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3 Computational considerations 

 In what follows, we analyze the complexity of the 

Simplex algorithm more in detail 

 For this purpose, we focus on the update process 

in each iteration of this procedure 

 Clearly, since, up to now, the illustration of the 

algorithm was the primary aim, we updated the 

Tableau completely  

 However, if we code the algorithm in some 

computer language this is not efficient 

 Therefore, we introduce the so-called revised 

Simplex algorithm 
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3.1 The Revised Simplex Algorithm 

 By considering the Simplex Algorithm generated 

above, it turns out that we have to update a 

complete (m+1)x(n+1) tableau throughout the 

calculation process 

 Additional analyses, however, show that we can 

reduce this effort by keeping a significantly 

smaller (m+1)x(m+1) tableau  

 Specifically, this is established by making use of 

the following scheme 

Business Computing and Operations Research 330 

Basic observations 

 If we commence our calculations with the identity matrix 

Em, we finally obtain the inverted matrix of AB 

corresponding to a current basis B 

 Thus, we start with a zero cost row as the objective 

function. This enables us to determine the corresponding 

dual solution 

 Since c is given as a parameter, we can identify the 

relative costs by using a simple transformation 

 At iteration l, we denote the considered (m+1)x(m+1) 

matrix as CARRY(l)   

 In addition, we commence the calculation with CARRY(0) 
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Thus, we work with the following tableau 

 

 

...

...

... ...

... ... ... ... ...

...

m

m

m

T

l

B B

b

CARRY
b E

b

Z π
CARRY

A b A 

 
  
 
 

  
  
 
 

1
0

0

1 1

0 0 0 0 0 0

1 0 0 0 0
0 0

0 1 0 0 0

0 0 0 0 1
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Transformations 

 Additionally, we keep track of the basis B, i.e., the 

current basic variables that form the current bfs 

 In order to carry out the Primal Simplex 

Algorithm, the following steps are necessary 

T j

j j1.  Generate the relative costs c c a  one at a time until 

we either find a negative -  say for j s -  value or we terminate 

with the cognition that the current solution is optimal already

   


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Transformations 

 

2.  Column Generation:

Generate the column Generate the pivot 

element  with min | ,..., . Clearly, 

if  does not exist, the problem is unbounded.

3.  Update 

s s

B

pr
p,s

r,s p,s

a A a

bb
r p m a

a a

r

CA

  

 
 

    
  

1

1 0

   
 to obtain . By making use of 

vector , we are able to update  and  accordingly.

4.  Update the basis  accordingly. Specifically, we replace 

by .

l l

s -

B

RRY CARRY

a A b

B B(r) 

s

1

1
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Column generation 

 The second step introduces new columns, i.e., a 

new alternative in the tableau 

 By making use of the inverted matrix of the 

current     , we can iteratively generate the 

columns of the original primal tableau 

 In step 3, we apply all updating operations to the 

inverted matrix as well as to the left-hand side, 

i.e., to  bAb B  1

BA
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Applied to the Two-Phase Method 

 Note that applying the Revised Simplex to the Two-Phase 
Method comes along with several specifics we must attend to 

 First of all, the initial solution coincides with the maximal usage 
of the m auxiliary variables (for every row one variable) 

 Hence, the inverted matrix       is  

 In order to commence with correct cost values for the column j 
that does not belong to the basis, we determine 

 

 

 

 For the second phase, we have to adjust the objective function 
row by using 

jT
m

i

i,jj aπac  
1

1

BA mE

1T T

B B
π c A   
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The Revised Primal Simplex Algorithm I 

In what follows, we assume that the right hand side b is positive. If this does not 

apply we have to use the two-phase method instead 

 

1. Transform the primal problem into canonical form. Generate equations with the 

slack variables denoted as x1,…,xm and let xm+1,…,xm+n be the structure 

variables. Obtain a minimization objective function. 

