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5 The Primal-Dual Simplex Algorithm 

 Again, we consider the primal program given as a 
minimization problem defined in standard form 

 This algorithm is based on the cognition that both 
optimal solutions, i.e., the primal and the dual 
one, are strongly interdependent  

 Specifically, the approach commences the 
searching process with a feasible dual solution 
and simultaneously observes the complementary 
slackness between the solution value of the dual 
and a primal solution 

 If this slackness becomes zero, the optimality of 
the generated solutions is proven and the 
calculation process is terminated 
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Invariants of the Primal Simplex 
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0

While conducting the Primal Simplex, the following attributes 

are always fulfilled for a minimization problem:

 Minimize  s.t. 0

1. 

2. 
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Thus, if 0  is feasible for 

 Maximize s.t.  free
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Consequences 

 The Primal Simplex works on a feasible primal 
solution that is iteratively improved by basis 
changes  

 This is done by the consideration of a 
corresponding dual solution that has an identical 
objective function value 

 As long as this dual solution is infeasible, the 
corresponding entries are inserted in the primal 
solution in order to fulfill them exactly in the dual 
program (Elimination of the corresponding 
slackness) 

 If the dual solution becomes feasible as well the 
optimality of both solutions (the primal and the 
dual solution) is proven 
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The Primal-Dual Simplex 

 As mentioned above, we assume that the primal 
program is given as a minimization problem in 
standard form 

 In what follows, we introduce a new algorithm that 
commences the searching process with a feasible 
dual solution 

 This solution is analyzed according to a specific 
relationship to the primal problem in order to generate 
a corresponding primal solution that allows to prove 
optimality 

 Specifically, we formulate a reduced problem that 
either generates an optimal primal solution or, if this is 
not possible, allows a correction of the dual one 

 Obviously, this process is executed until the first case 
applies 
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Observation 

5.1 Theorem of Complementary Slackness 

   

 

Assuming there is a Linear Program in standard form 

and  and  are feasible solutions to  and , 

respectively.  

Then, it holds:

 and  are optimal 0T T

x π P D

x π c π A x    
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Proof of Theorem 5.1 

 
 

Specifically, it holds:

0 0

Since  is feasible for 

0

 and  are optimal solutions

T T T T

T T T T

c π A x c x π A x

x P

c x π b c x π b

x π

         

        



 Fortunately, this proof is quite easy to conduct 

 Based on the facts we already know about tuples 
of optimal primal and dual solutions, we derive 
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5.2 Observation 
   

 
   

Assuming  and  are feasible solutions to  and , 

respectively.  

Additionally, assume that it holds: 0.

Thus,  and  are optimal solutions to  and , respectively

and it holds: 0

T T

T T

x π P D

c π A x

x π P D

c π A x

   

   

   

 

0

Hence, we can conclude 

0, 1,...,

0 , 1,...,
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j j

T j

j j

c π a x j n

x π a c j n



     

      

Direct consequence of Theorem 5.1 
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A simple example 

 

 Minimize 2 3 1 0

s.t.

1 1 1 0 5
0

2 1 3 1 9

P

, , , x

x x



   
      

   

Consider the following Linear Program 
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Example – Thus, we get the following (D) 

 

 Maximize 5 9

1 2 2

1 1 3
s.t.    free

1 3 1

0 1 0

D

, π

π π
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1 2 3 4

0

0
Obviously,  is a feasible solution to .

5

6

Thus, we have 0 , 0. Consequently, we 

need a  with the following attributes

1 0 1
1. 3 4

3 1 0

2.  is feasib
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i

x P

x x x x
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 le for D

Example – How to generate π ? 

Business Computing and Operations Research 487 

   

1
Obviously,  fulfills both restrictions and, therefore, 

0

we have shown that 

0

0 1
 and  are optimal solutions to  and , 

5 0

6

respectively.

π

x π P D

 
  
 

 
 

        
 
 

Example – How to generate π ? 
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A feasible solution to (D) 

 For what follows, we need at first a feasible 

solution to the dual problem. Fortunately, this is 

quite simple to provide. 

