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2 Duality

Papadimitriou and Steiglitz (1982) (p.67):
It would be useful enough if the Simplex Algorithm was all 
that was provided by the Linear Program Research.
“But there are also many interesting theoretical aspects to 
the subject, especially relating to combinatorial problems. All 
of these are related in one way or another to the idea of 
duality...”

 In what follows, we introduce the dual of an LP
 In that coherence, the original program is denoted as the 

primal problem
 By a simultaneous consideration of both programs, it is 

possible to obtain significant insights into the problem 
structure of a given instance
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2.0 Motivation – Upper bounding

 If we consider a maximization LP as introduced 
above, we may ask for a bound on the objective 
function value, i.e., a bound that cannot be 
exceeded by a feasible solution of the problem

 This will be addressed by reference to a simple 
example 

 Thus, consider the following problem
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A simple problem

 Consider the following LP
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Upper bound consideration

 We can state that for each feasible solution 𝑥 it holds:

 Consequently, we are able to provide an upper bound on 
the objective function by the following Linear Program
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Generating an upper bound

 Thus, we can state

 Since we are interested in finding the minimum 
upper bound, we define the following 
minimization problem
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The corresponding (dual) problem

 The following problem is denoted as the dual 
problem 
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2.1 The dual problem

 In general, the dual of the problem

 is defined by
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j
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j
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and in general?

Then, we first 
have 

to transform 
the problem 

and, 
subsequently, 
to apply our 

rules

Then, we first 
have 

to transform 
the problem 

and, 
subsequently, 
to apply our 

rules

OK! This works for 
canonical problems. 

BUT what about 
an LP in general 

form?

OK! This works for 
canonical problems. 

BUT what about 
an LP in general 

form?
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For instance: Equation

0 subject to
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Thus, the dual is

 Thus, we can interpret the both π-vectors as 
positive and negative components of a free 
variable π

 Consequently, we can derive the following dual 
program

   

0,with 
 subject to   Minimize
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The dual program

free  with  subject to   Minimize πc,πAπb TT 
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By doing so, we transform the primal problem
 

 
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Transforming in standard form
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and obtaining the dual
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And therefore, we obtain

 
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And finally
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Direct comparison

   
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 
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Example
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Example – Preparing the problem

   

1 3 2 1 1
1 1 5 0 3

5 1 0 0 6 1 0 0 3 10

1 3 2 1 1 1 5 1
1 1 5 0 3 1 1 0

5 1 0 0 2 5 0 0
1 0 0 3 1 0 0 3
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Generating the dual

 
 

   
   
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Comparing the primal and dual objective value

 We consider the problems

 For every feasible primal and dual solution it holds:

 This is true since

 or by matrix transformations
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Main cognition – Optimality criteria

2.1.1 Lemma

   
 
 

Assume that  and  are feasible solutions for  and , with

, . ., , 0

, . ., ,
Then, it holds:

 and  are optimal solutions
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x π P D
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b π c x x π
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Proof of Lemma 2.1.1

 We assume that it holds:

 Other way round, we assume that x and π are 
optimal solutions for (P) and (D)

   DPπx
x,πx,cπb TT

 and for  solutions optimal are  and 
 know  weSince 

xcπb TT 
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1
0 0

0 0 1
0

Consider the final tableau that generates  
as an optimal bfs. Then, we have a corresponding 
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Conclusion

Observations:
 Therefore, we know that both solutions (x0 and π0) have 

always identical objective function values during the 
calculation process of the Simplex Algorithm

 If π0 becomes finally feasible, optimality is proven

0
0

0

0

0 0

And since  is optimal, we know 0

therefore,  is feasible

and thus altogether
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2.1.2 The dual of the dual

 We know, the dual of the problem

 is defined by
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The dual of the dual

 And this is equivalent to

 …and the dual of the dual
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And returning to the original problem

 And this is equivalent to
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2.2 The possible cases

Result:
One of the following constellations applies for 
each pair (P) and (D):
1. Both problems have an optimal solution
2. None of them has a feasible solution
3. One has no feasible solution while the other 
one is unbounded
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The cases

 We distinguish if there are feasible solutions for 
(P) and (D)

 Thus, we get the following resulting constellations

P not empty P empty

D not empty 1 3

D empty 3 2
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The cases

 Case 1: Since both problems are solvable, the 
objective functions are bounded accordingly.  
Thus, optimal solutions exist

