

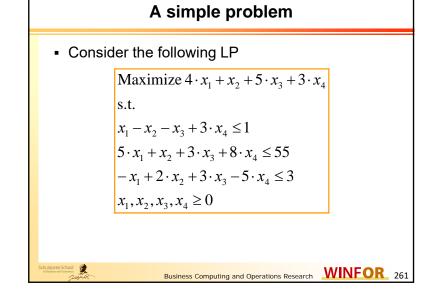
2.0 Motivation – Upper bounding

- If we consider a maximization LP as introduced above, we may ask for a bound on the objective function value, i.e., a bound that cannot be exceeded by a feasible solution of the problem
- This will be addressed by reference to a simple example

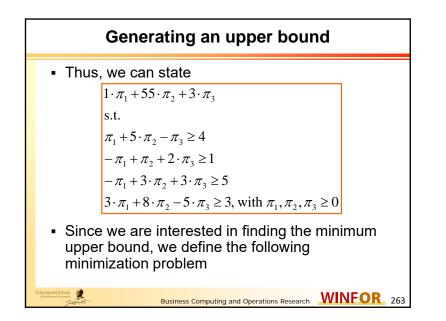
Business Computing and Operations Research WINFOR 260

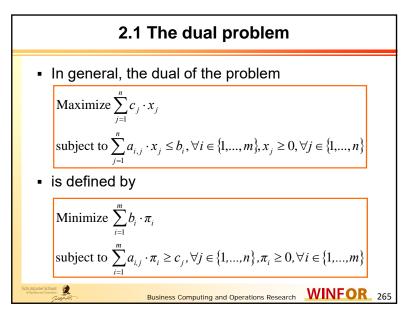
- Thus, consider the following problem

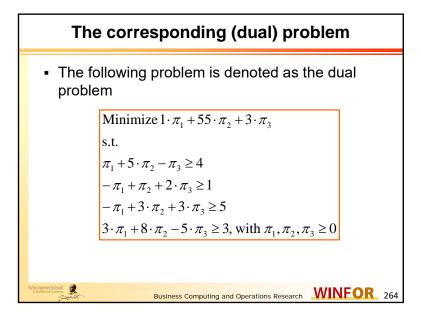
8

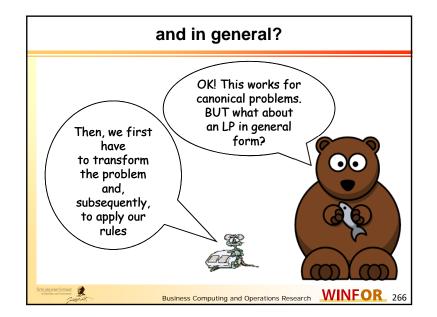


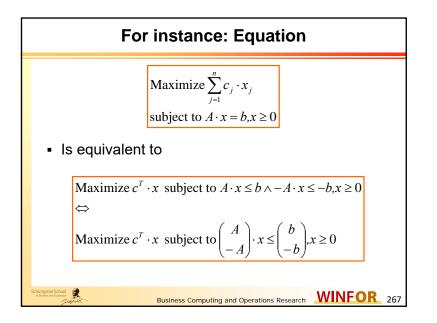
<section-header><section-header><equation-block><equation-block><equation-block><equation-block><equation-block>









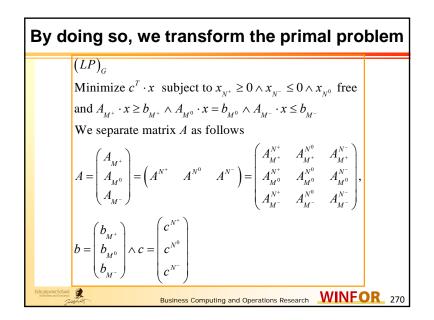


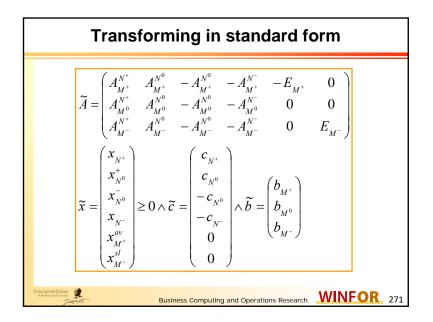
Thus, the dual is		
М	inimize $b^T \cdot \pi^1 - b^T \cdot \pi^2$ subject to $\begin{pmatrix} A^T & -A^T \end{pmatrix} \cdot \begin{pmatrix} \pi^1 & \pi^2 \end{pmatrix} \ge c$,	
wi	$\operatorname{ith} \pi^1, \pi^2 \ge 0$	
⇔	,	
Μ	inimize $b^T \cdot \pi^1 - b^T \cdot \pi^2$ subject to $A^T \cdot \pi^1 - A^T \cdot \pi^2 \ge c$,	
wi	$\operatorname{ith} \pi^1, \pi^2 \ge 0$	
۲ ا	Thus, we can interpret the both π -vectors as positive and negative components of a free variable π	
	Consequently, we can derive the following dual program	