 

2. Start with  the  feasible basic solution to the primal problem given by the slack 

variables: Obtain                       and                             

 

3. Search for a pivot column  

      If s exists: 

 Calculate                    . 

 If                              , then terminate since the solution space is unbounded. 
  

 Pivot row r:                                                         that is an upper bound on xs. 

 

 : min 0T j
j j

s j c c a   

 0
: min / 1,..., : 0

i is is
b a i m a    

1,..., : 0
is

i m a  

, 0Tb b  
1 : , (1) 1, , ( )   

B m
A E B B m m

1:s s
B

a A a 
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The Revised Primal Simplex Algorithm II 

 Form the elementary matrix  

 

 

 Basis change (xs enters the basis and xB(r) becomes a non-basic variable) 

Calculate                       and set B(r):=s 

 Calculate   

 Go to step 3. 

 Otherwise (                           ): Termination. An optimal basic solution to the  
 

 primal problem is found. 

 1 1
1

Column 

1
,..., ,...,  with : ,..., : ,..., :

T
T

r m r s ms
r rr mr

rs rs rsr

a a
P e p e p p p p

a a a

 
        

  
  

1 1:
B B

A P A  
1 1: , :T T

B B B
b A b c A    

0 1,...,
j

c j n  
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Example – Revised Simplex Method 

 

 

     

Maximize 4 2 3

4 1 2
,

3 3 3

,

We commence with

min ,

T

B B

x

x x

A ,c ,b

B ,B Z ,π A ,A b b

c s r

 



   
      

   

   
        
   

   
           

   

 
            

 

1 1

3 0

20
0

30

1 0 4 1 2 20
0 0 4 2 3

0 1 3 3 3 30

1 0 20
1 1 2 2 0 0 0

0 1 30

20 30
4 0 4 3 5 1

4 3
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Example – Revised Simplex Method 

   

 1
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1 1 1 1
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a
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B
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Example – Revised Simplex Method 

     

   

, , ,

min

,

Thus, we have 

B

B

c c c c c s

a A a λ ,

r B B

A





     
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     

                                
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0 1 0 1 0 2 1 0 1 3 1 0 1 4

0 3 3

1 10 1 5 15 60 204 4

1 93 93 9 31 4 44 4

2 1 3 2 4

1
1

9

4
0

9

 

,

T T

B

b b

π c

      
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   
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 
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Example – Revised Simplex Method 

   

 

   

, , , ,

min

,

Thus, we have 

B

c c c c

c s

a A a λ ,

r B B
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

                 
   

         
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           
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Example – Revised Simplex Method 

   
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   
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3.2 Analyzing the complexity 

 Clearly, at first glance, you would assume that the main 

complexity effect of the revised simplex algorithm is from 

the fact that it’s application reduces the values to be 

updated from an (m+1)x(n+1) tableau to a (m+1)x(m+1) 

matrix 

 However, we have to generate the reduced costs by 

iteratively computing 𝜋𝑇𝐴𝑗 for a considered non-basic 

column. Thus, if we have to do this for all these non-basic 

columns this requires 𝑚 ∙ (𝑛 − 𝑚) multiplications 

 But this is not significantly less than the number of 

multiplications needed to update the tableau in the 

ordinary simplex method! 
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Positive effect of the revised simplex 

 The practical complexity reducing effect of the revised 

simplex are somewhat more subtle but significant 

nonetheless 

 First, it is quite likely that we need not compute the 

relative costs of every non-basic column if we (for 

instance) always take the first column with negative costs 

(improving alternative) (e.g. rule of Bland) 

 This significantly reduces on the average the 

computational effort to some fraction  

 This fraction is determined by the average number of 

columns that must be examined until one with negative 

relative cost is identified 
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Positive effect of the revised simplex 

 Second, each pricing operation (i.e., the calculation of the 

reduced cost value 𝜋𝑇𝐴𝑗 for a considered column j) uses 

the column 𝐴𝑗 of the original Tableau 

 We will see in many practical applications in 

Combinatorial Optimization these matrices are often very 

sparse (many zero entries) 

 Thus, the necessary prizing computations can be performed very 

efficiently 

 Moreover, the original matrix can be stored in a very compact way  
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Further refinement 

 Bearing these ideas in mind, we can alternatively store 

the inverse basis matrix in product form and not as an 

(m+1)x(m+1) matrix. 

