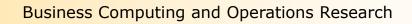
6 Optimally solving the Shortest Path Problem

- In what follows, we apply specific variants of the Primal-Dual Algorithm in order to derive new algorithms for the Shortest Path (Section 6) and for the Max-Flow Problem (Section 7)
- We commence our study with the Shortest Path Problem
- In the literature, two main types of shortest path problems are distinguished
 - The single source shortest path problem
 - Find the shortest path from one distinguished node to all other nodes in the network
 - The all pairs shortest path problem

Find the shortest path between all pairs of nodes in the network



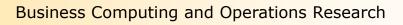
Overview of the Section

The single source shortest path problem

- In Section 6.1, we will derive the famous Dijkstra algorithm as a special extended Primal Dual procedure
- However, this procedure is not able to handle negative weights
- Therefore, in Section 6.2, we consider the Bellman-Ford algorithm

The all pairs shortest path problem

- In Section 6.3, we finally introduce the Floyd Warshall procedure that is also able to deal with negative arc weights
- It is also able to identify cycles of negative length



520

6.1 Deriving the Dijkstra algorithm

First of all, we have to introduce the problem of finding the shortest path from a distinguished node to all other nodes in a network

- In what follows, we consider directed weighted graphs
- In order to provide a complete LP-based problem definition of this Shortest Path Problem, we introduce several basic notations

Graph, Network, ...

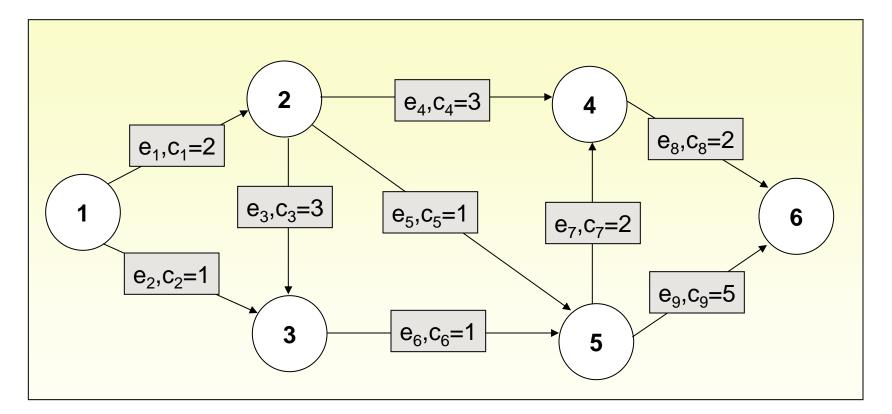
6.1.1 Definition

Assuming V is a finite set, in what follows, defined as $V = \{1,..,n\}, n \in IN,$ $E = \{e_1,...,e_m\} \subseteq (V \times V) \setminus D, D = \{(v,v) | v \in V\}, \text{ and } c : E \to IR.$ Then, N = (V, E, c) is denoted as a weighted directed graph (also denoted as a network). V is denoted as the vertices (nodes) and E the set of arcs. c(e) indicates the weight (length, costs) of the arc $e \in E$.

A simple example

$$V = \{1, 2, 3, 4, 5, 6\}, E = \{(1, 2), (1, 3), (2, 3), (2, 4), (2, 5), (3, 5), (5, 4), (4, 6), (5, 6)\},\$$

$$c = (2, 1, 3, 3, 1, 1, 2, 2, 5)^{T} \quad \left(c \in IR^{9}, c_{j} = c\left(e_{j}\right)\right)$$



Adjacency lists

- In general: v: w_1 , c(v, w_1)
- 1: 2,2; 3,1
- 2: 3,3; 4,3; 5,1
- 3: 5,1
- 4:6,2
- 5: 4,2; 6,5
- **6**: -

Vertex-arc adjacency matrix

$$\tilde{A} = \left(\tilde{\alpha}_{i,k}\right)_{1 \le i \le n, 1 \le k \le m}, \text{ with } \tilde{\alpha}_{i,k} = \begin{cases} +1 \text{ when } \exists j \in V : \mathbf{e}_k = (i,j) \\ -1 \text{ when } \exists j \in V : \mathbf{e}_k = (j,i) \\ 0 \text{ otherwise} \end{cases}$$

$$\tilde{\alpha}_{i,k} = 1 \Rightarrow i \text{ is source of arc } \mathbf{e}_k; \quad \tilde{\alpha}_{i,k} = -1 \Rightarrow i \text{ is sink of arc } \mathbf{e}_k \\ \mathbf{e}_k = (i,j) \Rightarrow \tilde{\alpha}^k = \mathbf{e}^i - \mathbf{e}^j, \text{ with } \mathbf{e}^i \text{ as the } i \text{ th unit vector} \end{cases}$$

$$\Rightarrow \tilde{A} = \begin{pmatrix} 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ -1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & -1 & -1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & -1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & -1 & -1 \end{pmatrix}$$

Path

6.1.2 Definition

Assuming N = (V, E, c) is a weighted directed graph (also denoted as a network). Then, a path leading from $i_0 \in V$ to $i_k \in V$ is a sequence of nodes $\langle i_0, i_1, i_2, ..., i_k \rangle$, with $e_{l_t} = (i_t, i_{t+1}), 0 \le t \le k - 1$. The length (weight, costs) of the path is calculated by

$$c\left(\left\langle i_{0}, i_{1}, i_{2}, \dots, i_{k}\right\rangle\right) = \sum_{t=0}^{k-1} c\left(e_{i_{t}}\right) = \sum_{t=0}^{k-1} c\left(i_{t}, i_{t+1}\right).$$

If $i_{k} = i_{0}$, the path $\left\langle i_{0}, i_{1}, i_{2}, \dots, i_{k}\right\rangle$ is denoted as a cycle

Definition of variable *x*

Assuming
$$p = \langle i_0, i_1, i_2, ..., i_k \rangle$$
 is a path in a network *N*. Then, we define $x \in IR^m$ as follows

$$x_i = \begin{cases} 1 & \text{if } e_i = (i_l, i_{l+1}), l \in \{0, 1, 2, ..., k - 1\} \\ 0 & \text{otherwise} \end{cases}$$

Then, we obtain

$$\tilde{A} \cdot x = \sum_{t=0}^{k-1} \alpha^{l_t} = \sum_{t=0}^{k-1} \left(e^{i_t} - e^{i_{t+1}} \right) = e^{i_0} - e^{i_k}$$

If *p* is cyclic, we have $\tilde{A} \cdot x = e^{i_0} - e^{i_k} = e^{i_0} - e^{i_0} = 0$

Consequences

The other way round $\tilde{A} \cdot x = 0 \Rightarrow x$ defines a sequence of cycles in *N* $\tilde{A} \cdot x = e^i - e^j$ defines a path from *i* to *j* (may be combined with a sequence of cycles)

In what follows, we assume that $c_i > 0, \forall i \in \{1, ..., m\}$

The Shortest Path Problem

Generate a path from i to j

```
Minimize c^T \cdot x
s.t.
\tilde{A} \cdot x = e^i - e^j \wedge x \in IN_0^m \stackrel{!}{\Rightarrow} x \in \{0,1\}^m
```

Since we minimize the total flow, this problem is equivalent to restricting the variable vector x to $\{0,1\}^m$.

Observation

- By adding all rows of the matrix, we obtain the null vector
- This results from the fact that each column represents an arc with a definitely defined source and sink (represented by the entries 1 and -1)
- Consequently, m-1 is an upper bound of the rank of the matrix
- We denote A as the resulting matrix that arises by erasing the last row in *Ã*
- Hence, in what follows, we consider the following general Shortest Path Problem

The Shortest Path Problem

Generate a path from 1 to destination n

Minimize $c^T \cdot x$ s.t. $A \cdot x = e^1 \wedge x \in \{0,1\}^m$ Then, we get the corresponding dual problem Maximize $(e^1)^T \cdot \pi = \pi_1$, s.t., $A^T \cdot \pi \leq c \Leftrightarrow \pi_i - \pi_j \leq c(i, j), \forall e_k = (i, j) \in E$ π free

 Note that in the section named "Integer Programming" we will see that this problem is equivalent to its LP-relaxation (switching back to continuous variables)

The RP and its dual counterpart

Based on a dual solution π and the resulting sets J and J^c , we define the reduced problem $RP(\pi)$ as follows:

Minimize
$$\sum_{j=1}^{n} x_{j}^{a}$$
,
s.t., $\left(E_{n}, \left(a^{j}\right)_{j \in J}\right) \cdot \begin{pmatrix} \left(x_{j}^{a}\right)_{1 \leq j \leq n} \\ \left(x_{j}\right)_{j \in J} \end{pmatrix} = e^{1} \land x \in IN_{0}^{m} = \{0,1\}^{m}$

Hence, we get the corresponding dual of the reduced problem $DRP(\pi)$

Maximize
$$(e^1)^T \cdot \pi = \pi_1$$
,
s.t., $\pi \le 1 \land (a^j \mid_{j \in J})^T \cdot \pi \le 0 \Leftrightarrow \pi_i - \pi_j \le 0, \forall e_k = (i, j) \in E \land k \in J$

 π free

Solving DRP(π)

Hence, we get the corresponding dual of the reduced primal problem $DRP(\pi)$ Maximize $(e^1)^T \cdot \pi = \pi_1$, s.t., $\pi \leq 1^n \wedge \pi_i - \pi_j \leq 0, \forall e_k = (i, j) \in E \wedge k \in J$ Let us consider the problem $DRP(\pi)$. In what follows, we denote a solution to $DRP(\pi)$ as $\overline{\pi}$. Obviously, each feasible solution with $\overline{\pi}_1 = 1$ is optimal. Thus, we have to follow all paths generated by the edges of set J.

