5 The Primal-Dual Simplex Algorithm

Again, we consider the primal program given as a
minimization problem defined in standard form

This algorithm is based on the cognition that both
optimal solutions, i.e., the primal and the dual
one, are strongly interdependent

Specifically, the approach commences the
searching process with a feasible dual solution
and simultaneously observes the complementary
slackness between the solution value of the dual
and a primal solution

If this slackness becomes zero, the optimality of
the generated solutions is proven and the
calculation process is terminated

=2 business Computing and operations researcn WINFOR 477

Invariants of the Primal Simplex

While conducting the Primal Simplex, the following attributes
are always fulfilled for a minimization problem:

(P)Minimizec” -x,5.t. A-x=bAx>0

T . 0_.T 0 ¥0 =T T

1c'x_chB+ NBAanbb
T 0 _&T 0 =T

2.T X =Cy xB+ch =0-X T.0=0
itheT =cT —¢T . AL

with © C —Cg-ATA

Thus, ifc’ 2030; ~A§1~A=7rT -A<c" = 7 is feasible for
(D) Maximize b' .75t A" -w<cAaxfree
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Consequences

The Primal Simplex works on a feasible primal
solution that is iteratively improved by basis
changes

This is done by the consideration of a
corresponding dual solution that has an identical
objective function value

As long as this dual solution is infeasible, the
corresponding entries are inserted in the primal
solution in order to fulfill them exactly in the dual
program (>Elimination of the corresponding
slackness)

If the dual solution becomes feasible as well the
optimality of both solutions (the primal and the
dual solution) is proven
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The Primal-Dual Simplex

= As mentioned above, we assume that the primal
program is given as a minimization problem in
standard form

= In what follows, we introduce a new algorithm that
commences the searching process with a feasible
dual solution

= This solution is analyzed according to a specific
relationship to the primal problem in order to generate
a corresponding primal solution that allows to prove
optimality

= Specifically, we formulate a reduced problem that
either generates an optimal primal solution or, if this is
not possible, allows a correction of the dual one

= Obviously, this process is executed until the first case
applies
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Observation

5.1 Theorem of Complementary Slackness
Assuming there is a Linear Program in standard form

and x and 7 are feasible solutions to (P) and (D),
respectively.

Then, it holds:
x and z are optimal < (¢ -a" - 4)-x=0
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Proof of Theorem 5.1

= Fortunately, this proof is quite easy to conduct

= Based on the facts we already know about tuples
of optimal primal and dual solutions, we derive

Specifically, it holds:

(CT - -A)-x=0<:>cT x—n'-A-x=0
Since x is feasible for (P)

s x-nb=0=c"-x=x"-b

<> x and « are optimal solutions
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Direct consequence of Theorem 5.1

5.2 Observation
Assuming x and « are feasible solutions to (P) and (D),

respectively.
Additionally, assume that it holds: (CT - -A)-x =0.
Thus, x and 7 are optimal solutions to (P) and (D), respectively

and itholds: ¢" =z - 4>0Ax>0

Hence, we can conclude
(cj - -aj)~xj =0,Vje{1,...,n}
X =0vz' -a! :cJ,Vje{l ..... n}
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A simple example

Consider the following Linear Program

(P)
Minimize (2,3,1,0)-x
s.t.

1110 5
X = AX>0
[2 13 —1] [9)
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Example — Thus, we get the following (D)

(D)

Maximize (5,9) -7

1 2 2
1 1 3
s.t. T < A w free
1 3 1
0 -1 0
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Example — How to generate r ?

Obviously, x=| _ | is a feasible solution to (P).

o 01 O O

Thus, we have x, = X, =0 X;, X, # 0. Consequently, we
need a = with the following attributes

) 1 0 1
1.Vie{3,4}:7rT~a':cic>7rT~ =
3 -1 0

2. 7 is feasible for (D)
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Example — How to generate r ?

1
Obviously, = = (OJ fulfills both restrictions and, therefore,

we have shown that
0

0 1
x=| and ”:(Oj are optimal solutions to (P) and (D),

6
respectively.
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A feasible solution to (D)

= For what follows, we need at first a feasible
solution to the dual problem. Fortunately, this is
quite simple to provide.

= If ¢ is positive, we just make use of =0.