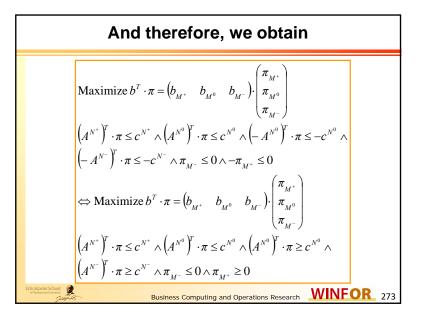
Business Computing and Operations Research WINFOR 268

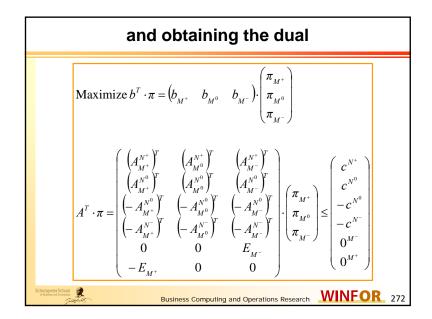
2

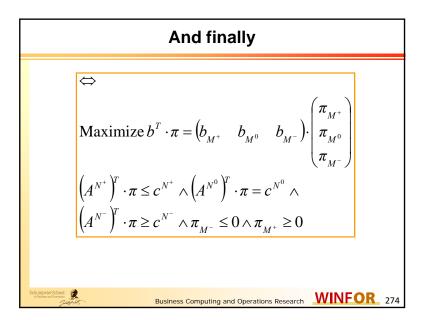
The dual program Minimize $b^T \cdot \pi$ subject to $A^T \cdot \pi \ge c$, with π free

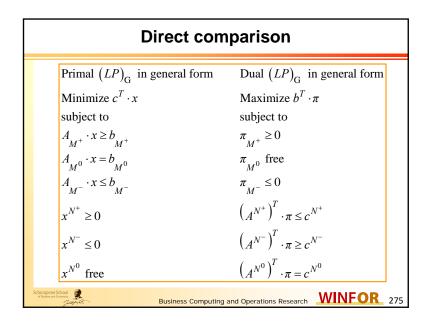






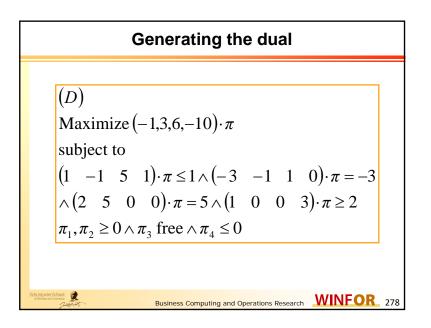


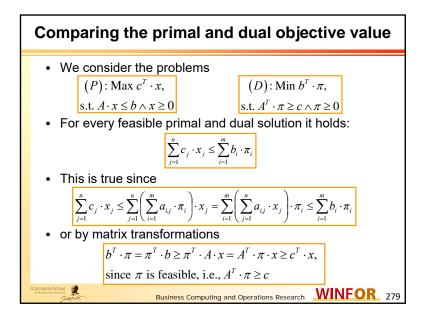


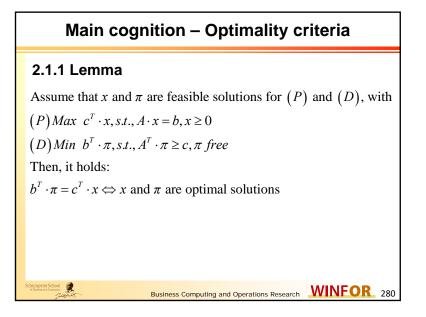


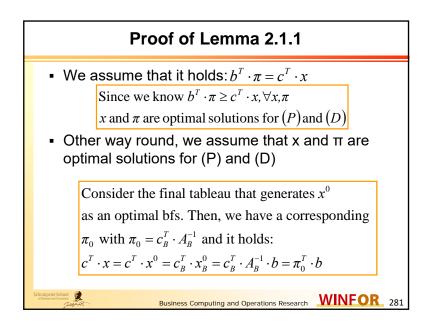
Example
(P) Minimize $(1,-3,5,2) \cdot x$ subject to $x_1 \ge 0 \land x_2, x_3$ free $\land x_4 \le 0$ (1, -3, 2, 1) = (-1)
$ \begin{pmatrix} 1 & -3 & 2 & 1 \\ -1 & -1 & 5 & 0 \end{pmatrix} \cdot x \ge \begin{pmatrix} -1 \\ 3 \end{pmatrix} $ $\land (5 \ 1 \ 0 \ 0) \cdot x = 6 \land (-1 \ 0 \ 0 \ 3) \cdot x \le -10 $
Business Computing and Operations Research WINFOR 276