Solving DRP(π)

Hence, if node *i* is reachable from node 1, we define $\overline{\pi}_i = 1$. But, if we commence our examination at the destination *n*, we know that it holds $\overline{\pi}_i \leq 0, \forall i \in V$ with $(i,n) \in J$.

Note that this results from the fact that $\overline{\pi}_i - \overline{\pi}_n \leq 0$ has to be fulfilled and $\overline{\pi}_n$ was erased by replacing \widetilde{A} with A. Thus, we obtain $\overline{\pi}_i \leq 0$.

Solving DRP(π)

Obviously, in these constellations, we can set $\overline{\pi}_i = 0$. This value is also propagated along each path generated by arcs of set J. Consequently, we may conclude

1 when there exists a path in J from 1 to i $\overline{\pi}_i = \begin{cases} 0 \text{ when there exists a path in } J \text{ from } i \text{ to } n \end{cases}$ $a \leq 1$ otherwise In what follows, we define a = 1 in order to distinguish

two sets of nodes

$$W = \left\{ i \mid i \in V \land \overline{\pi}_i = 0 \right\} \land W^c = \left\{ i \mid i \in V \land \overline{\pi}_i \neq 0 \right\}.$$

Solving DRP(π)

 $W = \{i \mid i \in V \land \overline{\pi}_i = 0\} \land W^c = \{i \mid i \in V \land \overline{\pi}_i \neq 0\}.$ In order to generate a shortest path from 1 to *n*, in case $\overline{\pi}_1 = 1$, we have to add additional arcs $j \notin J$. We know $\forall (i, j) \in E$, with $(i, j) \notin J : c_{i, j} - \pi_i + \pi_j > 0$ We consider those edges that have negative relative costs, i.e., it holds: $0 - \overline{\pi}_i + \overline{\pi}_i < 0 \Leftrightarrow \overline{\pi}_i - \overline{\pi}_i > 0 \Longrightarrow \overline{\pi}_i = 1 \land \overline{\pi}_i = 0$ The Primal-Dual Simplex generates $\lambda_0 = \min \left\{ \frac{c_{i,j} - \pi_i + \pi_j}{\overline{\pi}_i - \overline{\pi}_j} \mid \forall (i, j) \in E \text{ with } (i, j) \notin J \right\}$ $= \min \left\{ c_{i,j} - \pi_i + \pi_j \mid \forall (i,j) \in E \text{ with } (i,j) \notin J \right\}$

Business Computing and Operations Research

of Business and Economics

Observations

- DRP(π) determines a cut between the sets $W = \{i/i \in V \land \overline{\pi}_i = 0\} \land W^c = \{i \mid i \in V \land \overline{\pi}_i \neq 0\}$
- The considered edges with $\overline{\pi}_i = 1 \wedge \overline{\pi}_j = 0$ are just the edges that bridge the gap, i.e., they connect the incompleted path found to node *n* with the beginning of the graph
- $-\pi_i$ indicates the length of the shortest path from *i* to *n*, for $i \in W$. This is the invariante of the procedure
- $-\min\left\{c_{i,j} \pi_i + \pi_j \mid \forall (i,j) \in E, \text{ with } (i,j) \notin J\right\} \text{ gives the length}$

of the shortest edge bridging the gap between W and W^c -Specifically, for this edge it holds: $c_{i,j} - \pi_i + \pi_j = 0 \Leftrightarrow \pi_i = c_{i,j} + \pi_j$

Further observations

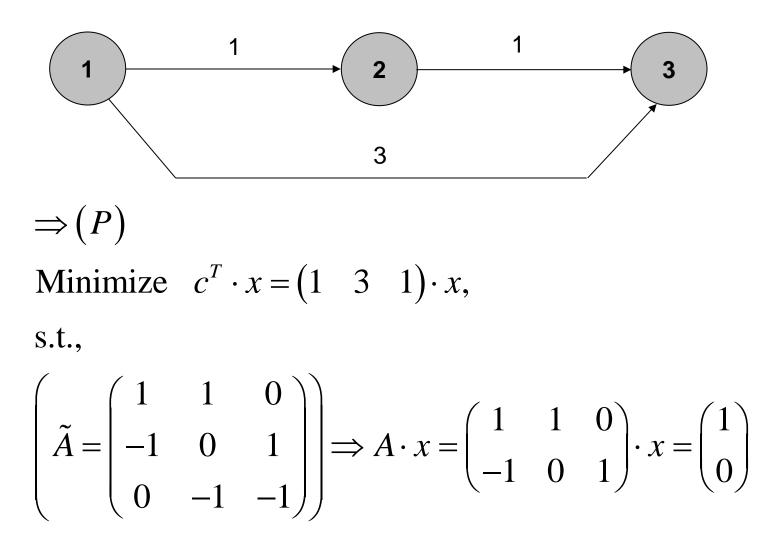
- If $(i, j) \in E$ has become admissable, it stays admissable for the remaining calculations, i.e., it holds $\pi_i - \pi_j = c_{i,j}$. This results from the fact that $\overline{\pi}_i = \overline{\pi}_j = 0$ - Consequently, we can conclude that if a node *i* has entered *W*,

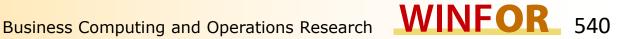
it stays there for the rest of the calculation process

Applying the Primal-Dual Simplex

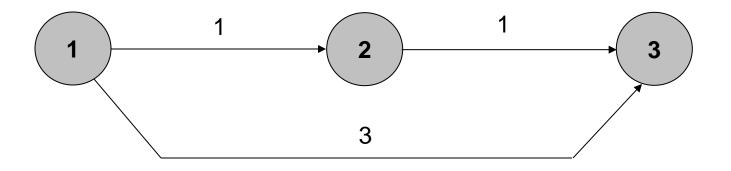
- Consider the dual of the Shortest Path Problem
- Obviously, since c≥0, we know that π=0 is a first feasible solution to (D)
- By making use of π=0, we have an initial dual solution in order to commence the calculation of the Primal-Dual Simplex Algorithm

A simple example (warm up)





A simple example (warm up)



(D) Maximize
$$\pi_1$$
, s.t., $A^T \cdot \pi = \begin{pmatrix} 1 & -1 \\ 1 & 0 \\ 0 & 1 \end{pmatrix} \cdot \pi \le c = \begin{pmatrix} 1 \\ 3 \\ 1 \end{pmatrix}$

We additionally set $\pi_n = 0$

Applying the Primal-Dual Simplex

We have
$$\pi = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 \\ 3 \\ 1 \end{pmatrix} - A^T \cdot \pi = \begin{pmatrix} 1 \\ 3 \\ 1 \end{pmatrix} - \begin{pmatrix} 1 & -1 \\ 1 & 0 \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
$$= \begin{pmatrix} 1 \\ 3 \\ 1 \end{pmatrix} \Rightarrow J = \emptyset \land J^c = \{1, 2, 3\}$$

RP(π)

$$\Rightarrow \begin{pmatrix} 1\\1 \end{pmatrix} - \overline{\pi} = \begin{pmatrix} 0\\0 \end{pmatrix} \Leftrightarrow \overline{\pi} = \begin{pmatrix} 1\\1 \end{pmatrix}, \lambda_0 = \min\left\{ \frac{c_2 - (0,0) \cdot \begin{pmatrix} 1\\0 \end{pmatrix}}{\overline{\pi}^T \cdot \begin{pmatrix} 1\\0 \end{pmatrix}}, \frac{c_3 - (0,0) \cdot \begin{pmatrix} 0\\1 \end{pmatrix}}{\overline{\pi}^T \cdot \begin{pmatrix} 0\\1 \end{pmatrix}} \right\}$$

$$(3,1)$$

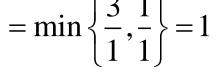
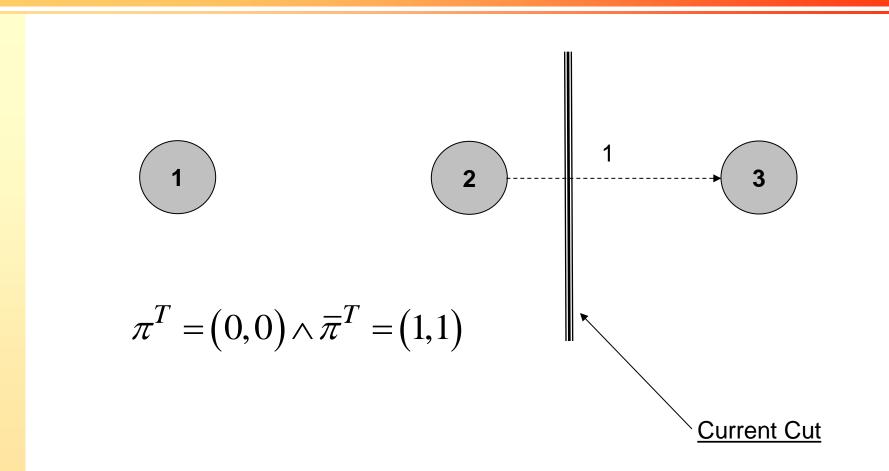


Illustration of $RP(\pi)$



Updating π and J

$$\lambda_0 = 1 \Longrightarrow \pi = \begin{pmatrix} 0 \\ 0 \end{pmatrix} + 1 \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