 Case 2: trivial
 Case 3: Since an optimal solution for (P) would 

also provide an optimal solution for (D), we can 
conclude that (P) is unbounded

 We can easily show that all three cases exist
 This is depicted on the following slides…
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Example – Case 1

   

   

1 0 0
  Minimize 1 1    s.t.  0

0 1 0

0
 is single solution

0

1 0 1
  Maximize 0 0   s.t.   free

0 1 1

0
 is optimal solution

0

P , x x x

D , π π π

   
       

   
 

  
 



   
      

   
 

  
 
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Example – Case 2

 

 

 

 

2

1 1 1

1 0 1 0
Minimize 1 0 0    s.t.  0

0 1 0 1
1 0 Not solvable

1 0 1
Maximize 0 1   s.t.   free 0 1 0

1 0 0
1 0 0 Not solvable

P

x x x

x

D

, π π π

π π π

   
           

    



   
          
      

        
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Example – Case 3

   

   

 

2

1 0 1 0
  Minimize 0 0 0    s.t.  0

0 1 0 1
1 0 Not solvable

1 0 0
 Maximize 0 1   s.t.  free 0 1 0

1 0 0

0 0 is a feasible solution 
Unbounded solutio

P x x x

x

D , π π π

π , a ,a IR a

   
          

    

   
           
      

     

 n space and therefore no optimal 
solution available
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2.3 The Dual Simplex Algorithm

 If no primal solution is available, we may use the 
Two-Phase Method or make use of the Dual 
Simplex Algorithm

 This prerequisites, however, the existence of a 
feasible dual solution

 The Primal Simplex Algorithm ((P) Min-Problem)

 The Dual Simplex Algorithm ((P) Min-Problem)

0:criterion Optimality0 :Invariant 1   cbAb B

0:criterion Optimality0 :Invariant 1   bAbc B
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The Dual Simplex Algorithm
1. Transform the primal problem into a canonical form, generate equations and a 

minimization objective function.
2. Initialization with a solution to the dual problem.
3. If there are strictly negative right-hand side coefficients     , then

 Pivot row s (largest coefficient rule):                                     .
 If                             , then terminate since the dual solution space is 

unbounded, and thus the primal solution space is empty.

 Pivot column t: that is an upper bound on 

the corresponding dual slack variable t.
 Basis change: xt enters the basis and xB(s) becomes a non-basic variable

Apply a linear transformation of the constraint equalities by the Gauß-
Jordan algorithm to yield a unit vector with ast=1 at the pivot element (i.e., es

in column t). Go to step 3.
Otherwise: Termination. A feasible basic solution to the primal problem is found.

b

 min 0 1,...,ib i m  

 min / 1,..., : 0j sj sjc a j n a   

0 1,...,sja j n  
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The Dual Simplex - Example

 

 

 

 

 

1 2 2
Minimize 4 2    s.t.  0

1 1 1

1 2 1 0 2
Minimize 4 2 0 0    s.t.  0

1 1 0 1 1

0 4 2 0 0 0 4 2 0 0
2 1 2 1 0 2 1 2 1 0 0 0 2 1
1 1 1 0 1 1 1 1 0 1

Obviously, 0 0 2 1   is not feasible!

T

T

P

, x x x

x x x

x

x

   
          

   
           



        
   

   
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The dual problem

 We have a dual solution directly 
 Consequently, we can either conduct the Primal 

Simplex on the dual tableau or the Dual Simplex 
on the primal tableau

 

 

 

1 1 1 0 4
Minimize 2 1 0 0   s.t. 0

2 1 0 1 2
0 2 1 0 0
4 1 1 1 0 0 0 4 2  feasible dual solution!
2 2 1 0 1

T

D

π π π

π

   
             

 
 


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Dual and Primal Simplex
 The Dual Simplex

 The primal applied to the dual problem

 
 

 

0 4 2 0 0 2 3 0 1 0 2 3 0 1 0
2 1 2 1 0 1 1/ 2 1 1/ 2 0 1 1/ 2 1 1/ 2 0
1 1 1 0 1 2 3/ 2 0 1/ 2 1 2 3/ 2 0 1/ 2 1

6 0 0 2 2
1/ 3 0 1 1/ 3 1/ 3 4 / 3 1/ 3  feasible and optimal
4 / 3 1 0 1/ 3 2 / 3

Tx

 
      
     


   

 

 

 

   TTopt xπ 3/13/40,0,2,2

3/13/1012
3/13/2102

3/13/4006

2/102/111
3/13/2102

10202

2/102/111
2/112/303

10202
2/102/111
2/112/303

10202

2/102/111
01114
10202

10122
01114
00120





























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Pivoting in the Dual Simplex

