
1

Business Computing and Operations Research 328

3 Computational considerations

 In what follows, we analyze the complexity of the

Simplex algorithm more in detail

 For this purpose, we focus on the update process

in each iteration of this procedure

 Clearly, since, up to now, the illustration of the

algorithm was the primary aim, we updated the

Tableau completely

 However, if we code the algorithm in some

computer language this is not efficient

 Therefore, we introduce the so-called revised

Simplex algorithm

Business Computing and Operations Research 329

3.1 The Revised Simplex Algorithm

 By considering the Simplex Algorithm generated

above, it turns out that we have to update a

complete (m+1)x(n+1) tableau throughout the

calculation process

 Additional analyses, however, show that we can

reduce this effort by keeping a significantly

smaller (m+1)x(m+1) tableau

 Specifically, this is established by making use of

the following scheme

Business Computing and Operations Research 330

Basic observations

 If we commence our calculations with the identity matrix

Em, we finally obtain the inverted matrix of AB

corresponding to a current basis B

 Thus, we start with a zero cost row as the objective

function. This enables us to determine the corresponding

dual solution

 Since c is given as a parameter, we can identify the

relative costs by using a simple transformation

 At iteration l, we denote the considered (m+1)x(m+1)

matrix as CARRY(l)

 In addition, we commence the calculation with CARRY(0)

2

Business Computing and Operations Research 331

Thus, we work with the following tableau

 

 

...

...

... ...

...

...

m

m

m

T

l

B B

b

CARRY
b E

b

Z π
CARRY

A b A 

 
  
 
 

  
  
 
 

1
0

0

1 1

0 0 0 0 0 0

1 0 0 0 0
0 0

0 1 0 0 0

0 0 0 0 1

Business Computing and Operations Research 332

Transformations

 Additionally, we keep track of the basis B, i.e., the

current basic variables that form the current bfs

 In order to carry out the Primal Simplex

Algorithm, the following steps are necessary

T j

j j1. Generate the relative costs c c a one at a time until

we either find a negative - say for j s - value or we terminate

with the cognition that the current solution is optimal already

   



Business Computing and Operations Research 333

Transformations

 

2. Column Generation:

Generate the column Generate the pivot

element with min | ,..., . Clearly,

if does not exist, the problem is unbounded.

3. Update

s s

B

pr
p,s

r,s p,s

a A a

bb
r p m a

a a

r

CA

  

 
 

    
  

1

1 0

   
 to obtain . By making use of

vector , we are able to update and accordingly.

4. Update the basis accordingly. Specifically, we replace

by .

l l

s -

B

RRY CARRY

a A b

B B(r)

s

1

1

3

Business Computing and Operations Research 334

Column generation

 The second step introduces new columns, i.e., a

new alternative in the tableau

 By making use of the inverted matrix of the

current , we can iteratively generate the

columns of the original primal tableau

 In step 3, we apply all updating operations to the

inverted matrix as well as to the left-hand side,

i.e., to bAb B  1

BA

Business Computing and Operations Research 335

Applied to the Two-Phase Method

 Note that applying the Revised Simplex to the Two-Phase
Method comes along with several specifics we must attend to

 First of all, the initial solution coincides with the maximal usage
of the m auxiliary variables (for every row one variable)

 Hence, the inverted matrix is

 In order to commence with correct cost values for the column j
that does not belong to the basis, we determine

 For the second phase, we have to adjust the objective function
row by using

jT
m

i

i,jj aπac  
1

1

BA mE

1T T

B B
π c A   

Business Computing and Operations Research 336

The Revised Primal Simplex Algorithm I

In what follows, we assume that the right hand side b is positive. If this does not

apply we have to use the two-phase method instead

1. Transform the primal problem into canonical form. Generate equations with the

slack variables denoted as x1,…,xm and let xm+1,…,xm+n be the structure

variables. Obtain a minimization objective function.

2. Start with the feasible basic solution to the primal problem given by the slack

variables: Obtain and

3. Search for a pivot column

 If s exists:

 Calculate .

 If , then terminate since the solution space is unbounded.

 Pivot row r: that is an upper bound on xs.

