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5 The Primal-Dual Simplex Algorithm 

 Again, we consider the primal program given as a 
minimization problem defined in standard form 

 This algorithm is based on the cognition that both 
optimal solutions, i.e., the primal and the dual 
one, are strongly interdependent  

 Specifically, the approach commences the 
searching process with a feasible dual solution 
and simultaneously observes the complementary 
slackness between the solution value of the dual 
and a primal solution 

 If this slackness becomes zero, the optimality of 
the generated solutions is proven and the 
calculation process is terminated 
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Invariants of the Primal Simplex 

 

0 0 0 1

0

While conducting the Primal Simplex, the following attributes 

are always fulfilled for a minimization problem:

 Minimize  s.t. 0

1. 

2. 

T

T T T T T T

B B N N B B

T T

B B

P c x, A x b x

c x c x c x c A b π b b π

c x c x



    

           

  

 

0 0 0

1

1

0 0 0  

with 

Thus, if 0  is feasible for 

 Maximize s.t.  free

T T

N N B N

T T T

B B

T T T T

B B

T T

c x x c ,

c c c A A

c c A A π A c π

D b π, A π c π





      

   

       

   
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Consequences 

 The Primal Simplex works on a feasible primal 
solution that is iteratively improved by basis 
changes  

 This is done by the consideration of a 
corresponding dual solution that has an identical 
objective function value 

 As long as this dual solution is infeasible, the 
corresponding entries are inserted in the primal 
solution in order to fulfill them exactly in the dual 
program (Elimination of the corresponding 
slackness) 

 If the dual solution becomes feasible as well the 
optimality of both solutions (the primal and the 
dual solution) is proven 
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The Primal-Dual Simplex 

 As mentioned above, we assume that the primal 
program is given as a minimization problem in 
standard form 

 In what follows, we introduce a new algorithm that 
commences the searching process with a feasible 
dual solution 

 This solution is analyzed according to a specific 
relationship to the primal problem in order to generate 
a corresponding primal solution that allows to prove 
optimality 

 Specifically, we formulate a reduced problem that 
either generates an optimal primal solution or, if this is 
not possible, allows a correction of the dual one 

 Obviously, this process is executed until the first case 
applies 
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Observation 

5.1 Theorem of Complementary Slackness 

   

 

Assuming there is a Linear Program in standard form 

and  and  are feasible solutions to  and , 

respectively.  

Then, it holds:

 and  are optimal 0T T

x π P D

x π c π A x    
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Proof of Theorem 5.1 

 
 

Specifically, it holds:

0 0

Since  is feasible for 

0

 and  are optimal solutions

T T T T

T T T T

c π A x c x π A x

x P

c x π b c x π b

x π

         

        



 Fortunately, this proof is quite easy to conduct 

 Based on the facts we already know about tuples 
of optimal primal and dual solutions, we derive 
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5.2 Observation 
   

 
   

Assuming  and  are feasible solutions to  and , 

respectively.  

Additionally, assume that it holds: 0.

Thus,  and  are optimal solutions to  and , respectively

and it holds: 0

T T

T T

x π P D

c π A x

x π P D

c π A x

   

   

   

 

0

Hence, we can conclude 

0, 1,...,

0 , 1,...,

T j

j j

T j

j j

c π a x j n

x π a c j n



     

      

Direct consequence of Theorem 5.1 
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A simple example 

 

 Minimize 2 3 1 0

s.t.

1 1 1 0 5
0

2 1 3 1 9

P

, , , x

x x



   
      

   

Consider the following Linear Program 
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Example – Thus, we get the following (D) 

 

 Maximize 5 9

1 2 2

1 1 3
s.t.    free

1 3 1

0 1 0

D

, π

π π



   
   
     
   
   

   
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 

 

1 2 3 4

0

0
Obviously,  is a feasible solution to .

5

6

Thus, we have 0 , 0. Consequently, we 

need a  with the following attributes

1 0 1
1. 3 4

3 1 0

2.  is feasib

T i T

i

x P

x x x x

π

i , : π a c π

π

 
 
 
 
 
 

   

   
         

   

 le for D

Example – How to generate π ? 
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   

1
Obviously,  fulfills both restrictions and, therefore, 

0

we have shown that 

0

0 1
 and  are optimal solutions to  and , 

5 0

6

respectively.

