7 Max-Flow Problems 7.1 Max-Flow Problems

In what follows, we consider a somewhat

modified problem constellation

= Instead of costs of transmission, vector ¢c now
indicates a maximum capacity that has to be
obeyed

= Again, we consider a network with two

specifically assigned vertices s and t

The objective is to find a maximum flow from

source s to sink t

E.g., this flow may be a transport of materials

from an origin to a destination of consumption
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Flow — Inflow and outflow Observation
7-1-1 D_ef|n|t|onkN VEe s oo, Aman » We can transform the equalities (2), which are
ssuming a network N = (V, E, ) is given as above. A mapping itemized above, as follows
f :E —[0,00] is denoted as an (s,t) flow if and only if the following
attributes apply: ‘ f ‘ i=s
z f((j.i)=1-|f] i=t
1. 0<f(e)<c(e),vecE J;V:' - 'E‘I’ﬂ“ef - 0 otherwise
2' (l J _ f (J’i) ,VIeVI;tS/\iqtt utflowfrom nodei nflow of nodei
jev:(zi;)es ( ) JEVZj:I <E ( )
Outflow from node i Inflow of node i
Let E=Eule, )&, = (t,5)and Athe vertex -arc adjacency

|f|= "3 f((s.i)) is denoted as the amount of flow. f is denoted matrix of (V, E) Then, A-f =0" A f, 2‘ ‘

(s.i)eE

as the maximum flow if and only if \ f \ is maximally chosen.

SchumpeterSchool SchumpeterSchool  §
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Conclusions

= For what follows, we renumber the arcs,
beginning with 1, i.e., we obtain n arcs with the
numbering 1,2,3,...,n
= Note that this includes the artificial arc 0 (now 1),
connecting terminal t with source s
= We know that
(L..1)-A=0=>(L...1)-A-f =0=(L,...,1)-(A-f)=0
=>Af<0=(1..1)(A-f)<0=(1..1)-A-f <0
=(1...1)-A-f =0-f =0= A- f =0, since, otherwise,

(L,...1)-A-f <0
AA-f=0A f<0= A f<0c A f=0
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The dual of Max-Flow

Now, we consider # = (,y,6), with
= (nl,...,nm),y = (yl,...,yn), and § = (51,...,(5n)

Minimize ZC, 9, S, A" T+Y—0= el/\(n,y,é)z 0

1=1
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Max-Flow Problem

Maximize f, s.t., A-f <0A f <ca-T <0.

A o"
le.,| E, |-f<| ¢ |,c,=min Z c(Lj) Z c(i,n)
E On jevij>l ieVii<n
- n %/—/ . . .
Maximum outflow from s=1 Maximum inflow to n=t
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Interpreting the dual

= This time, the dual is given in standard form, i.e., the
Simplex Algorithm can be directly applied to it

= Thus, we want to analyze it beforehand
= Let us consider the equalities that have to be fulfilled
= Then, we can transform as follows

Minimize »"¢, -y, s.t.,

=1

1 ife, =(t;s)eE
”i_”j+yk_5k:{Oifek:(i,j)eE/\eki(t,s)eE
A
nz(nl,...,nm)zo,y:(yl ..... yn)ZO,and6=(51 ..... 5n)20
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The dual tableau Applying the simplex

= The top row of the dual tableau provides comprehensive information
about the current state of the calculation

= Specifically, it allows a direct link to the corresponding primal problem
which has to be solved originally

= More precisely, we have the following data in the row

= Obviously, by conducting the calculation of the Primal
Simplex, we obtain a tableau as follows...
0] 0 ¢ 0
e'| A" E, -E,