 : min 0T j
j j

s j c c a   

 0
: min / 1,..., : 0

i is is
b a i m a    

1,..., : 0
is

i m a  

, 0Tb b  
1 : , (1) 1, , ()   

B m
A E B B m m

1:s s
B

a A a 

4

Business Computing and Operations Research 337

The Revised Primal Simplex Algorithm II

 Form the elementary matrix

 Basis change (xs enters the basis and xB(r) becomes a non-basic variable)

Calculate and set B(r):=s

 Calculate

 Go to step 3.

 Otherwise (): Termination. An optimal basic solution to the

 primal problem is found.

 1 1
1

Column

1
,..., ,..., with : ,..., : ,..., :

T
T

r m r s ms
r rr mr

rs rs rsr

a a
P e p e p p p p

a a a

 
        

  
  

1 1:
B B

A P A  
1 1: , :T T

B B B
b A b c A    

0 1,...,
j

c j n  

Business Computing and Operations Research 338

Example – Revised Simplex Method

 

 

     

Maximize 4 2 3

4 1 2
,

3 3 3

,

We commence with

min ,

T

B B

x

x x

A ,c ,b

B ,B Z ,π A ,A b b

c s r

 



   
      

   

   
        
   

   
           

   

 
            

 

1 1

3 0

20
0

30

1 0 4 1 2 20
0 0 4 2 3

0 1 3 3 3 30

1 0 20
1 1 2 2 0 0 0

0 1 30

20 30
4 0 4 3 5 1

4 3

Business Computing and Operations Research 339

Example – Revised Simplex Method

   

 1

0

1

1 1 1 1

Column

20 30
min 5 1 1 3, 2 2

4 3

...

1
Assuming as the former basis, we get , with

...

Thus, we h

-

s

rs

m

B B B
rs

r B s

ms

rs

λ , r B B

a

a

B A P A e p e A p
a

a

a

  

 
        

 

 
 

 
 
  
  

       
  

   
 
 
  
 

   

1

1

1 1 1 1
0 0 0 0

1 0 20 54 4 4 4
ave

3 0 1 3 3 3 30 15
1 1 1 1

4 4 4 4

1
0

4
4 0 1 0

3
1

4

B

T T

B B

A b b

π c A





       
            

                    
                       
       

 
 

        
  
 

5

Business Computing and Operations Research 340

Example – Revised Simplex Method

     

   

, , ,

min

,

Thus, we have

B

B

c c c c c s

a A a λ ,

r B B

A





     
                           

     

                                

     








1 2 3 4 5

4 1 4

0

1

1 1 2
0 1 0 1 0 2 1 0 1 3 1 0 1 4

0 3 3

1 10 1 5 15 60 204 4

1 93 93 9 31 4 44 4

2 1 3 2 4

1
1

9

4
0

9

 

,

T T

B

b b

π c

      
        

         
                

      

   
                                

   

 
  

      
   
 

1 12 1 1 1
0

4 36 9 3 9

3 12 4 1 4
1

4 36 9 3 9

1 1 1 1
10

203 9 3 9 3

1 4 1 4 30 20
3

3 9 3 9

1 1 1 1

3 9 3 9
4 2

1 4 1 4

3 9 3

 
 
 

 
 
 
 

42
3 9

9

Business Computing and Operations Research 341

Example – Revised Simplex Method

   

 

   

, , , ,

min

,

Thus, we have

B

c c c c

c s

a A a λ ,

r B B

A



                 
   

         
 

                               

     

1 2 3 4

5

5 1 5

0

1 0
4 4 42 2 20 0 0 0

3 9 3 3 9 90 1

2
42 13 5

3 9 33

1 1 1 10 2023 9 3 3 3 10
1 24 3 21
3 333 9

2 1 3 2 5

 ,

B

T T

B
b b π c



    
      

      
           

     

       
                                   

                    
       

1

1 1 1 11
1

3 9 2 32

3 1 4 1 2
0

2 3 9 2 3

1 1 1 1 1 1 1 1

20 02 3 2 3 2 3 2 3 14 3
1 2 1 2 30 10 1 2 1 2

2 3 2 3 2 3 2 3

 2
2 3

Business Computing and Operations Research 342

Example – Revised Simplex Method

   

 

   

, , ,

,

, , , , are optimalT T

T T

c c c

c c

x π

c x b π

                 
   

        
 



   

    

