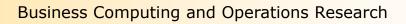
5 The Primal-Dual Simplex Algorithm

- Again, we consider the primal program given as a minimization problem defined in standard form
- This algorithm is based on the cognition that both optimal solutions, i.e., the primal and the dual one, are strongly interdependent
- Specifically, the approach commences the searching process with a feasible dual solution and simultaneously observes the complementary slackness between the solution value of the dual and a primal solution
- If this slackness becomes zero, the optimality of the generated solutions is proven and the calculation process is terminated

Schumpeter School is of Business and Economics



Invariants of the Primal Simplex

While conducting the Primal Simplex, the following attributes are always fulfilled for a minimization problem:

(P) Minimize $c^T \cdot x$, s.t. $A \cdot x = b \land x \ge 0$

Schumpeter School of Business and Economics

1.
$$c^T \cdot x^0 = c_B^T \cdot x_B^0 + c_N^T \cdot x_N^0 = c_B^T \cdot A_B^{-1} \cdot b = \pi^T \cdot b = b^T \cdot \pi$$

2. $\overline{c}^T \cdot x^0 = \overline{c}_B^T \cdot x_B^0 + \overline{c}_N^T \cdot x_N^0 = 0 \cdot x_B^0 + \overline{c}_N^T \cdot 0 = 0$,
with $\overline{c}^T = c^T - c_B^T \cdot A_B^{-1} \cdot A$

Thus, if $\overline{c}^T \ge 0 \Rightarrow c_B^T \cdot A_B^{-1} \cdot A = \pi^T \cdot A \le c^T \Rightarrow \pi$ is feasible for (D) Maximize $b^T \cdot \pi$, s.t. $A^T \cdot \pi \le c \wedge \pi$ free

Consequences

- The Primal Simplex works on a feasible primal solution that is iteratively improved by basis changes
- This is done by the consideration of a corresponding dual solution that has an identical objective function value
- As long as this dual solution is infeasible, the corresponding entries are inserted in the primal solution in order to fulfill them exactly in the dual program (→Elimination of the corresponding slackness)
- If the dual solution becomes feasible as well the optimality of both solutions (the primal and the dual solution) is proven

The Primal-Dual Simplex

- As mentioned above, we assume that the primal program is given as a minimization problem in standard form
- In what follows, we introduce a new algorithm that commences the searching process with a feasible dual solution
- This solution is analyzed according to a specific relationship to the primal problem in order to generate a corresponding primal solution that allows to prove optimality
- Specifically, we formulate a reduced problem that either generates an optimal primal solution or, if this is not possible, allows a correction of the dual one
- Obviously, this process is executed until the first case applies

Observation

5.1 Theorem of Complementary Slackness Assuming there is a Linear Program in standard form and x and π are feasible solutions to (P) and (D), respectively.

Then, it holds:

x and
$$\pi$$
 are optimal $\Leftrightarrow (c^T - \pi^T \cdot A) \cdot x = 0$

Proof of Theorem 5.1

- Fortunately, this proof is quite easy to conduct
- Based on the facts we already know about tuples of optimal primal and dual solutions, we derive

Specifically, it holds:

$$(c^T - \pi^T \cdot A) \cdot x = 0 \Leftrightarrow c^T \cdot x - \pi^T \cdot A \cdot x = 0$$

Since *x* is feasible for (*P*)
 $\Leftrightarrow c^T \cdot x - \pi^T \cdot b = 0 \Leftrightarrow c^T \cdot x = \pi^T \cdot b$
 $\Leftrightarrow x$ and π are optimal solutions

Direct consequence of Theorem 5.1

5.2 Observation

Assuming x and π are feasible solutions to (P) and (D), respectively.

Additionally, assume that it holds: $(c^T - \pi^T \cdot A) \cdot x = 0.$

Thus, *x* and π are optimal solutions to (*P*) and (*D*), respectively and it holds: $c^T - \pi^T \cdot A \ge 0 \land x \ge 0$