N —fT.e ‘—fT-AT ¢ —fT7 fr
-1 1 -1 T -1 -1
L 0-CooAl-el] 0-cp AT AT cT-cp Al 04cg AE, " Ale [ ALAT ALE -ALE,
Al [OAAT AE ALE, e
—f7.e"=—f : Objective function value of (P)
T ‘ CFTLAT T fT f7 —fT-A": Flow balance in the vertices, i.e., is =0 for feasible f
= = = = = T—fT: R ini ity of th
Alel ‘ AL AT AME, _AlE, c emaining cap-aCItyo - e arcs
f7 1 Current corresponding solution to (P)
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A simple example Applying the Simplex — Step 1.1
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Applying the Simplex — Step 2.1

Applying the Simplex — Step 1.2
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Applying the Simplex — Step 3.1

Applying the Simplex — Step 2.2
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Applying the Simplex — Step 4.1

Applying the Simplex — Step 3.2
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Applying the Simplex — Step 5.1

Applying the Simplex — Step 4.2
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Applying the Simplex — Step 5.2
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[llustration
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7.2 Min-Cut Problems

7.2.1 Definition:

Assuming N =(V, E,c,s,t) is a network with two labeled nodes
s andt. A partition V =W UW?® is denoted as an s-t cut if and only
ifseW andteW®. Z c(i, j) is denoted as the capacity

(i,j)<E withieW A jew®
of the cut.
Acut (WW*) is denoted as a minimum cut if > c(ij)

(i,)E withieW A jew®

is minimal.

erschool {
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Problem definition

1 ifieW®
0 ifieWw
1 ife =(i,j)AieWAjeW®
{0 otherwise

We introduce 7" =(x,,...,z, ), with z, ={

Sincei eWA jeW® o x, =0an; =17 -7, =-1and
ieWAjeW &z =1am, =0 7, —7; =1, we obtain
the following problem:

n
Minimize D ¢, -7, st.,
k=1

Ve, :(i,j)(#(t,s))e Eim—m+y 20Am —m +y, 21
=

Minimize ZC, 7 St A TH+yY—0 = & /\(7r,y,5) >0

1=1

erschool {
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Observation

The Min-Cut Problem corresponds to the dual of
the Max-Flow Problem

Thus, there is a direct connection between Min-
Cut and Max-Flow

Clearly, since it is required that s and t belong to
different parts of the cut, the Max-Flow is identical
to the Min-Cut

This becomes directly conceivable by the fact
that the Min-Cut is somehow the bottleneck for
the Max-Flow that may run through the entire
network

e

Business Computing and Operations Research WI N FOR 653

Proof of Lemma 7.2.2

Consider the following solution to the dual
problem that has been generated according to a
given s-t cut

=

.

|

0 ifiew

1 ifiewe

1 ife =(i,j)AieWAjeW®
0 otherwise
1 ifek=(i,j)¢(t,s)/\ieW°/\jeW

0 otherwise
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Consequence

7.2.2 Lemma:

To every s-t cut (W,W°), there exists a feasible solution to
the dual of the Max-Flow Problem with the objective
function value c(W,W°)
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Proof of Lemma 7.2.2

0 ifiew
m = .
"1 ifiews
1 ife =(i,j)AieWnjew’
Y 0 otherwise

{1 ife,=(i,j)=(t,s)AieW A jew

0 otherwise

Let us consider the possible arcs of the network. Specifically, we have to
distinguish
1 e =(t,
2. ¢

=>r-n,+)-0,=1-0+0-0=1
(t.s), withieW A jeW =7, —x; +y,—J, =1-0+0-1=0

s)
ij)#
), withi eW A jeW® = m -z, +y,—d, =0-1+1-0=0
),
),

e = (]
3. e=(ij
4. e =(i,j
5. ¢ =(i,]

withieW A jeW = x -7, +y, -6, =0-0+0-0=0
withieW® A jeW® =7 7+, —0, =1-1+0-0=0
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The objective function value

= We calculate the total weight of arcs crossing
the cut from W to W°

= Thus, we may conclude

C(W'WC): Zc(ek)= Zc(ek): ZYk'C(ek)

e =(ii)ieWnjew®  ec=(ij)yc=L eceE
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Max-Flow-Min-Cut Theorem

