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6 Optimally solving the Shortest Path Problem 

 In what follows, we apply specific variants of the Primal-

Dual Algorithm in order to derive new algorithms for the 

Shortest Path (Section 6) and for the Max-Flow Problem 

(Section 7) 

 We commence our study with the Shortest Path Problem 

 In the literature, two main types of shortest path problems 

are distinguished 

 The single source shortest path problem  

Find the shortest path from one distinguished node to all other 

nodes in the network 

 The all pairs shortest path problem 

Find the shortest path between all pairs of nodes in the network 
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Overview of the Section 

 The single source shortest path problem  

 In Section 6.1, we will derive the famous Dijkstra 

algorithm as a special extended Primal Dual procedure 

 However, this procedure is not able to handle negative 

weights 

 Therefore, in Section 6.2, we consider the Bellman-

Ford algorithm 

 The all pairs shortest path problem  

 In Section 6.3, we finally introduce the Floyd Warshall 

procedure that is also able to deal with negative arc 

weights 

 It is also able to identify cycles of negative length 
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6.1 Deriving the Dijkstra algorithm 

First of all, we have to introduce the problem of 

finding the shortest path from a distinguished node 

to all other nodes in a network 

 In what follows, we consider directed weighted 

graphs 

 In order to provide a complete LP-based problem 

definition of this Shortest Path Problem, we 

introduce several basic notations 
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Graph, Network, … 

6.1.1 Definition 

 

      

 

1

Assuming V is a finite set, in what follows, defined as 

1 ,  

,..., \ , , | , and : .  

Then, , ,  is denoted as a weighted directed graph (also 

denoted as a network).  i

m

V ,..,n , n IN

E e e V V D D v v v V c E IR

N V E c

V

 

     



 

s denoted as the vertices (nodes) and 

 the set of arcs.  indicates the weight (length, costs) of the 

arc .

E c e

e E
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A simple example 

                    

    9

1,2,3,4,5,6 , 1,2 , 1,3 , 2,3 , 2,4 , 2,5 , 3,5 , 5,4 , 4,6 , 5,6 ,

2,1,3,3,1,1,2,2,5   ,
T

j j

V E

c c IR c c e

 

  

1 

4 

6 

3 

2 

5 

e1,c1=2 

e2,c2=1 

e3,c3=3 

e4,c4=3 

e5,c5=1 

e6,c6=1 

e7,c7=2 

e8,c8=2 

e9,c9=5 
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Adjacency lists 

 In general: v: w1, c(v,w1) 

 

 1: 2,2; 3,1 

 2: 3,3; 4,3; 5,1 

 3: 5,1 

 4: 6,2  

 5: 4,2; 6,5 

 6: - 
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Vertex-arc adjacency matrix 

 
 

 

 

1 1

1

1

0

1 1

   

   


       



    

    

 when 

with  when 

 otherwise                 

 is source of arc     is sink of arc 

 with  as the th 

k

i ,k i ,k ki n; k m

i,k k i,k k

k i j i

k

j V : e i, j

A , j V : e j ,i

α i e ; α i e

e i , j e e , e i

1 1 0 0 0 0 0 0 0

1 0 1 1 1 0 0 0 0

0 1 1 0 0 1 0 0 0

0 0 0 1 0 0 1 1 0

0 0 0 0 1 1 1 0 1

0 0 0 0 0 0 0 1 1

 
 
 
  

   
  

  
    

unit vector

A
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Path 

6.1.2 Definition 

 

 
0

0 1 2 1

Assuming , ,  is a weighted directed graph (also 

denoted as a network). Then, a path leading from  to 

is a sequence of nodes , with , , 0 -1.  

The length (weight,

t

k

k l t t

N V E c

i V i V

i ,i ,i ,...,i e i i t k



 

  

     
1 1

0 1 2 1

0 0

0 0 1 2

 costs) of the path is calculated by 

, .

If , the path  is denoted as a cycle

t

k k

k l t t

t t

k k

c i ,i ,i ,...,i c e c i i

i i i ,i ,i ,...,i

 



 

 



 
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Definition of variable x 

   

0 1 2

1

1

0

Assuming  is a path in a network . Then, we define 

 as follows

1  if 0 1 2 1

0                                    otherwise

Then, we obtain

t

k

m

i l l

i

k
l

t

p i ,i ,i ,...,i N

x IR

e i ,i ,l , , ,...,k
x

A x











   
 


     1 0

0 0 0

1

0

If  is cyclic, we have  0

t t k

k

k
i i i i

t

i i i i

e e e e

p A x e e e e







  

     


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Consequences 

 

The other way round 

0  defines a sequence of cycles in 

 defines a path from  to  (may be combined 

with a sequence of cycles)

In what follows, we assume that 0 1

i j

i

A x x N

A x e e i j

c , i ,...,m

  

  

  
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The Shortest Path Problem 

 

 

0

Minimize 

s.t.

0 1

Since we minimize the total flow, this problem is equivalent 

to restricting the variable vector  to 0 1

T

mi j m

m

!

c x

A x e e x IN x ,

x , .



      

 Generate a path from i to j 
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Observation 

 By adding all rows of the matrix, we obtain the 
null vector 

 This results from the fact that each column 
represents an arc with a definitely defined source 
and sink (represented by the entries 1 and -1) 

 Consequently, m-1 is an upper bound of the rank 
of the matrix 

 We denote A as the resulting matrix that arises 
by erasing the last row in  

 Hence, in what follows, we consider the following 
general Shortest Path Problem 

A
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The Shortest Path Problem 

 

 
   

1

1

1

Minimize 

s.t.

0 1

Then, we get the corresponding dual problem

Maximize 

s.t., 

 free

T

m

T

T

i j k

c x

A x e x ,

e π π ,

A π c π π c i, j , e i, j E

π



   

 

       

 Generate a path from 1 to destination n 

 

 

 

 

 

 

 

 

 Note that in the section named “Integer Programming” we 

will see that this problem is equivalent to its LP-relaxation 

(switching back to continuous variables) 
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The RP and its dual counterpart 

 

  
 

 
 

1

1 1

0

Based on a dual solution  and the resulting sets  and  

we define the reduced problem RP  as follows:

Minimize 

s.t., 0 1

Hence, we get the correspon

c

n
a

j

j

a

j j n mj m

n j J

j j J

π J J ,

π

x ,

x
E , a e x IN ,

x



 





 
     
 
 



 

 

   

1

1

ding dual of the reduced problem DRP

Maximize 

s.t., 1 0 0

 free

T

T
j

j J i j k

π

e π π ,

π a | π π π , e i, j E k J

π



 

           
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Solving DRP(π) 

 

 
 

 

 

1

1

Hence, we get the corresponding dual of the reduced 

primal problem DRP

Maximize 

s.t., 1 0

Let us consider the problem DRP  In what follows, 

we denote a solution to DRP

 

        

T

n

i j k

π

e π π ,

π π π , e i, j E k J

π .

π

1

 as  Obviously, each 

feasible solution with 1 is optimal. Thus, we have to 

follow all paths generated by the edges of set .  



π .

π

J



6 

Business Computing and Operations Research 534 

Solving DRP(π) 

 

Hence, if node  is reachable from node 1, we define 

1  But, if we commence our examination at the 

destination , we know that it holds 0   

with   

Note that this results from the fact 

i

i

i

π .

n π , i V

i,n J .



  



that 

0 has to be fulfilled and  was erased by 

replacing  with . Thus, we obtain 0   

i n n

i

π π π

A A π .

 


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Solving DRP(π) 

Obviously, in these constellations, we can set 0.  