1 2 3

4 5

1 0
1 2 1 1 2 20 0 0
2 3 2 2 3 30 1

1 11 22 0
2 3 3 2

1 20 0 0 0 10
2 3

30

6

Business Computing and Operations Research 343

3.2 Analyzing the complexity

 Clearly, at first glance, you would assume that the main

complexity effect of the revised simplex algorithm is from

the fact that it’s application reduces the values to be

updated from an (m+1)x(n+1) tableau to a (m+1)x(m+1)

matrix

 However, we have to generate the reduced costs by

iteratively computing 𝜋𝑇𝐴𝑗 for a considered non-basic

column. Thus, if we have to do this for all these non-basic

columns this requires 𝑚 ∙ (𝑛 − 𝑚) multiplications

 But this is not significantly less than the number of

multiplications needed to update the tableau in the

ordinary simplex method!

Business Computing and Operations Research 344

Positive effect of the revised simplex

 The practical complexity reducing effect of the revised

simplex are somewhat more subtle but significant

nonetheless

 First, it is quite likely that we need not compute the

relative costs of every non-basic column if we (for

instance) always take the first column with negative costs

(improving alternative) (e.g. rule of Bland)

 This significantly reduces on the average the

computational effort to some fraction

 This fraction is determined by the average number of

columns that must be examined until one with negative

relative cost is identified

Business Computing and Operations Research 345

Positive effect of the revised simplex

 Second, each pricing operation (i.e., the calculation of the

reduced cost value 𝜋𝑇𝐴𝑗 for a considered column j) uses

the column 𝐴𝑗 of the original Tableau

 We will see in many practical applications in

Combinatorial Optimization these matrices are often very

sparse (many zero entries)

 Thus, the necessary prizing computations can be performed very

efficiently

 Moreover, the original matrix can be stored in a very compact way

7

Business Computing and Operations Research 346

Further refinement

 Bearing these ideas in mind, we can alternatively store

the inverse basis matrix in product form and not as an

(m+1)x(m+1) matrix.

 Each pivot operation can be represented as a

multiplication with a matrix P that equals the (m+1)x(m+1)

identity matrix except for column r that contains the vector
1,

,

2,

,

,

,

,

1,

,

...

1

...

s

r s

s

r s

r s

m s

r s

m s

r s

x

x

x

x

x

x

x

x

x





 
 
 
 
 
 
 
 
 

  
 
 
 
 

 
 
 

 
 

rth row

Business Computing and Operations Research 347

Update at any stage l

 By using the current vector η, we can efficiently generate

all matrices P𝑙 and generate

𝐶𝐴𝑅𝑅𝑌(𝑙) = 𝑃𝑙 ∙ 𝑃𝑙−1 ∙ ⋯ ∙ 𝑃1 ∙ 𝐶𝐴𝑅𝑅𝑌 0

 Moreover, due to the current vector η, the matrix P𝑙 can

be stored very efficiently

 However, if the sequence of η becomes too long, it can be

replaced by a shorter sequence

 This replacement process is denoted as reinversion

 It generates an equivalent but shorter sequence of pivots to attain

the current basis

 Such techniques can greatly reduce the storage and time required

to perform the simplex algorithm, especially if special attention is

paid to reducing the number of nonzero elements in the η-

sequence (see Orchard-Hays (1968) or Lasdon (1970)).

Business Computing and Operations Research 348

3.3 Solving the Max Flow Problem

 In anticipation of the applications that are

considered in the Sections 6 and 7 where we

introduce and consider the Shortest Path

Problem and the Max Flow Problem, in what

follows, we show an interesting application of the

revised simplex procedure

 Both applications are network problems that can

be formulated as Linear Programs and the

constraint matrix can be derived directly from the

graph underlying the problem

8

Business Computing and Operations Research 349

The Max Flow Problem

3.3.1 Definition

Given a flow network 𝑁 = 𝑠, 𝑡, 𝑉, 𝐸, 𝑏 with 𝑛 = 𝑉 nodes

and 𝑚 = 𝐸 arcs, an instance of the Max Flow Problem

(MFP) is defined as the optimization problem of finding a

flow 𝑓 ∈ 𝐼𝑅𝑚 on each edge with maximal value v from the

single source node s to the single terminal node t. On each

edge, this flow has to be lower or equal to the capacity

vector 𝑏 ∈ 𝐼𝑅𝑚.