 Each pivot operation can be represented as a 

multiplication with a matrix P that equals the (m+1)x(m+1) 

identity matrix except for column r that contains the vector 
1,

,

2,

,

,

,

,

1,

,

...

1

...

s

r s

s

r s

r s

m s

r s

m s

r s

x

x

x

x

x

x

x

x

x





 
 
 
 
 
 
 
 
 

  
 
 
 
 

 
 
 

 
 

rth row 
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Update at any stage l 

 By using the current vector η, we can efficiently generate 

all matrices P𝑙 and generate  

𝐶𝐴𝑅𝑅𝑌(𝑙) = 𝑃𝑙 ∙ 𝑃𝑙−1 ∙ ⋯ ∙ 𝑃1 ∙ 𝐶𝐴𝑅𝑅𝑌 0  

 Moreover, due to the current vector η, the matrix P𝑙 can 

be stored very efficiently 

 However, if the sequence of η becomes too long, it can be 

replaced by a shorter sequence 

 This replacement process is denoted as reinversion 

 It generates an equivalent but shorter sequence of pivots to attain 

the current basis 

 Such techniques can greatly reduce the storage and time required 

to perform the simplex algorithm, especially if special attention is 

paid to reducing the number of nonzero elements in the η-

sequence (see Orchard-Hays (1968) or Lasdon (1970)). 
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3.3 Solving the Max Flow Problem 

 In anticipation of the applications that are 

considered in the Sections 6 and 7 where we 

introduce and consider the Shortest Path 

Problem and the Max Flow Problem, in what 

follows, we show an interesting application of the 

revised simplex procedure 

 Both applications are network problems that can 

be formulated as Linear Programs and the 

constraint matrix can be derived directly from the 

graph underlying the problem 
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The Max Flow Problem 

3.3.1 Definition 

Given a flow network 𝑁 = 𝑠, 𝑡, 𝑉, 𝐸, 𝑏  with 𝑛 = 𝑉  nodes 

and 𝑚 = 𝐸  arcs, an instance of the Max Flow Problem 

(MFP) is defined as the optimization problem of finding a 

flow 𝑓 ∈ 𝐼𝑅𝑚 on each edge with maximal value v from the 

single source node s to the single terminal node t. On each 

edge, this flow has to be lower or equal to the capacity 

vector 𝑏 ∈ 𝐼𝑅𝑚. 
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Specific problem definition 

 We now formulate this problem as an LP in a 

somewhat surprising way 

 Since the arcs are numbered by e1,…,em, we 

introduce C1,…,Cp as a complete enumeration of 

every chain (i.e., path) from s to t  

 As known from the revised simplex algorithm 

introduced above, the theoretical Linear Program 

covers m rows and p columns but the considered 

LP in each step will comprise only m columns 
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Arc-chain incidence matrix D=[di,j] 

    ,

1      if e
1,..., : 1,..., :

0   otherwise
i j

i j

C
i m j p d


     



 In order to unambiguously define possible paths, we 

determine the so-called arc-chain incidence matrix as 

follows:  

 

 

 The capacity constraints are given by: 

 

 The objective function pursues the maximization of all the 

flows in all defined chains, i.e.,  

 

 

 with  

D f b 

min Tc f

 1, ... , 1c   



9 

Business Computing and Operations Research 352 

Complete Linear program 

 Thus, we obtain the following LP 

 

 

 

 By introducing a slack vector 𝑠 ∈ 𝐼𝑅𝑚, we transform this 

LP into standard form and extend the respective vectors 

as follows 

 

 