Hence, we can conclude

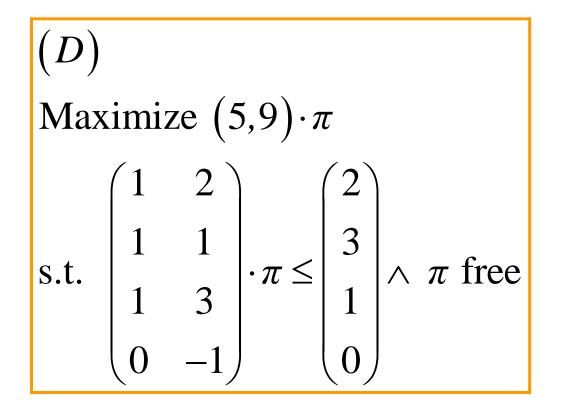
$$\left(c_{j} - \pi^{T} \cdot a^{j}\right) \cdot x_{j} = 0, \forall j \in \{1, ..., n\}$$
$$\Leftrightarrow x_{j} = 0 \lor \pi^{T} \cdot a^{j} = c_{j}, \forall j \in \{1, ..., n\}$$

A simple example

Consider the following Linear Program

(P)Minimize $(2,3,1,0) \cdot x$ s.t. $\begin{pmatrix} 1 & 1 & 1 & 0 \\ 2 & 1 & 3 & -1 \end{pmatrix} \cdot x = \begin{pmatrix} 5 \\ 9 \end{pmatrix} \land x \ge 0$

Example – Thus, we get the following (D)



Example – How to generate π ?

Obviously,
$$x = \begin{pmatrix} 0 \\ 0 \\ 5 \\ 6 \end{pmatrix}$$
 is a feasible solution to (P) .
Thus, we have $x_1 = x_2 = 0 \land x_3, x_4 \neq 0$. Consequently, we need a π with the following attributes
1. $\forall i \in \{3,4\} : \pi^T \cdot a^i = c_i \Leftrightarrow \pi^T \cdot \begin{pmatrix} 1 & 0 \\ 3 & -1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$
2. π is feasible for (D)

Example – How to generate π ?

Obviously,
$$\pi = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 fulfills both restrictions and, therefore,
we have shown that
 $x = \begin{pmatrix} 0 \\ 0 \\ 5 \\ 6 \end{pmatrix}$ and $\pi = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ are optimal solutions to (P) and (D) ,
respectively.

Business Computing and Operations Research

A feasible solution to (D)

- For what follows, we need at first a feasible solution to the dual problem. Fortunately, this is quite simple to provide.
- If *c* is positive, we just make use of $\pi=0$.
- Otherwise, we apply the following simple procedure that is depicted next.

Generating a feasible dual solution

- In order to generate a feasible dual solution to cases where c≥0 does not apply, we provide the following simple construction procedure
 - 1. We introduce a n + 1th variable x_{n+1} as well as a m + 1th equality in (*P*)

$$x_1 + x_2 + \dots + x_n + x_{n+1} = \sum_{i=1}^{n+1} x_i = b_{m+1}$$
, with b_{m+1} as a huge

number.

Since we add $c_{n+1} = 0$, we know that this restriction has no impact on the optimal solutions.

Generating a feasible dual solution

2. Consider now the dual program.
Maximize
$$b^T \cdot \pi + b_{m+1} \cdot \pi_{m+1}$$

 $A^T \cdot \pi + (\pi_{m+1} \dots \pi_{m+1})^T \leq c \wedge \pi_{m+1} \leq 0$, i.e.,
 $\forall j : \pi^T \cdot a^j + \pi_{m+1} \leq c_j$
3. We generate $\pi^{ini} = (\pi_1^{ini}, \dots, \pi_{m+1}^{ini})^T$ as follows:
 $\pi_1^{ini} = \pi_2^{ini} = \dots = \pi_m^{ini} = 0 \wedge \pi_{m+1} = \min \{c_j \mid c_j < 0\} < 0$
Thus, since $j \in \{1, \dots, n\}$ exists with $c_j < 0$,
 π^{ini} is feasible for (D) .

Business Computing and Operations Research

Schumpeter School of Business and Economics

The set J

Assume π to be a feasible solution to the dual program of a Linear Program in standard form. An index $j \in \{1,...,n\}$ is denoted as feasible if and only if it holds: $\pi^T \cdot a^j = c_j$.