Example – Preparing the problem $\begin{pmatrix} 1 & -3 & 2 & 1 \\ -1 & -1 & 5 & 0 \end{pmatrix} \cdot x \ge \begin{pmatrix} -1 \\ 3 \end{pmatrix}$ $(5 \ 1 \ 0 \ 0) \cdot x = 6 (-1 \ 0 \ 0 \ 3) \cdot x \le -10$ $\Rightarrow A = \begin{pmatrix} 1 & -3 & 2 & 1 \\ -1 & -1 & 5 & 0 \\ 5 & 1 & 0 & 0 \\ -1 & 0 & 0 & 3 \end{pmatrix} \Rightarrow A^{T} = \begin{pmatrix} 1 & -1 & 5 & -1 \\ -3 & -1 & 1 & 0 \\ 2 & 5 & 0 & 0 \\ 1 & 0 & 0 & 3 \end{pmatrix}$ 2 Business Computing and Operations Research WINFOR 277

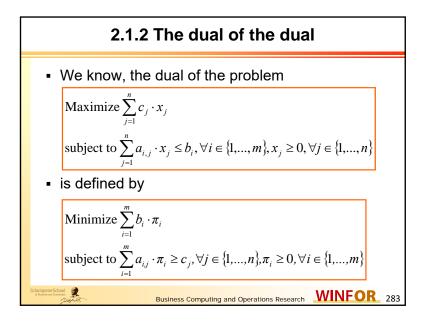


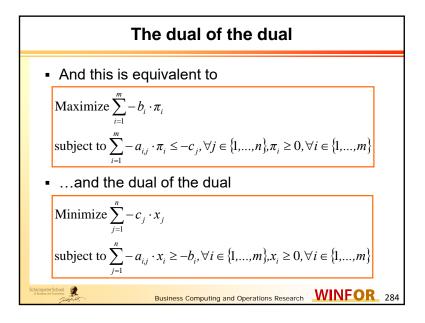


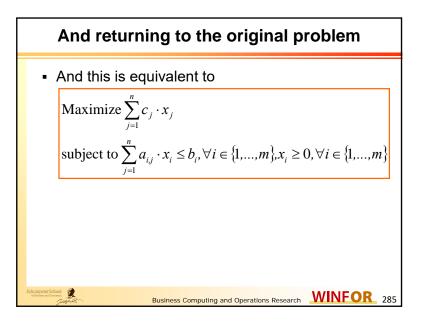


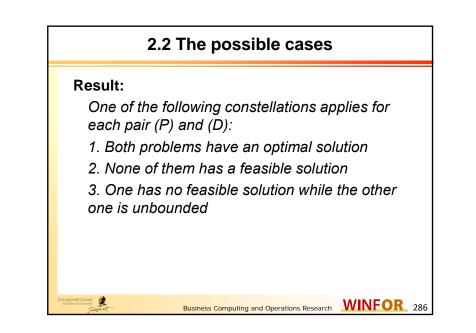


And since x^0 is optimal, we know $c^T - \pi_0^T \cdot A \le 0 \Rightarrow$ $A^T \cdot \pi_0 \ge c$ therefore, π_0 is feasible $\Rightarrow c^T \cdot x = c^T \cdot x_0 = \pi_0^T \cdot b \ge \pi^T \cdot b$ and thus altogether $\Rightarrow c^T \cdot x \ge \pi^T \cdot b \land c^T \cdot x \le \pi^T \cdot b \Rightarrow c^T \cdot x = \pi^T \cdot b$ Observations: • Therefore, we know that both solutions (x_0 and π_0) have always identical objective function values during the calculation process of the Simplex Algorithm • If π_0 becomes finally feasible, optimality is proven		Conclusion
therefore, π_0 is feasible $\Rightarrow c^T \cdot x = c^T \cdot x_0 = \pi_0^T \cdot b \ge \pi^T \cdot b$ and thus altogether $\Rightarrow c^T \cdot x \ge \pi^T \cdot b \land c^T \cdot x \le \pi^T \cdot b \Rightarrow c^T \cdot x = \pi^T \cdot b$ Observations: • Therefore, we know that both solutions (x_0 and π_0) have always identical objective function values during the calculation process of the Simplex Algorithm	A	And since x^0 is optimal, we know $c^T - \pi_0^T \cdot A \le 0 \Longrightarrow$
$\Rightarrow c^{T} \cdot x = c^{T} \cdot x_{0} = \pi_{0}^{T} \cdot b \ge \pi^{T} \cdot b$ and thus altogether $\Rightarrow c^{T} \cdot x \ge \pi^{T} \cdot b \wedge c^{T} \cdot x \le \pi^{T} \cdot b \Rightarrow c^{T} \cdot x = \pi^{T} \cdot b$ Observations: • Therefore, we know that both solutions (x ₀ and π ₀) have always identical objective function values during the calculation process of the Simplex Algorithm	Ŀ	$A^T \cdot \pi_0 \ge c$