 Owing to the exchanged invariant and optimality 
criterion, we have the following modified pivoting 
rule

 I.e., we always select the subsequent column 
according to the following rule















 0|min as Select  0; with Select j
sj

s

t
t
s

t
s a

a
c

a
ctbs



Business Computing and Operations Research 298

2.4 Interpreting the dual

 By analyzing the results provided by primal or 
dual programs, we try to obtain insights into the 
respective problem structure

 For several examples, there are interesting 
economical interpretations possible

 Hence, in what follows, we consider several 
examples in detail … 
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Production Program Planning

 We make use of altogether four resources 1,2,3, 
and 4 in order to produce a theoretical production 
program of two product types A and B

 Each product type (A and B) comes along with 
individual marginal profits and consumption rates 
for using the resources

 We measure the profits by monetary units per 
product unit and the consumption rates by 
resource units per product unit
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The mathematical problem































































150
150
150
150

6
10

0
8
1

10
1

9
1

8
1

10
1

150
6
101500

8
1

150
10
1

9
1150

8
1

10
1  s.t.

00,10060 Maximize

B

A

BABA

BABA

BABA

x
x

xxxx

xxxx

xxxx
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The dual program

 We obtain

1 2 3 4

1 1

2 2

3 3

4 4

Minimize  150 150 150 150

s.t.

1 1 1 0 6010 9 8 0
1 1 1 1000
8 10 6

π π π π

π π
π π
π π
π π

      

                                    
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How to interpret the dual program?

 First, consider the basis units…
 Obviously, the variables are measured in monetary units 

per resource units
 Let us assume that the predetermined resources are held 

by a vendor for prices π1, π2, π3, π4 each
 Thus, the objective function minimizes the procurement of 

150 resource units for all resources
 But: Other way round, the vendor of the resources can 

use the resource units on its own in order to produce the 
product types A and B

 Thus, the marginal profits of the products are lower 
bounds for the prices of the resource units
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We solve the program by Excel

Microsoft 
Excel-Arbeitsblatt
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Primal and dual solution

 Thus, we obtain the primal solution

 and the dual


















900
375

B

A

x
x







































150
0
0

600

4

3

2

1

π
π
π
π
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Interpreting the result

 The price for resource 1 is 600, i.e., this resource 
is short

 Specifically, we are willing to pay up to 600$ for 
an additional resource item

 Analogously, resource 4 is short as well and we 
are willing to pay up to 150$ for each item

 Thus, the values of the optimal solution to the 
dual problem are usually denoted as shadow 
prices

 In contrast to this, resources 2 and 3 are not 
short, i.e., we are not willing to pay for their 
additional availability 
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Consequences for the primal problem

 With the previous constellation we achieve a 
profit of 112.500$

 Let us now modify the primal problem accordingly 
and extend the resource restriction 1

Microsoft 
Excel-Arbeitsblatt
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New solution

 Now we get

 and a total profit of 113.100$, i.e., an increase of 
113.100$-112.500$=600$, just as anticipated


















900
385

B

A

x
x
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Extending resource 2

 With the previous constellation we achieve a 
profit of 112.500$

 Let us now modify the primal problem accordingly 
and extend the resource restriction 2

Microsoft 
Excel-Arbeitsblatt
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Consequences for the primal problem

 With the previous constellation we achieve a 
profit of 112.500$

 Let us now modify the primal problem accordingly 
and extend the resource restriction 4

Microsoft 
Excel-Arbeitsblatt
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New solution

 Now we get

 and a total profit of 112.650$, i.e., an increase of 
112.650$-112.500$=150$, just as anticipated


















906

5,367

B

A

x
x
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Example 2 – The Diet Problem

 

 

 

  














































































30
20

145
232

051210 Maximize

5
12
10

12
43
52

03020 Minimize

3

2

1

2

1

π,π
π
π
π

D

x,x
x
x

,

P
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Interpreting the primal problem

 Find an efficient healthy nutrition
 Two kinds of food may be consumed 
 A housekeeper has to find a food combination 

that guarantees a healthy nutrition at the least 
possible costs

 Lower bounds are defined as minimal amounts of 
vitamins that have to be consumed in the 
considered planning horizon
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Interpreting the dual problem

 We assume that there is an additional vendor of 
vitamins 

 He or she offers the daily package and wants to 
maximize the profit

 Obviously, a combination equal to one of the food 
ingredients has to cost at most the same price.  
Otherwise, no one would consume it but the food 
instead