We introduce J as the set of feasible indices, i.e., $J = \left\{ j \mid j \in \{1, ..., n\} \land \pi^T \cdot a^j = c_j \right\}.$

Reduced primal problem (RP)

We assume
$$J = \{j_1, ..., j_k\}, k \ge 0$$
 and define
 $A_J = (a^{j_1}, ..., a^{j_k})$ and $x^T = (x^a, x^J)$,
with $x^a = (x_1^a, ..., x_m^a)$ as slack variables.
Then (RP) is defined as follows:
Minimize $\xi_0 = 1^T \cdot x^a$, s.t. $(E_m, A_J) \cdot \begin{pmatrix} x^a \\ x^J \end{pmatrix} = b$, with $\begin{pmatrix} x^a \\ x^J \end{pmatrix} \ge$
is denoted as the reduced primal problem.

Observations

- (RP) is solvable. Specifically, we can use $x^T = (b, 0)$
- Since this trivial solution has the objective function value 1^T.b and this objective function is lower bounded by 0, (RP) is bounded
- Thus, (RP) has always a well-defined optimal solution
- Obviously, this optimal solution comprises two parts
 - First, there are the slackness variables. If these are zero, the objective function value is zero as well. Then, the primal solution is optimal to (P)
 - Secondly, there are the original variables that correspond to the set J. Since the corresponding dual values are equal to the c-vector, only these variables may become unequal to zero

Main conclusion

5.3 Theorem

(RP) always has an optimal solution. If $1^T \cdot x^a = \xi_0 = 0$, $\begin{pmatrix} 0 \\ x^J \end{pmatrix}$ is an optimal solution to (P).

Otherwise, if $\xi_0 > 0$, then the optimal solution to the dual of (*RP*) always generates an improved solution to (*D*).

At first, we assume $\xi_0 = 0$. Thus, we know that $x^a = 0$. Consequently, it holds: $A^{J} \cdot x^{J} = b$. Thus, we consider $\hat{x} = \begin{pmatrix} 0 \\ x^J \end{pmatrix} \ge 0 \Longrightarrow A \cdot \hat{x} = b \wedge \left(c^T - \pi^T \cdot A\right) \cdot x$ $= (c^{T} - \pi^{T} \cdot A)_{I} \cdot x_{J} + (c^{T} - \pi^{T} \cdot A)_{I^{c}} \cdot x_{J^{c}} = 0 \cdot x_{J} + (c^{T} - \pi^{T} \cdot A)_{I^{c}} \cdot 0 = 0$ Hence, x and π are optimal solutions to the Linear Programs (P) and (D), respectively.

Now, we consider the case $\xi_0 > 0$. Thus, we know that $x^a \neq 0$. Consequently, it holds: $A^J \cdot x^J \neq b$.

Let us now consider the dual of (RP), denoted as (DRP)(RP)

Minimize
$$1^T \cdot x^a$$
, s.t. $\left(E_m, A^J\right) \cdot \begin{pmatrix} x^a \\ x^J \end{pmatrix} = b, x^T = \left(x^a, x^J\right) \ge 0$

Thus, we obtain (DRP) as follows

Maximize
$$b^T \cdot \pi$$
, s.t. $\begin{pmatrix} E_m \\ (A^J)^T \end{pmatrix} \cdot \pi \leq \begin{pmatrix} 1^m \\ 0^{|J|} \end{pmatrix}$, π free

Assuming $\tilde{\pi}$ is an optimal solution to (DRP). Then, we conclude $b^T \cdot \tilde{\pi} = \xi_0 > 0$. Furthermore, let $\pi' = \pi + \lambda \cdot \tilde{\pi}$. We compute $b^T \cdot \pi' = b^T \cdot (\pi + \lambda \cdot \tilde{\pi}) = b^T \cdot \pi + b^T \cdot \lambda \cdot \tilde{\pi} = b^T \cdot \pi + \lambda \cdot b^T \cdot \tilde{\pi} = b^T \cdot \pi + \lambda \cdot \xi_0 > b^T \cdot \pi$.

Consequently, if π' is feasible for (D), π' outperforms π . Hence, we now have to determine suitable values for λ resulting in feasible values for π' .