We have $\pi = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \Longrightarrow \begin{pmatrix} 1 \\ 3 \\ 1 \end{pmatrix} - A^T \cdot \pi = \begin{pmatrix} 1 \\ 3 \\ 1 \end{pmatrix} - \begin{pmatrix} 1 & -1 \\ 1 & 0 \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix}$
$$= \begin{pmatrix} 1 - 1 + 1 \\ 3 - 1 \\ 1 - 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} \Longrightarrow J = \{3\} \land J^c = \{1, 2\}$$

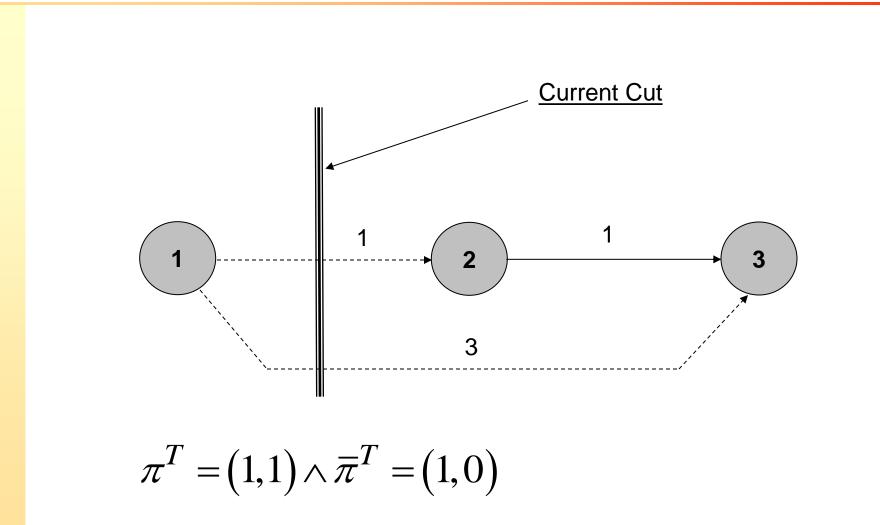
RP(π)

$$\Rightarrow \begin{pmatrix} 1 \\ 1 \end{pmatrix} - \overline{\pi} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \Leftrightarrow \overline{\pi} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \lambda_0 = \min \left\{ \frac{c_1 - (1,1) \cdot \begin{pmatrix} 1 \\ -1 \end{pmatrix}}{\overline{\pi}^T \cdot \begin{pmatrix} 1 \\ -1 \end{pmatrix}}, \frac{c_2 - (1,1) \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix}}{\overline{\pi}^T \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix}} \right\}$$

$$(1 - 0, 2 - 1) = (1 - 2)$$

$$= \min\left\{\frac{1-0}{1}, \frac{3-1}{1}\right\} = \min\left\{\frac{1}{1}, \frac{2}{1}\right\} = \min\left\{1, 2\right\} = 1$$

Illustration of $RP(\pi)$



Updating π and J

$$\lambda_0 = 1 \Rightarrow \pi = \begin{pmatrix} 1 \\ 1 \end{pmatrix} + 1 \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

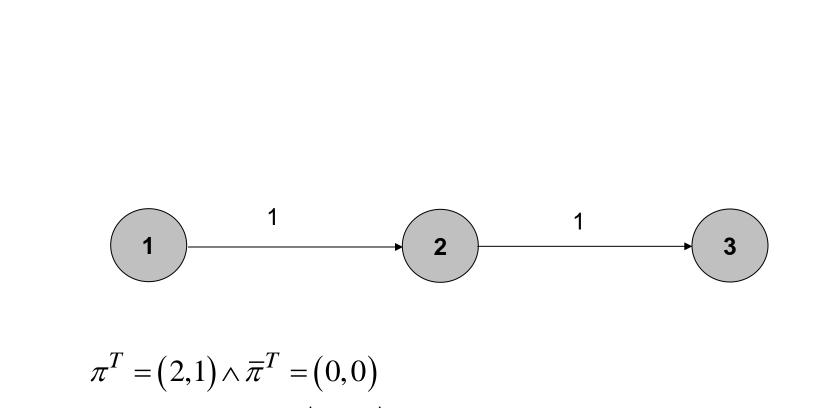
We have $\pi = \begin{pmatrix} 2 \\ 1 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 \\ 3 \\ 1 \end{pmatrix} - A^T \cdot \pi = \begin{pmatrix} 1 \\ 3 \\ 1 \end{pmatrix} - \begin{pmatrix} 1 & -1 \\ 1 & 0 \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 1 \end{pmatrix}$
$$= \begin{pmatrix} 1 - 2 + 1 \\ 3 - 2 \\ 1 - 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \Rightarrow J = \{1, 3\} \land J^c = \{2\}$$

RP(π)

 $\Rightarrow \xi_0 = 0 \text{ optimal solutions are found, i.e.,}$ $x = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \land \pi = \begin{pmatrix} 2 \\ 1 \end{pmatrix} \text{ are proven to be optimal for } (P) \text{ and } (D),$

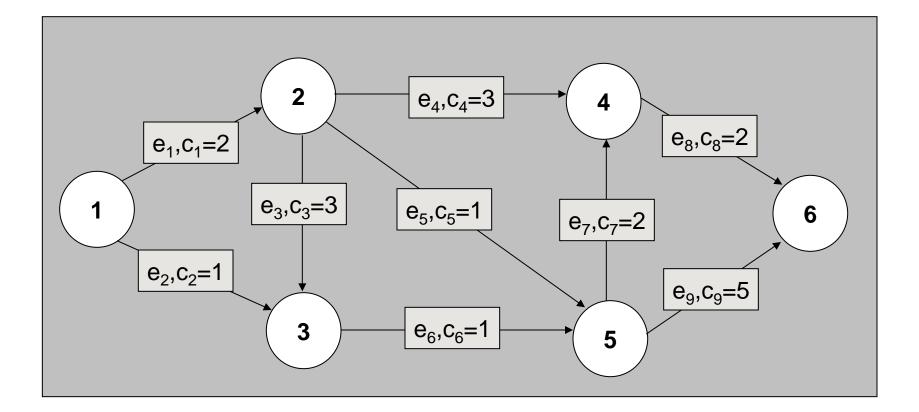
respectively

Illustration of $RP(\pi)$



The shortest path (1, 2, 3) has an objective function value of 2.

A somewhat more complicated example

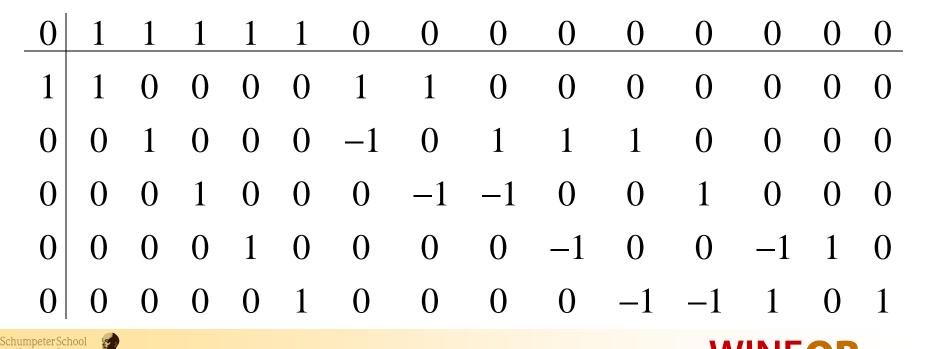


Iteration 1 – step 1

We commence our calculations with $\pi^T = (0, 0, 0, 0, 0)$

$$\Rightarrow J = \emptyset \land J^c = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$$

Consequently, we obtain the following tableau



Business Computing and Operations Research

552

Iteration 1 – step 2

1	0	0	0	0	0	0	0	0	0	0	0	0	-1	-1
						1								
0	0	1	0	0	0	-1	0	1	1	1	0	0	0	0
0	0	0	1	0	0	0	-1	-1	0	0	1	0	0	0
0	0	0	0	1	0	0	0	0	-1	0	0	-1	1	0
0	0	0	0	0	1	0	0	0	0	-1	-1	1	0	1
\Rightarrow	I													
$(0,0,0,0,0) = (1,1,1,1,1) - \overline{\pi}^T \Leftrightarrow \overline{\pi}^T = (1,1,1,1,1) \Longrightarrow \lambda_0 = \min\{2,5\} = 2$														
$\Rightarrow \pi^{T} = (2, 2, 2, 2, 2) \Rightarrow J = \{8\} \land J^{c} = \{1, 2, 3, 4, 5, 6, 7, 9\}$														

Iteration 2 – step 1

-1	0	0	0	0	0	0	0	0	0	0	0	0	[-1]	-1
													0	
0	0	1	0	0	0	-1	0	1	1	1	0	0	0	0
0	0	0	1	0	0	0	-1	-1	0	0	1	0	0	0
0	0	0	0	1	0	0	0	0	-1	0	0	-1	(1)	0
0	0	0	0	0	1	0	0	0	0	-1	-1	1	0	1

Business Computing and Operations Research

WINFOR 555

-1	0	0	0	1	0	0	0	0	-1	0	0	[-1]	0	-1
1	1	0	0	0	0	1	1	0	0	0	0	0	0	0
0	0	1	0	0	0	-1	0	1	1	1	0	0	0	0
0	0	0	1	0	0	0	-1	-1	0	0	1	0	0	0
0	0	0	0	1	0	0	0	0	-1	0	0	-1	1	0
0	0	0	0	0	1	0	0	0	0	-1	-1	(1)	0	1