 The variables are the prices per vitamin
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Solving the primal problem

 We make use again of the Excel Solver

Microsoft 
Excel-Arbeitsblatt
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Optimal solution to the primal

 We obtain the solution

 Objective function value

 Vitamin 1 and 2 are consumed just completely 
 Vitamin 3 is consumed more than necessary


















86,0
86,2

B

A

x
x

  682,8571428, BA xxZ
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Solving the dual problem

Microsoft 
Excel-Arbeitsblatt
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Optimal solution to the dual

 We obtain the solution

 Objective function value


































0
5,71428571
1,42857143

3

2

1

π
π
π

  8571428682321 ,,π,ππZ 
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Interpreting the result

 Vitamin 3 costs nothing since it is excessively 
consumed 

 If we have to consume one more unit of vitamin 
1, the total result is deteriorated by 1.43$

 If we have to consume one more unit of vitamin 
2, the total result is deteriorated by 5.71$



Business Computing and Operations Research 319

Illustration

 Showing the impact of shadow prices at the dual 
problem

 As anticipated, our costs increased by 
1,42857143 (just equal to respective shadow 
price)

Microsoft 
Excel-Arbeitsblatt



Business Computing and Operations Research 320

2.5 Farkas' Lemma

 Farkas' Lemma is a fundamental result about 
vectors in IRn that in a sense captures the ideas 
of duality

 It allows to derive the results proven earlier in this 
course

 Now, we are able to prove Farkas' lemma as a 
consequence of what we already know about 
linear programming
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Cones

2.5.1 Definition

2.5.2 Example

 
 

 
1

Given a set of vectors ,  1,..., ,  the cone generated by the set ,  

denoted by , is defined by:

, 0, 1,..., .

n
i i

i

m
n

i i i i
i

a IR i m a

C a

C a x IR x a i m 


 

 
      
 



Cone of a1 and a2a1

a2
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Nonnegative projections

2.5.3 Definition

2.5.4 Example

A vector  has a nonnegative projection on a vector 
 if it holds that 0

n

n T

c IR
d IR c d



  

a1

Vectors in here have nonnegative 
projections on vector a1
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Farkas' Lemma

2.5.5 Theorem (Farkas' Lemma)

 

 1

Given a set of vectors ,  1,..., ,  and another 

vector c ,  then it holds:
: 1,..., : 0 0

, ... ,

 



        





n
i

n

n T T
i

m

a IR i m

IR
y IR i m y a y c

c C a a
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Proof of Farkas' Lemma

 We start with the second part and assume that

 Thus, it holds that 

 
1

,  with 0
m

i i i i
i

c C a c a 


    

 


1 1 0

: 1,..., : 0 we obtain 

0,  since 0  
  

     

         

n T
i

m m
T T T

i i i i i
i i

y IR i m y a

y c y a y a
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Proof of Farkas' Lemma

 Now, we assume that the first part holds, i.e., we 
have 

 Consider the following Linear Program 

 This program is obviously feasibly solvable since 
y=0 is a feasible solution. It is also bounded since 

 : 1,..., : 0 0n T T
iy IR i m y a y c        

min  
s.t. 0, 1,...,

 free

T

T
i

c y
a y i m

y



   

 : 1,..., : 0 0n T T
iy IR i m y a y c        
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Proof of Farkas' Lemma

 The corresponding dual program is 

 Since the primal is solvable and bounded, the 
dual program is also solvable (see Section 2.2)

 Hence, there exists a vector π≥0 with

max  0
s.t. , 1,...,

0





   



T
j jA c j n

1
 and 0

m

i i i
i

c a 


  
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Additional literature to Section 2

 Farkas, J. (1902): Theorie der Einfachen Ungleichungen. Journal 
Reine und Angewandte Mathematik 124 (1902), pp.1-27.

J. von Neumann is credited by D. Gale with being the first to state the 
duaIity theorem. Gale (1950) cites the first proof, based on von 
Neumann's notes, in
 Gale, D.H.; Kuhn, H.W.; Tucker, A.W. (1950): On Symmetric Games 

in Kuhn, H.W.; Tucker, A.W. (eds.): Contributions to the Theory of 
Games. Ann. Math Studies, no. 24. Princeton University Press, 
Princeton, N.J.

 Gale, D. (1960): The Theory of Linear Economic Models McGraw Hill 
Book Company, New York. 