Business Computing and Operations Research 350

Specific problem definition

 We now formulate this problem as an LP in a

somewhat surprising way

 Since the arcs are numbered by e1,…,em, we

introduce C1,…,Cp as a complete enumeration of

every chain (i.e., path) from s to t

 As known from the revised simplex algorithm

introduced above, the theoretical Linear Program

covers m rows and p columns but the considered

LP in each step will comprise only m columns

Business Computing and Operations Research 351

Arc-chain incidence matrix D=[di,j]

    ,

1 if e
1,..., : 1,..., :

0 otherwise
i j

i j

C
i m j p d


     



 In order to unambiguously define possible paths, we

determine the so-called arc-chain incidence matrix as

follows:

 The capacity constraints are given by:

 The objective function pursues the maximization of all the

flows in all defined chains, i.e.,

 with

D f b 

min Tc f

 1, ... , 1c   

9

Business Computing and Operations Research 352

Complete Linear program

 Thus, we obtain the following LP

 By introducing a slack vector 𝑠 ∈ 𝐼𝑅𝑚, we transform this

LP into standard form and extend the respective vectors

as follows

 This leads to the LP

min

s.t. 0

Tc f

D f b f



   

         ˆ ˆˆFlow vector: , cost vector 1 0 , and mf f s c c D D E

ˆˆmin z=

ˆ ˆˆs.t. 0 0

Tc f

D f b f f



     

Business Computing and Operations Research 353

Consequences

 Clearly, each slack variable si represents the

difference between the flow in arc i and the

capacity bi, with i=1,…,m

 We now apply the revised simplex algorithm

 Fortunately, we do not have to apply the two-phase

method since this problem is solvable with the trivial

solution 𝑓 = 0, 𝑠 = 𝑏 that represents the zero flow

 The criterion for a new column to enter the basis are

negative reduced costs, given by

 Dj is the jth column of the arc-chain incidence matrix D

  


            
Since 1 for all
structure variables

0 1 0 1
j

T T T
j j j j j

c

c c D D D

Business Computing and Operations Research 354

Consequences

 Clearly, −𝜋𝑇 ∙ 𝐷𝑗 is the cost of the chain/path 𝐶𝑗

under the weight vector −𝜋

 In order to find a profitable column, we need to find

the shortest chain from s to t under the weight

vector −𝜋 that weights less than 1

 If that shortest chain/path, say 𝐶𝑗, has cost no less than 1,

then the optimality criterion is satisfied

 If not, we introduce 𝐶𝑗 into the basis

 The calculation therefore requires only the

maintenance of an (m+1)x(m+1) CARRY matrix and

the repeated solution of the shortest-path problem

10

Business Computing and Operations Research 355

Max Flow Problem – Example

s t

b1=1 b2=1

b3=1 b4=1

b5=1
e1

e2

e3 e4

e5

Business Computing and Operations Research 356

The matrix CARRY(0)

-z=0 0 0 0 0 0

s1=1 1

s2=1 1

s3=1 1

s4=1 1

s5=1 1

• The initial dual solution is zero, i.e., π=0, and therefore, the initial weights

are zero

• Hence, each path from s to t is minimal and has the length 0<1

• Therefore, it is a candidate to be integrated into the basis

• In what follows, we will determine a chain/path 𝐶1

Dual solution 𝑐𝑗 − 𝜋𝑇 ∙ 𝐴 = 0 − 𝜋𝑇 ∙ 𝐸 = −𝜋𝑇

Business Computing and Operations Research 357

Max Flow Problem – path selection

s t
e1

e2

e3 e4

e5

• We introduce a shortest chain (of length zero) into the basis

• In order to complicate the computations a little bit, we start with a chain/path

that is not in the optimal solution

• Specifically, we introduce the chain/path 𝐶1 = 𝑒1, 𝑒5, 𝑒4 .

• This is illustrated below

11

Business Computing and Operations Research 358

Introducing C1

 The corresponding column is 𝐵−1 ∙ 𝐶1= 𝐶1 =

 We update the current CARRY(1) matrix

-1

1

0

0

1

1

-z=1 1 0 0 0 0

C1=1 1

s2=1 1

s3=1 1

s4=0 -1 1

s5=0 -1 1

-z=0 0 0 0 0 0

s1=1 1

s2=1 1

s3=1 1

s4=1 1

s5=1 1

Dual solution 𝑐𝑗 − 𝜋𝑇 ∙ 𝐴 = 0 − 𝜋𝑇 ∙ 𝐸 = −𝜋𝑇

Business Computing and Operations Research 359

Max Flow Problem – path selection

• We again introduce a shortest chain (of length zero) into

the basis

• Now, we introduce the chain/path 𝐶2 = 𝑒3 𝑒4 .