 This leads to the LP 

min 

s.t. 0

Tc f

D f b f



   

         ˆ ˆˆFlow vector: ,  cost vector 1 0 ,  and mf f s c c D D E

ˆˆmin z=

ˆ ˆˆs.t. 0 0

Tc f

D f b f f



     
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Consequences 

 Clearly, each slack variable si represents the 

difference between the flow in arc i and the 

capacity bi, with i=1,…,m 

 We now apply the revised simplex algorithm 

 Fortunately, we do not have to apply the two-phase 

method since this problem is solvable with the trivial 

solution 𝑓 = 0, 𝑠 = 𝑏 that represents the zero flow 

 The criterion for a new column to enter the basis are 

negative reduced costs, given by 

 

 

 Dj is the jth column of the arc-chain incidence matrix D  

 

  


            
Since 1 for all 
structure variables

0 1 0 1
j

T T T
j j j j j

c

c c D D D
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Consequences 

 Clearly, −𝜋𝑇 ∙ 𝐷𝑗  is the cost of the chain/path 𝐶𝑗 

under the weight vector −𝜋 

 In order to find a profitable column, we need to find 

the shortest chain from s to t under the weight 

vector −𝜋 that weights less than 1 

 If that shortest chain/path, say 𝐶𝑗, has cost no less than 1, 

then the optimality criterion is satisfied 

 If not, we introduce 𝐶𝑗 into the basis 

 The calculation therefore requires only the 

maintenance of an (m+1)x(m+1) CARRY matrix and 

the repeated solution of the shortest-path problem 
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Max Flow Problem – Example 

s t 

b1=1 b2=1 

b3=1 b4=1 

b5=1 
e1 

e2 

e3 e4 

e5 
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The matrix CARRY(0) 

-z=0 0 0 0 0 0 

s1=1 1 

s2=1 1 

s3=1 1 

s4=1 1 

s5=1 1 

• The initial dual solution is zero, i.e., π=0, and therefore, the initial weights 

are zero 

• Hence, each path from s to t is minimal and has the length 0<1 

• Therefore, it is a candidate to be integrated into the basis 

• In what follows, we will determine a chain/path 𝐶1 

Dual solution 𝑐𝑗 − 𝜋𝑇 ∙ 𝐴 = 0 − 𝜋𝑇 ∙ 𝐸 = −𝜋𝑇 
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Max Flow Problem – path selection 

s t 
e1 

e2 

e3 e4 

e5 

• We introduce a shortest chain (of length zero) into the basis 

• In order to complicate the computations a little bit, we start with a chain/path 

that is not in the optimal solution 

• Specifically, we introduce the chain/path 𝐶1 = 𝑒1, 𝑒5, 𝑒4 . 

• This is illustrated below 
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Introducing C1 

 

 

 The corresponding column is 𝐵−1 ∙ 𝐶1= 𝐶1 =  

 

 We update the current CARRY(1) matrix  

-1 

1 

0 

0 

1 

1 

-z=1 1 0 0 0 0 

C1=1 1 

s2=1 1 

s3=1 1 

s4=0 -1 1 

s5=0 -1 1 

-z=0 0 0 0 0 0 

s1=1 1 

s2=1 1 

s3=1 1 

s4=1 1 

s5=1 1 

Dual solution 𝑐𝑗 − 𝜋𝑇 ∙ 𝐴 = 0 − 𝜋𝑇 ∙ 𝐸 = −𝜋𝑇 
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Max Flow Problem – path selection 

• We again introduce a shortest chain (of length zero) into 

the basis 

• Now, we introduce the chain/path 𝐶2 = 𝑒3 𝑒4 . 