-1	0	0	0	1	1	0	0	0	-1	-1	-1	0	0	0
1	1	0	0	0	0	1	1	0	0	0	0	0	0	0
0	0	1	0	0	0	-1	0	1	1	1	0	0	0	0
0	0	0	1	0	0	0	-1	-1	0	0	1	0	0	0
0	0	0	0	1	1	0	0	0	-1	-1	-1	0	1	1
0	0	0	0	0	1	0	0	0	0	-1	-1	1	0	1

$$\Rightarrow \overline{\pi}^{T} = (1,1,1,0,0) \Rightarrow \lambda_{0} = \min \{3-2,1,1\} = \min \{1,1,1\} = 1$$

$$\Rightarrow \pi^{T} = (4,4,4,2,4) + 1 \cdot (1,1,1,0,0) = (5,5,5,2,4)$$

$$\Rightarrow J = \{4,5,6,7,8\} \land J^{c} = \{1,2,3,9\}$$

Schumpeter School of Business and Economics

/addifunct

WINFOR 557

-1	0	0	0	1	1	0	0	0	[-1]	-1	-1	0	0	0
1	1	0	0	0	0	1	1	0	0	0	0	0	0	0
0	0	1	0	0	0	-1	0	1	(1)	1	0	0	0	0
0	0	0	1	0	0	0	-1	-1	0	0	1	0	0	0
0	0	0	0	1	1	0	0	0	-1	-1	-1	0	1	1
0	0	0	0	0	1	0	0	0	0	-1	-1	1	0	1

-1	0	1	0	1	1	-1	0	1	0	0	-1	0	0	0
1	1	0	0	0	0	1	1	0	0	0	0	0	0	0
0	0	1	0	0	0	-1	0	1	1	1	0	0	0	0
0	0	0	1	0	0	0	-1	-1	0	0	1	0	0	0
0	0	1	0	1	1	-1	0	1	0	0	-1	0	1	1
0	0	0	0	0	1	0	0	0	0	-1	-1	1	0	1

-1	0	1	0	1	1	-1	0	1	0	0	[-1]	0	0	0
1	1	0	0	0	0	1	1	0	0	0	0	0	0	0
0	0	1	0	0	0	-1	0	1	1	1	0	0	0	0
0	0	0	1	0	0	0	-1	-1	0	0	(1)	0	0	0
0	0	1	0	1	1	-1	0	1	0	0	-1	0	1	1
											-1			

Business Computing and Operations Research

-1	0	1	1	1	1	-1	-1	0	0	0	0	0	0	0
1	1	0	0	0	0	1	1	0	0	0	0	0	0	0
0	0	1	0	0	0	-1	0	1	1	1	0	0	0	0
0	0	0	1	0	0	0	-1	-1	0	0	(1)	0	0	0
0	0	1	1	1	1	-1	-1	0	0	0	0	0	1	1
0	0	0	1	0	1	0	-1	-1	0	-1	0	1	0	1
$\Rightarrow \tilde{i}$	$\overline{\tau}^T =$	= (1,(),0,(),0)	\Rightarrow ,	$\lambda_0 = r$	nin {2	2,1}=	1					
\Rightarrow	$\pi^T =$	= (5,.	5,5,2	2,4)	+1.	(1,0,0),0,0)	=(6,	5,5,2	2,4)				
\Rightarrow .	$\Rightarrow J = \{2,4,5,6,7,8\} \land J^c = \{1,3,9\}$													

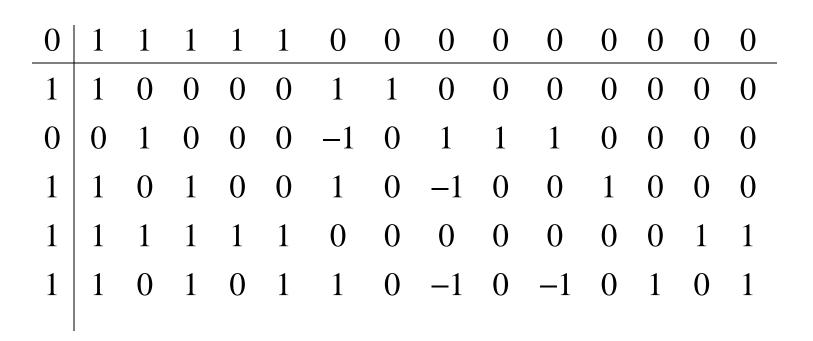
Business Computing and Operations Research

Schumpeter School of Business and Economics

Jast purge

-1	0	1	1	1	1	-1	[-1]	0	0	0	0	0	0	0
1	1	0	0	0	0	1	(1)	0	0	0	0	0	0	0
0	0	1	0	0	0	-1	0	1	1	1	0	0	0	0
0	0	0	1	0	0	0	-1	-1	0	0	(1)	0	0	0
0	0	1	1	1	1	-1	-1	0	0	0	0	0	1	1
0	0	0	1	0	1	0	-1	-1	0	-1	0	1	0	1

Business Computing and Operations Research



 $\Rightarrow \xi_0 = 0 \Rightarrow x^T = (0,1,0,0,0,1,1,1,0) \land \pi^T = (6,5,5,2,4) \text{ are}$ optimal solutions to (P) and (D), respectively. The shortest path $\langle 1,3,5,4,6 \rangle$ has an objective function value of 6.

Schumpeter School of Business and Economics

Business Computing and Operations Research

563

Dijkstra's Algorithm

BEGIN

The following must hold : $c_{i,i} \ge 0, \forall (i, j) \in E$ $c_{i,i} \coloneqq \infty, \forall (i,j) \notin E$ $W := \{s\}; \pi(s) := 0;$ Denote *s* as the source of the graph FOR all $y \in V \setminus \{s\}$ DO $\pi(y) \coloneqq c_{s,y}$ WHILE $(W \neq V)$ DO $\pi(x) \coloneqq \min \left\{ \pi(y) \mid y \notin W \right\}$ $W \coloneqq W \cup \{x\}$ FOR all $y \in V \setminus W$ DO $\pi(y) := \min \{\pi(y), \pi(x) + c_{x,y}\}$ END DO END

Laufzeit $O(n \cdot \log n + m)$

Schumpeter School of Business and Economics

Full version with storing an optimal path

BEGIN

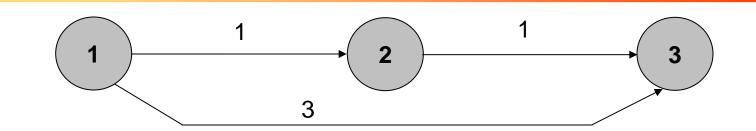
```
c_{ii} \coloneqq \infty \forall (i, j) \notin E
           W \coloneqq \{s\}
           \pi_i := \begin{cases} 0 & \text{if } i = s \\ c_{si} & \text{otherwise} \end{cases} \forall i \in V
           Pre_i := s \forall (s,i) \in E
           WHILE W \neq V DO
                     \pi_x \coloneqq \min\left\{\pi_y \mid y \notin W\right\}
                     W \coloneqq W \cup \{x\}
                     FOR all y \in V \setminus W DO
                            IF \pi_x + c_{xy} < \pi_y THEN DO
                                \pi_v \coloneqq \pi_x + c_{xv}
                                Pre_{y} \coloneqq x
                            END DO
                     END DO
           END DO
    END
of Business and Economics
```

The following must hold for this algorithm : $c_{ij} \ge 0 \forall (i, j) \in E$ Denote *s* as the source of the graph

Let π_i be the length of the shortest path $\langle s, ..., i \rangle$

Let Pre_i be the preceding vertex of *i* in the shortest path $\langle s, ..., Pre_i, i \rangle$

Dijkstra's Algorithm and the simple example



$$(c_{i,j}) = \begin{pmatrix} \infty & 1 & 3 \\ \infty & \infty & 1 \\ \infty & \infty & \infty \end{pmatrix}$$

objective function value of 2.

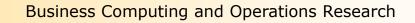
WINF

566

Dijkstra algorithm – running time

- In each step of the procedure a node is determined (labeled) to which a shortest path is found
- Hence, there are *n-1* steps for *n=|V|* nodes
- Moreover, each arc of set *E* in the network has to be considered once
- If all nodes are stored in a min-heap (sorting criterion is the distance to the labeled nodes) we obtain the total asymptotic running time

$$O\left(\left|E\right| + \left|V\right| \cdot \log\left(\left|V\right|\right)\right)$$



Negative arc weights

- The basic idea of the Dijkstra procedure is based on the fact that if we have identified a node with a minimum distance to the labeled nodes the shortest path to this node is found
- However, this is not necessarily correct if negative arc weights occur
- In this case, a path to another node with even longer length may become shorter over an arc with negative weight
- Note that the Dijkstra algorithm can be extended to the case of negative arc weights. However, this results in an increased time complexity of O(n³) (cf., Nemhauser (1972), Bazaraa and Langley (1974))

Cycles of negative weights

- The shortest path problem in a network may be not well-defined anymore if there exists cycles of negative length
 - In this case, some paths can be arbitrarily shortened by integrating this cycle infinitely often
 - Hence, if there is a connection to this cycle, the problem has no solution and, therefore, is not welldefined

6.2 Bellman-Ford algorithm

- The Bellman-Ford algorithm is based on separate algorithms by Bellman and by Ford (cf. Bellman (1958), Ford and Fulkerson (1962))
 - Like the Dijkstra algorithm, it solves the single source shortest path problem starting from a source node s
 - But, in contrast to the Dijkstra algorithm, it is able to deal with edges that possess a negative weight
 - Moreover, the algorithm of Bellman-Ford also identifies whether a cycle of negative length exists in the graph that is reachable from s
- The algorithm possesses a very simple structure that enables us to easily derive its asymptotic running time
- However, the proving of the correctness of the algorithm becomes quite technical