This value is also propagated along each path 

generated by arcs of set . Consequently, we may 

conclude

1 when there exists a path in  from 1 t

i

i

π

J

J

π





 

o 

0 when there exists a path in  from  to 

1                                          otherwise

In what follows, we define 1 in order to distinguish 

two sets of nodes 

| 0 |c

i

i

J i n

a

a

W i i V π W i i V




 



        0 .iπ 
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Solving DRP(π) 

   

   
1

0 0

In order to generate a shortest path from 1 to , 

in case 1,  we have to add additional arcs .  

We know ,  with 0

We consider those edges that have

c

i i

i, j i j

W i | i V π W i | i V π .

n

j J

i, j E i, j J : c π π



        

 

     

   

    

0

 negative relative costs, i.e., 

it holds: 0 0 0 1 0

The Primal-Dual Simplex generates 

min |  with 

min |  with 

i j i j i j

i, j i j

i j

i, j i j

π π π π π π

c π π
λ i, j E i, j J

π π

c π π i, j E i, j J

         

   
    

  

     
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Observations 

 

   

 DRP  determines a cut between the sets 

 0 0

 The considered edges with 1 0 are just the edges that 

   bridge the gap, i.e., they connect the incompleted path found to 

  

c

i i

i j

π

W i | i V π W i | i V π

π π



        

   

    

 node  with the beginning of the graph

  indicates the length of the shortest path from  to , for .  

   This is the invariante of the procedure

min | ,  with  gives the lengt

i

i, j i j

n

π i n i W

c π π i, j E i, j J

 

      h 

   of the shortest edge bridging the gap between  and 

Specifically, for this edge it holds: 0

c

i, j i j i i, j j

W W

c π π π c π      
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Further observations 

  If  has become admissable, it stays admissable for 

the remaining calculations, i.e., it holds . This 

results from the fact that 0

 Consequently, we can conclude that if a node 

i j i, j

i j

i, j E

π π c

π π

i

 

 

 

  has entered ,  

it stays there for the rest of the calculation process 

W
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Applying the Primal-Dual Simplex 

 Consider the dual of the Shortest Path Problem 

 Obviously, since c≥0, we know that π=0 is a first 

feasible solution to (D) 

 By making use of π=0, we have an initial dual 

solution in order to commence the calculation of 

the Primal-Dual Simplex Algorithm  
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A simple example (warm up) 

 

 

     

Minimize   1 3 1 ,  

s.t., 

1 1 0
1 1 0 1

1 0 1
1 0 1 0

0 1 1

T

P

c x x

A A x x



  

  
     

                    

1 2 3 
1 1 

3 
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A simple example (warm up) 

  1

1 1 1

    Maximize  s.t. 1 0 3

0 1 1

We additionally set 0

T

n

D π , ,A π π c

π

   
   

    
   
   
   



1 2 3 
1 1 

3 
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Applying the Primal-Dual Simplex 

 

1 1 1 1
0 0

We have 3 3 1 0
0 0

1 1 0 1

1

3 1,2,3

1

T

c

A π

J J



     
        

              
        

     

 
 

   
 
 
 
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RP(π) 

   
2 3

0

0 1 1 0 0 0 1 0 0 0 1 1

1 1 0 1 1 0 1 1 0 1 1 0

0 0 1 1 0 1 0 0 1 1 0 1

1 0
0,0 0,0

1 0 1 0 1
min ,

1 01 0 1

0 1

3 1
min , 1

1 1

T T

c c

,λ 

 

  



 

    
       

                      
                   

 
  

 
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Illustration of RP(π) 

1 2 3 
1 

Current Cut 

   0,0 1,1T T   
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Updating π and J 

   

0

0 1 1
1 1

0 1 1

1 1 1 1
1 1

We have 3 3 1 0
1 1

1 1 0 1

1 1 1 1

3 1 2 3 1,2

1 1 0

T

c

λ π

π A π

J J

     
          

     

     
        

              
        

     

    
   

      
   
      
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RP(π) 

 

 

   

  121min
1

2

1

1
min

1

13

1

01
min

0

1

0

1
11

1

1

1

1
11

min
0

1

1

0

1

1

101100

011011

011101

101100

011011

110001

21

0

















 













































































































,,,

π

,c

,

π

,c

,λππ
TT
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Illustration of RP(π) 

1 2 3 
1 

Current Cut 

1 

3 

   1,1 1,0T T   
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Updating π and J 

   

0

1 1 2
1 1

1 0 1

1 1 1 1
2 2

We have 3 3 1 0
1 1

1 1 0 1

1 2 1 0

3 2 1 1 3 2

1 1 0

T

c

λ π

π A π

J , J

     
          

     

     
        

              
        

     

    
   

      
   
      
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RP(π) 

 
 

   

0

1 0 1 1 1 0 0 1 1 0 0 0

1 1 0 1 1 0 1 1 0 1 1 0

0 0 1 1 0 1 1 1 1 0 1 1

0 optimal solutions are found, i.e., 

1
2

0  are proven to be optimal for  and , 
1

1

respectively

x π P D



  





 

 
  

     
  

 
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Illustration of RP(π) 

1 2 3 
1 1 

   2,1 0,0

The shortest path 1,2,3  has an objective function value of  2.

T T   
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A somewhat more complicated example 

1 

4 

6 

3 

2 

5 

e1,c1=2 

e2,c2=1 

e3,c3=3 

e4,c4=3 

e5,c5=1 

e6,c6=1 

e7,c7=2 

e8,c8=2 

e9,c9=5 
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Iteration 1 – step 1 

 

 

We commence our calculations with 0 0 0 0 0

1 2 3 4 5 6 7 8 9

Consequently, we obtain the following tableau

0 1 1 1 1 1 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 1 1 0 0 0 0 0 0 0

0 0 1 0 0 0 1 0 1 1 1 0 0 0 0

0 0 0 1 0 0 0 1 1 0 0 1 0 0 0

0 0 0 0 1 0 0 0 0 1 0 0 1 1 0

0 0 0 0

T

c

π , , , ,

J J , , , , , , , ,



  



 

 

0 1 0 0 0 0 1 1 1 0 1 
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Iteration 1 – step 2 

       

     

0

1 0 0 0 0 0 0 0 0 0 0 0 0 1 1

1 1 0 0 0 0 1 1 0 0 0 0 0 0 0

0 0 1 0 0 0 1 0 1 1 1 0 0 0 0

0 0 0 1 0 0 0 1 1 0 0 1 0 0 0

0 0 0 0 1 0 0 0 0 1 0 0 1 1 0

0 0 0 0 0 1 0 0 0 0 1 1 1 0 1

0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 2 5 2

2 2 2 2 2 8 1 2 3 4 5 6 7 9

T T

T c

, , , , , , , , π π , , , , λ min ,

π , , , , J J , , , , , , ,

  



 

 

 



      

     
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Iteration 2 – step 1 

 

 

101110000100000

011001000010000

000100110001000

000011101000100

000000011000011

110000000000001










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Iteration 2 – step 2 

       

     9,6,5,4,3,2,18,742444

1011122222223,2,3min10111

101110000100000

011001000010000

000100110001000

000011101000100

000000011000011

101001000010001

0

















c

TT

JJ,,,,

,,,,,,,,λ,,,,π
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Iteration 3 – step 1 

 

  101110000100000

011001000010000

000100110001000

000011101000100

000000011000011

101001000010001










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Iteration 3 – step 2 

     

     

   9,3,2,18,7,6,5,4

4255500111142444

11,1,1min1,1,23min00111

101110000100000

110111000110000

000100110001000

000011101000100

000000011000011

000111000110001

0

















c

T

T

JJ

,,,,,,,,,,,,

λ,,,,π


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Iteration 4 – step 1 

 