• This is illustrated below 

s t 

c1=1 c2=0 

c3=0 c4=0 

c5=0 
e1 

e2 

e3 e4 

e5 
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Introducing C2 

 The column 𝐶2 is           and we have 𝐵−1 ∙ 𝐶2= 

 

 

 

 We update the current CARRY(2) matrix  

-1 

0 

0 

1 

1 

0 

-z=1 0 0 0 1 0 

C1=1 1 

s2=1 1 

s3=1 1 1 -1 

C2=0 -1 1 

s5=0 -1 1 

-z=1 1 0 0 0 0 

C1=1 1 

s2=1 1 

s3=1 1 

s4=0 -1 1 

s5=0 -1 1 

1 T
j jc D   

-1 

0 

0 

1 

1 

0 

Dual solution 𝑐𝑗 − 𝜋𝑇 ∙ 𝐴 = 0 − 𝜋𝑇 ∙ 𝐸 = −𝜋𝑇 
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Max Flow Problem – path selection 

• We again introduce a shortest chain (of length zero) into 

the basis 

• Now, we introduce the chain/path 𝐶3 = 𝑒1 𝑒2 . 

• This is illustrated below 

s t 

c1=0 c2=0 

c3=0 c4=1 

c5=0 
e1 

e2 

e3 e4 

e5 
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Introducing C3 

 The column 𝐶3 is           and we have 𝐵−1 ∙ 𝐶3= 

 

 

 

 We update the current CARRY(3) matrix  

-1 

1 

1 

0 

0 

0 

-z=2 0 1 0 1 0 

C1=0 1 -1 

C3=1 1 

s3=0 1 -1 1 -1 

C2=1 -1 1 1 

s5=1 -1 1 1 

-z=1 0 0 0 1 0 

C1=1 1 

s2=1 1 

s3=1 1 1 -1 

C2=0 -1 1 

s5=0 -1 1 

1 T
j jc D   

-1 

1 

1 

1 

-1 

-1 

Dual solution 𝑐𝑗 − 𝜋𝑇 ∙ 𝐴 = 0 − 𝜋𝑇 ∙ 𝐸 = −𝜋𝑇 
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Max Flow Problem – path selection 

• No zero chain/path exists between s and t  

• Hence, an optimal solution with maximal flow 2 is found 

• It comprises the paths 𝐶2 = 𝑒3 𝑒4  and 𝐶3 = 𝑒1 𝑒2  

s t 

c1=0 c2=1 

c3=0 c4=1 

c5=0 
e1 

e2 

e3 e4 

e5 
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Alternatively introducing C3 

 The column 𝐶3 is           and we have 𝐵−1 ∙ 𝐶3= 

 

 

 

 We update the current CARRY(3) matrix  

-1 

1 

1 

0 

0 

0 

-z=2 1 0 0 1 0 

C3=1 1 

s2=0 -1 1 

s3=0 1 -1 

C2=1 1 

s5=1 1 

-z=1 0 0 0 1 0 

C1=1 1 

s2=1 1 

s3=1 1 1 -1 

C2=0 -1 1 

s5=0 -1 1 

1 T
j jc D   

-1 

1 

1 

1 

-1 

-1 

Dual solution 𝑐𝑗 − 𝜋𝑇 ∙ 𝐴 = 0 − 𝜋𝑇 ∙ 𝐸 = −𝜋𝑇 
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Max Flow Problem – path selection 

• No zero chain/path exists between s and t  

• Hence, an optimal solution with maximal flow 2 is found 

• It comprises the paths 𝐶2 = 𝑒3 𝑒4  and 𝐶3 = 𝑒1 𝑒2  

s t 

c1=1 c2=0 

c3=0 c4=1 

c5=0 
e1 

e2 

e3 e4 

e5 
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3.4 The Dantzig-Wolfe Decomposition 

 It often happens that a large linear program is actually a 

collection of smaller linear programs that are largely 

independent of each other 

 Therefore, the revised simplex algorithm allows us to 

decompose the entire problem into smaller master- and 

subproblems 

 The “communication” between these problems can be 

directly derived from the revised simplex 

 Thanks to this decomposition, problems that may become 

too large to be solved efficiently (e.g., due to space 

requirements) can be solved very fast 
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Structure of the LP 