• This is illustrated below

s t

c1=1 c2=0

c3=0 c4=0

c5=0
e1

e2

e3 e4

e5

Business Computing and Operations Research 360

Introducing C2

 The column 𝐶2 is and we have 𝐵−1 ∙ 𝐶2=

 We update the current CARRY(2) matrix

-1

0

0

1

1

0

-z=1 0 0 0 1 0

C1=1 1

s2=1 1

s3=1 1 1 -1

C2=0 -1 1

s5=0 -1 1

-z=1 1 0 0 0 0

C1=1 1

s2=1 1

s3=1 1

s4=0 -1 1

s5=0 -1 1

1 T
j jc D   

-1

0

0

1

1

0

Dual solution 𝑐𝑗 − 𝜋𝑇 ∙ 𝐴 = 0 − 𝜋𝑇 ∙ 𝐸 = −𝜋𝑇

12

Business Computing and Operations Research 361

Max Flow Problem – path selection

• We again introduce a shortest chain (of length zero) into

the basis

• Now, we introduce the chain/path 𝐶3 = 𝑒1 𝑒2 .

• This is illustrated below

s t

c1=0 c2=0

c3=0 c4=1

c5=0
e1

e2

e3 e4

e5

Business Computing and Operations Research 362

Introducing C3

 The column 𝐶3 is and we have 𝐵−1 ∙ 𝐶3=

 We update the current CARRY(3) matrix

-1

1

1

0

0

0

-z=2 0 1 0 1 0

C1=0 1 -1

C3=1 1

s3=0 1 -1 1 -1

C2=1 -1 1 1

s5=1 -1 1 1

-z=1 0 0 0 1 0

C1=1 1

s2=1 1

s3=1 1 1 -1

C2=0 -1 1

s5=0 -1 1

1 T
j jc D   

-1

1

1

1

-1

-1

Dual solution 𝑐𝑗 − 𝜋𝑇 ∙ 𝐴 = 0 − 𝜋𝑇 ∙ 𝐸 = −𝜋𝑇

Business Computing and Operations Research 363

Max Flow Problem – path selection

• No zero chain/path exists between s and t

• Hence, an optimal solution with maximal flow 2 is found

• It comprises the paths 𝐶2 = 𝑒3 𝑒4 and 𝐶3 = 𝑒1 𝑒2

s t

c1=0 c2=1

c3=0 c4=1

c5=0
e1

e2

e3 e4

e5

13

Business Computing and Operations Research 364

Alternatively introducing C3

 The column 𝐶3 is and we have 𝐵−1 ∙ 𝐶3=

 We update the current CARRY(3) matrix

-1

1

1

0

0

0

-z=2 1 0 0 1 0

C3=1 1

s2=0 -1 1

s3=0 1 -1

C2=1 1

s5=1 1

-z=1 0 0 0 1 0

C1=1 1

s2=1 1

s3=1 1 1 -1

C2=0 -1 1

s5=0 -1 1

1 T
j jc D   

-1

1

1

1

-1

-1

Dual solution 𝑐𝑗 − 𝜋𝑇 ∙ 𝐴 = 0 − 𝜋𝑇 ∙ 𝐸 = −𝜋𝑇

Business Computing and Operations Research 365

Max Flow Problem – path selection

• No zero chain/path exists between s and t

• Hence, an optimal solution with maximal flow 2 is found

• It comprises the paths 𝐶2 = 𝑒3 𝑒4 and 𝐶3 = 𝑒1 𝑒2

s t

c1=1 c2=0

c3=0 c4=1

c5=0
e1

e2

e3 e4

e5

Business Computing and Operations Research 366

3.4 The Dantzig-Wolfe Decomposition

 It often happens that a large linear program is actually a

collection of smaller linear programs that are largely

independent of each other

 Therefore, the revised simplex algorithm allows us to

decompose the entire problem into smaller master- and

subproblems

 The “communication” between these problems can be

directly derived from the revised simplex

 Thanks to this decomposition, problems that may become

too large to be solved efficiently (e.g., due to space

requirements) can be solved very fast

14

Business Computing and Operations Research 367

Structure of the LP

 We analyze the entire LP with two subproblems

 This leads to the following scheme of a matrix

 With variables 𝑥 ∈ 𝐼𝑅𝑛1 corresponding to the first

𝑛1 columns and 𝑦 ∈ 𝐼𝑅𝑛2 corresponding to the next

𝑛2 columns

n1 columns n2 columns

D F
m0 rows

A 0
m1 rows

0 B
m2 rows

Business Computing and Operations Research 368

The complete LP

0

1

2

0

min

s.t.