 

101110000100000

110111000110000

000100110001000

000011101000100

000000011000011

000111000110001










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Iteration 4 – step 2 

101110000100000

110100101110100

000100110001000

000011101000100

000000011000011

000100101110101










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Iteration 4 – step 3 

 

 

101110000100000

110100101110100

000100110001000

000011101000100

000000011000011

000100101110101










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Iteration 4 – step 4 

 

   

     

   9,3,18,7,6,5,4,2

4255600001142555

11,2min00001

101010110101000

110000011111100

000100110001000

000011101000100

000000011000011

000000011111101

0

















c

T

T

JJ

,,,,,,,,,,,,

λ,,,,π
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Iteration 5 – step 1 

 
 

 

101010110101000

110000011111100

000100110001000

000011101000100

000000011000011

000000011111101










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Iteration 5 – step 2 

   

   
0

0 1 1 1 1 1 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 1 1 0 0 0 0 0 0 0

0 0 1 0 0 0 1 0 1 1 1 0 0 0 0

1 1 0 1 0 0 1 0 1 0 0 1 0 0 0

1 1 1 1 1 1 0 0 0 0 0 0 0 1 1

1 1 0 1 0 1 1 0 1 0 1 0 1 0 1

0 0 1 0 0 0 1 1 1 0 6 5 5 2 4   are 

optimal solutions to  and ,  respectively.

The shortest path 

T Tx , , , , , , , , π , , , ,

P D







 

     

1,3,5,4,6  has an objective function value of  6.
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Dijkstra’s Algorithm 

   

   

   

 

    

BEGIN

      : The following must hold : 0,  

      : : 0 Denote  as the source of  the graph

      FOR all  DO :

      WHILE  DO

               : min

      

i, j i, j

s,y

c , i, j E c i, j E

W s ; π s ; s

y V \ s π y c

W V

π x π y | y W

      

 

 



 

 

      

 

         :

               FOR all  DO : min

      END DO

END

Laufzeit log  

x,y

W W x

y V \W π y π y ,π x c

O n n m

 

  

 
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Full version with storing an optimal path 

   

 

BEGIN

      : The following must hold for this algorithm : 0  

      : Denote  as the source of  the graph

0 if  
      : Let  be the length of  the shortest

otherwise

ij ij

i i
si

c i, j E c i, j E

W s s

i s
 π i V π

c

      



 
   
 

 

 
 

 path ,...,

      : Let  be the preceeding vertex of   in the shortest path ,..., ,

      WHILE  DO

               : min

               :

               FOR all  

i i i

x y

s i

Pre s s,i E Pre i s Pre i

W V

π π | y W

W W x

y V \W

  



 

 

 DO

                     IF  THEN DO

                         :

                         :

                     END DO

               END DO

      END DO

END

x xy y

y x xy

y

π c π

π π c

Pre x

 

 


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Dijkstra’s Algorithm and the simple example 

 

 

 

1 2 3
START

0 1 3
1

1 1
ITERATION 1

0 1 2
1,2

1 2
ITERATION 2

0 1 2
1,2,3

1 2

\ STOP

The shortest path 1,2,3  has an 

objective function value of  2.

x

x

x

x

x

x

x

W
Pre

W
Pre

W
Pre

V W















1 2 3 
1 1 

3 

 ,

1 3

1i jc

 
 

   
    
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Dijkstra algorithm – running time 

 In each step of the procedure a node is determined 

(labeled) to which a shortest path is found 

 Hence, there are n-1 steps for n=|V| nodes  

 Moreover, each arc of set E in the network has to be 

considered once 

 If all nodes are stored in a min-heap (sorting criterion is 

the distance to the labeled nodes) we obtain the total 

asymptotic running time 

  logO E V V 

Business Computing and Operations Research 568 

Negative arc weights 

 The basic idea of the Dijkstra procedure is based on the 

fact that if we have identified a node with a minimum 

distance to the labeled nodes the shortest path to this 

node is found 

 However, this is not necessarily correct if negative arc 

weights occur 

 In this case, a path to another node with even longer 

length may become shorter over an arc with negative 

weight 

 Note that the Dijkstra algorithm can be extended to the 

case of negative arc weights. However, this results in an 

increased time complexity of O(n3) (cf., Nemhauser 

(1972), Bazaraa and Langley (1974)) 
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Cycles of negative weights 

 The shortest path problem in a network may be 

not well-defined anymore if there exists cycles of 

negative length 

 In this case, some paths can be arbitrarily shortened 

by integrating this cycle infinitely often 

 Hence, if there is a connection to this cycle, the 

problem has no solution and, therefore, is not well-

defined 
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6.2 Bellman-Ford algorithm 

 The Bellman-Ford algorithm is based on separate 

algorithms by Bellman and by Ford (cf. Bellman (1958), 

Ford and Fulkerson (1962)) 

 Like the Dijkstra algorithm, it solves the single source shortest path 

problem starting from a source node 𝑠 

 But, in contrast to the Dijkstra algorithm, it is able to deal with edges 

that possess a negative weight 

 Moreover, the algorithm of Bellman-Ford also identifies whether a 

cycle of negative length exists in the graph that is reachable from 𝑠 

 The algorithm possesses a very simple structure that 

enables us to easily derive its asymptotic running time 

 However, the proving of the correctness of the algorithm 

becomes quite technical 
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Attributes of each vertex 𝑣 

 𝑠  single source from that the shortest paths have   

  to be found 

 𝑑 𝑣   shortest path estimate of vertex 𝑣 

 𝜋 𝑣   predecessor node in graph 𝐺𝜋 (node that lastly   

  brought an reduction of the estimate of vertex 𝑣) 

 𝑤 𝑢, 𝑣  weight of arc 𝑢, 𝑣  in network 𝐺 = 𝑉, 𝐸  

 𝛿 𝑣 /𝛿 𝑠, 𝑣  actual length of the shortest path from 𝑠 to 𝑣 

 𝛿 𝑢, 𝑣  actual length of the shortest path from 𝑢 to 𝑣 

 

Initialization of the attributes 

procedure initialization(𝐺 = 𝑉, 𝐸 , 𝑠) 

  𝑑 𝑠 = 0 

 for each vertex 𝑣 ∈ 𝑉  

  do 𝑑 𝑣 = ∞, 𝜋 𝑣 = −1 od 
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Technique of relaxation 

 The algorithm of Bellman and Ford iteratively 

applies the technique of relaxation 

 This operation tries to reduce the estimate 𝑑 𝑣  of 

a node 𝑣 by considering a reduction over an arc 

𝑢, 𝑣  that connects the estimate 𝑑 𝑢  of node 𝑢 

to node 𝑣  

 

procedure relax 𝑢, 𝑣, 𝑤  

 if 𝑑 𝑣 > 𝑑 𝑢 + 𝑤 𝑢, 𝑣  

  then 𝑑 𝑣 = 𝑑 𝑢 + 𝑤 𝑢, 𝑣 , 𝜋 𝑣 = 𝑢 
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Bellman-Ford – pseudo code 

procedure Bellman-Ford(𝐺 = 𝑉, 𝐸 , 𝑤, 𝑠) 

1.  initialization(𝐺 = 𝑉, 𝐸 , 𝑠) 

2.  for 𝑖 = 1 to 𝑉 − 1 

3.   for each edge 𝑢, 𝑣 ∈ 𝐸 

4.     relax 𝑢, 𝑣, 𝑤  

5.  for each edge 𝑢, 𝑣 ∈ 𝐸 

6.    if 𝑑 𝑣 > 𝑑 𝑢 + 𝑤 𝑢, 𝑣  

7.    then return FALSE, stop 

8.  return TRUE 
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Predecessor subgraph 𝐺𝜋 

 We often wish to compute not only shortest-path weights, 

but also the nodes visited on these shortest paths 

 For this purpose, for a given graph 𝐺 = 𝑉, 𝐸 , we 

introduce a predecessor subgraph 𝐺𝜋 as follows 

 For each vertex 𝑣 ∈ 𝑉, a predecessor 𝜋 𝑣  that is either another 

vertex or “-1”  

 The Bellman-Ford algorithm introduced in the following will 

generate a predecessor subgraph 𝐺𝜋 such that the chain of 

predecessors originating at a vertex 𝑣 runs backwards along a 

shortest path from 𝑠 to 𝑣. 