 If c is positive, we just make use of π=0. 

 Otherwise, we apply the following simple 

procedure that is depicted next. 
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Generating a feasible dual solution 

1

1

1 2 1 1 1

1

1

1.  We introduce a 1th variable  as well as a 1th 

equality in 

... , with  as a huge 

number.  

Since we add 0, we know that this restriction has no 

impact 

n

n

n n i m m

i

n

n x m

(P)

x x x x x b b

c





  





 

     





on the optimal solutions.

 In order to generate a feasible dual solution to 

cases where c≥0 does not apply, we provide 

the following simple construction procedure 
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Generating a feasible dual solution 

 

 

 

1 1

1 1 1

1

1 1

1 2 1

2.  Consider now the dual program.

Maximize 

0, i.e., 

:

3.  We generate , ,  as follows:

... 0 min | 0 0

T

T

m m
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m m m
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hus, since 1,...,  exists with 0,  

 is feasible for .

j

ini

j n c

π D
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The set J 

 

Assume  to be a feasible solution to the dual 

program of a Linear Program in standard form.  

An index 1  is denoted as feasible if and 

only if it holds: 

We introduce J as the set of f

T j

j

π

j ,...,n

π a c .



 

  
easible indices, i.e., 

1 T j

j
J j | j ,...,n π a c .    
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Reduced primal problem (RP) 

 

   

 

 

 

1

1

1

0

We assume 0 and define 

 and 

with  as slack variables.

Then  is defined as follows:

Minimize 1 , s.t. with 0

is den

k

k

jj T a J

J

a a a

m

a a

T a

m J J J

J j ,..., j ,k

A a ,...,a x x ,x ,

x x ,...,x

RP

x x
x E ,A b,

x x

 

 



   
        

   

oted as the reduced primal problem.
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Observations 

 (RP) is solvable. Specifically, we can use xT=(b,0) 

 Since this trivial solution has the objective function value 

1T.b and this objective function is lower bounded by 0, 

(RP) is bounded 

 Thus, (RP) has always a well-defined optimal solution 

 Obviously, this optimal solution comprises two parts 

 First, there are the slackness variables. If these are zero, 

the objective function value is zero as well. Then, the primal 

solution is optimal to (P) 

 Secondly, there are the original variables that correspond to 

the set J. Since the corresponding dual values are equal to 

the c-vector, only these variables may become unequal to 

zero 
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Main conclusion 

5.3 Theorem 

 

 

   

0

0

 always has an optimal solution. If 1 0,  

0
 is an optimal solution to .  

Otherwise, if 0, then the optimal solution to the dual 

of  always generates an improved solution to .

T a

J

RP x

P
x

RP D
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Proof of Theorem 5.3 – Case 1 

 

     

0At first, we assume 0. Thus, we know that 0. Consequently, 

it holds: . Thus, we consider 

0
ˆ ˆ0

0 0 0

Hence,  and  are opt

cc c
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J J

T T

J
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x
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x
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   imal solutions to the Linear Programs  and , 

respectively.

P D
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Proof of Theorem 5.3 – Case 2 

   

 

   

0Now, we consider the case 0  Thus, we know that 0   

Consequently, it holds:   

Let us now consider the dual of , denoted as 

Minimize 1  s.t. 0

Thus, 

a

J J

a

T a J T a J

m J

. x .

A x b.

RP DRP
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x
x , E ,A b,x x ,x

x

  

 

 
     

 

 

 

we obtain  as follows

1
Maximize s.t.  free

0

m
m

T
T

J J

DRP

E
b π, π ,π

A
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Proof of Theorem 5.3 – Case 2 

 

 
0

0

Assuming  is an optimal solution to . Then, we 

conclude  0. Furthermore, let .  

We compute  

.

Consequently, if  is feasi

T

T T T T

T T T T

π DRP

b π ξ π π λ π

b π b π λ π b π b λ π

b π λ b π b π λ ξ b π

π

     

          

         

  ble for D ,   outperforms .

Hence, we now have to determine suitable values for  

resulting in feasible values for .