and thus altogether $\Rightarrow c^{T} \cdot x \ge \pi^{T} \cdot b \wedge c^{T} \cdot x \le \pi^{T} \cdot b \Rightarrow c^{T} \cdot x = \pi^{T} \cdot b$ Observations: • Therefore, we know that both solutions (x ₀ and π_0) have always identical objective function values during the calculation process of the Simplex Algorithm	tl	herefore, π_0 is feasible
$\Rightarrow c^{T} \cdot x \ge \pi^{T} \cdot b \wedge c^{T} \cdot x \le \pi^{T} \cdot b \Rightarrow c^{T} \cdot x = \pi^{T} \cdot b$ Observations: • Therefore, we know that both solutions (x ₀ and π_0) have always identical objective function values during the calculation process of the Simplex Algorithm	=	$\Rightarrow c^T \cdot x = c^T \cdot x_0 = \pi_0^T \cdot b \ge \pi^T \cdot b$
 Observations: Therefore, we know that both solutions (x₀ and π₀) have always identical objective function values during the calculation process of the Simplex Algorithm 	a	and thus altogether
• Therefore, we know that both solutions (x_0 and π_0) have always identical objective function values during the calculation process of the Simplex Algorithm	=	$\Rightarrow c^{T} \cdot x \geq \pi^{T} \cdot b \wedge c^{T} \cdot x \leq \pi^{T} \cdot b \Rightarrow c^{T} \cdot x = \pi^{T} \cdot b$
always identical objective function values during the calculation process of the Simplex Algorithm	Obse	ervations:
• If π_0 becomes finally feasible, optimality is proven	alv	ways identical objective function values during the
	■ If	π_0 becomes finally feasible, optimality is proven
Business Computing and Operations Research WINFOR 282	of Bastries and Economics	Business Computing and Operations Research WINFOR 282









The cases				
 We distinguish if there are feasible solutions for (P) and (D) Thus, we get the following resulting constellations 				
		P not empty	P empty	
	D not empty	1	3	
	D empty	3	2	
Business Computing and Operations Research WINFOR 287				

The cases

- Case 1: Since both problems are solvable, the objective functions are bounded accordingly. Thus, optimal solutions exist
- Case 2: trivial

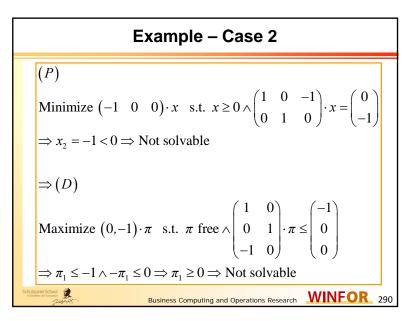
2

- Case 3: Since an optimal solution for (P) would also provide an optimal solution for (D), we can conclude that (P) is unbounded
- · We can easily show that all three cases exist

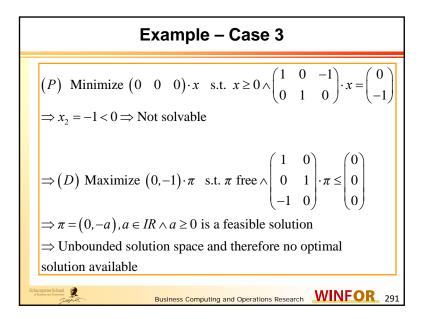
Business Computing and Operations Research WINFOR 288

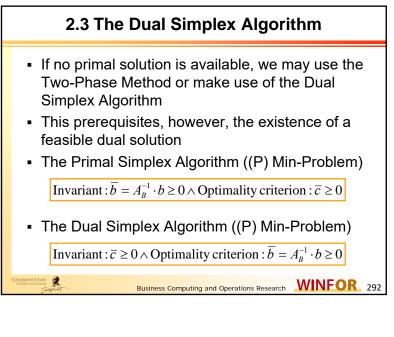
This is depicted on the following slides...