 We define the predecessor subgraph 𝐺𝜋 = 𝑉𝜋 , 𝐸𝜋  with  

𝑉𝜋 = 𝑣 ∈ 𝑉 | 𝜋 𝑣 ≠ −1 ∪ 𝑠   

and 𝐸𝜋 = 𝜋 𝑣 , 𝑣 ∈ 𝐸 | 𝑣 ∈ 𝑉𝜋 − 𝑠  
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Shortest-paths tree 

 Let 𝐺 = 𝑉, 𝐸  be a weighted directed graph with 

weight function 𝑤: 𝐸 → 𝐼𝑅 and source node 𝑠. 

 A shortest path tree rooted at node 𝑠 of 𝐺 is a 

directed subgraph 𝐺′ = (𝑉′, 𝐸′) with 

1. 𝑉′ ⊆ 𝑉 and 𝐸′ ⊆ 𝐸 

2. 𝑉′ is a set of nodes that are reachable from node 𝑠  

3. 𝐺′ = (𝑉′, 𝐸′) forms a rooted tree (a tree is a connected 

graph such that each node possesses an 

unambiguously defined predecessor) with root node 𝑠 

4. For all 𝑣 ∈ 𝑉′, the unique simple path from 𝑠 to 𝑣 in 

𝐺′ = (𝑉′, 𝐸′) is a shortest path from 𝑠 to 𝑣 in 𝐺 
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Triangle inequality 

6.2.1 Lemma 

Let 𝐺 = 𝑉, 𝐸  be a weighted directed graph with 

weight function 𝑤: 𝐸 → 𝐼𝑅 and source node 𝑠. Then, 

for all edges 𝑢, 𝑣 ∈ 𝐸, we have  

 

𝛿 𝑠, 𝑣 ≤ 𝛿 𝑠, 𝑢 + 𝑤 𝑢, 𝑣  
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Proof of Lemma 6.2.1 

 Suppose that 𝑝 is a shortest path from source 𝑠 

to vertex 𝑣 

 Then 𝑝 has no more weight than any other path 

from 𝑠 to 𝑣 

 Specifically, path 𝑝 has no more weight than the 

particular path that takes a shortest path from 

source 𝑠 to vertex 𝑢 and then takes edge 𝑢, 𝑣  
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Upper bound property 

6.2.2 Lemma 

Let 𝐺 = 𝑉, 𝐸  be a weighted directed graph with 

weight function 𝑤: 𝐸 → 𝐼𝑅 and source node 𝑠. 

Moreover, the attributes are initialized by executing 

the procedure initialization(𝐺 = 𝑉, 𝐸 , 𝑤, 𝑠). Then, 

𝑑 𝑣 ≥ 𝛿 𝑠, 𝑣 ,∀𝑣 ∈ 𝑉 and this invariant is 

maintained over any sequence of relaxation steps 

on the edges of G. Furthermore, once 𝑑 𝑣  

coincides with 𝛿 𝑠, 𝑣 , it never changes. 
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Proof of Lemma 6.2.2 

 This proof is given by induction over the number 

k of performed relaxation steps 

 Start of induction with k=0, i.e., no relaxation step 

is executed 

 Here, the proposition obviously holds for all 𝑣 ∈ 𝑉 − 𝑠  

since we initialized the shortest path estimate by 

𝑑 𝑣 = ∞ ≥ 𝛿 𝑠, 𝑣 = 𝛿 𝑣  

 Moreover, 𝑑 𝑠 = 0 ≥ 𝛿 𝑠, 𝑠 = 𝛿 𝑠  holds since 

𝛿 𝑠, 𝑠 = 𝛿 𝑠 = −∞ if 𝑠 is on a cycle of negative length 

and 𝛿 𝑠, 𝑠 = 𝛿 𝑠 = 0 otherwise 

 Therefore, the proposition holds 
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Proof of Lemma 6.2.2 

 Induction step k→k+1 

 We consider the relaxation of an edge 𝑢, 𝑣 . By the 

inductive proposition we know that, prior to the 𝑘 + 1th 

relaxation, it holds that 𝑑 𝑥 ≥ 𝛿 𝑠, 𝑥 ,∀𝑥 ∈ 𝑉 

 In this particular relaxation of edge 𝑢, 𝑣  only the 

estimate 𝑑 𝑣  may be updated 

 If it is not updated we know, by the inductive proposition 

𝑑 𝑣 ≥ 𝛿 𝑠, 𝑣  

 Otherwise, we have 𝑑 𝑣 = 𝑑 𝑢 + 𝑤 𝑢, 𝑣  

 Due to the inductive proposition, we know that  

 𝑑 𝑣 = 𝑑 𝑢 + 𝑤 𝑢, 𝑣 ≥ 𝛿 𝑠, 𝑢 + 𝑤 𝑢, 𝑣  

 And due to the triangle property (Lemma 6.2.1), we have 

𝑑 𝑣 = 𝑑 𝑢 + 𝑤 𝑢, 𝑣 ≥ 𝛿 𝑠, 𝑢 + 𝑤 𝑢, 𝑣 ≥ 𝛿 𝑠, 𝑣  
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Proof of Lemma 6.2.2 

 In order to see that the value of 𝑑 𝑣  never 

changed once it coincides with 𝛿 𝑠, 𝑣 , note that 

we have just proven that 𝑑 𝑣 ≥ 𝛿 𝑠, 𝑣 , ∀𝑣, and it 

cannot increase since the application of the 

relaxation operation may only reduce the 

estimate 𝑑 𝑣  but never increase it 

 This completes the proof 
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No-path property 

6.2.3 Corollary 

Suppose that in a weighted directed graph 

𝐺 = 𝑉, 𝐸  with weight function 𝑤: 𝐸 → 𝐼𝑅 no path 

connects a source node 𝑠 to a given node 𝑣. Then, 

after the graph is initialized by calling the procedure 

initialization 𝐺 = 𝑉, 𝐸 , 𝑤, 𝑠 , we have 𝑑(𝑣) = ∞ 

and this invariant is maintained over any sequence 

of relaxation steps on the edges of G.  
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Proof of Corollary 6.2.3 

 Due to the upper bound property (Lemma 6.2.2), 

we conclude that 

  ∞ = 𝛿 𝑠, 𝑣 ≤ 𝑑 𝑣 ⇒ 𝑑 𝑣 = ∞ 
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Simple consequence 

6.2.4 Lemma 

Let 𝐺 = 𝑉, 𝐸  be a weighted directed graph with 

weight function 𝑤: 𝐸 → 𝐼𝑅 and 𝑢, 𝑣 ∈ 𝐸. Then, 

immediately after relaxing edge 𝑢, 𝑣 ∈ 𝐸 by 

executing the procedure relax 𝑢, 𝑣, 𝑤 , we have 

𝑑 𝑣 ≤ 𝑑 𝑢 + 𝑤 𝑢, 𝑣 . 
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Proof of Lemma 6.2.4 