= Otherwise, we apply the following simple
procedure that is depicted next.
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Generating a feasible dual solution

= In order to generate a feasible dual solution to
cases where c20 does not apply, we provide
the following simple construction procedure

1. We introduce a n +1th variable x
equality in (P)

as well as a m+1th

n+l

n+l
XXy ot X, F X = 2 % =b . with b, as ahuge

i=1
number.
Since we add c,,, =0, we know that this restriction has no
impact on the optimal solutions.
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Generating a feasible dual solution

2. Consider now the dual program.
Maximize b" -z +b, -7,

m+l —

AT T4 (T 7rm+l)T <cam,,<0,ie,
N
Vijim -a'+m,, <S¢
. . T
3. We generate 7 =(=}", ... ,my,) as follows:
gt =a) == =0AT,, = min{cj l¢; <0}<0
Thus, since j e {1,...,n} exists with ¢; <0,

ini

z" is feasible for (D).
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The set J

Assume 7 to be a feasible solution to the dual
program of a Linear Program in standard form.
An index j e {1,...,n} is denoted as feasible if and

only if it holds: 7" -/ =c;.

We introduce J as the set of feasible indices, i.e.,

J ={j|je{1,...,n}/\nT cal =cj}.
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Reduced primal problem (RP)

We assume J ={j;,..., j, } k >0 and define
A =(a"1,...,a"k) andx" =(x*,x"),

with x* = (x7,...,x3 ) as slack variables.
Then (RP) is defined as follows:

Minimize &, =1"-x*, s.t. (E,, A )-[XJ]=b,With [XJ]>O
X X

is denoted as the reduced primal problem.
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Observations

= (RP) is solvable. Specifically, we can use x™=(b,0)
= Since this trivial solution has the objective function value
1Tb and this objective function is lower bounded by 0,
(RP) is bounded
= Thus, (RP) has always a well-defined optimal solution
= Obviously, this optimal solution comprises two parts
= First, there are the slackness variables. If these are zero,
the objective function value is zero as well. Then, the primal
solution is optimal to (P)
Secondly, there are the original variables that correspond to
the set J. Since the corresponding dual values are equal to
the c-vector, only these variables may become unequal to

Zero
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Main conclusion
5.3 Theorem

(RP) always has an optimal solution. If 1" - x* = & =0,
0). . :
o] isan optimal solution to (P).

Otherwise, if & >0, then the optimal solution to the dual
of (RP) always generates an improved solution to (D).
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Proof of Theorem 5.3 - Case 1

At first, we assume &; = 0. Thus, we know that x* = 0. Consequently,
it holds: A’ -x” =b. Thus, we consider
0
)?:[ JJEO: A-)?:b/\(cT—nT ~A)-x
X
=(CT -z -A)J - Xy +(CT -z -A)JE X =0-x, +(CT — -A) -0=0

3

Hence, x and « are optimal solutions to the Linear Programs (P) and (D),
respectively.
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Proof of Theorem 5.3 — Case 2

Now, we consider the case &, > 0. Thus, we know that x* = 0.
Consequently, it holds: A’ -x” = b.

Let us now consider the dual of (RP), denoted as (DRP)
(RP)

Minimize 1" - x?, s.t. (Em,AJ)‘[i:]:b,xT :(xa,xJ)ZO

Thus, we obtain (DRP) as follows

E, "
Maximize b" -z, s.t. ;|lr< . free
(A7) o’
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Proof of Theorem 5.3 — Case 2

Assuming 7 is an optimal solution to (DRP). Then, we
conclude b' -7 =¢, > 0. Furthermore, let 7' = 7+ /- #.
We compute b" -z’ =b" -(z+A-7)=b" -w+b - A-F=

b -z+A-b" -7=b" -mw+A-&>b 7.
Consequently, if =" is feasible for (D), z' outperforms .
Hence, we now have to determine suitable values for 1

resulting in feasible values for z'.
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Proof of Theorem 5.3 — Case 2

Note that it holds: z' feasible for (D)
SV :Cj—7r'T -a' 20
oVjic,~(z+i-7) -al20

SV :Cj—7rT cal =47 al 20

SV :Cj—nT-aj A7 -al
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Proof of Theorem 5.3 — Case 2

vij ¢, - a2 A7 -a

Since = is feasible for (D), we know that ¢; —x" -a’ 2 0.

Let us now consider the corresponding final tableau of (RP)
=

01 00 0 g (-7 0'-7"-4" 0'-7-4"

b‘Em A A |

=0 -7 A" >07 A <0=>VjeJ 7 -a'<0
Hence, if j e J AL >0, the feasibility restriction is always
fulfilled.