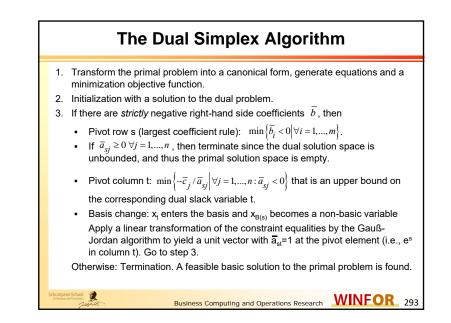
Example – Case 1 (P) Minimize $(1,1) \cdot x$ s.t. $x \ge 0 \land \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \cdot x = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ is single solution \Rightarrow (D) Maximize $(0,0) \cdot \pi$ s.t. π free $\wedge \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \cdot \pi \leq \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ is optimal solution **WINFOR** 289 2



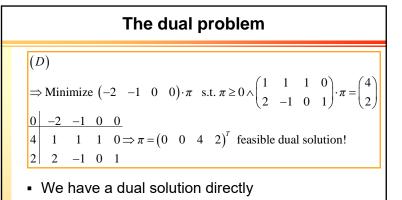
Business Computing and Operations Research







The Dual Simplex - Example				
	(P)			
	Minimize $(4,2) \cdot x$ s.t. $x \ge 0 \land \begin{pmatrix} 1 & 2 \\ 1 & -1 \end{pmatrix} \cdot x \ge \begin{pmatrix} 2 \\ 1 \end{pmatrix}$			
	Minimize $\begin{pmatrix} 4 & 2 & 0 & 0 \end{pmatrix} \cdot x$ s.t. $x \ge 0 \land \begin{pmatrix} 1 & 2 & -1 & 0 \\ 1 & -1 & 0 & -1 \end{pmatrix} \cdot x = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$			
	⇒			
	0 4 2 0 0 0 4 2 0 0			
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
	1 1 -1 0 -1 -1 -1 1 0 1			
	\Rightarrow Obviously, $x = \begin{pmatrix} 0 & 0 & -2 & -1 \end{pmatrix}^T$ is not feasible!			
Schum at Basi	Business Computing and Operations Research WINFOR 294			

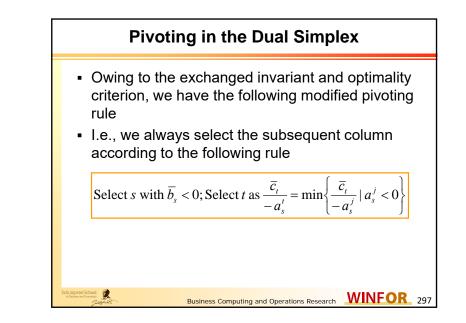


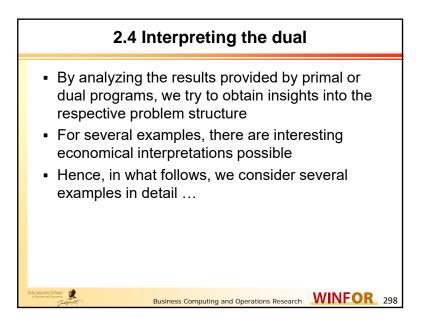
 Consequently, we can either conduct the Primal Simplex on the dual tableau or the Dual Simplex on the primal tableau

Business Computing and Operations Research WINFOR 295

2

Dual and Primal Simplex
The Dual Simplex
0 4 2 0 0 -2 3 0 1 0 -2 3 0 1 0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
-1 -1 1 0 1 -2 $-3/2$ 0 $1/2$ 1 -2 $(-3/2)$ 0 $1/2$ 1
<u>-6 0 0 2 2</u>
$\Rightarrow 1/3 0 1 -1/3 1/3 \Rightarrow x = (4/3 1/3)^T$ feasible and optimal
4/3 1 0 -1/3 -2/3
 The primal applied to the dual problem
0 -2 -1 0 0 2 0 -2 0 1 2 0 -2 0 1
$4 \ 1 \ 1 \ 1 \ 0 \Rightarrow 4 \ 1 \ 1 \ 1 \ 0 \Rightarrow 3 \ 0 \ 3/2 \ 1 \ -1/2$
2 (2) -1 0 1 1 1 -1/2 0 1/2 1 1 -1/2 0 1/2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$3 0 (3/2) 1 -1/2 \Rightarrow 2 0 1 2/3 -1/3 \Rightarrow 2 0 1 2/3 -1/3$
1 1 -1/2 0 1/2 1 1 -1/2 0 1/2 2 1 0 1/3 1/3
$\Rightarrow \pi^{opt} = (2,2,0,0)^T \Rightarrow x = (4/3 1/3)^T$
Business Computing and Operations Research WINFOR 296