 If, just before relaxing the edge 𝑢, 𝑣 ∈ 𝐸, we 

have 𝑑 𝑣 > 𝑑 𝑢 + 𝑤 𝑢, 𝑣 , then we have 

𝑑 𝑣 = 𝑑 𝑢 + 𝑤 𝑢, 𝑣  afterward 

 If, instead, we have 𝑑(𝑣) ≤ 𝑑(𝑢) + 𝑤 𝑢, 𝑣  just 

before relaxing the edge 𝑢, 𝑣 ∈ 𝐸, then no 

update is conducted and we also obtain 

𝑑 𝑣 ≤ 𝑑 𝑢 + 𝑤 𝑢, 𝑣  afterward 

 This completes the proof 
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Convergence property 

6.2.5 Lemma 

Let 𝐺 = 𝑉, 𝐸  be a weighted directed graph with 

weight function 𝑤: 𝐸 → 𝐼𝑅, source node 𝑠 ∈ 𝑉 and 

two nodes 𝑢, 𝑣 ∈ 𝑉. Moreover, let 𝑝 a shortest path 

from 𝑠 to 𝑣, while the last used arc of 𝑝 is 𝑢, 𝑣 ∈ 𝐸. 

After executing the procedure initialization(𝐺 =
𝑉, 𝐸 , 𝑤, 𝑠) and performing a sequence of 

relaxation steps that includes the call relax 𝑢, 𝑣, 𝑤  

is executed on the edges of 𝐺 = 𝑉, 𝐸 . If 𝑑(𝑢) =
𝛿(𝑠, 𝑢) at any time prior to the call, then 𝑑 𝑣 =
𝛿 𝑠, 𝑣  at all times after the call.  
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Proof of Lemma 6.2.5 

 Due to the upper bound property (Lemma 6.2.2), 

if we obtain 𝑑(𝑢) = 𝛿 𝑠, 𝑢  at some point before 

calling relax 𝑢, 𝑣, 𝑤 , then this equality holds 

thereafter. Moreover, after calling relax 𝑢, 𝑣, 𝑤 , 

due to Lemma 6.2.4, we obtain  
𝑑 𝑣 ≤ 𝑑 𝑢 + 𝑤 𝑢, 𝑣 = 𝛿 𝑠, 𝑢 + 𝑤 𝑢, 𝑣  

 And due to the definition of 𝑝 and the fact that 

subpaths of a shortest path are also shortest 

paths (otherwise, the shortest path can be 

shortened), we conclude  
𝑑 𝑣 ≤ 𝑑 𝑢 + 𝑤 𝑢, 𝑣 = 𝛿 𝑠, 𝑢 + 𝑤 𝑢, 𝑣 = 𝛿 𝑠, 𝑣  
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Proof of Lemma 6.2.5 

 Again, due to the upper bound property (Lemma 

6.2.2), after obtaining 𝑑(𝑣) = 𝛿 𝑠, 𝑣 , this equality 

is maintained thereafter  

 This completes the proof 
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Path-relaxation property 

6.2.6 Lemma 

Let 𝐺 = 𝑉, 𝐸  be a weighted directed graph with weight 

function 𝑤: 𝐸 → 𝐼𝑅 and a source node 𝑠 ∈ 𝑉. Moreover, let 

𝑝 = 𝑣0, … , 𝑣𝑘  any shortest path from 𝑠 = 𝑣0 to 𝑣𝑘. After 

executing the procedure initialization(𝐺 = 𝑉, 𝐸 , 𝑤, 𝑠) and 

performing a sequence of relaxation steps that includes, in 

order, the calls relax 𝑣0, 𝑣1, 𝑤 , relax 𝑣1, 𝑣2, 𝑤 ,…, 

relax 𝑣𝑘−1, 𝑣𝑘, 𝑤 , then 𝑑 𝑣𝑘 = 𝛿 𝑠, 𝑣𝑘 = 𝛿 𝑣0, 𝑣𝑘  after these 

relaxations and at all times afterward. This property holds no 

matter what other edge relaxations occur, including relaxations 

that are intermixed with relaxations of the edges of 𝑝. 
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Proof of Lemma 6.2.6 

 This proof is given by induction, i.e., specifically, 

we show that, after the 𝑖th edge of path 𝑝 (i.e., 

edge 𝑣𝑖−1, 𝑣𝑖 ) is relaxed, we have 𝑑 𝑣𝑖 =
𝛿 𝑠, 𝑣𝑖 = 𝛿 𝑣0, 𝑣𝑖   

 The basis of the induction is 𝑖 = 0  

 No relaxation of edges of path 𝑝 is performed 

 Hence, due to the initialization, we have  

𝑑 𝑣0 = 𝑑 𝑠 = 0 = 𝛿 𝑠, 𝑠 = 𝛿 𝑠, 𝑣0  

 Due to the upper bound property (Lemma 6.2.2), the 

value of 𝑑 𝑣0  never changes after the initialization 
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Proof of Lemma 6.2.6 

 For the inductive step, we assume, by induction, 

that it holds 𝑑 𝑣𝑖−1 = 𝛿 𝑠, 𝑣𝑖−1 = 𝛿 𝑣0, 𝑣𝑖−1  and 

we call relax 𝑣𝑖−1, 𝑣𝑖 , 𝑤  

 Hence, due to the convergence property (Lemma 

6.2.5), we conclude 𝑑 𝑣𝑖 = 𝛿 𝑠, 𝑣𝑖 = 𝛿 𝑣0, 𝑣𝑖  

and, again, due to the upper bound property 

(Lemma 6.2.2), the value of 𝑑(𝑣𝑖) never changes 

after this relaxation 

 This completes the proof 
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Relaxation and shortest-paths trees 

 We now show that once a sequence of relaxations 

has caused the shortest-path estimates to 

coincide with the shortest-path weights, the 

predecessor subgraph 𝐺𝜋 induced by the resulting 

values is a shortest-paths tree for 𝐺 

 We start with the following lemma, which shows 

that the predecessor subgraph always forms a 

rooted tree whose root is the source 
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Rooted tree with root 𝑠 

6.2.7 Lemma 

Let 𝐺 = 𝑉, 𝐸  be a weighted directed graph with 

weight function 𝑤: 𝐸 → 𝐼𝑅 and a source node 𝑠 ∈ 𝑉, 

while there exists no cycle of negative length that is 

reachable from node 𝑠. Then, after executing the 

procedure initialization(𝐺 = 𝑉, 𝐸 , 𝑤, 𝑠), the 

predecessor subgraph 𝐺𝜋 forms a rooted tree with 

root 𝑠, and any sequence of relaxation steps on 

edges of 𝐺 maintains this property as an invariant. 
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Proof of Lemma 6.2.7 

 Initially, 𝑠 is the only node in the predecessor subgraph 𝐺𝜋 

and the proposition holds 

 Therefore, we consider the situation after performing a 

sequence of relaxation steps 

 First, we show that 𝐺𝜋 is acyclic 

 Suppose by performing the relaxation steps there occurs a first cycle 

𝑐 = 𝑣0, … , 𝑣𝑘  in 𝐺𝜋 with 𝑣0 = 𝑣𝑘. This implies ∀𝑖 ∈ 1, … , 𝑘 : 𝜋 𝑣𝑖 =
𝑣𝑖−1  

 By renumbering the nodes on the cycle, we can assume, without loss 

of generality, that this cycle occurs after calling the operation 

relax 𝑣𝑘−1, 𝑣𝑘 , 𝑤  

 Clearly, all nodes 𝑣𝑖 on the cycle are reachable from 𝑠 since 

𝜋 𝑣𝑖 ≠ −1 and, therefore, the upper bound property (Lemma 6.2.2) 

tells us that 𝑑 𝑣𝑖  is finite and through 𝑑 𝑣𝑖 ≥ 𝛿 𝑠, 𝑣𝑖 , we have 

𝛿 𝑠, 𝑣𝑖 ≠ ∞ and, hence, there is a connection from 𝑠 to 𝑣𝑖 
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Proof of Lemma 6.2.7 