22 usiness Computing and operations research WINFOR. 409

Proof of Theorem 5.3 — Case 2

0|]_T 0" o &, |1T7ﬁ,T O —7" 4 O A 4"
b|E, A A |

However, since A** does not belong to (RP). there may be j e J°©
with 7" -a’ > 0. If so, we can determine
- e=aat o
A=min{————|VjeJ : 7 ca’>0 p.

T -a
Consequently, =+ A -7 is feasible for A e {OI}
If there is, however, no j with #" -’ >0, (D) is unbounded
and, consequently, (P) is not solvable.
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Summary — The algorithm

We commence the searching process with a
feasible solution 1 to the dual program (D).
Then, we generate the reduced Linear Program
(RP(1m)) and solve it optimally. Thus, we
distinguish altogether three cases:

1.£,=0

= The tableau provides an optimal solution to (P).
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Summary — The algorithm

Further cases (Continuation of step 2)

2.8, >0AVj: 7 -a' <0= The primal problem
(P) is not solvable.

3.8 >0ATj:7" -a' >0

= Generate 7' = 7 + A, - 7,7 optimal solution

to the problem DRP (x).

. . cj—n-T-ai 4
Determine &, =mins - ————|VjeJ*:7 cal>05.
T o-a

Repeat step 2 until one of the cases 1 or 2 applies.
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lllustration
§=0
> (D) » RPG@) |
) T feasible (DRP()) @)
Update 7« z+/,-7 SO'UtiO£ ] No j exists
xand z: &, >0 »>(2)

(1) x and 7 are optimal. Termination

(2) Since b" -(z+ 4y -7) > o0,

(P) is not solvable. Termination
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The Primal-Dual Simplex Algorithm

Transform the problem such that b>0 and generate equations.
Initialization with a feasible basic solution to the dual problem.

Determine the set J :{j :1,...,n|7rT .al :L’J}-
Solve the reduced primal problem (RP) to optimality via the Primal Simplex Algorithm:

=

(RP) &, =Min (:L’“)T X SLE, X+ A X =bAX X 20
5. If & =0, then the optimal solution to the primal problem (P) is found. Terminate and
calculate the objective function value Z with the basic variables of J: Z :(CI)LJ !
Otherwise (i.e., & >0):
6. Calculate the dual variables 7 with cost coefficients of RP belonging to x& 7 =1" 7(51)

7. If &>0AVj:7' -a' <0, then terminate since the primal problem (P) is unbounded andH‘ "
no optimal solution exists.
Otherwise (i.e., & >0A3j:7 -a’>0):
8. Determine %, :min{ Vied: ' -a' >0}.
9. Update the dual variables: 7=z +24,-7.
10. Go to step 3.
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Example
(P)
25 10
Minimize (20,30)-x,st., |3 4|-x>|12 |Ax>0
21 5
=
(R)
25 -1 0 0 10
Minimize (20 30 0 0 0)-x,st,|3 4 0 -1 0 |-x=[12|Ax=>0
21 0 0 1 5
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Example
(D)
2 3 2 20
4 1 30
Maximize (10,125,)-z,s.t,[-1 0 0 [-x<| O |rxfree
0 -1 0 0
0 0 -1 0
0
Since ¢ >0, we can apply the trivial dual solutionz =| 0 |.
0
Thus, we get J° ={1,2} A J ={3,4,5}
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Example — Generate (RP(1r))

(RP (7))

-1 0 0 100 10
Minimize (0 0 0 1 1 1)-x,st.x>0A/0 -1 0 0 1 0| x=[12
1

0 0 -100 5

In order, however, to identify the j - values, we integrate the columns of
set J in the tableau as well. Thus, we obtain

0/111000 0 0 27000 -7 -10 1 1 1
001002510 0 10/100 2 5 -10 0
120010340 10 12/0103 4 0 -1 0
50001210 0 -1 5[{0012 1 0 0 -1
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Example — Generate A,

727‘0 00 -7 <10 1 1 1

0/1200 2 5 -1 0 O

12/010 3 4 0 -1 0

5/001 2 1 0 0 -1

=(0 0 0)=(1 1 I)-7Fei=(1 1 1)

Jo = min 20-7"-a* 30-7"-d° _ .n{ 20-0 3070}
(1 1 1),31'(1 1 l)'aZ 243+2'5+4+1

. {20 30| 20
=min{ —,— ="
7 10 7
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Example — Generate A,

Consequently, we obtain for the next round

' =(0 0 o)+@~(1 1 1):(@ 20 @j
7 707 7

Thus, since &, =27 > 0, we get a new (RP(x))

