 1 11 0 05 2 3 1 1 0 0
2 2 2 2

11 4 1 2 0 1 0 1

8 3 4 2 0 0 1

t

t

i a



   


  



   

5
2

1
2

  
40 5 0 2 1 0

2
31 1 1 30 0 1

2 2 2 2 2

5 7 5 251 1,0,0,0,1,    0, , , ,0,0    
2 2 2 2 2 2

T Tx P c z





  

  

     
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Calculation with tableaus – Example I.IV 

 

 
 

0 3

Further improvement is possible. We try to introduce 3 into the basis

3 since min 5,1 1

25 7 510 0 0
2 2 2 2 13 0 3 0 1 0 1 1

5 3 1 11 0 0 2 1 2 0 2 0 1 12 2 2 2   
1 0 5 0 2 1 01 0 5 0 2 1 0

1 0 1 1 3 0 2 231 1 10 0 1
2 2 2 2

2,0,1,0,1,0

t

T

t

i a

x



   




 


  

  
 

   

     4 5 6 3

   0,3,0,1,0,1    13

Since 0, the solution is optimal and the total costs are 13.

Furthermore, , , 0,0,0 1,0,1 .

T

T

T T

P c z

c z c x

c c c π E π

  

    

    
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Calculation with tableaus – Example II.I 

   

1 2 3 4 1 2 3 4

1 2 3

1 2 3 4

We consider the following example:

Minimize 2 3 0  with 0

with subject to the restrictions

5

2 3 9

2

We commence with the basis 

1 1
1 1 2 2

2 1
B

x x x x x ,x ,x ,x

x x x

x x x x

m

B B A

      

  

     

 

 
      

 
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Px 





















































0

0

1

4

11101

12014

100011

11101

12014

011010

11101

01115

011010

11101

01115

011010

13129

01115

01320

Calculation with tableaus – Example II.II 
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 

 

0 1 2

4
11 0 0 0 1

1
4 1 0 2 1    0,0,0, 1

0
1 0 1 1 1

0

Further improvement is possible

We try to introduce 4 in the basis 2 since 1 0 1

11 0 0 0 1 10 0 1 1 0

4 1 0 2 1 5 1 1 1 0

1 0 1 1 1 1 0 1 1 1

5

0

0

1

T

t t

x P c

t i a a

x

 
   

      
 

  
 



       

   

 

 



 



    0,1, 1,0TP c



  

 
 



Calculation with tableaus – Example II.III 
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 

 

0 2 1

Further improvement is possible. We try to introduce 

3 in the basis 1 since 1 0 1

10 0 1 1 0 5 1 2 0 0

5 1 1 1 0 5 1 1 1 0

1 0 1 1 1 6 1 2 0 1

0

0
   1, 2,0,0

5

6

Optimal solution with total costs

t t

T

t i a a

x P c



       

  





 
 
    
 
 
 

  5TZ c x  

Calculation with tableaus – Example II.IV 
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