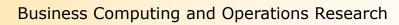
Note that it holds: π' feasible for (D) $\Leftrightarrow \forall j : c_j - \pi'^T \cdot a^j \ge 0$ $\Leftrightarrow \forall j : c_j - (\pi + \lambda \cdot \tilde{\pi})^T \cdot a^j \ge 0$ $\Leftrightarrow \forall j : c_j - \pi^T \cdot a^j - \lambda \cdot \tilde{\pi}^T \cdot a^j \ge 0$ $\Leftrightarrow \forall j : c_j - \pi^T \cdot a^j \ge \lambda \cdot \tilde{\pi}^T \cdot a^j$

$$\begin{aligned} \forall j : c_j - \pi^T \cdot a^j &\geq \lambda \cdot \tilde{\pi}^T \cdot a^j \\ \text{Since } \pi \text{ is feasible for } (D), \text{ we know that } c_j - \pi^T \cdot a^j &\geq 0. \\ \text{Let us now consider the corresponding final tableau of } (RP) \\ \Rightarrow \\ \frac{0}{b} \begin{vmatrix} 1^T & 0^T & 0^T \\ E_m & A^J & A^{J^c} \end{vmatrix} \Rightarrow \frac{-\xi_0}{-\xi_0} \begin{vmatrix} 1^T - \tilde{\pi}^T & 0^T - \tilde{\pi}^T \cdot A^J & 0^T - \tilde{\pi}^T \cdot A^{J^c} \\ \dots & \dots & \dots & \dots \\ &\Rightarrow 0^T - \tilde{\pi}^T \cdot A^J &\geq 0 \Leftrightarrow \tilde{\pi}^T \cdot A^J &\leq 0 \Rightarrow \forall j \in J : \tilde{\pi}^T \cdot a^j \leq 0 \\ \text{Hence, if } j \in J \land \lambda > 0, \text{ the feasibility restriction is always fulfilled.} \end{aligned}$$

Business Computing and Operations Research

Schumpeter School of Business and Economics

Jad Helpunger



WINFOR 500

Schumpeter School of Business and Economics

Jad Helpunger

Summary – The algorithm

- 1. We commence the searching process with a feasible solution π to the dual program (D).
- 2. Then, we generate the reduced Linear Program $(RP(\pi))$ and solve it optimally. Thus, we distinguish altogether three cases:

1.
$$\xi_0 = 0$$

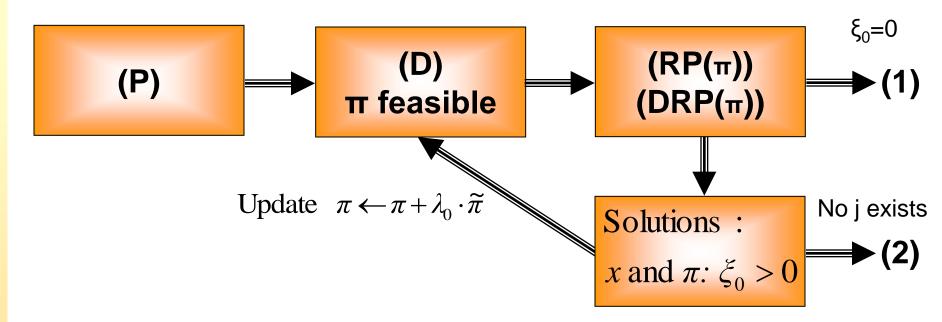
 \Rightarrow The tableau provides an optimal solution to (P) .

Summary – The algorithm

Further cases (Continuation of step 2)

2. $\xi_0 > 0 \land \forall j : \tilde{\pi}^T \cdot a^j \leq 0 \Rightarrow$ The primal problem (P) is not solvable. 3. $\xi_0 > 0 \land \exists j : \tilde{\pi}^T \cdot a^j > 0$ \Rightarrow Generate $\pi' = \pi + \lambda_0 \cdot \tilde{\pi}, \tilde{\pi}$ optimal solution to the problem $DRP(\pi)$. Determine $\lambda_0 = min \left\{ \frac{c_j - \pi^T \cdot a^j}{\tilde{\pi}^T \cdot a^j} / \forall j \in J^c : \tilde{\pi}^T \cdot a^j > 0 \right\}.$ Repeat step 2 until one of the cases 1 or 2 applies.

Illustration



(1) x and π are optimal. Termination
(2) Since b^T · (π + λ₀ · π̃) → ∞,
(P) is not solvable. Termination

Schumpeter Schoo of Business and Economic

WINFOR 503

The Primal-Dual Simplex Algorithm

- 1. Transform the problem such that $b \ge 0$ and generate equations.
- 2. Initialization with a feasible basic solution to the dual problem.