π

x π P D

 
  
 

 
 

        
 
 

Example – How to generate π ? 
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A feasible solution to (D) 

 For what follows, we need at first a feasible 

solution to the dual problem. Fortunately, this is 

quite simple to provide. 

 If c is positive, we just make use of π=0. 

 Otherwise, we apply the following simple 

procedure that is depicted next. 
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Generating a feasible dual solution 

1

1

1 2 1 1 1

1

1

1.  We introduce a 1th variable  as well as a 1th 

equality in 

... , with  as a huge 

number.  

Since we add 0, we know that this restriction has no 

impact 

n

n

n n i m m

i

n

n x m

(P)

x x x x x b b

c





  





 

     





on the optimal solutions.

 In order to generate a feasible dual solution to 

cases where c≥0 does not apply, we provide 

the following simple construction procedure 
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Generating a feasible dual solution 

 

 

 

1 1

1 1 1

1

1 1

1 2 1

2.  Consider now the dual program.

Maximize 

0, i.e., 

:

3.  We generate , ,  as follows:

... 0 min | 0 0

T

T

m m

TT

m m m

T j

m j

T
ini ini ini

m

ini ini ini

m m j j

b π b π

A π π ... π c π

j π a π c

π π ... π

π π π π c c

 

  







  

    

   



       

 

 

hus, since 1,...,  exists with 0,  

 is feasible for .

j

ini

j n c

π D

 
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The set J 

 

Assume  to be a feasible solution to the dual 

program of a Linear Program in standard form.  

An index 1  is denoted as feasible if and 

only if it holds: 

We introduce J as the set of f

T j

j

π

j ,...,n

π a c .



 

  
easible indices, i.e., 

1 T j

j
J j | j ,...,n π a c .    



6 

Business Computing and Operations Research 492 

Reduced primal problem (RP) 

 

   

 

 

 

1

1

1

0

We assume 0 and define 

 and 

with  as slack variables.

Then  is defined as follows:

Minimize 1 , s.t. with 0

is den

k

k

jj T a J

J

a a a

m

a a

T a

m J J J

J j ,..., j ,k

A a ,...,a x x ,x ,

x x ,...,x

RP

x x
x E ,A b,

x x

 

 



   
        

   

oted as the reduced primal problem.
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Observations 

 (RP) is solvable. Specifically, we can use xT=(b,0) 

 Since this trivial solution has the objective function value 

1T.b and this objective function is lower bounded by 0, 

(RP) is bounded 

 Thus, (RP) has always a well-defined optimal solution 

 Obviously, this optimal solution comprises two parts 

 First, there are the slackness variables. If these are zero, 

the objective function value is zero as well. Then, the primal 

solution is optimal to (P) 

 Secondly, there are the original variables that correspond to 

the set J. Since the corresponding dual values are equal to 

the c-vector, only these variables may become unequal to 

zero 
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Main conclusion 

5.3 Theorem 

 

 

   

0

0

 always has an optimal solution. If 1 0,  

0
 is an optimal solution to .  

Otherwise, if 0, then the optimal solution to the dual 

of  always generates an improved solution to .

T a

J

RP x

P
x

RP D





  

 
 
 


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Proof of Theorem 5.3 – Case 1 

 

     

0At first, we assume 0. Thus, we know that 0. Consequently, 

it holds: . Thus, we consider 

0
ˆ ˆ0

0 0 0

Hence,  and  are opt

cc c

a

J J

T T

J

T T T T T T

J JJJ J J

x

A x b

x A x b c π A x
x

c π A x c π A x x c π A

x π

  

 

 
         
 

              

   imal solutions to the Linear Programs  and , 

respectively.