 First, we show that 𝐺𝜋 is acyclic (continuation) 
 We consider the situation just before calling the operation relax 𝑣𝑘−1, 𝑣𝑘, 𝑤  

 There, since it holds ∀𝑖 ∈ 1, … , 𝑘 − 1 : 𝜋 𝑣𝑖 = 𝑣𝑖−1, the last update of 𝑑 𝑣𝑖  

was 𝑑 𝑣𝑖 = 𝑑 𝑣𝑖−1 + 𝑤 𝑣𝑖−1, 𝑣𝑖  and since then, 𝑑 𝑣𝑖−1  was only further 

decreased, i.e., we have 𝑑 𝑣𝑖 ≥ 𝛿 𝑠, 𝑣𝑖−1 + 𝑤 𝑣𝑖−1, 𝑣𝑖 , ∀𝑖 ∈ 1, … , 𝑘 − 1  

 Due to 𝜋 𝑣𝑘 = 𝑣𝑘−1, just prior to the update, we have 𝑑 𝑣𝑘 > 𝑑 𝑣𝑘−1 +
𝑤 𝑣𝑘−1, 𝑣𝑘  (otherwise, no update would be performed by calling 

relax 𝑣𝑘−1, 𝑣𝑘, 𝑤 ) 

 We calculate the estimates of nodes on cycle 𝑐 

 

 

 

 

 Hence, we have a cycle of negative length which provides the desired 

contradiction 

 Thus, no cycle is possible 

          

     

1 1 1 1

1 1 1 1

0 1 1

1 1 1

, ,

Since ,  we have  and this implies 0 ,

k k k k

i i i i i i i

i i i i

k k k

k i i i i

i i i

d v d v w v v d v w v v

v v d v d v w v v

   

   

 

  

   

  

   

  

Business Computing and Operations Research 596 

Proof of Lemma 6.2.7 

 In order to show that 𝐺𝜋 is a rooted tree with root 𝑠, it is 

sufficient to prove that for all 𝑣 ∈ 𝑉𝜋 there is a unique single 

path from 𝑠 to 𝑣 in 𝐺𝜋 

 First, we show that there is a path from 𝑠 to 𝑣 in 𝐺𝜋 

 Nodes 𝑣 in 𝐺𝜋 are those with 𝜋 𝑣 ≠ −1 plus the source node 𝑠 

 By induction over the number of the relaxation steps 𝑘, we show 

that a path exists from 𝑠 to 𝑣 ∈ 𝑉𝜋 in 𝐺𝜋 

 𝑘 = 0: Trivial case since the path starts at 𝑠 ∈ 𝑉𝜋 

 𝑘 > 0: We consider the 𝑘th relaxation that relaxes an edge 

𝑢, 𝑣 ∈ 𝐸 and consider node 𝑣 ∈ 𝑉𝜋 . If the estimate 𝑑 𝑣  was not 

reduced the connection results by the proposition of the 

induction 

 Otherwise, if the estimate 𝑑 𝑣  was reduced, we have a 

connection over 𝜋 𝑣 = 𝑢 that is connected by the proposition of 

the induction 
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Proof of Lemma 6.2.7 

 Finally, we have to show for all 𝑣 ∈ 𝑉𝜋 that there is a 

single path from 𝑠 to 𝑣 in 𝐺𝜋 

 Let us assume 𝐺𝜋 contains two paths from 𝑠 to 𝑣 

 Path 1: 𝑠 ↝ 𝑢 ↝ 𝑥 ⟶ 𝑧 ↝ 𝑣 

 Path 2: 𝑠 ↝ 𝑢 ↝ 𝑦 ⟶ 𝑧 ↝ 𝑣 

 With 𝑥 ≠ 𝑦 (Note that 𝑢 may be 𝑠 and/or 𝑧 may be 𝑣) 

 But, then 𝜋 𝑧 = 𝑥 and 𝜋 𝑧 = 𝑦 which implies the contradiction 

that 𝑥 = 𝑦 

 All in all, we conclude that for all 𝑣 ∈ 𝑉𝜋 there is a unique 

single path from 𝑠 to 𝑣 in 𝐺𝜋 and, therefore, predecessor 

subgraph 𝐺𝜋 forms a rooted tree with root 𝑠 
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Predecessor-subgraph property  

6.2.8 Lemma 

Let 𝐺 = 𝑉, 𝐸  be a weighted directed graph with 

weight function 𝑤: 𝐸 → 𝐼𝑅 and a source node 𝑠 ∈ 𝑉, 

while there exists no cycle of negative length that is 

reachable from node 𝑠. Then, after calling the 

procedure initialization(𝐺 = 𝑉, 𝐸 , 𝑤, 𝑠) any 

sequence of relaxation steps on edges of 𝐺 =
𝑉, 𝐸  is executed that produces for all 𝑣 ∈ 𝑉 𝑑 𝑣 =

𝛿 𝑠, 𝑣 . Then, the predecessor subgraph 𝐺𝜋 is a 

shortest path tree rooted at 𝑠. 
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Proof of Lemma 6.2.8 

 In what follows, it is shown that the four attributes of shortest path 

trees are fulfilled by the predecessor subgraph 𝐺𝜋  

 These are the following 

 A shortest path tree rooted at node 𝑠 of 𝐺 is a directed subgraph 𝐺′ = (𝑉′, 𝐸′) if 

1. 𝑉′ ⊆ 𝑉 and 𝐸′ ⊆ 𝐸 

2. 𝑉′ is a set of nodes that are reachable from node 𝑠  

3. 𝐺′ = (𝑉′, 𝐸′) forms a rooted tree (a tree is a connected graph such that each 

node possesses an unambiguously defined predecessor) with root node 𝑠 

4. For all 𝑣 ∈ 𝑉′, the unique simple path from 𝑠 to 𝑣 in 𝐺′ = (𝑉′, 𝐸′) is a shortest 

path from 𝑠 to 𝑣 in 𝐺 

 

1. Is trivial 

2. If a node 𝑣 is reachable from 𝑠 we have 𝛿(𝑠, 𝑣) ≠ ∞. Therefore, if 

𝑣 ∈ 𝑉𝜋 we have 𝜋 𝑣 ≠ −1 and 𝑑(𝑣) ≠ ∞. Due to 𝑑(𝑣) ≥ 𝛿(𝑠, 𝑣), we 

know that 𝛿(𝑠, 𝑣) ≠ ∞ and node 𝑣 is reachable from 𝑠 

3. Follows directly from Lemma 6.2.7 



28 

Business Computing and Operations Research 600 

Proof of Lemma 6.2.8 

4. Let 𝑝 = 𝑣0, … , 𝑣𝑘  the unique path in 𝐺𝜋 with 𝑣0 = 𝑠 and 𝑣𝑘 = 𝑣. 

This implies ∀𝑖 ∈ 1, … , 𝑘 : 𝜋 𝑣𝑖 = 𝑣𝑖−1, 𝑑(𝑣𝑖)≥ 𝑑(𝑣𝑖−1)+𝑤 𝑣𝑖−1, 𝑣𝑖  

and (by proposition) 𝑑(𝑣𝑖)= 𝛿 𝑠, 𝑣𝑖 . Hence, we obtain 𝛿 𝑠, 𝑣𝑖 ≥
𝛿 𝑠, 𝑣𝑖−1 + 𝑤 𝑣𝑖−1, 𝑣𝑖 ⇒ 𝛿 𝑠, 𝑣𝑖 − 𝛿 𝑠, 𝑣𝑖−1 ≥ 𝑤 𝑣𝑖−1, 𝑣𝑖 . By 

summing the weights along the path 𝑝 we get 

 