, 0

We denote the equations the coupling equations

The succeeding sets of rows are the subproblems and

T Tz c x d y

D x F y b

A x b

B y o

x y

m

A B

   

   

 

 



Business Computing and Operations Research 369

The subproblem A

1

0

A x b

x

 



 We consider the constraints of subproblem A, i.e.,

 By Theorem 1.3.19, we know that any feasible point in

this subproblem can be written as a convex combination
of edge points. We denote these points as 𝑥1, … , 𝑥𝑝, with

   
 

      
1 1

 where 1,..., : 0 and 1
p p

j j j j
j j

x x j p

15

Business Computing and Operations Research 370

Analogously: The subproblem B

 



2

0

B y o

y

 We consider the constraints of subproblem B, i.e.,

 By Theorem 1.3.19, we know that any feasible point in

this subproblem can be written as a convex combination
of edge points. We denote these points as 𝑦1, … , 𝑦𝑞, with

   
 

      
1 1

 where 1,..., : 0 and 1
q q

j j j j
j j

y y j q

Business Computing and Operations Research 371

Modified structure of the LP

 We replace x and y by their derived representations

 This leads to the following modified scheme (in what

follows, denoted as the master problem)

 Costs

Variables

𝜆1,…, 𝜆𝑝 𝜇1,…, 𝜇𝑞 Right hand side Dimensions

𝐷𝑥1,…, 𝐷𝑥𝑝 𝐹𝑦1,…, 𝐹𝑦𝑞 𝑏0 m0 rows

1,…,1 0,…,0 1 1 row

0,…,0 1,…,1 1 1 row

 

   

 

     

   

 
1 1

min

while , 0 are the new variables

p q
T T

j j j j
j j

p q

z c x d y

IR IR

Business Computing and Operations Research 372

Consequences

 Due to the transformation, we may obtain an astronomical

number of columns, one for each vertex of each of the two

subproblems

 However, the number of rows is significantly reduced from

𝑚0 + 𝑚1 + 𝑚2 to 𝑚0 +2

 Furthermore, the revised simplex method can be applied with

a CARRY matrix of size 𝑚0 + 3 × 𝑚0 + 3

 Hence, much larger instances may fit into fast-access

storage

 Size of CARRY: 𝑚0 + 3 × 𝑚0 + 3 instead of

𝑚0 + 𝑚1 + 𝑚2 + 1 × 𝑚0 + 𝑚1 + 𝑚2 + 1

 If, for instance, it holds that 𝑚0= 𝑚1 = 𝑚2 = 𝑚, we have 𝑚 + 3 2

instead of 3 ∙ 𝑚 + 1 2, i.e., almost a factor of 32=9

16

Business Computing and Operations Research 373

Applying the revised simplex

 In the first row, we have the prices (reduced costs)

 This is a partitioned vector 𝜋, 𝛼, 𝛽 where 𝜋 ∈
𝐼𝑅𝑚0 corresponds to the first 𝑚0 rows and 𝛼, 𝛽 ∈ 𝐼𝑅 to the

next two rows of the master problem, respectively

 The reduced costs of the 𝜆𝑗-column are given by

 Hence, the criterion for a column to be brought into the

current basis is

     

 
 

         
 
  

, , 1

0

j

T T T
j j j j

D x

c c x c x D x

              0T T T T
j j j jc x D x c x D x

Business Computing and Operations Research 374

Pricing problem A

 If holds for any vertex of Subproblem A,

we have found a profitable column among the first p

columns

 However, since an exhaustive exploration of the total

number of possible columns (i.e., for each possible vertex

of Subproblem A) would be impractical, we pursue the

finding of the optimal vertex of the following LP

 Thus, the pricing problem is

     T T
j jc x D x

         all vertices of Subprobelm min
j

T T T T
x A j j jc x D x c D x

   