π π

λ

π
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Proof of Theorem 5.3 – Case 2 

 

 

Note that it holds:   feasible for 

0

0

0

T j
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Proof of Theorem 5.3 – Case 2 

 

 

0

Since  is feasible for , we know that 0

Let us now consider the corresponding final tableau of  

0 1 0 0 1 0 0

0 0

c

c

T j T j

j
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π D c π a .
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     0 0

Hence, if 0  the feasibility restriction is always 

fulfilled. 

T J T jπ A j J : π a

j J ,
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Proof of Theorem 5.3 – Case 2 

 

0
0 1 0 0 1 0 0

However, since  does not belong to  there may be 

with  0  If so, we can determine 

0 

c

c

c
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J J

m

J c
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Consequently,  is feasible for 0,...,

If there is, however, no  with 0   is unbounded 

and, consequently,  is not solvable.

T j

.

π π λ .

j π a , D

P
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Summary – The algorithm 

 
0

1. 0

The tableau provides an optimal solution to P .

 



1. We commence the searching process with a 

feasible solution π to the dual program (D). 

2. Then, we generate the reduced Linear Program 

(RP(π)) and solve it optimally. Thus, we 

distinguish altogether three cases: 
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Summary – The algorithm 

 

 

0

0

0

0

2. 0 0 The primal problem 

 is not solvable.

3. 0 0

Generate  optimal solution 

to the problem   

Determine 0

Repea

     

    

   

   
      

  

T j

T j

T j

j c T j

T j

j : π a

P

j : π a

π π π,π

DRP π .

c π a
min | j J : π a .

π a

t step 2 until one of the cases 1 or 2 applies.

Further cases (Continuation of step 2) 
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Illustration 

(P) 
(D) 

π feasible 

(RP(π)) 

(DRP(π)) 
(1) 

(2) 

πλππ ~   Update 0 

(1) 

(2) 

 and  are optimal. Terminationx π

 

 

0 Since 

 is not solvable. Termination

Tb π λ π ,

P

   

0 and 

 :Solutions

0 ξπ:x

No j exists 

ξ0=0 
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The Primal-Dual Simplex Algorithm 

1. Transform the problem such that          and generate equations. 

2. Initialization with a feasible basic solution to the dual problem. 

3. Determine the set                                         . 
 

4. Solve the reduced primal problem (RP) to optimality via the Primal Simplex Algorithm: 

 
5. If           , then the optimal solution to the primal problem (P) is found. Terminate and 
 

 calculate the objective function value Z with the basic variables of J: 

Otherwise (i.e.,           ) : 

6. Calculate the dual variables     with cost coefficients of RP belonging to xa: 

7. If                                  , then terminate since the primal problem (P) is unbounded and 

no optimal solution exists. 

Otherwise (i.e.,                                 ) : 
 

8. Determine                                                       . 
 

9. Update the dual variables:                     . 

10. Go to step 3. 

0π : π π   

0 0 0T jj : π a    

0 0 0T jj : a     

0 0

T j

j T j

T j

c π a
min j J : π a

π a

   
      

  

π

 1 T j

j
J j ,...,n |π a c   

 
1

1m

j j ,...,m
π c


 

0 0 

0 0 

   0  1 0
T

m a a J J a J

mRP Min x s.t. E x A x b x ,x        

 
T J

j j J
Z c x


 

0b 
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Example 

 

 

 

 

2 5 10

Minimize 20,30 ,s.t., 3 4 12 0

2 1 5

2 5 1 0 0 10

Minimize 20 30 0 0 0 ,s.t., 3 4 0 1 0 12 0

2 1 0 0 1 5

s

P

x x x

P

x x x
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Example 

 

 

   

2 3 2 20

5 4 1 30

Maximize 10,12,5, ,s.t.,  free1 0 0 0

0 1 0 0

0 0 1 0

0

Since 0,  we can apply the trivial dual solution 0 .