Attributes of each vertex \boldsymbol{v}

•	S	single source from that the shortest paths have to be found
•	d(v)	shortest path estimate of vertex v
•	$\pi(v)$	predecessor node in graph G_{π} (node that lastly
		brought an reduction of the estimate of vertex v)
•	w(u,v)	weight of arc (u, v) in network $G = (V, E)$
•	$\delta(v)/\delta(s,v)$	actual length of the shortest path from s to v
•	$\delta(u,v)$	actual length of the shortest path from u to v

Initialization of the attributes procedure initialization(G = (V, E), s) d(s) = 0for each vertex $v \in V$ $do d(v) = \infty, \pi(v) = -1$ od

Technique of *relaxation*

- The algorithm of Bellman and Ford iteratively applies the technique of relaxation
- This operation tries to reduce the estimate d(v) of a node v by considering a reduction over an arc (u, v) that connects the estimate d(u) of node u to node v

```
procedure relax(u, v, w)
if d(v) > d(u) + w(u, v)
then d(v) = d(u) + w(u, v), \pi(v) = u
```


Bellman-Ford – pseudo code

proc	procedure Bellman-Ford($G = (V, E), w, s$)								
1.	initialization(G = (V, E), s)								
2.	<i>for</i> $i = 1$ <i>to</i> $ V - 1$								
З.	for each edge $(u, v) \in E$								
4.	relax (<i>u</i> , <i>v</i> , <i>w</i>)								
5.	for each edge $(u, v) \in E$								
6.	<i>if</i> $d(v) > d(u) + w(u, v)$								
7.	then return FALSE, stop								
8.	return TRUE								

Predecessor subgraph G_{π}

- We often wish to compute not only shortest-path weights, but also the nodes visited on these shortest paths
- For this purpose, for a given graph G = (V, E), we introduce a predecessor subgraph G_{π} as follows
 - For each vertex v ∈ V, a predecessor π(v) that is either another vertex or "-1"
 - The Bellman-Ford algorithm introduced in the following will generate a predecessor subgraph G_π such that the chain of predecessors originating at a vertex v runs backwards along a shortest path from s to v.
 - We define the predecessor subgraph $G_{\pi} = (V_{\pi}, E_{\pi})$ with

$$V_{\pi} = \{ v \in V \mid \pi(v) \neq -1 \} \cup \{ s \}$$

and $E_{\pi} = \{ (\pi(v), v) \in E \mid v \in V_{\pi} - \{ s \} \}$

Shortest-paths tree

- Let G = (V, E) be a weighted directed graph with weight function $w: E \rightarrow IR$ and source node s.
- A shortest path tree rooted at node s of G is a directed subgraph G' = (V', E') with
 - *1.* $V' \subseteq V$ and $E' \subseteq E$
 - 2. V' is a set of nodes that are reachable from node s
 - 3. G' = (V', E') forms a rooted tree (a tree is a connected graph such that each node possesses an unambiguously defined predecessor) with root node s
 - 4. For all $v \in V'$, the unique simple path from *s* to *v* in G' = (V', E') is a shortest path from *s* to *v* in *G*

Triangle inequality

6.2.1 Lemma

Let G = (V, E) be a weighted directed graph with weight function $w: E \rightarrow IR$ and source node s. Then, for all edges $(u, v) \in E$, we have

$$\delta(s,v) \leq \delta(s,u) + w(u,v)$$

- Suppose that p is a shortest path from source s to vertex v
- Then p has no more weight than any other path from s to v
- Specifically, path p has no more weight than the particular path that takes a shortest path from source s to vertex u and then takes edge (u, v)

Upper bound property

6.2.2 Lemma

Let G = (V, E) be a weighted directed graph with weight function $w: E \to IR$ and source node s. Moreover, the attributes are initialized by executing the procedure initialization(G = (V, E), w, s). Then, $d(v) \ge \delta(s, v), \forall v \in V$ and this invariant is maintained over any sequence of relaxation steps on the edges of G. Furthermore, once d(v)coincides with $\delta(s, v)$, it never changes.

Business Computing and Operations Research

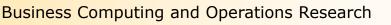
- This proof is given by induction over the number k of performed relaxation steps
- Start of induction with k=0, i.e., no relaxation step is executed
 - Here, the proposition obviously holds for all $v \in V \{s\}$ since we initialized the shortest path estimate by $d(v) = \infty \ge \delta(s, v) = \delta(v)$
 - Moreover, $d(s) = 0 \ge \delta(s, s) = \delta(s)$ holds since $\delta(s, s) = \delta(s) = -\infty$ if s is on a cycle of negative length and $\delta(s, s) = \delta(s) = 0$ otherwise
 - Therefore, the proposition holds

• Induction step $k \rightarrow k+1$

- We consider the relaxation of an edge (u, v). By the inductive proposition we know that, prior to the k + 1th relaxation, it holds that $d(x) \ge \delta(s, x), \forall x \in V$
- In this particular relaxation of edge (u, v) only the estimate d(v) may be updated
- If it is not updated we know, by the inductive proposition $d(v) \ge \delta(s, v)$
- Otherwise, we have d(v) = d(u) + w(u, v)
 - Due to the inductive proposition, we know that

 $d(v) = d(u) + w(u, v) \ge \delta(s, u) + w(u, v)$

• And due to the triangle property (Lemma 6.2.1), we have $d(v) = d(u) + w(u, v) \ge \delta(s, u) + w(u, v) \ge \delta(s, v)$



- In order to see that the value of d(v) never changed once it coincides with δ(s, v), note that we have just proven that d(v) ≥ δ(s, v), ∀v, and it cannot increase since the application of the relaxation operation may only reduce the estimate d(v) but never increase it
- This completes the proof

No-path property

6.2.3 Corollary

Suppose that in a weighted directed graph G = (V, E) with weight function $w: E \rightarrow IR$ no path connects a source node *s* to a given node *v*. Then, after the graph is initialized by calling the procedure initialization(G = (V, E), w, s), we have $d(v) = \infty$ and this invariant is maintained over any sequence of relaxation steps on the edges of *G*.

Proof of Corollary 6.2.3

 Due to the upper bound property (Lemma 6.2.2), we conclude that

 $\infty = \delta(s, v) \le d(v) \Rightarrow d(v) = \infty$

Simple consequence

6.2.4 Lemma

Let G = (V, E) be a weighted directed graph with weight function $w: E \to IR$ and $(u, v) \in E$. Then, immediately after relaxing edge $(u, v) \in E$ by executing the procedure relax(u, v, w), we have $d(v) \leq d(u) + w(u, v)$.

- If, just before relaxing the edge $(u, v) \in E$, we have d(v) > d(u) + w(u, v), then we have d(v) = d(u) + w(u, v) afterward
- If, instead, we have $d(v) \le d(u) + w(u, v)$ just before relaxing the edge $(u, v) \in E$, then no update is conducted and we also obtain $d(v) \le d(u) + w(u, v)$ afterward
- This completes the proof

6.2.5 Lemma

Let G = (V, E) be a weighted directed graph with weight function $w: E \to IR$, source node $s \in V$ and two nodes $u, v \in V$. Moreover, let p a shortest path from s to v, while the last used arc of p is $(u, v) \in E$. After executing the procedure initialization (G =(V, E), w, s and performing a sequence of relaxation steps that includes the call relax(u, v, w)is executed on the edges of G = (V, E). If d(u) = $\delta(s, u)$ at any time prior to the call, then d(v) = $\delta(s, v)$ at all times after the call.

• Due to the upper bound property (Lemma 6.2.2), if we obtain $d(u) = \delta(s, u)$ at some point before calling relax(u, v, w), then this equality holds thereafter. Moreover, after calling relax(u, v, w), due to Lemma 6.2.4, we obtain

 $d(v) \le d(u) + w(u, v) = \delta(s, u) + w(u, v)$

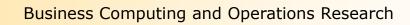
 And due to the definition of p and the fact that subpaths of a shortest path are also shortest paths (otherwise, the shortest path can be shortened), we conclude

 $d(v) \le d(u) + w(u, v) = \delta(s, u) + w(u, v) = \delta(s, v)$

- Again, due to the upper bound property (Lemma 6.2.2), after obtaining d(v) = δ(s, v), this equality is maintained thereafter
- This completes the proof

6.2.6 Lemma

Let G = (V, E) be a weighted directed graph with weight function $w: E \rightarrow IR$ and a source node $s \in V$. Moreover, let $p = \langle v_0, ..., v_k \rangle$ any shortest path from $s = v_0$ to v_k . After executing the procedure initialization (G = (V, E), w, s) and performing a sequence of relaxation steps that includes, in order, the calls relax (v_0, v_1, w) , relax (v_1, v_2, w) ,..., $relax(v_{k-1}, v_k, w)$, then $d(v_k) = \delta(s, v_k) = \delta(v_0, v_k)$ after these relaxations and at all times afterward. This property holds no matter what other edge relaxations occur, including relaxations that are intermixed with relaxations of the edges of p.