 

 

Thus, we have 𝑤 𝑝 ≤ 𝛿 𝑠, 𝑣𝑘 = 𝛿 𝑠, 𝑣  and since 𝛿 𝑠, 𝑣  is the length of 

the shortest path, we conclude 𝑤 𝑝 = 𝛿 𝑠, 𝑣 , and thus 𝑝 is a shortest 

path from 𝑠 to 𝑣 in 𝐺 

 

This completes the proof 
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Correctness of the found estimates 

6.2.9 Lemma 

Let 𝐺 = 𝑉, 𝐸  be a weighted directed graph with 

weight function 𝑤: 𝐸 → 𝐼𝑅 and a source node 𝑠 ∈ 𝑉, 

while there exists no cycle of negative length that is 

reachable from node 𝑠. Then, after calling the 

procedure initialization(𝐺 = 𝑉, 𝐸 , 𝑤, 𝑠) and 𝑉 − 1 

iterations of the for loop of lines 2-4 of the Bellman-

Ford algorithm, we have 𝑑 𝑣 = 𝛿 𝑠, 𝑣  ∀𝑣 ∈ 𝑉 with 

𝑣 is reachable from 𝑠.  
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Proof of Lemma 6.2.9 

 We apply the path-relaxation property (Lemma 6.2.6). For 

this purpose, consider any node v that is reachable from 𝑠 

and 𝑝 = 𝑣0, … , 𝑣𝑘  any shortest path from 𝑠 = 𝑣0 to 𝑣𝑘 = 𝑣.  

 Clearly, 𝑝 has at most 𝑉 − 1 edges, and so we have 

𝑘 ≤ |𝑉| − 1. Each of the 𝑉 − 1 iterations of the for loop of 

lines 2-4 relaxes all 𝐸  edges. Among the edges relaxed in 

the 𝑖th iteration, for 𝑖 = 1,2, … , 𝑘 is 𝑣𝑖−1, 𝑣𝑖 .  

 By applying the path-relaxation property (Lemma 6.2.6), we 

conclude 𝑑 𝑣 = 𝑑 𝑣𝑘 = 𝛿 𝑣0, 𝑣𝑘 = 𝛿 𝑠, 𝑣𝑘 = 𝛿 𝑠, 𝑣  

 This completes the proof 
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Identifying cycles of negative length 

6.2.10 Corollary 

Let 𝐺 = 𝑉, 𝐸  be a weighted directed graph with 

weight function 𝑤: 𝐸 → 𝐼𝑅 and a source node 𝑠 ∈ 𝑉, 

while there exists no cycle of negative length that is 

reachable from node 𝑠. Then, ∀𝑣 ∈ 𝑉 there is a path 

from 𝑠 to 𝑣 if and only if the Bellman-Ford algorithm 

terminates with 𝑑 𝑣 < ∞ when it is run on 𝐺.  
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Proof of Corollary 6.2.10 

 First, we assume that there is a path from 𝑠 to 𝑣 

 Then, there exists a shortest path 𝑝 = 𝑣0, … , 𝑣𝑘  from 

𝑠 = 𝑣0 to 𝑣𝑘 = 𝑣 

 Hence, by Lemma 6.2.9, we have 𝑑 𝑣 = 𝛿 𝑠, 𝑣 < ∞ 

 

 Second, we assume that there is no path from 𝑠 to 𝑣 

 Therefore, by Lemma 6.2.3, we have 𝑑 𝑣 = ∞ = 𝛿 𝑠, 𝑣  

 

 This completes the proof 
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Correctness of the Bellman-Ford algorithm 

6.2.11 Theorem 

Let the Bellman-Ford algorithm run on a weighted, 

directed graph 𝐺 = 𝑉, 𝐸  with weight function 

𝑤: 𝐸 → 𝐼𝑅 and a source node 𝑠 ∈ 𝑉. If 𝐺 =
𝑉, 𝐸  contains no cycle of negative length that is 

reachable from node 𝑠, then the algorithm returns 

TRUE, we have 𝑑 𝑣 = 𝛿 𝑠, 𝑣  ∀𝑣 ∈ 𝑉, and the 

predecessor subgraph 𝐺𝜋 is a shortest path tree 

rooted at 𝑠. If 𝐺 does contain a negative-weight 

cycle reachable from 𝑠, then the algorithm returns 

FALSE. 
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Proof of Theorem 6.2.11 

 First, we assume that 𝐺 does not contain a cycle of negative 

length that is reachable from 𝑠 

 If node 𝑣 is reachable from 𝑠, then the proposition 

𝑑 𝑣 = 𝛿 𝑠, 𝑣  ∀𝑣 ∈ 𝑉 results from Lemma 6.2.9 

 If node 𝑣 is not reachable from 𝑠, then the proposition 𝑑 𝑣 =
𝛿 𝑠, 𝑣 = ∞ results from applying Corollary 6.2.3 

 Moreover, the predecessor-subgraph property (Lemma 6.2.8) proves 

that the predecessor subgraph 𝐺𝜋 is a shortest path tree rooted at 𝑠. 

 It remains to show that the TRUE/FALSE output is correct 

 At termination, we have for all edges 𝑢, 𝑣 ∈ 𝐸 
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Proof of Theorem 6.2.11 

We consider the lines 5-8 of the Bellman-Ford algorithms  

5.  for each edge 𝑢, 𝑣 ∈ 𝐸 

6.    if 𝑑 𝑣 > 𝑑 𝑢 + 𝑤 𝑢, 𝑣  

7.    then return FALSE, stop 

8.  return TRUE 

 

 Hence, none of the tests in line 6 causes the algorithm to return 

FALSE. Therefore, it returns TRUE 

 Second, if there is a cycle of negative length in graph 𝐺 that is 

reachable from the source 𝑠 

 Let the cycle be 𝑐 = 𝑣0, … , 𝑣𝑘  with 𝑣0 = 𝑣𝑘. Then, it holds 
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Proof of Theorem 6.2.11 

 We assume that the Bellman-Ford algorithm returns TRUE 

 Thus, since we have not return FALSE, it holds that 

 

 

 Summing the inequalities around cycle 𝑐 results in  

 

 

 

 

 

 This is a contradiction to the assumption of the negative length of cycle 𝑐  

 Therefore, the algorithm provides the correct output FALSE if there is a 

cycle of negative length in graph 𝐺 that is reachable from the source 𝑠 
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Complexity 

 The initialization step (line 1) possesses an 

asymptotic running time of 𝑂 𝑉  

 Each of the 𝑉 − 1 passes over the edges (lines 

2-4) requires an asymptotic running time of 

𝑂 𝐸  

 The final for loop of lines 5-7 takes asymptotic 

running time of 𝑂 𝐸  

 Hence, all in all, we have a total asymptotic 

running time of 𝑂( 𝑉 ∙ |𝐸|) 
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Example 

0 

∞ ∞ 

∞ ∞ 

6 

5 

-2 

7 

8 -3 

-4 
7 

9 

2 

0 

0 

6 ∞ 

7 ∞ 

6 

5 

-2 

7 

8 -3 

-4 
7 

9 

2 

1 

0 

6 4 

7 2 

6 

5 

-2 

7 

8 -3 

-4 
7 

9 

2 

2 

0 

2 4 

7 2 

6 

5 

-2 

7 

8 -3 

-4 
7 

9 

2 

3 

s 

t x 

y z 

s 

t x 

y z 

s 

t x 

y z 

s 

t x 

y z 

     