7.2.3 Theorem:
1. For each feasible s-t - flow f and each feasible s-t cut (W,W‘)
it holds: ‘f‘Sc(W,W‘)
2. Afeasible s-t-flow f is maximal and the s-t cut (W,W‘) thatis
constructed as defined in the Proof of Lemma 7.2.2 is minimal if

0ife =(i,j)nieW AjeW

ftholds: f, _{ck if ekk :((i’,]j))/\ie W/\jje we

3. To a feasible Max-Flow f, there exists a Min-Cut (W,W“)

with ‘f‘:c(W,W‘)
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Direct consequences

= In what follows, our primal problem is...

Minimize D ¢, -y, st, 4" -w+y—-d=e A(my.5)20
1=1

= ...and the corresponding dual...

Maximize f,, st., A-f <OAf <cA-f <0

/’w,;%/ - Business Computing and Operations Research WI NFOR 658

7

Proof of Theorem 7.2.3 - Part 1

Since the objective function value of each dual solution (Max-Flow)
is a lower bound to each feasible solution to the primal problem
(Min-Cut), the proposition 1 follows immediately.
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Proof of Theorem 7.2.3 — Part 2

In order to prove the proposition 2, we make use of the Theorem
of the complementary slackness, i.e., Theorem 5.1. Specifically,
we have to analyze the rows where the dual program leaves no
slack at all.

For this purpose, let us consider the following calculations
Since f is assumed to be feasible, we know by the results
obtained in Section 7.1 that A- f =0.

Consequently, the corresponding primal variables, i.e., z, may be
defined arbitrarily.
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Proof of Theorem 7.2.3 — Part 2

Finally, we consider
c ife =(i,j)nieWAjeW®
CEf <01, <0ve, cE f, | % Te&=(b)nicWnje
0 ife =(i,j)AieW A jeW
Corresponding variables are &. These variables are defined just reversely,
e, 6 = 1 ifek=(i,j)AieW°Ajew
otherwise

Thus, whenever there is no gap in the dual (this is now the case f, =0(!)),
the one-value of the primal does not disturb.

Other way round, if there is a gap in the dual (this is now the case f, =c, (1)),
the primal fixes it by zero-values.
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Proof of Theorem 7.2.3 — Part 2

Let us now consider
c ife=(i,j)AieWAjeW®
E,-f<cef <c, Ve eE=f=% ( J)A < CAJ_E
0 ife =(i,j)rieW’AjeW
Corresponding variables are y. These variables are defined accordingly,
. 1ife =(i,j)rieWAjew®
e,y = .
0 otherwise
Thus, whenever there is no gap in the dual (this is the case if f, =c,), the
one-value of the primal does not disturb. Other way round, if there is a

gap in the dual (this is the case if f, =0), the primal fixes it by zero-values.
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Proof of Theorem 7.2.3 — Part 3

= This proof is temporarily postponed until we have
introduced the algorithm of Ford and Fulkerson
that generates a Min-Cut according to a given
Max-Flow

= This is provided in Section 7.4
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7.3 A Primal-Dual Algorithm

= We commence with the dual problem

A

Maximize f, st, A-f <OAf<ca-f <0, ie,| E |- f<|cC

-E

= Obviously, an initial feasible solution is f=0
By using a feasible dual solution, we get the set J that comprises
three groups of indices. Specifically, we have: J =J_ UJ U J;,
3, ={il(A-f),=0},3, ={k| f,=¢,},J, = {k| f, =0}
Since A- f =0 for all feasible f, we obtain J, ={1,2,3,...,m}

Rt

Business Computing and Operations Research WI N FOR 665

The dual of the reduced primal (DRP)

Rt

E
lﬂ
A m
.. T 0
Maximize g,, s.t, (E(J,)) .g< o)
(_E(JO.))T O‘Ja“

i.8,9<1AA-g<0ng;<0,ied Ag20iel;

Business Computing and Operations Research WI N FOR 667

The reduced primal (RP)

Minimize (1”)T -a, S.t.,

a>0,7r>0,y 20,5&

( )ZOA(E,AT,E(J’),—E(J“))- _

(%)

Note that

Y is generated out of matrix E, by erasing all columns that do not
belong to set J,

B0 s generated out of matrix E, by erasing all columns that do not
belong to set J;
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Updating f

As provided by the design of primal-dual
algorithm, an optimal solution of DRP may either
indicate that f is already optimal or allow an
improvement of f

Thus, we have to find an appropriate A, which
ensures an improved but still feasible dual
solution

Specifically, ...