3. Determine the set
$$J = \left\{ j = 1, ..., n / \pi^T \cdot a^j = c_j \right\}$$
.

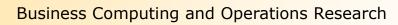
- 4. Solve the reduced primal problem (RP) to optimality via the Primal Simplex Algorithm: $(RP) \xi_0 = Min (1^m)^T \cdot x^a \quad s.t. E_m \cdot x^a + A^J \cdot x^J = b \wedge x^a, x^J \ge 0$
- 5. If $\xi_0 = 0$, then the optimal solution to the primal problem (P) is found. Terminate and calculate the objective function value Z with the basic variables of J: $Z = (c_j)_{j \in J}^T \cdot x^J$ Otherwise (i.e., $\xi_0 > 0$):
- 6. Calculate the dual variables $\tilde{\pi}$ with cost coefficients of RP belonging to x^a : $\tilde{\pi} = 1^m (\overline{c}_j)_{j=1,...,m}$
- 7. If $\xi_0 > 0 \land \forall j : \tilde{\pi}^T \cdot a^j \le 0$, then terminate since the primal problem (P) is unbounded and no optimal solution exists.

Otherwise (i.e., $\xi_0 > 0 \land \exists j : \tilde{\pi}^T \cdot a^j > 0$):

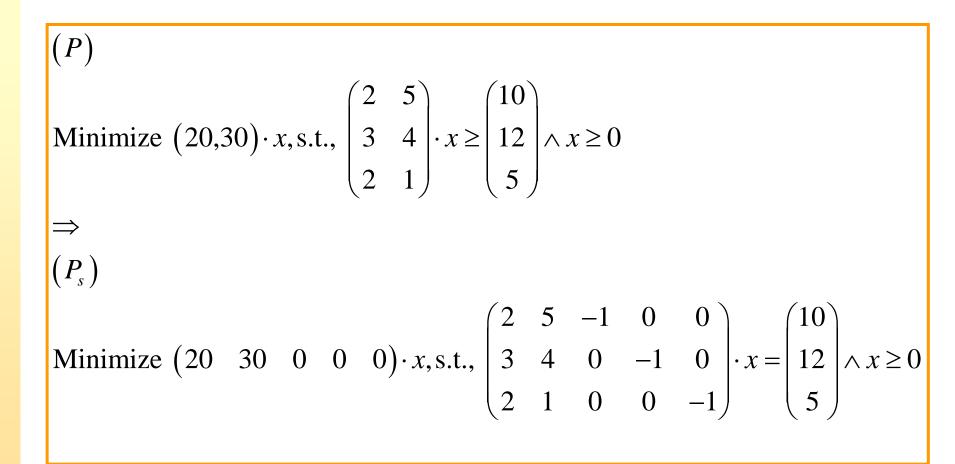
8. Determine
$$\lambda_0 = min\left\{\frac{c_j - \pi^T \cdot a^j}{\tilde{\pi}^T \cdot a^j} \middle| \forall j \notin J : \tilde{\pi}^T \cdot a^j > 0\right\}$$
.

- 9. Update the dual variables: $\pi := \pi + \lambda_0 \cdot \tilde{\pi}$.
- 10. Go to step 3.

chumpeter School of Business and Economics



Example



Example

(D)
Maximize
$$(10,12,5,) \cdot \pi, \text{s.t.}, \begin{pmatrix} 2 & 3 & 2 \\ 5 & 4 & 1 \\ -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \cdot \pi \le \begin{pmatrix} 20 \\ 30 \\ 0 \\ 0 \\ 0 \end{pmatrix} \land \pi \text{ free}$$

Since $c \ge 0$, we can apply the trivial dual solution $\pi = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$.
Thus, we get $J^c = \{1,2\} \land J = \{3,4,5\}$

Example – Generate (RP(π))

 $(RP(\pi))$ Minimize $\begin{pmatrix} 0 & 0 & 0 & 1 & 1 & 1 \end{pmatrix} \cdot x$, s.t. $x \ge 0 \land \begin{pmatrix} -1 & 0 & 0 & 1 & 0 & 0 \\ 0 & -1 & 0 & 0 & 1 & 0 \\ 0 & 0 & -1 & 0 & 0 & 1 \end{pmatrix} \cdot x = \begin{pmatrix} 10 \\ 12 \\ 5 \end{pmatrix}$ In order, however, to identify the *j* - values, we integrate the columns of set J^{c} in the tableau as well. Thus, we obtain