- This proof is given by induction, i.e., specifically, we show that, after the *i*th edge of path *p* (i.e., edge (v_{i-1}, v_i)) is relaxed, we have $d(v_i) =$ $\delta(s, v_i) = \delta(v_0, v_i)$
- The basis of the induction is i = 0
 - No relaxation of edges of path p is performed
 - Hence, due to the initialization, we have $d(v_0) = d(s) = 0 = \delta(s, s) = \delta(s, v_0)$
 - Due to the upper bound property (Lemma 6.2.2), the value of $d(v_0)$ never changes after the initialization

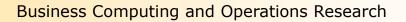
- For the inductive step, we assume, by induction, that it holds $d(v_{i-1}) = \delta(s, v_{i-1}) = \delta(v_0, v_{i-1})$ and we call $relax(v_{i-1}, v_i, w)$
- Hence, due to the convergence property (Lemma 6.2.5), we conclude $d(v_i) = \delta(s, v_i) = \delta(v_0, v_i)$ and, again, due to the upper bound property (Lemma 6.2.2), the value of $d(v_i)$ never changes after this relaxation
- This completes the proof

Relaxation and shortest-paths trees

- We now show that once a sequence of relaxations has caused the shortest-path estimates to coincide with the shortest-path weights, the predecessor subgraph G_π induced by the resulting values is a shortest-paths tree for G
- We start with the following lemma, which shows that the predecessor subgraph always forms a rooted tree whose root is the source

6.2.7 Lemma

Let G = (V, E) be a weighted directed graph with weight function $w: E \to IR$ and a source node $s \in V$, while there exists no cycle of negative length that is reachable from node s. Then, after executing the procedure initialization(G = (V, E), w, s), the predecessor subgraph G_{π} forms a rooted tree with root s, and any sequence of relaxation steps on edges of G maintains this property as an invariant.



- Initially, *s* is the only node in the predecessor subgraph G_{π} and the proposition holds
- Therefore, we consider the situation after performing a sequence of relaxation steps
- First, we show that G_{π} is acyclic
 - Suppose by performing the relaxation steps there occurs a first cycle
 c = ⟨v₀,...,v_k⟩ in G_π with v₀ = v_k. This implies ∀i ∈ {1,...,k}: π(v_i) =
 v_{i-1}
 - By renumbering the nodes on the cycle, we can assume, without loss of generality, that this cycle occurs after calling the operation relax(v_{k-1}, v_k, w)
 - Clearly, all nodes v_i on the cycle are reachable from s since π(v_i) ≠ −1 and, therefore, the upper bound property (Lemma 6.2.2) tells us that d(v_i) is finite and through d(v_i) ≥ δ(s, v_i), we have δ(s, v_i) ≠ ∞ and, hence, there is a connection from s to v_i

Business Computing and Operations Research

594

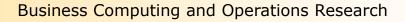
- First, we show that G_{π} is acyclic (continuation)
 - We consider the situation just before calling the operation $relax(v_{k-1}, v_k, w)$
 - There, since it holds $\forall i \in \{1, \dots, k-1\}$: $\pi(v_i) = v_{i-1}$, the last update of $d(v_i)$ was $d(v_i) = d(v_{i-1}) + w(v_{i-1}, v_i)$ and since then, $d(v_{i-1})$ was only further decreased, i.e., we have $d(v_i) \ge \delta(s, v_{i-1}) + w(v_{i-1}, v_i)$, $\forall i \in \{1, \dots, k-1\}$
 - Due to $\pi(v_k) = v_{k-1}$, just prior to the update, we have $d(v_k) > d(v_{k-1}) + w(v_{k-1}, v_k)$ (otherwise, no update would be performed by calling $relax(v_{k-1}, v_k, w)$)
 - We calculate the estimates of nodes on cycle *c*

$$\sum_{i=1}^{k} d(v_{i}) > \sum_{i=1}^{k} (d(v_{i-1}) + w(v_{i-1}, v_{i})) = \sum_{i=1}^{k} d(v_{i-1}) + \sum_{i=1}^{k} w(v_{i-1}, v_{i})$$

Since $v_{0} = v_{k}$, we have $\sum_{i=1}^{k} d(v_{i}) = \sum_{i=1}^{k} d(v_{i-1})$ and this implies $0 > \sum_{i=1}^{k} w(v_{i-1}, v_{i})$

- Hence, we have a cycle of negative length which provides the desired contradiction
- Thus, no cycle is possible

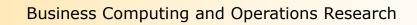
mpeter Schoo



595

- In order to show that G_{π} is a rooted tree with root s, it is sufficient to prove that for all $v \in V_{\pi}$ there is a unique single path from s to v in G_{π}
- First, we show that there is a path from s to v in G_{π}
 - Nodes v in G_{π} are those with $\pi(v) \neq -1$ plus the source node s
 - By induction over the number of the relaxation steps k, we show that a path exists from s to $v \in V_{\pi}$ in G_{π}
 - k = 0: Trivial case since the path starts at $s \in V_{\pi}$
 - k > 0: We consider the kth relaxation that relaxes an edge (u, v) ∈ E and consider node v ∈ V_π. If the estimate d(v) was not reduced the connection results by the proposition of the induction
 - Otherwise, if the estimate d(v) was reduced, we have a connection over $\pi(v) = u$ that is connected by the proposition of the induction

- Finally, we have to show for all $v \in V_{\pi}$ that there is a single path from *s* to *v* in G_{π}
- Let us assume G_{π} contains two paths from s to v
 - Path 1: $s \sim u \sim x \rightarrow z \sim v$
 - Path 2: $s \sim u \sim y \rightarrow z \sim v$
 - With $x \neq y$ (Note that u may be s and/or z may be v)
 - But, then π(z) = x and π(z) = y which implies the contradiction that x = y
- All in all, we conclude that for all $v \in V_{\pi}$ there is a unique single path from *s* to *v* in G_{π} and, therefore, *predecessor* subgraph G_{π} forms a rooted tree with root *s*



Predecessor-subgraph property

6.2.8 Lemma

Let G = (V, E) be a weighted directed graph with weight function $w: E \to IR$ and a source node $s \in V$, while there exists no cycle of negative length that is reachable from node s. Then, after calling the procedure initialization(G = (V, E), w, s) any sequence of relaxation steps on edges of G =(V, E) is executed that produces for all $v \in V d(v) =$ $\delta(s, v)$. Then, the predecessor subgraph G_{π} is a shortest path tree rooted at s.

- In what follows, it is shown that the four attributes of shortest path trees are fulfilled by the predecessor subgraph G_{π}
- These are the following

A shortest path tree rooted at node s of G is a directed subgraph G' = (V', E') if

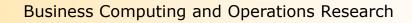
- 1. $V' \subseteq V$ and $E' \subseteq E$
- 2. V' is a set of nodes that are reachable from node s
- 3. G' = (V', E') forms a rooted tree (a tree is a connected graph such that each node possesses an unambiguously defined predecessor) with root node s
- 4. For all $v \in V'$, the unique simple path from s to v in G' = (V', E') is a shortest path from s to v in G
- 1. Is trivial
- 2. If a node v is reachable from s we have $\delta(s, v) \neq \infty$. Therefore, if $v \in V_{\pi}$ we have $\pi(v) \neq -1$ and $d(v) \neq \infty$. Due to $d(v) \geq \delta(s, v)$, we know that $\delta(s, v) \neq \infty$ and node v is reachable from s
- 3. Follows directly from Lemma 6.2.7

4. Let $p = \langle v_0, ..., v_k \rangle$ the unique path in G_{π} with $v_0 = s$ and $v_k = v$. This implies $\forall i \in \{1, ..., k\}$: $\pi(v_i) = v_{i-1}, d(v_i) \ge d(v_{i-1}) + w(v_{i-1}, v_i)$ and (by proposition) $d(v_i) = \delta(s, v_i)$. Hence, we obtain $\delta(s, v_i) \ge \delta(s, v_{i-1}) + w(v_{i-1}, v_i) \Rightarrow \delta(s, v_i) - \delta(s, v_{i-1}) \ge w(v_{i-1}, v_i)$. By summing the weights along the path p we get

$$w(p) = \sum_{i=1}^{k} w(v_{i-1}, v_i) \leq \sum_{i=1}^{k} \left(\delta(s, v_i) - \delta(s, v_{i-1}) \right) = \delta(s, v_k) - \underbrace{\delta(s, v_0)}_{=\delta(s, s) = 0} = \delta(s, v_k)$$

Thus, we have $w(p) \le \delta(s, v_k) = \delta(s, v)$ and since $\delta(s, v)$ is the length of the shortest path, we conclude $w(p) = \delta(s, v)$, and thus p is a shortest path from s to v in G

This completes the proof



Correctness of the found estimates

6.2.9 Lemma

Let G = (V, E) be a weighted directed graph with weight function $w: E \to IR$ and a source node $s \in V$, while there exists no cycle of negative length that is reachable from node s. Then, after calling the procedure initialization(G = (V, E), w, s) and |V| - 1iterations of the for loop of lines 2-4 of the Bellman-Ford algorithm, we have $d(v) = \delta(s, v) \forall v \in V$ with v is reachable from s.

Business Computing and Operations Research

- We apply the path-relaxation property (Lemma 6.2.6). For this purpose, consider any node v that is reachable from s and $p = \langle v_0, ..., v_k \rangle$ any shortest path from $s = v_0$ to $v_k = v$.
- Clearly, p has at most |V| 1 edges, and so we have k ≤ |V| 1. Each of the |V| 1 iterations of the for loop of lines 2-4 relaxes all |E| edges. Among the edges relaxed in the *i*th iteration, for i = 1,2,...,k is (v_{i-1}, v_i).
- By applying the path-relaxation property (Lemma 6.2.6), we conclude $d(v) = d(v_k) = \delta(v_0, v_k) = \delta(s, v_k) = \delta(s, v)$
- This completes the proof

Identifying cycles of negative length

6.2.10 Corollary

Let G = (V, E) be a weighted directed graph with weight function $w: E \to IR$ and a source node $s \in V$, while there exists no cycle of negative length that is reachable from node s. Then, $\forall v \in V$ there is a path from s to v if and only if the Bellman-Ford algorithm terminates with $d(v) < \infty$ when it is run on G.