Production Program Planning

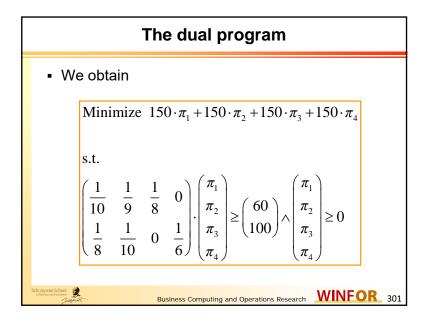
- We make use of altogether four resources 1,2,3, and 4 in order to produce a theoretical production program of two product types A and B
- Each product type (A and B) comes along with individual marginal profits and consumption rates for using the resources
- We measure the profits by monetary units per product unit and the consumption rates by resource units per product unit

Business Computing and Operations Research

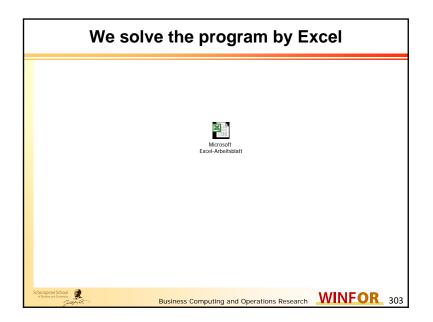
WINFOR 299

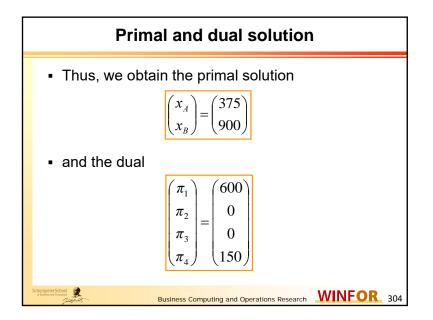
2

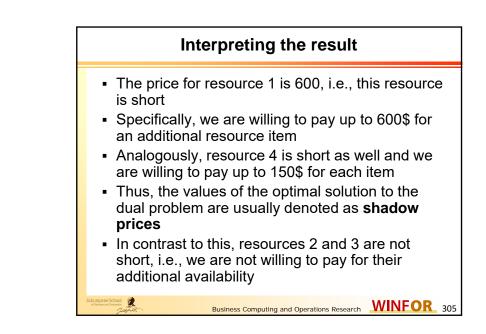
The mathematical problem Maximize $60 \cdot x_A + 100 \cdot x_B, x_A \ge 0 \land x_B \ge 0$ s.t. $\frac{1}{10} \cdot x_A + \frac{1}{8} \cdot x_B \le 150 \land \frac{1}{9} \cdot x_A + \frac{1}{10} \cdot x_B \le 150$ $\wedge \frac{1}{8} \cdot x_A + 0 \cdot x_B \le 150 \wedge 0 \cdot x_A + \frac{1}{6} \cdot x_B \le 150$ $\begin{array}{c} \frac{1}{10} \\ \frac{1}{9} \\ \frac{1}{8} \end{array}$ $\overline{8}$ (150)1 10 $\cdot \begin{pmatrix} x_A \\ x_B \end{pmatrix}$ 150 \leq \Rightarrow 150 150 0 $\frac{1}{6}$ 2 WINFOR 300 Business Computing and Operations Research

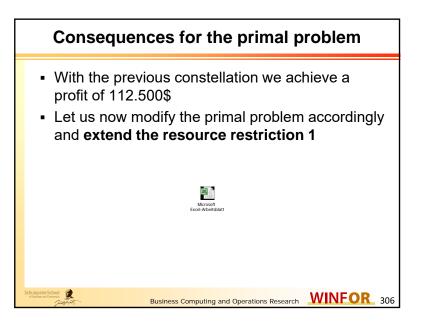


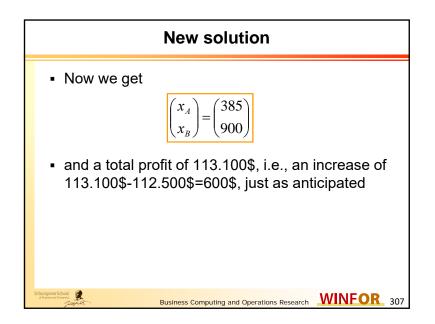
How to interpret the dual program?	
 First, consider the basis units Obviously, the variables are measured in monetary uper resource units Let us assume that the predetermined resources are by a vendor for prices π₁, π₂, π₃, π₄ each Thus, the objective function minimizes the procurements 150 resource units for all resources But: Other way round, the vendor of the resources cause the resource units on its own in order to produce product types A and B 	held ent of
Thus, the marginal profits of the products are lower bounds for the prices of the resource units	
Business Computing and Operations Research)R_ 302