Example – Generate λ_0

$$\begin{aligned} \frac{-27}{10} & 0 & 0 & -7 & -10 & 1 & 1 & 1 \\ \hline 10 & 1 & 0 & 0 & 2 & 5 & -1 & 0 & 0 \\ 12 & 0 & 1 & 0 & 3 & 4 & 0 & -1 & 0 \\ 5 & 0 & 0 & 1 & 2 & 1 & 0 & 0 & -1 \\ \Rightarrow & (0 & 0 & 0) = (1 & 1 & 1) - \tilde{\pi} \Leftrightarrow \tilde{\pi} = (1 & 1 & 1) \\ \lambda_0 &= \min\left\{\frac{20 - \pi^T \cdot a^1}{(1 & 1 & 1) \cdot a^1}, \frac{30 - \pi^T \cdot a^2}{(1 & 1 & 1) \cdot a^2}\right\} = \min\left\{\frac{20 - 0}{2 + 3 + 2}, \frac{30 - 0}{5 + 4 + 1}\right\} \\ &= \min\left\{\frac{20}{7}, \frac{30}{10}\right\} = \frac{20}{7} \end{aligned}$$

Example – Generate λ_0

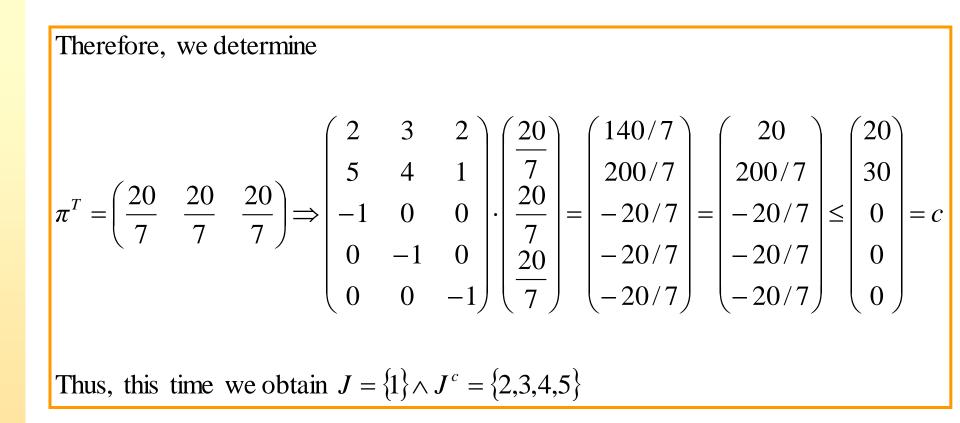
Consequently, we obtain for the next round

$$\pi^{T} = \begin{pmatrix} 0 & 0 & 0 \end{pmatrix} + \frac{20}{7} \cdot \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} \frac{20}{7} & \frac{20}{7} & \frac{20}{7} \end{pmatrix}$$

Thus, since $\xi_{0} = 27 > 0$, we get a new $(RP(\pi))$
At first, we have to identify *J*.

Business Computing and Operations Research

Example – Generate J



Business Computing and Operations Research

Example – Solving (RP(π))

-27-10-7-27-7|-10() -1-14 0 1 0 -1 -15/2 $0 0 \frac{1}{2}$ $\frac{1}{2}$ (2)0 0 -1 0 1 -10-27-7-1 $-\frac{3}{2}$ 3/2 9/2 $\frac{5}{2}$ 0 -1 $\frac{1}{2}$ $\frac{7}{2}$ -19 $0 -\frac{13}{2} 1 1$ -1 $-\frac{3}{2}$ % $-\frac{1}{2}$

Example – Solving (RP(π))

$$\Rightarrow \left(0, 0, \frac{7}{2}\right) = (1, 1, 1) - \tilde{\pi}^{T} \Leftrightarrow \tilde{\pi}^{T} = \left(1, 1, -\frac{5}{2}\right)$$
$$\Rightarrow \lambda_{0} = \min\left\{\frac{30 - \frac{200}{7}}{5 + 4 - \frac{5}{2}}, \frac{0 - \left(-\frac{20}{7}\right)}{\frac{5}{2}}\right\} = \min\left\{\frac{10}{\frac{7}{13}}, \frac{20}{\frac{7}{5}}\right\}$$
$$= \min\left\{\frac{20}{91}, \frac{40}{35}\right\} = \frac{20}{91}$$