                   

If edge ,  is printed in bold it holds that  and 1,  otherwise

The sequence of edges is given by , , , , , , , , , , , , , , , , , , ,

u v E v u v

t x t y t z x t y x y z z x z s s t s y

    
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Example 
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Node π d Path 

s -1 0 s 

t x 2 s-y-x-t 

y s 7 s-y 

x y 4 s-y-x 

z t -2 s-y-x-t-z 
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Example 
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Node π d Path 

s -1 0 s 

t x 2 s-y-x-t 

y s 7 s-y 

x y 4 s-y-x 

z t -2 s-y-x-t-z 

5.  for each edge 𝑢, 𝑣 ∈ 𝐸 

6.    if 𝑑 𝑣 > 𝑑 𝑢 + 𝑤 𝑢, 𝑣  

7.    then return FALSE, stop 

8.  return TRUE 

 

Since 𝑑 𝑣 > 𝑑 𝑢 + 𝑤 𝑢, 𝑣  does not apply for any edge 𝑢, 𝑣 ∈ 𝐸, the 

Bellman-Ford algorithm returns TRUE in this example 
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6.3 Floyd-Warshall algorithm 

 In what follows, we introduce a second shortest 

path algorithm that computes the shortest path 

between all pairs of nodes in a network 

 Therefore, this algorithm is frequently denoted as 

the “all pairs shortest path” procedure 

 In contrast to the Dijkstra algorithm, it works with 

negative arc weights  

 Moreover, the algorithm can be extended in order 

to deal with cycles of negative length 

 The running time of this procedure is O(n3) 
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Triangle operation 

6.3.1 Definition 

We consider a quadratic distance matrix 𝑑𝑖,𝑗 . A 

triangle operation for a fixed node k is  

 

 

 

 This operation provides the basic idea of the 

algorithm 

For each relation it is iteratively tested whether a length 

reduction over an intermediate node k is possible or not 

 , , , ,min , , 1,...,  but , . 

This includes .

i j i j i k k jd d d d i k n i k j

i j

    


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Iterative application of the triangle operation 

6.3.2 Theorem 

We initialize 𝑑𝑖,𝑗 with 𝑐𝑖,𝑗 and set 𝑑𝑖,𝑖 = 0.  

By iteratively performing the triangle operation 

defined in Definition 6.2.1 for successive values 

k=1,2,…,n, 𝑑𝑖,𝑗  becomes equal to the length of the 

shortest path from i to j according to the arc weights 

𝑐𝑖,𝑗 .  

The arc weights may be negative, but we assume 

that the input graph contains no negative-weight 

cycles.  
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Proof of Theorem 6.3.2 

 This proof is given by induction over the index of 

the executed iteration k0 =0,1,…,n 

 Specifically, we claim that after the execution of 

the triangle operation for k0 the entry di,j gives the 

length of the shortest path from i to j with 

intermediate nodes v≤k0 

 Initial step of the induction 

 We commence the induction for k0=0  

 Therefore, the initialization of 𝑑𝑖,𝑗 fulfills this invariant 

for k0=0 since it coincides with the respective weight of 

a potentially existing direct connection 
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Proof of Theorem 6.3.2 

Induction step k0-1→k0 

 We assume that the proposition holds for k0-1 ≥0 and 
consider 𝑑𝑖,𝑗  

 There are two possibilities  

Case 1: The shortest path from i to j includes a visit of 

node k0 

 Therefore, the length of the shortest path from i to j that 

includes only intermediate locations with an index v≤k0 

coincides with the length of the shortest path from i to k0 

(integrating only locations with an index v<k0) plus the 

length of the shortest path from k0 to j (integrating only 

locations with an index v<k0)  

 This is just the current sum 𝑑𝑖,𝑘0
+ 𝑑𝑘0,𝑗 
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Proof of Theorem 6.3.2 

Case 2: The shortest path from i to j does not include a visit 

of node k0 

 In that case the length of the shortest path from i to j 

that includes only intermediate locations with an index 

v≤k0 coincides with the length of the shortest path from i 

to j (integrating only locations with an index v<k0)  

 This is just the current value 𝑑𝑖,𝑗 

 

Hence, in both cases, the triangle operation executed with 
node k0 updates 𝑑𝑖,𝑗 such that it defines the length of the 

shortest path from i to j (integrating only locations with an 

index v≤k0). This completes the proof. Note that this includes 

negative arc weights if there is no cycle of negative length.  
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Floyd-Warshall algorithm 

Input: An 𝑛𝑥𝑛-matrix 𝑐𝑖,𝑗  with nonnegative entries 

Output: An 𝑛𝑥𝑛-matrix 𝑑𝑖,𝑗  with 𝑑𝑖,𝑗 as the shortest distance from i to j 

according to the 𝑛𝑥𝑛-matrix 𝑐𝑖,𝑗 , 𝑒𝑖,𝑗 gives the vertex that is 

intermediately visited (reduction was possible) 

for all 𝑖 ≠ 𝑗 do 𝑑𝑖,𝑗 = 𝑐𝑖,𝑗, 𝑒𝑖,𝑗 = 0 

for i=1,…,n do 𝑑𝑖,𝑖 = 0, 𝑒𝑖,𝑖 = 0 

for k=1,…,n do 

 for i=1,…,n, 𝑖 ≠ 𝑘 do 

  for j=1,…,n, 𝑘 ≠ 𝑗 do 

   if 𝑑𝑖,𝑗 > 𝑑𝑖,𝑘 + 𝑑𝑘,𝑗 

   then begin 

    𝑑𝑖,𝑗 = 𝑑𝑖,𝑘 + 𝑑𝑘,𝑗 

    𝑒𝑖,𝑗 = 𝑘 

   end 
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Path reconstruction 

 Based on the found reductions over a vertex k 

that is stored in 𝑒𝑖,𝑗, we can backtrack the shortest 

path 

 Specifically, if it holds that 𝑒𝑖,𝑗 = 𝑘, we know that 

the path arises by concatenating the paths from 

node i to node k and from node k to node j 

 However, if it holds that 𝑒𝑖,𝑗 = 0, the path from 

node i to node j is a direct path and does not 

include any intermediate vertices 
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Dealing with cycles of negative length 

 As mentioned above, the results of Theorem 6.3.2 also 

apply if we allow some arc weights in the 𝑛𝑥𝑛-matrix 

𝑐𝑖,𝑗  to become negative as long as there is no cycle of 

negative length 

 However, if there exists such a negative-length cycle, 

during the calculation of the Floyd-Warshall algorithm, it 
will cause some 𝑑ℎ,ℎ to become negative 

 We consider h as the highest-numbered node on the existing 

cycle, while k is the second highest-numbered node on this cycle 

 Therefore, in the iteration that considers an improvement over the 

intermediate node k, the length of this cycle can be computed by 

𝑑ℎ,ℎ = 𝑑ℎ,𝑘 + 𝑑𝑘,ℎ < 0 

 Hence, after this iteration, the entry 𝑑ℎ,ℎ is negative and the 

algorithm terminates since the shortest path is not defined 
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Complexity 

 By analyzing the pseudo code of the complete 

Floyd-Warshall algorithm, all the loops are of 

fixed length, and the algorithm requires a total of 

𝑛 ∙ 𝑛 − 1 2 comparisons 

 Hence, we obtain a total complexity of 𝑂 𝑛3  
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Example – Initialization  
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Initialization of the matrices 
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Example – first iteration 
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Example – second iteration 
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Example – Final results 

Cycle of negative length (4-2-1-4) is found and the algorithm terminates  
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