At first, we have to identify J.
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Example — Generate J

Therefore, we determine

2 3 2)(20) (140/7 20 20
5 4 1|7 200/7 | |200/7| |30
nT:($ ? ?): -1 0 0 »? =[-20/7|=|-20/7|<| 0 |=c
0 -1 0/||20]| |-20/7| |-20/7]| |0
0 0 -1){7) \-20/7) (-20/7) o0
Thus, this time we obtain J = {1} J° = {2,3,4,5}
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Example — Solving (RP(1T))

-2710 00 [-7] =10 1 1 1 —27\00 0 -7 <10 1 1 1
0/100 2 5 -1 0 0 10100 2 5 -10 0
= =
2010 3 4 0 -10 12/01 0 3 4 0 -1 0
51001 @ 1 00 -1 %joo¥ 1 YooY
27700 0 -7 -10 1 1 1
0/10 0 2 5 -10 0
=
9%l01-% o % 0o 1Y
5 z
%loo ¥ 1 ¥ oo o Y
- 7 “1 ,
Yoo 3 o a1y
5|10 -1 0 4 -1 0 1
= 9 _3 5 1 3
SA 01 -% o % o -1 Y
%loo ¥ 1 ¥ o o0 Y
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Example — Solving (RP(T))

= 00.7)-010)-7 =7 =11-%)
30—@ - 2/) - io
5+4- y / /

. (20 40] 20
=min{—,—=—
{91 35} 91

= Jy =min

%
%
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Example — Updating rand J

Consequently, we obtain for the next round

T 20 20 20) 20 (40 40 30]
-2 2 2211 252 2 =2

r [7 7 7Sl %G o

Thus, since & :1% >0, we get a new (RP(n))

At first, we again have to identify J.

2 3 2)(40) (260/13 20 20
, 4 118 |390/13 30 30
nT:(ﬂ 40 fo)i 0 o2 40r13|=| —40/13]<| 0 |=c¢
13 13 13 13
0 -1 0||g| |-40/13| |-40/13| |0

0 0 -1){713 -30/13 -30/13 0

Thus, this time we obtain J = {1,2} A J° = {3,4,5}
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P

Example — Solving (RP(1T))

19000 74 o 3] 1 1 -9
5110 -1 0 (4 -10 1
TYlo1-3%o0 5% o -1y
% oo Y1 ¥ o 0o Y

00 % 1
:554 o1 F o Y
Yot -lgoo o1
Yl ko 1ok oy

=34 015)- 1) =7 =(541-74)

-1/ [13, o0 13
YooY

o o »| o
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Example — Solving (RP(T))

= (8 018 )-a10)-7" =7 =[5 1-74)
(407, 30 240

== mm{?j,f’}:gl

Thus, we can update z by :z" = (4%3 ,4%3 ,3%3)+ % . (’% ,1,’%)

= (4013_120%28 s 24%1’3%3_168%28)

_ ((224071200%28 1(280+ 24(%11(1680—1680%28)

- (1040728 ,52091,0): 07,40/ 0)
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Example — Updating J

Again, we have to identify J.

2 3 2 140/7 20 20
5 4 1((29%) 21007 | 30 | |30
+ (10 40 0
1:770:—10O-A:—10/7:—10/7§0:c
0 -1 0| 0| |-40r7| |-40/7| |0
0 0 -1 0 0 0

Thus, this time we obtain J = {1,25}A J° = {3,4}
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Example — Solving (RP(1T))

4B 0 54 00 % 1 [
NARA

| =
ENENEN
o
o
>
iR
—
EN
o>

Yl H 0 % 1o Koo K

0] 1 1 100 0 0 0

W7 % o0y Y
5

20/ | -4, 5 4,
00 4% % o0 10 % % o
= &, =0= Optimal solutions are:

o (997,00 -84 % o 0 )
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Additional literature to Section 5

The primal-dual algorithm for general LP's was first described in

= Dantzig, G.B.: Ford, L.R.; Fulkerson, D.R. (1956): A Primal-Dual
Algorithm for Linear Programs," in Kuhn, H.W.; Tucker, A.W. (eds.):
Linear Inequalities and Related Systems. Princeton University Press,
Princeton, N.J., pp. 171-181.

Itis introduced there as a generalization of the paper

= Kuhn, H.W. (1955): The Hungarian Method for the Assignment
Problem. Naval Research Logistics Quarterly, 2, nos. 1 and 2, pp. 83-
97.
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