P D
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Proof of Theorem 5.3 – Case 2 

   

 

   

0Now, we consider the case 0  Thus, we know that 0   

Consequently, it holds:   

Let us now consider the dual of , denoted as 

Minimize 1  s.t. 0

Thus, 

a

J J

a

T a J T a J

m J

. x .

A x b.

RP DRP

RP

x
x , E ,A b,x x ,x

x

  

 

 
     

 

 

 

we obtain  as follows

1
Maximize s.t.  free

0

m
m

T
T

J J

DRP

E
b π, π ,π

A

   
     

  
  
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Proof of Theorem 5.3 – Case 2 

 

 
0

0

Assuming  is an optimal solution to . Then, we 

conclude  0. Furthermore, let .  

We compute  

.

Consequently, if  is feasi

T

T T T T

T T T T

π DRP

b π ξ π π λ π

b π b π λ π b π b λ π

b π λ b π b π λ ξ b π

π

     

          

         

  ble for D ,   outperforms .

Hence, we now have to determine suitable values for  

resulting in feasible values for .

π π

λ

π




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Proof of Theorem 5.3 – Case 2 

 

 

Note that it holds:   feasible for 

0

0

0

T j

j

T j

j

T j T j

j

T j T j

j

π D

j : c π a

j : c π λ π a

j : c π a λ π a

j : c π a λ π a



    

     

       

      
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Proof of Theorem 5.3 – Case 2 

 

 

0

Since  is feasible for , we know that 0

Let us now consider the corresponding final tableau of  

0 1 0 0 1 0 0

0 0

c

c

T j T j

j

T j

j

T T T T T T T J T T J

J J

m

T T J

j : c π a λ π a

π D c π a .

RP

π π A π A

... ... ... ...b E A A

π A

     

  



     


     0 0

Hence, if 0  the feasibility restriction is always 

fulfilled. 

T J T jπ A j J : π a

j J ,

     

  
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Proof of Theorem 5.3 – Case 2 

 

0
0 1 0 0 1 0 0

However, since  does not belong to  there may be 

with  0  If so, we can determine 

0 

c

c

c

T T T T T T T J T T J

J J

m

J c

T j

T j

j c T j

T j

π π A π A

... ... ... ...b E A A

A RP , j J

π a .

c π a
λ min | j J : π a

π a

     




 

   
     

  

 
 

 

Consequently,  is feasible for 0,...,

If there is, however, no  with 0   is unbounded 

and, consequently,  is not solvable.

T j

.

π π λ .

j π a , D

P

   

 
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Summary – The algorithm 

 
0

1. 0

The tableau provides an optimal solution to P .

 



1. We commence the searching process with a 

feasible solution π to the dual program (D). 

2. Then, we generate the reduced Linear Program 

(RP(π)) and solve it optimally. Thus, we 

distinguish altogether three cases: 
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Summary – The algorithm 

 

 

0

0

0

0

2. 0 0 The primal problem 

 is not solvable.

3. 0 0

Generate  optimal solution 

to the problem   

Determine 0

Repea

     

    

   

   
      

  

T j

T j

T j

j c T j

T j

j : π a

P

j : π a

π π π,π

DRP π .

c π a
min | j J : π a .

π a

t step 2 until one of the cases 1 or 2 applies.

Further cases (Continuation of step 2) 
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Illustration 

(P) 
(D) 

π feasible 

(RP(π)) 

(DRP(π)) 
(1) 

(2) 

πλππ ~   Update 0 

(1) 

(2) 

 and  are optimal. Terminationx π

 

 

0 Since 

 is not solvable. Termination

Tb π λ π ,

P

   

0 and 

 :Solutions

0 ξπ:x

No j exists 

ξ0=0 



10 

Business Computing and Operations Research 504 

The Primal-Dual Simplex Algorithm 

1. Transform the problem such that          and generate equations. 

2. Initialization with a feasible basic solution to the dual problem. 

3. Determine the set                                         . 
 

4. Solve the reduced primal problem (RP) to optimality via the Primal Simplex Algorithm: 

 
5. If           , then the optimal solution to the primal problem (P) is found. Terminate and 
 

 calculate the objective function value Z with the basic variables of J: 

Otherwise (i.e.,           ) : 

6. Calculate the dual variables     with cost coefficients of RP belonging to xa: 

7. If                                  , then terminate since the primal problem (P) is unbounded and 

no optimal solution exists. 