0

Thus, we get 1,2 3,4,5c

D

π  π π-

-

-

c π

J J
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Example – Generate (RP(π)) 

  

 

1 0 0 1 0 0 10

Minimize 0 0 0 1 1 1  s.t. , 0 0 1 0 0 1 0 12  

0 0 1 0 0 1 5

In order, however, to identify the values, we integrate the columns of 

set  in the tableau  as well. Thus, we obtac

RP π

x, x x

j -

J

   
   

        
      

in

0 1 1 1 0 0 0 0 0 27 0 0 0 7 10 1 1 1

10 1 0 0 2 5 1 0 0 10 1 0 0 2 5 1 0 0

12 0 1 0 3 4 0 1 0 12 0 1 0 3 4 0 1 0

5 0 0 1 2 1 0 0 1 5 0 0 1 2 1 0 0 1
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Example – Generate λ0 

     

   

1 2

0 1 2

27 0 0 0 7 10 1 1 1

10 1 0 0 2 5 1 0 0

12 0 1 0 3 4 0 1 0

5 0 0 1 2 1 0 0 1

0 0 0 1 1 1 1 1 1

20 30 20 0 30 0
min min

1 1 1 1 1 1 2 3 2 5 4 1

20 30 20
min

7 10 7

T T

π π

π a π a
λ , ,

a a

,
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Example – Generate λ0 

   

  
0

Consequently, we obtain for the next round

20 20 20 20
0 0 0 1 1 1

7 7 7 7

Thus, since 27 0, we get a new 

At first, we have to identify .  

Tπ

RP π

J
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Example – Generate J 
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Example – Solving (RP(π)) 
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Example – Solving (RP(π)) 
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Example – Updating π and J 

 

  
0

Consequently, we obtain for the next round

20 20 20 20 40 40 3051 1
27 7 7 91 13 13 13

19Thus, since 0, we get a new 
2

At first, we again have to identify .  

2 3 2

5 4 1
40 40 30

1 0 0
13 13 13

T

T

π

RP π

J

π

   
       
   

  

 
   
 

 

40 260 13 20 20
13 390 13 30 30
40

40 13 40 13 0
13

0 1 0 40 13 40 13 0
30

0 0 1 30 13 30 13 0
13

Thus, this time we obtain 1 2

/

/

c/ /

/ /

/ /

J , J

        
        
        
             
        
          
                   

   3 4 5c , ,
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Example – Solving (RP(π)) 

 
 

     
8

71
8

5~~111
8

150
8

13

8
50

8
101

8
50

8
1

8
15

8
71

8
500

8
71

8
5

8
11

4
10

4
110

4
10

4
1

4
5

8
71

8
500

8
150

8
13

8
11

2
100

2
11

2
100

2
5

2
310

2
50

2
310

2
9

101401015
2

511
2

130
2

700
2

19























,,ππ,,,, TT

Business Computing and Operations Research 515 

Example – Solving (RP(π)) 
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Example – Updating J 

   4,35,2,1obtain   we time thisThus,

0

0
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Example – Solving (RP(π)) 

 

   
0

13 15 5 711 0 0 0 1
8 8 8 8 8

5 1 1 1 10 0 1 0
4 4 4 4 4

5 7 5 711 1 0 0 1
8 8 8 8 8

15 5 51 10 1 0 0
8 8 8 8 8

0 1 1 1 0 0 0 0 0

6 3 32 20 0 1 0
7 7 7 7 7

5 8 5 811 1 0 0 1
7 7 7 7 7

20 5 54 40 1 0 0
7 7 7 7 7

0 Optimal solutions are:

10 40 20 6 11 0 0 0
7 7 7 7 7

T Tπ , , x
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Additional literature to Section 5 

The primal-dual algorithm for general LP's was first described in 

 Dantzig, G.B.: Ford, L.R.; Fulkerson, D.R. (1956): A Primal-Dual 

Algorithm for Linear Programs," in Kuhn, H.W.; Tucker, A.W. (eds.): 

Linear Inequalities and Related Systems. Princeton University Press, 

Princeton, N.J., pp. 171-181.  

It is introduced there as a generalization of the paper 

 Kuhn, H.W. (1955): The Hungarian Method for the Assignment 

Problem. Naval Research Logistics Quarterly, 2, nos. 1 and 2, pp. 83-

97. 