...assuming § as the optimal solution of (DRP), we
update f by f,, = f,,+4 -0

//’w,%/ ~ Business Computing and Operations Research WI NFOR 668
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Ensuring feasibility |

In order to ensure feasibility, we have to guarantee the following:
1. A-(f,q + 4 - §)<0. We already know
A'(fold +ﬂo'g~):A' foag + A4 G=0+A-%4-G
=1y A-§ <0, forall 4,>0
Since § is feasible, A-g<0
2, (fold +/10-Q)SC:>(fk+/10-gk)SCk,Vk

ehp<ihgoon 428 g0

9« 9«

- "
Since 4,>0 and f feasible, this is always fulfilled

Interpreting DRP

= Obviously, DRP can be interpreted as a
specifically defined accessibility problem, i.e., a
path is searched in a reduced graph

= This reduced graph restricts the searching
process as follows

= Arcs that are already used up to capacity may only be
used in backward direction, i.e., the flow is reduced

= Arcs that are unused, i.e., f,=0, may only be used in
forward direction

= All other arcs can be used in any direction

= Allinduced flows are restricted by 1, i.e., a flow of
maximum capacity 1 is sought
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Ensuring feasibility Il

And finally, we have to guarantee the following :

3. (_1)'(fo|d +%'§)SO:(_ fo =2 -8,)<0,vk
=N Aozf—,‘i,ﬁk>0 Aiosf—.'i,@k<0
k - gk

Since Zp>0and f feasible, thisisalwaysfulfilled

@%gf—i,gk<0
— Ik
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Augmenting the flow

Obviously, by solving DRP, we are aspiring an
augmenting path
Hence, it is not feasible to augment an already

saturated flow or to decrease a zero flow along
some edge

Consequently, if there is an augmentation
possible, we are able to generate a flow f that
induces only 1, -1, or O values at the respective
edges

This considerably simplifies the updating of the
dual solution in the Primal-Dual Algorithm

//’w,%/ ~ Business Computing and Operations Research WI NFOR 672
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Ensuring feasibility with g=1,0,-1

In order to ensure feasibility, we have to guarantee the
following:
1 A-(fyq+4-§)<0is fulfilled for all 4, >0

Ck_fk

2. (fag+4-G)<Co A< G, =l 4 <c -1,

k

3. (—1)-(f0|d+ﬂo-g)30©ﬂosf—gf,g~k =-le g <t

k

= A, <min{min{c, - f | §, =1}, min{f, | §, =-1}}
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A reduced network

7.4.1 Definition:
Assuming N =(V,E,c,s,t) isans-t-network and f
a feasible s -t - flow. Then, we introduce
E, =E{ UE!}, with
Ef ={e.=(i,j)|3e, =(i,j)eEAf <c} and
E} ={e.=(i,j)| 3¢, =(j,i)eEAf >0},
E, denotes the set of forward arcs while E? defines
the backward arcs. Then, we denote (V,Ef ,c,s,t) as

the corresponding reduced network.
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7.4 Ford-Fulkerson Algorithm

This algorithm is a modified primal-dual solution
procedure

The DRP is directly solved, however, that is why
no Simplex procedure is necessary for this step

On the other side, this has considerable
consequences according to the termination of the
solution procedure

This will be discussed thoroughly later
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Interpretation