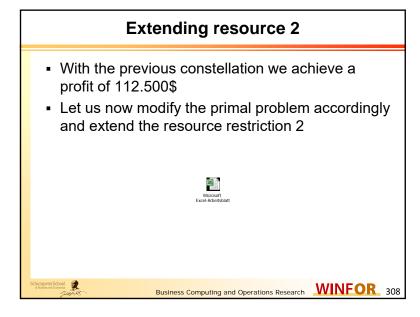


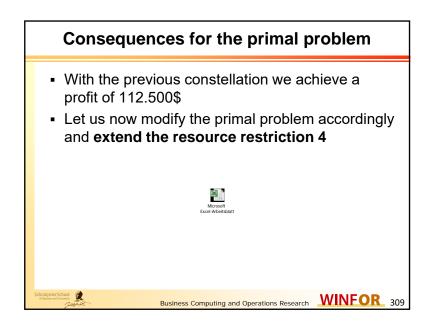


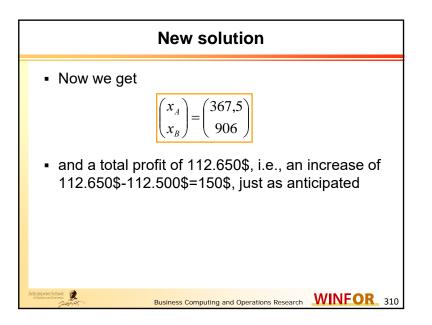


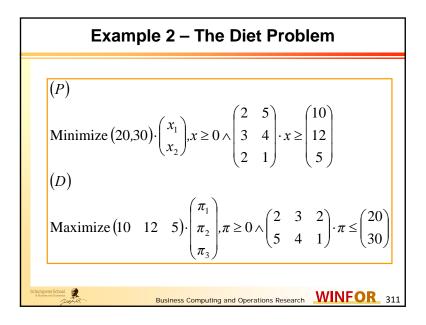












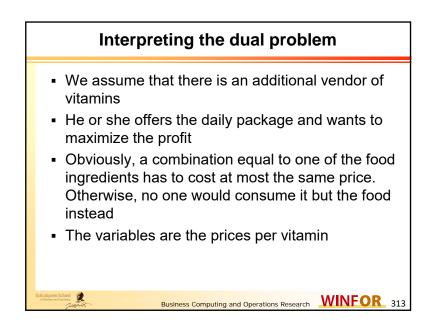
Interpreting the primal problem

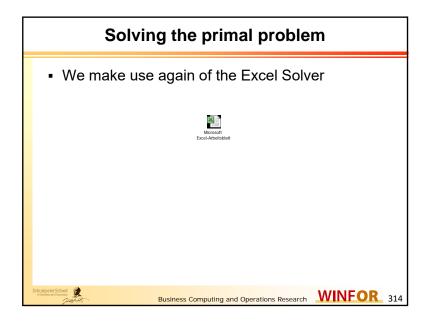
• Find an efficient healthy nutrition

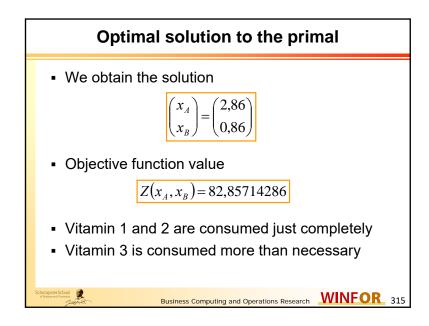
2

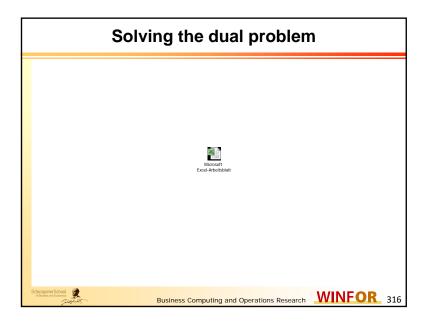
- Two kinds of food may be consumed
- A housekeeper has to find a food combination that guarantees a healthy nutrition at the least possible costs
- Lower bounds are defined as minimal amounts of vitamins that have to be consumed in the considered planning horizon

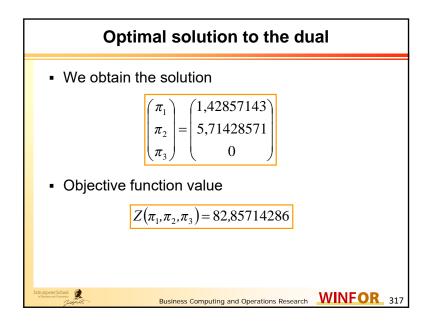
Business Computing and Operations Research WINFOR 312