   1

min

s.t. 0

T Tc D x

A x b x

Business Computing and Operations Research 375

Pricing problem A

 If the objective function value of the optimal solution is

lower than α the resulting column can be introduced into

the basis

 Hence, the master problem integrates the new column into the

basis and, therefore, updates the current solution

 The newly attained solution results in a new price vector sent to

subproblem A

 Otherwise, no further improvement is possible and the

solution of the master problem is kept unchanged

according to the input of Subproblem A

17

Business Computing and Operations Research 376

Pricing problem B

 Similarly, we can determine if there is a favorable column

among the last q columns by solving

 and comparing the attained minimum cost to β, by an

argument analogous to that surrounding the pricing

problem A

   

   2

min

s.t. 0

T Td F y

B y b y

Business Computing and Operations Research 377

Procedure decomposition

opt := 'no'

set up CARRY with zero row (π, α, β);

while opt = 'no' do

begin solve the LP

min 𝑐𝑇 − 𝜋𝑇𝐷 ∙ 𝑥 = 𝑧0 s. t. 𝐴𝑥 = 𝑏1, 𝑥 ≥ 0

if 𝑍0 < 𝛼

 then generate the column corresponding to the solution with this cost,

 and pivot in CARRY

 else begin solve the LP

 min 𝑑𝑇 − 𝜋𝑇𝐹 ∙ 𝑦 = 𝑧0 s. t. 𝐵𝑦 = 𝑏2, 𝑦 ≥ 0

 if 𝑍0 < 𝛽

 then generate the column corresponding to the

 solution with this cost, and pivot in CARRY

 else opt := 'yes'

 end

end

Business Computing and Operations Research 378

Summary

We verbally sum up the operations of the decomposition method:

 After being solved, the master problem, based on its overall view of

the entire situation, sends a price to subproblem A

 This subproblem A then responds with a solution (a proposal) for

possibly improving the overall problem, based on its local information

and the price

 The master problem then weighs the cost (𝑍0) of this proposal against

its criterion α for subproblem A

 If the proposal is cheaper than α, it is implemented by bringing it into the basis.

This results in an update of the current solution (and prices)

 If not, subproblem B is sent a price vector and asked for a proposal.

 As long as a subproblem can produce a favorable proposal, the

master problem can find a favorable pivot

 When neither subproblem can come up with a favorable proposal, we

have reached an optimal solution of the entire problem

18

Business Computing and Operations Research 379

Conclusions

 What we have done for two subproblems can clearly be

done for any number of subproblems, in which case the

constraint matrix will take the form shown below

…

m0 rows

m1 rows

m2 rows

mr rows

A1

A2

Ar

Business Computing and Operations Research 380

An illustrative example

 A little arithmetic shows the effectiveness of the approach in size

reduction of the mapped problems

 Suppose we have 100 subproblems, each with 100 rows, and 100

coupling equations. Then the original problem has 10,100 rows

 CARRY has 10,101 x 10,101 entries, i.e., approximately 108

entries. May be too many for the working memory of a computer

 The master problem has a CARRY with 201 x 201 entries. These

are approximately 4 x 104 entries, which is practical to store in the

fast memory of any reasonably large computer

 All in all, the clear advantage of the decomposition algorithm is its

effect on the space requirements

 Note that it cannot be said much about the time requirements,

because we do not know how many times the subproblems must be

solved before optimality is reached

Business Computing and Operations Research 381

Additional literature to Section 3

 Beale, E.M.L. (1968): Mathematical Programming in Practice. John

Wiley & Sons, Inc., New York.

 Dantzig, G.B., Orden, A., and Wolfe, P. (1955): The generalized

simplex method for minimizing a linear form under linear inequality

restraints. Pacific Journal of Mathematics 5, 183–195.

 Dantzig, G.B., Wolfe, P. (1960): "Decomposition Principle for Linear

Programming“. Operations Research, 8(1), 101-11.

 Dantzig, G.B. (1963): Linear Programming and Extensions. Princeton

University Press, Princeton, N.J.

 Orchard/Hays, W. (1968): Advanced Linear-Programming Computing

Techniques. McGraw-Hill Book Company, New York.

 Lasdon, L.S. (1970): Optimization Theory for Large Systems. London:

MacMillan, Inc.