Otherwise (i.e.,                                 ) : 
 

8. Determine                                                       . 
 

9. Update the dual variables:                     . 

10. Go to step 3. 

0π : π π   

0 0 0T jj : π a    

0 0 0T jj : a     

0 0

T j

j T j

T j

c π a
min j J : π a

π a

   
      

  

π

 1 T j

j
J j ,...,n |π a c   

 
1

1m

j j ,...,m
π c


 

0 0 

0 0 

   0  1 0
T

m a a J J a J

mRP Min x s.t. E x A x b x ,x        

 
T J

j j J
Z c x


 

0b 
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Example 

 

 

 

 

2 5 10

Minimize 20,30 ,s.t., 3 4 12 0

2 1 5

2 5 1 0 0 10

Minimize 20 30 0 0 0 ,s.t., 3 4 0 1 0 12 0

2 1 0 0 1 5

s

P

x x x

P

x x x

   
   

       
   
   



   
   

        
      
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Example 

 

 

   

2 3 2 20

5 4 1 30

Maximize 10,12,5, ,s.t.,  free1 0 0 0

0 1 0 0

0 0 1 0

0

Since 0,  we can apply the trivial dual solution 0 .

0

Thus, we get 1,2 3,4,5c

D

π  π π-

-

-

c π

J J

   
   
   
      
   
   
   
   

 
 

   
 
 

  
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Example – Generate (RP(π)) 

  

 

1 0 0 1 0 0 10

Minimize 0 0 0 1 1 1  s.t. , 0 0 1 0 0 1 0 12  

0 0 1 0 0 1 5

In order, however, to identify the values, we integrate the columns of 

set  in the tableau  as well. Thus, we obtac

RP π

x, x x

j -

J

   
   

        
      

in

0 1 1 1 0 0 0 0 0 27 0 0 0 7 10 1 1 1

10 1 0 0 2 5 1 0 0 10 1 0 0 2 5 1 0 0

12 0 1 0 3 4 0 1 0 12 0 1 0 3 4 0 1 0

5 0 0 1 2 1 0 0 1 5 0 0 1 2 1 0 0 1

  

 


 

 
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Example – Generate λ0 

     

   

1 2

0 1 2

27 0 0 0 7 10 1 1 1

10 1 0 0 2 5 1 0 0

12 0 1 0 3 4 0 1 0

5 0 0 1 2 1 0 0 1

0 0 0 1 1 1 1 1 1

20 30 20 0 30 0
min min

1 1 1 1 1 1 2 3 2 5 4 1

20 30 20
min

7 10 7

T T

π π

π a π a
λ , ,

a a

,

  







    

         
    

        

 
  

 
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Example – Generate λ0 

   

  
0

Consequently, we obtain for the next round

20 20 20 20
0 0 0 1 1 1

7 7 7 7

Thus, since 27 0, we get a new 

At first, we have to identify .  