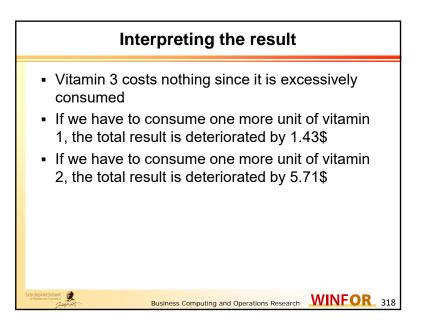


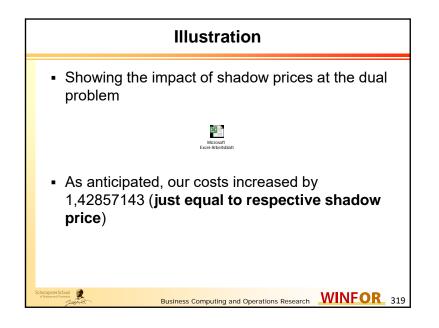










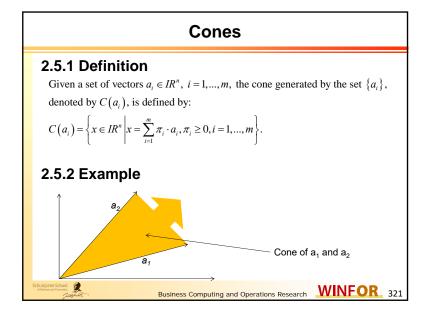


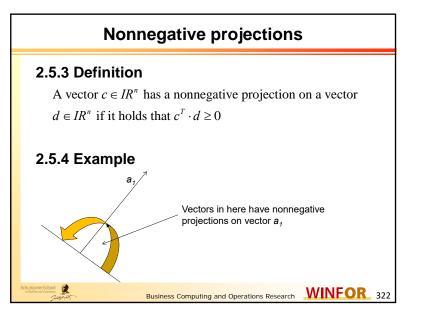
2.5 Farkas' Lemma

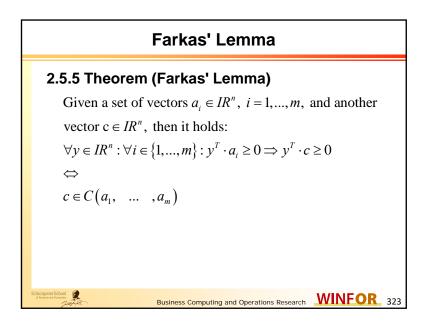
- Farkas' Lemma is a fundamental result about vectors in IRⁿ that in a sense captures the ideas of duality
- It allows to derive the results proven earlier in this course
- Now, we are able to prove Farkas' lemma as a consequence of what we already know about linear programming

Business Computing and Operations Research WINFOR 320

2







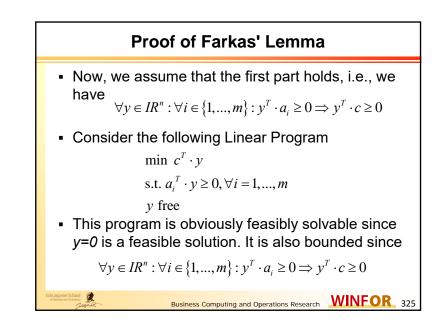
Proof of Farkas' Lemma

• We start with the second part and assume that

$$c \in C(a_i) \Longrightarrow c = \sum_{i=1}^m \pi_i \cdot a_i, \text{ with } \pi_i \ge 0$$

Thus, it holds that

$$\exists y \in IR^{n} : \forall i \in \{1, ..., m\} : y^{T} \cdot a_{i} \ge 0 \text{ we obtain}$$
$$y^{T} \cdot c = y^{T} \cdot \sum_{i=1}^{m} \pi_{i} \cdot a_{i} = \sum_{i=1}^{m} \pi_{i} \cdot \underbrace{y^{T} \cdot a_{i}}_{\ge 0} \ge 0, \text{ since } \pi_{i} \ge 0$$



Proof of Farkas' Lemma	
• The corresponding dual program is max 0 s.t. $\pi^T \cdot A_j = c_j, \forall j = 1,,n$ $\pi \ge 0$	
 If a 20 Since the primal is solvable and bounded, the dual program is also solvable (see Section 2.2) Hence, there exists a vector π≥0 with 	
$c = \sum_{i=1}^{m} \pi_i \cdot a_i \text{ and } \pi_i \ge 0$	
Business Computing and Operations Research WINFOR 326	