Forward arcs

= are used by the current flow f, but they are not used up
to capacity

= |.e., they are not saturated by now
Backward arcs

= are not used by the current flow f, but the inverted arc
is used by flow f

= Consequently, these arcs are used in opposite
direction by the current flow f

Consequently,

= forward arcs are candidates for augmenting the flow in
the current direction (since they offer remaining
capacities)

= backward arcs are candidates for reducing the flow
(since the opposite direction transfers something)
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Observation

7.4.2 Lemma:
Apath (iy,...i, ) with iy =1, i, =n, and (i,_,.i;) € E,
indicates an optimal solution to (DRP).
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Conclusions

Let us assume that such a path between s and t cannot be established
in the reduced network.

We define for this constellation:

W ={ieV [Fp=(s =i, =i): (i) €E JAWS =V\W

and additionally...

0 ifieW 1 ife,=(i,j)rieWAjeW®
T = L , = ,
Tl ifiews o otherwise
and finally SkZ{l ot AJE.W
otherwise
‘ ,/,W%F ~ Business Computing and Operations Research WINFOR 679

Proof of Lemma 7.4.2

Based on the path p = (i, =s,...,i, =t), we define as follows:

1ife =(i,j)=(i.i)eE, forle{1,..,k} orife =(n1)
g, =1 -1 ife.=(i,j)=(i,i,)eE forle{l,.. k}

0 otherwise

Since p is a path, each visited node is reached and left by arcs once.
If this is done according to arc directions, we use g, =1, otherwise
we have g, =—1. Since the 1 and —1 values in A are changed
accordingly, we obtain in both cases for the respective row i:( A- g)i =0.
In addition, it holds:
g<lng;<0jiel, ={k|f,=c,}rg,20,ied;={k| f, =0}. Thus,
g is feasible. Since g, =1, it is also an optimal solution to ( DRP).
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The s-t-cut
We obtain :
C(W,W°)= Zc(ek)Z Zc(ek)= ZYk'C(ek)
e=(i)ieW A jew® ec=(id)me=1 eeE

Since all nodes of W ¢ were not reachable, all arcs bridging

the cut (W,W“)are used up to capacity by flow f. Consequently,

we know

f,=|f]=> v, -cle)= c(\N,W°) In addition, f cannot be augmented

e cE

and is therefore maximal.
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Maximum augmentation

= The maximum augmentation & that is possible for
the current flow, is determined by

- {minamfpalhp {c.— T, | is forward arc}}

MIN, ot panp { T | € IS backward arc}
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Ford-Fulkerson Algorithm

= Input: Network N=(s,t,V,E,c)
= Output: Max-Flow f
Set f=0, E~E;
= While an augmenting s-t-path with min capacity
value © > 0 can be found in the reduced network
E:
-f Setf=f+9;
= Update reduced network E; (decrease capacities in path direction

by value 8 and increase capacities in opposite direction by value &
for all edges on the augmenting path)

= End while

An augmenting path can be found with the labeling
algorithm on the next slide.
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Ford-Fulkerson Algorithm

= |n what follows, we introduce the description
provided by Papadimitriou and Steiglitz (1982)

p.123
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Labeling Algorithm

We try to label every node with one possible
predecessor on a path from s until we reach t:

LIST=(s};

While LIST not empty and t not in LIST:

= Scan x: Remove x from LIST. Label not all labeled yet
adjacent nodes to x in E; with x as predecessor and
put them on LIST.

End while

If t is labeled, we can create the augmenting path
by considering the predecessors in the labels.