Example – Updating π and J

Consequently, we obtain for the next round

$$\pi^{T} = \left(\frac{20}{7} \quad \frac{20}{7} \quad \frac{20}{7}\right) + \frac{20}{91} \cdot \left(1 \quad 1 \quad -\frac{5}{2}\right) = \left(\frac{40}{13} \quad \frac{40}{13} \quad \frac{30}{13}\right)$$
Thus, since $\xi_{0} = \frac{19}{2} > 0$, we get a new $\left(RP(\pi)\right)$

At first, we again have to identify J.

$$\pi^{T} = \begin{pmatrix} 40 & 40 & 30 \\ 13 & 13 & 13 \end{pmatrix} \Rightarrow \begin{pmatrix} 2 & 3 & 2 \\ 5 & 4 & 1 \\ -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \cdot \begin{pmatrix} 40 \\ 13 \\ 40 \\ 13 \\ 30 \\ 13 \end{pmatrix} = \begin{pmatrix} 260/13 \\ 390/13 \\ -40/13 \\ -40/13 \\ -30/13 \end{pmatrix} = \begin{pmatrix} 20 \\ 30 \\ -40/13 \\ -40/13 \\ -30/13 \end{pmatrix} \leq \begin{pmatrix} 20 \\ 30 \\ 0 \\ 0 \\ 0 \end{pmatrix} = c$$

Thus, this time we obtain $J = \{1, 2\} \land J^c = \{3, 4, 5\}$

Example – Solving (RP(π))

 $\Rightarrow \left(\frac{13}{8}, 0, \frac{15}{8}\right) = \left(1, 1, 1\right) - \widetilde{\pi}^{T} \Leftrightarrow \widetilde{\pi}^{T} = \left(-\frac{5}{8}, 1, -\frac{7}{8}\right)$

Example – Solving (RP(π))

$$\Rightarrow \left(\frac{13}{8}, 0, \frac{15}{8}\right) = (1,1,1) - \tilde{\pi}^{T} \Leftrightarrow \tilde{\pi}^{T} = \left(-\frac{5}{8}, 1, -\frac{7}{8}\right)$$

$$\Rightarrow \lambda_{0} = \min\left\{\frac{\frac{40}{13}, \frac{30}{13}}{\frac{5}{8}}, \frac{\frac{240}{78}}{\frac{7}{8}}\right\} = \frac{240}{91}$$

Thus, we can update π by : $\pi^{T} = \left(\frac{40}{13}, \frac{40}{13}, \frac{30}{13}\right) + \frac{240}{91} \cdot \left(-\frac{5}{8}, 1, -\frac{7}{8}\right)$

$$= \left(\frac{40}{13} - \frac{1200}{728}, \frac{40}{13} + \frac{240}{91}, \frac{30}{13} - \frac{1680}{728}\right)$$

$$= \left(\frac{(2240 - 1200)}{728}, \frac{(280 + 240)}{91}, \frac{(1680 - 1680)}{728}\right)$$

$$= \left(\frac{1040}{728}, \frac{520}{91}, 0\right) = \left(\frac{10}{7}, \frac{40}{7}, 0\right)$$

Example – Updating J

Again, we have to identify
$$J$$
.

$$\pi^{T} = \begin{pmatrix} 10 & 40 & 0 \\ 7 & 0 \end{pmatrix} \Rightarrow \begin{pmatrix} 2 & 3 & 2 \\ 5 & 4 & 1 \\ -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \cdot \begin{pmatrix} 10/7 \\ 40/7 \\ 0 \\ -10/7 \\ 0 \\ -40/7 \\ 0 \end{pmatrix} = \begin{pmatrix} 20 \\ 30 \\ -10/7 \\ -40/7 \\ 0 \\ -40 \\ -4$$

Example – Solving (RP(π))

Additional literature to Section 5

The primal-dual algorithm for general LP's was first described in

 Dantzig, G.B.: Ford, L.R.; Fulkerson, D.R. (1956): A Primal-Dual Algorithm for Linear Programs," in Kuhn, H.W.; Tucker, A.W. (eds.): *Linear Inequalities and Related Systems.* Princeton University Press, Princeton, N.J., pp. 171-181.

It is introduced there as a generalization of the paper

 Kuhn, H.W. (1955): The Hungarian Method for the Assignment Problem. Naval Research Logistics Quarterly, 2, nos. 1 and 2, pp. 83-97.