 We analyze the entire LP with two subproblems 

 This leads to the following scheme of a matrix 

 

 

 

 

 

 

 With variables 𝑥 ∈ 𝐼𝑅𝑛1 corresponding to the first 

𝑛1 columns and 𝑦 ∈ 𝐼𝑅𝑛2 corresponding to the next 

𝑛2 columns 

n1 columns n2 columns 

D F 
m0 rows 

A 0 
m1 rows 

0 B 
m2 rows 
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The complete LP 

0

1

2

0

min 

s.t.

, 0

We denote the  equations the coupling equations

The succeeding sets of rows are the subproblems  and 

T Tz c x d y

D x F y b

A x b

B y o

x y

m

A B

   

   

 

 


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The subproblem A 

1

0

A x b

x

 



 We consider the constraints of subproblem A, i.e., 

 

 

 

 By Theorem 1.3.19, we know that any feasible point in 

this subproblem can be written as a convex combination 
of edge points. We denote these points as 𝑥1, … , 𝑥𝑝, with 

 

 

 

   
 

      
1 1

 where 1,..., : 0 and 1
p p

j j j j
j j

x x j p
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Analogously: The subproblem B 

 



2

0

B y o

y

 We consider the constraints of subproblem B, i.e., 

 

 

 

 By Theorem 1.3.19, we know that any feasible point in 

this subproblem can be written as a convex combination 
of edge points. We denote these points as 𝑦1, … , 𝑦𝑞, with 

 

 

 

   
 

      
1 1

 where 1,..., : 0 and 1
q q

j j j j
j j

y y j q
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Modified structure of the LP 

 We replace x and y by their derived representations  

 This leads to the following modified scheme (in what 

follows, denoted as the master problem) 

 

 

 

 

 

 

 Costs 

Variables 

𝜆1,…, 𝜆𝑝 𝜇1,…, 𝜇𝑞 Right hand side Dimensions 

𝐷𝑥1,…, 𝐷𝑥𝑝 𝐹𝑦1,…, 𝐹𝑦𝑞 𝑏0 m0 rows 

1,…,1 0,…,0 1 1 row 

0,…,0 1,…,1 1 1 row 

 

   

 

     

   

 
1 1

min  

while , 0 are the new variables 

p q
T T

j j j j
j j

p q

z c x d y

IR IR
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Consequences 

 Due to the transformation, we may obtain an astronomical 

number of columns, one for each vertex of each of the two 

subproblems 

 However, the number of rows is significantly reduced from 

𝑚0 + 𝑚1 + 𝑚2 to 𝑚0 +2 

 Furthermore, the revised simplex method can be applied with 

a CARRY matrix of size 𝑚0 + 3 × 𝑚0 + 3  

 Hence, much larger instances may fit into fast-access 

storage 

 Size of CARRY: 𝑚0 + 3 × 𝑚0 + 3  instead of 

𝑚0 + 𝑚1 + 𝑚2 + 1 × 𝑚0 + 𝑚1 + 𝑚2 + 1  

 If, for instance, it holds that 𝑚0= 𝑚1 = 𝑚2 = 𝑚, we have 𝑚 + 3 2  

instead of 3 ∙ 𝑚 + 1 2, i.e., almost a factor of 32=9 
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Applying the revised simplex 

 In the first row, we have the prices (reduced costs) 

 This is a partitioned vector 𝜋, 𝛼, 𝛽  where 𝜋 ∈
𝐼𝑅𝑚0  corresponds to the first 𝑚0 rows and 𝛼, 𝛽 ∈ 𝐼𝑅 to the 

next two rows of the master problem, respectively 

 The reduced costs of the 𝜆𝑗-column are given by 

 

 

 

 

 Hence, the criterion for a column to be brought into the 

current basis is 

     

 
 

         
 
  