Tπ

RP π

J

 
     

 

  
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Example – Generate J 

   5,4,3,21obtain   we time thisThus,

0

0

0

30

20

7/20

7/20

7/20

7/200

20

7/20

7/20

7/20

7/200

7/140

7

20
7

20
7

20

100

010

001

145

232

7

20

7

20

7

20

 determine  weTherefore,

















































































































































c

T

JJ

cπ
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Example – Solving (RP(π)) 

 

 

2
100

2
11

2
100

2
5

2
310

2
50

2
310

2
9

101401015
2

511
2

130
2

700
2

19

2
100

2
11

2
100

2
5

2
310

2
50

2
310

2
9

0015200110

11110700027

2
100

2
11

2
100

2
5

0104301012

0015200110

11110700027

100121005

0104301012

0015200110

11110700027








































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Example – Solving (RP(π)) 

     

 

91

20

35

40
,

91

20
min

2
5

7
20

,

2
13

7

10

min

2
5

7
200

,

2
545

7

200
30

min

2
511~~111

2
700

0






















































λ

,,ππ,,,, TT
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Example – Updating π and J 

 

  
0

Consequently, we obtain for the next round

20 20 20 20 40 40 3051 1
27 7 7 91 13 13 13

19Thus, since 0, we get a new 
2

At first, we again have to identify .  

2 3 2

5 4 1
40 40 30

1 0 0
13 13 13

T

T

π

RP π

J

π

   
       
   

  

 
   
 

 

40 260 13 20 20
13 390 13 30 30
40

40 13 40 13 0
13

0 1 0 40 13 40 13 0
30

0 0 1 30 13 30 13 0
13

Thus, this time we obtain 1 2

/

/

c/ /

/ /

/ /

J , J

        
        
        
             
        
          
                   

   3 4 5c , ,
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Example – Solving (RP(π)) 

 
 

     
8

71
8

5~~111
8

150
8

13

8
50

8
101

8
50

8
1

8
15

8
71

8
500

8
71

8
5

8
11

4
10

4
110

4
10

4
1

4
5

8
71

8
500

8
150

8
13

8
11

2
100

2
11

2
100

2
5

2
310

2
50

2
310

2
9

101401015
2

511
2

130
2

700
2

19























,,ππ,,,, TT
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Example – Solving (RP(π)) 

     

   

 
     

   0
7

40
7

100
91

520
728

1040

728
16801680

91
240280

728
12002240

728
1680

13
30

91
240

13
40

728
1200

13
40

8
71

8
5

91

240

13
30

13
40

13
40 :by  updatecan   weThus,

91

240

8
7

13
30

,

8
5

13
40

min

8
71

8
5~~111

8
150

8
13

0

,,,,

,,

,,

,,,,ππ

λ

,,ππ,,,,

T

TT









 
























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Example – Updating J 

   4,35,2,1obtain   we time thisThus,

0

0

0

30

20

0

7/40

7/10

30

20

0

7/40

7/10

7/210

7/140

0
7

40
7

10

100

010

001

145

232

0
7

40

7

10

  .identify   tohave  weAgain,









































































































































c

T

JJ

cπ

J
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Example – Solving (RP(π)) 

 

   
0

13 15 5 711 0 0 0 1
8 8 8 8 8

5 1 1 1 10 0 1 0
4 4 4 4 4

5 7 5 711 1 0 0 1
8 8 8 8 8

15 5 51 10 1 0 0
8 8 8 8 8

0 1 1 1 0 0 0 0 0

6 3 32 20 0 1 0
7 7 7 7 7

5 8 5 811 1 0 0 1
7 7 7 7 7

20 5 54 40 1 0 0
7 7 7 7 7

0 Optimal solutions are:

10 40 20 6 11 0 0 0
7 7 7 7 7

T Tπ , , x

   
 

 


  






 



   

  
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Additional literature to Section 5 

The primal-dual algorithm for general LP's was first described in 

 Dantzig, G.B.: Ford, L.R.; Fulkerson, D.R. (1956): A Primal-Dual 

Algorithm for Linear Programs," in Kuhn, H.W.; Tucker, A.W. (eds.): 

Linear Inequalities and Related Systems. Princeton University Press, 

Princeton, N.J., pp. 171-181.  

It is introduced there as a generalization of the paper 

 Kuhn, H.W. (1955): The Hungarian Method for the Assignment 

Problem. Naval Research Logistics Quarterly, 2, nos. 1 and 2, pp. 83-

97. 