Business Computing and Operations Research

Proof of Corollary 6.2.10

- First, we assume that there is a path from *s* to *v*
- Then, there exists a shortest path $p = \langle v_0, \dots, v_k \rangle$ from $s = v_0$ to $v_k = v$
- Hence, by Lemma 6.2.9, we have $d(v) = \delta(s, v) < \infty$
- Second, we assume that there is no path from s to v
- Therefore, by Lemma 6.2.3, we have $d(v) = \infty = \delta(s, v)$
- This completes the proof

6.2.11 Theorem

Let the Bellman-Ford algorithm run on a weighted, directed graph G = (V, E) with weight function $w: E \rightarrow IR$ and a source node $s \in V$. If G =(V, E) contains no cycle of negative length that is reachable from node s, then the algorithm returns TRUE, we have $d(v) = \delta(s, v) \ \forall v \in V$, and the predecessor subgraph G_{π} is a shortest path tree rooted at s. If G does contain a negative-weight cycle reachable from s, then the algorithm returns FALSE.

Business Computing and Operations Research

Proof of Theorem 6.2.11

- First, we assume that G does not contain a cycle of negative length that is reachable from s
 - If node v is reachable from s, then the proposition $d(v) = \delta(s, v) \ \forall v \in V$ results from Lemma 6.2.9
 - If node v is not reachable from s, then the proposition $d(v) = \delta(s, v) = \infty$ results from applying Corollary 6.2.3
 - Moreover, the predecessor-subgraph property (Lemma 6.2.8) proves that the predecessor subgraph G_{π} is a shortest path tree rooted at *s*.
 - It remains to show that the TRUE/FALSE output is correct
 - At termination, we have for all edges $(u, v) \in E$

$$d(v) = \delta(s,v) \leq \underbrace{\delta(s,u) + w(u,v)}_{\text{by the triangle inequality}} = d(u) + w(u,v)$$

Proof of Theorem 6.2.11

We consider the lines 5-8 of the Bellman-Ford algorithms

5.	for each edge $(u, v) \in E$
6.	if d(v) > d(u) + w(u, v)
7.	then return FALSE, stop
8.	return TRUE

- Hence, none of the tests in line 6 causes the algorithm to return FALSE. Therefore, it returns TRUE
- Second, if there is a cycle of negative length in graph G that is reachable from the source s
- Let the cycle be $c = \langle v_0, \dots, v_k \rangle$ with $v_0 = v_k$. Then, it holds

$$\sum_{i=1}^k w(v_{i-1},v_i) < 0$$

Proof of Theorem 6.2.11

- We assume that the Bellman-Ford algorithm returns TRUE
- Thus, since we have not return FALSE, it holds that

$$d(v_i) \le d(v_{i-1}) + w(v_{i-1}, v_i), \forall i = 1, 2, ..., k$$

• Summing the inequalities around cycle *c* results in

$$\sum_{i=1}^{k} d(\mathbf{v}_{i}) \leq \sum_{i=1}^{k} (d(\mathbf{v}_{i-1}) + w(\mathbf{v}_{i-1}, \mathbf{v}_{i})) = \sum_{i=1}^{k} d(\mathbf{v}_{i-1}) + \sum_{i=1}^{k} w(\mathbf{v}_{i-1}, \mathbf{v}_{i})$$
$$= \sum_{\substack{i=1\\\text{Since } \mathbf{v}_{0} = \mathbf{v}_{k}}^{k} d(\mathbf{v}_{i}) + \sum_{i=1}^{k} w(\mathbf{v}_{i-1}, \mathbf{v}_{i}) \Leftrightarrow \mathbf{0} \leq \sum_{i=1}^{k} w(\mathbf{v}_{i-1}, \mathbf{v}_{i})$$

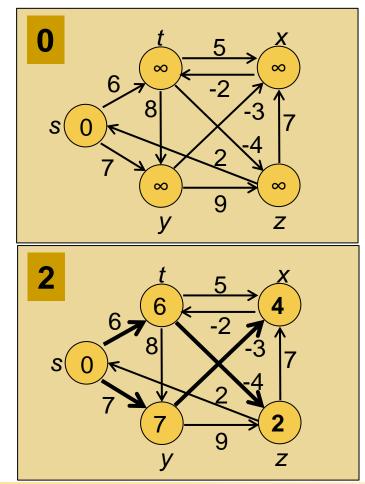
- This is a contradiction to the assumption of the negative length of cycle *c*
- Therefore, the algorithm provides the correct output FALSE if there is a cycle of negative length in graph *G* that is reachable from the source *s*

Complexity

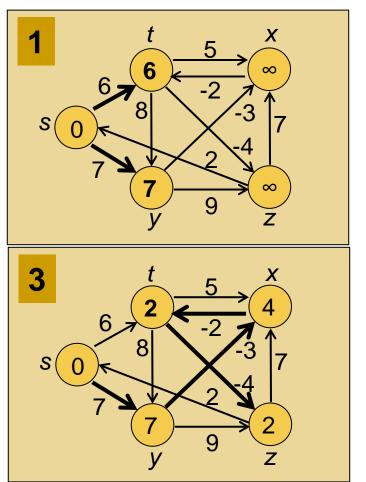
- The initialization step (line 1) possesses an asymptotic running time of O(|V|)
- Each of the |V| 1 passes over the edges (lines 2-4) requires an asymptotic running time of O(|E|)
- The final for loop of lines 5-7 takes asymptotic running time of O(|E|)
- Hence, all in all, we have a total asymptotic running time of $O(|V| \cdot |E|)$

Example

If edge $(u,v) \in E$ is printed in bold it holds that $\pi(v) = u$ and $\pi(v) = -1$, otherwise The sequence of edges is given by $\langle (t,x), (t,y), (t,z), (x,t), (y,x), (y,z), (z,x), (z,s), (s,t), (s,y) \rangle$



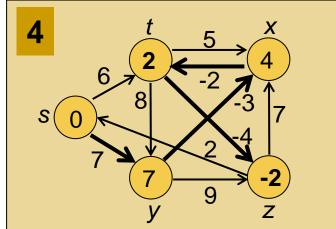
Schumpeter School of Business and Economics

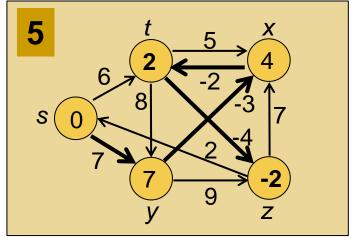


Example

If edge $(u,v) \in E$ is printed in bold it holds that $\pi(v) = u$ and $\pi(v) = -1$, otherwise

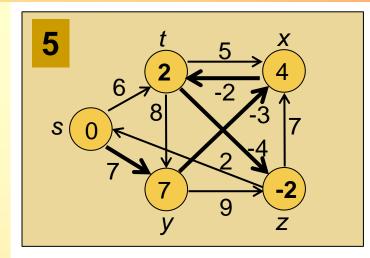
The sequence of edges is given by $\langle (t,x), (t,y), (t,z), (x,t), (y,x), (y,z), (z,x), (z,s), (s,t), (s,y) \rangle$





Node	π	d	Path
S	-1	0	S
t	х	2	s-y-x-t
У	S	7	s-y
x	У	4	s-y-x
Z	t	-2	s-y-x-t-z

Example



Node	π	d	Path
S	-1	0	S
t	Х	2	s-y-x-t
у	S	7	s-y
Х	у	4	s-y-x
Z	t	-2	s-y-x-t-z

5. for each edge
$$(u, v) \in E$$

6. **if**
$$d(v) > d(u) + w(u, v)$$

then return FALSE, stop

8. return TRUE

Since d(v) > d(u) + w(u, v) does not apply for any edge $(u, v) \in E$, the Bellman-Ford algorithm returns TRUE in this example

7.

6.3 Floyd-Warshall algorithm

- In what follows, we introduce a second shortest path algorithm that computes the shortest path between all pairs of nodes in a network
- Therefore, this algorithm is frequently denoted as the "all pairs shortest path" procedure
- In contrast to the Dijkstra algorithm, it works with negative arc weights
- Moreover, the algorithm can be extended in order to deal with cycles of negative length
- The running time of this procedure is $O(n^3)$

Triangle operation

6.3.1 Definition

We consider a quadratic distance matrix $d_{i,j}$. A triangle operation for a fixed node k is

$$d_{i,j} = \min \left\{ d_{i,j}, d_{i,k} + d_{k,j} \right\} \quad \forall i, k = 1, ..., n \text{ but } i, k \neq j.$$

This includes $i = j$.

 This operation provides the basic idea of the algorithm

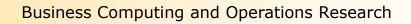
For each relation it is iteratively tested whether a length reduction over an intermediate node *k* is possible or not

6.3.2 Theorem

We initialize $d_{i,j}$ with $c_{i,j}$ and set $d_{i,i} = 0$.

By iteratively performing the triangle operation defined in Definition 6.2.1 for successive values $k=1,2,...,n, d_{i,j}$ becomes equal to the length of the shortest path from i to j according to the arc weights $[c_{i,j}]$.