, , 1

0

j

T T T
j j j j

D x

c c x c x D x

              0T T T T
j j j jc x D x c x D x
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Pricing problem A 

 If                              holds for any vertex of Subproblem A, 

we have found a profitable column among the first p 

columns 

 However, since an exhaustive exploration of the total 

number of possible columns (i.e., for each possible vertex 

of Subproblem A) would be impractical, we pursue the 

finding of the optimal vertex of the following LP 

 

 

 Thus, the pricing problem is  

     T T
j jc x D x

         all vertices  of Subprobelm min
j

T T T T
x A j j jc x D x c D x

   

   1

min

s.t.  0

T Tc D x

A x b x
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Pricing problem A 

 If the objective function value of the optimal solution is 

lower than α the resulting column can be introduced into 

the basis 

 Hence, the master problem integrates the new column into the 

basis and, therefore, updates the current solution 

 The newly attained solution results in a new price vector sent to 

subproblem A 

 Otherwise, no further improvement is possible and the 

solution of the master problem is kept unchanged 

according to the input of Subproblem A 
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Pricing problem B 

 Similarly, we can determine if there is a favorable column 

among the last q columns by solving 

 

 

 

 and comparing the attained minimum cost to β, by an 

argument analogous to that surrounding the pricing 

problem A 

   

   2

min

s.t.  0

T Td F y

B y b y
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Procedure decomposition 

opt := 'no' 

set up CARRY with zero row (π, α, β); 

while opt = 'no' do 

begin solve the LP 

min 𝑐𝑇 − 𝜋𝑇𝐷 ∙ 𝑥 = 𝑧0 s. t. 𝐴𝑥 = 𝑏1, 𝑥 ≥ 0 

if 𝑍0 < 𝛼  

 then generate the column corresponding to the solution with this cost, 

 and pivot in CARRY 

 else begin solve the LP 

 min 𝑑𝑇 − 𝜋𝑇𝐹 ∙ 𝑦 = 𝑧0 s. t. 𝐵𝑦 = 𝑏2, 𝑦 ≥ 0 

 if 𝑍0 < 𝛽  

  then generate the column corresponding to the 

  solution with this cost, and pivot in CARRY 

  else opt := 'yes' 

 end 

end 
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Summary 

We verbally sum up the operations of the decomposition method: 

 After being solved, the master problem, based on its overall view of 

the entire situation, sends a price to subproblem A 

 This subproblem A then responds with a solution (a proposal) for 

possibly improving the overall problem, based on its local information 

and the price 

 The master problem then weighs the cost (𝑍0) of this proposal against 

its criterion α for subproblem A  

 If the proposal is cheaper than α, it is implemented by bringing it into the basis. 

This results in an update of the current solution (and prices) 

 If not, subproblem B is sent a price vector and asked for a proposal.  

 As long as a subproblem can produce a favorable proposal, the 

master problem can find a favorable pivot 

 When neither subproblem can come up with a favorable proposal, we 

have reached an optimal solution of the entire problem 
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Conclusions 

 What we have done for two subproblems can clearly be 

done for any number of subproblems, in which case the 

constraint matrix will take the form shown below 

… 

m0 rows 

m1 rows 

m2 rows 

mr rows 

A1 

A2 

Ar 
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An illustrative example 

 A little arithmetic shows the effectiveness of the approach in size 

reduction of the mapped problems 

 Suppose we have 100 subproblems, each with 100 rows, and 100 

coupling equations. Then the original problem has 10,100 rows 

 CARRY has 10,101 x 10,101 entries, i.e., approximately 108 

entries. May be too many for the working memory of a computer 

 The master problem has a CARRY with 201 x 201 entries. These 

are approximately 4 x 104 entries, which is practical to store in the 

fast memory of any reasonably large computer 

 All in all, the clear advantage of the decomposition algorithm is its 

effect on the space requirements 

 Note that it cannot be said much about the time requirements, 

because we do not know how many times the subproblems must be 

solved before optimality is reached 
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