The arc weights may be negative, but we assume that the input graph contains no negative-weight cycles.



Proof of Theorem 6.3.2

- This proof is given by induction over the index of the executed iteration k₀ =0,1,...,n
- Specifically, we claim that after the execution of the triangle operation for k₀ the entry d_{i,j} gives the length of the shortest path from *i* to *j* with intermediate nodes v≤k₀
- Initial step of the induction
 - We commence the induction for $k_0=0$
 - Therefore, the initialization of d_{i,j} fulfills this invariant for k₀=0 since it coincides with the respective weight of a potentially existing direct connection

616

Proof of Theorem 6.3.2

Induction step $k_0 - 1 \rightarrow k_0$

- We assume that the proposition holds for k_0 -1 ≥ 0 and consider $d_{i,j}$
- There are two possibilities

Case 1: The shortest path from *i* to *j* includes a visit of node k_0

- Therefore, the length of the shortest path from *i* to *j* that includes only intermediate locations with an index $v \le k_0$ coincides with the length of the shortest path from *i* to k_0 (integrating only locations with an index $v < k_0$) plus the length of the shortest path from k_0 to *j* (integrating only locations with an index $v < k_0$)
- This is just the current sum $d_{i,k_0} + d_{k_0,j}$

Proof of Theorem 6.3.2

Case 2: The shortest path from *i* to *j* does not include a visit of node k_0

- In that case the length of the shortest path from *i* to *j* that includes only intermediate locations with an index v≤k₀ coincides with the length of the shortest path from *i* to *j* (integrating only locations with an index v<k₀)
- This is just the current value d_{i,j}

Hence, in both cases, the triangle operation executed with node k_0 updates $d_{i,j}$ such that it defines the length of the shortest path from *i* to *j* (integrating only locations with an index $v \le k_0$). This completes the proof. Note that this includes negative arc weights if there is no cycle of negative length.

618

Floyd-Warshall algorithm

Input: An *nxn*-matrix $[c_{i,j}]$ with nonnegative entries

Output: An *nxn*-matrix $[d_{i,j}]$ with $d_{i,j}$ as the shortest distance from *i* to *j* according to the *nxn*-matrix $[c_{i,j}]$, $e_{i,j}$ gives the vertex that is intermediately visited (reduction was possible)

for all $i \neq j$ do $d_{i,j} = c_{i,j}$, $e_{i,j} = 0$ for i=1,...,n do $d_{i,i}=0, e_{i,i}=0$ for *k*=1,...,*n* do for $i=1,\ldots,n$, $i \neq k$ do for *j*=1,...,*n*, $k \neq j$ do **if** $d_{i,i} > d_{i,k} + d_{k,i}$ then begin $d_{i,i} = d_{i,k} + d_{k,j}$ $e_{i,i} = k$ end

Path reconstruction

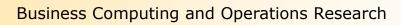
- Based on the found reductions over a vertex k that is stored in e_{i,j}, we can backtrack the shortest path
- Specifically, if it holds that e_{i,j} = k, we know that the path arises by concatenating the paths from node *i* to node *k* and from node *k* to node *j*
- However, if it holds that $e_{i,j} = 0$, the path from node *i* to node *j* is a direct path and does not include any intermediate vertices

Dealing with cycles of negative length

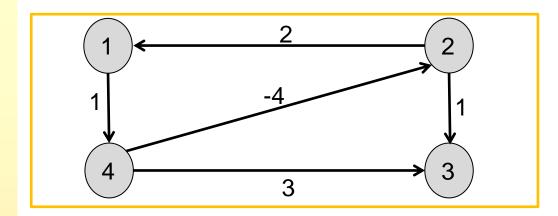
- As mentioned above, the results of Theorem 6.3.2 also apply if we allow some arc weights in the *nxn*-matrix [*c_{i,j}*] to become negative as long as there is no cycle of negative length
- However, if there exists such a negative-length cycle, during the calculation of the Floyd-Warshall algorithm, it will cause some d_{h,h} to become negative
 - We consider *h* as the highest-numbered node on the existing cycle, while *k* is the second highest-numbered node on this cycle
 - Therefore, in the iteration that considers an improvement over the intermediate node *k*, the length of this cycle can be computed by $d_{h,h} = d_{h,k} + d_{k,h} < 0$
 - Hence, after this iteration, the entry $d_{h,h}$ is negative and the algorithm terminates since the shortest path is not defined

Complexity

- By analyzing the pseudo code of the complete Floyd-Warshall algorithm, all the loops are of fixed length, and the algorithm requires a total of $n \cdot (n-1)^2$ comparisons
- Hence, we obtain a total complexity of $O(n^3)$



Example – Initialization

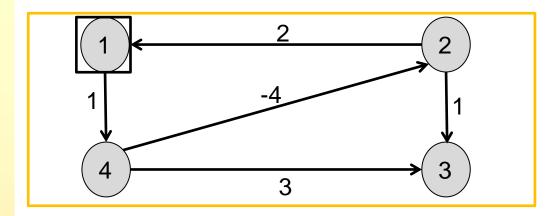


Initialization of the matrices

	d _{i,j}				
	1 2 3 4				
1	Ø	Ø	Ø	1	
2	2	∞	1	∞	
3	∞	∞	œ	∞	
4	∞	-4	3	∞	

	e _{i,j}			
	1	2	3	4
1	0	0	0	0
2	0	0	0	0
3	0	0	0	0
4	0	0	0	0

Example – first iteration

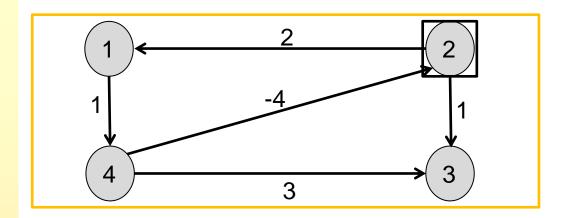


Iteration *k*=1

	d _{i,j}			
	1	2	3	4
1	∞	Ø	Ø	1
2	2	∞	1	3
3	∞	∞	∞	∞
4	∞	-4	3	∞

	e _{i,j}			
	1	2	3	4
1	0	0	0	0
2	0	0	0	1
3	0	0	0	0
4	0	0	0	0

Example – second iteration

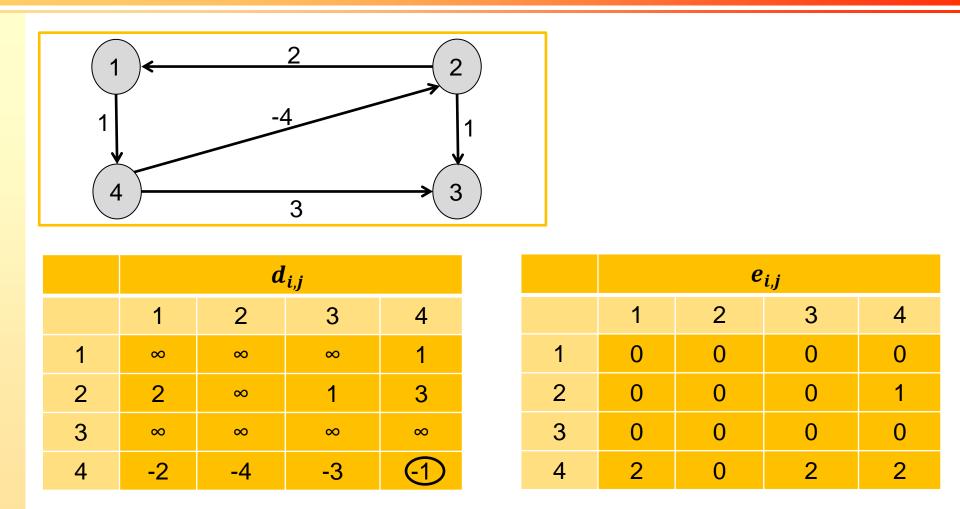


Iteration *k*=2

	d _{i,j}					
	1	1 2 3 4				
1	Ø	Ø	Ø	1		
2	2	Ø	1	3		
3	∞	∞	Ø	∞		
4	-2	-4	-3	-1		

	e _{i,j}				
	1 2 3 4				
1	0	0	0	0	
2	0	0	0	1	
3	0	0	0	0	
4	2	0	2	2	

Example – Final results



Cycle of negative length (4-2-1-4) is found and the algorithm terminates

Additional literature to Section 6

- Bazaraa, M.S.; Langley, R.W. (1974): A Dual Shortest Path Algorithm. SIAM Journal of Applied Mathematics Vol. 26(3) pp. 496-501.
- Bellman, R. (1958): On a routing problem. Quarterly of Applied Mathematics, 16(1) pp.87-90.
- Ford, L.R. Jr.; Fulkerson, D.R. (1962): Flows in Networks.
 Princeton University Press.
- Cormen, T.H.; Leiserson, C.E.; Rivest, R.L.; Stein, C. (2009): Introduction to Algorithms. 3rd edition. The MIT Press.
- Dijkstra, E.W. (1959): A Note on Two Problems in Connexion with Graphs. *Numerische Mathematik* 1, pp. 269-271.

Additional literature to Section 6

- Floyd, R.W. (1962): Algorithm 97: Shortest Path.
 Communications of the ACM Vol.5(6), p.345.
- Nemhauser, G. L. (1972): A Generalized Permanent Label Setting algorithm for the Shortest Path between Specified Nodes. Journal of Mathematical Analysis and Applications, Vol. 38, pp. 328-334.
- Warshall, S. (1962): A Theorem on Boolean Matrices. Journal of the ACM, Vol.9(1), pp.11-12.