Business Computing and Operations Research WI N F OR 684
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An example

1. lteration

SchumpeterSchool ’
b o s

Business Computing and Operations Research WI NFOR 685

Current flow

= We commence our search with f=0
= All labels are zero
= LIST={1}
= scanl
= Updating LIST
= LIST={2,3}, and scan 2
= LIST={3,4,5}, and scan 3
= LIST={4,5}, and scan 4
= LIST={5,6} and stop since 6=t is labeled already
= We have labeled node 6=t. Path is therefore 1-2-4-6.
= Thus, we now can augment our current flow f by 8=min{4,5,4}=4

Sch ter School
c’m"&mﬁ‘g‘gz\ Business Computing and Operations Research WI N FOR 686

Updated reduced network

Edge

Current Flow

Found path

[E=Y

0+4=4

1

0

0+4=4

0

0

0

0+4=4

0

O Oo|NOO0|~wWIN

0+4=4

PO/, O|O|O|F|O

SchumpeterSchool ’
b ot s

Business Computing and Operations Research WI NFOR 687

Schu ter School
C’m":mﬂ‘;}g\ Business Computing and Operations Research WI N FOR 688
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2. lteration

We commence our search with f
All labels are zero
LIST={1}
scan 1
Updating LIST
= LIST={3}, and scan 3
= LIST={4,5}, and scan 4
= LIST={5,2}, and scan 5
= LIST={6} and stop since 6=t is labeled already
We have labeled node 6=t. Path is therefore 1-3-5-6.
Thus, we now can augment our current flow f by 8=min{3,1,3}=1

e Business Computing and Operations Research WI N FOR 689

Updated reduced network

Current flow

Edge Current Flow Found path

[EEY

4 0

0+1=1

4

0

0

0+1=1

0+1=1

O 0N ||lWIN
PP |O|Rr|IO|OC|O|F

/M,%f ~ Business Computing and Operations Research WI N FOR 691
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3. lteration

We commence our search with f
All labels are zero
LIST={1}
scan 1
Updating LIST
= LIST={3}, and scan 3
= LIST={1,4}. Since 1 is labeled, LIST={4}, and scan 4
= LIST={2}, and scan 2
= LIST={1,4,5} Since 1,4 are labeled, LIST={5}, and scan 5
= LIST={6} and stop since 6=t is labeled already
= We have labeled node 6=t. Path is therefore 1-3-4-2-5-6.
Thus, we now can augment our current flow f by 8=min{2,1,4,3,2}=1

//’wg} - Business Computing and Operations Research WI NFOR 692
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Current flow Updated reduced network

Edge Current Flow Found path

[

4 0

1+1=2 1

4-1=3 -1

0+1=1

0+1=1

1

4

1+1=2

O O NoO|O||WIN

5+1=6

f"‘/?} - Business Computing and Operations Research WI N FOR 693

4. |teration Maximal flow

Edge Flow

We commence our search with f
All labels are zero
LIST={1}
scan 1l
Updating LIST
= LIST={3}, and scan 3
= LIST={1}. Since 1 is labeled, LIST={}, and terminate
= Thus, we obtain the s-t cut
= W={1,3} and W°={2,4,5,6}
= The cut has total costs ¢ +C5+Cs=4+1+1=6

S

O 0N |R|WIN|F
NI IRPIRPIPIWIN

f,w,?} ® Business Computing and Operations Research WI N FOR 695 /’W,?V ~ Business Computing and Operations Research WI NFOR 696



Updated reduced network

Correctness of the procedure

7.4.3 Lemma:
When the Ford and Fulkerson labeling algorithm
terminates, it does so at optimal flow.

l/'M/?} ~ Business Computing and Operations Research WI N FOR 699

Optimality

Clearly, the optimality of the procedure depicted
above may be directly derived from the Primal-
Dual Algorithm design

There are, however, some specific interesting
attributes coming along with the procedure of
Ford and Fulkerson that are worth mentioning
In what follows, we briefly discuss or just
mention them

/’w,?V - Business Computing and Operations Research WI NFOR 698

Proof of Lemma 7.4.3

When the algorithm of Ford and Fulkerson
terminates, there are some nodes that are
already labeled while others are still unlabeled.
We define W and W° as above

Consequently, all arcs that are running from W to
WF¢ are saturated now

Additionally, arcs running in the opposite direction
have flow zero

Therefore, by Theorem 7.2.3, the s-t-cut (W,W°)
and flow f are optimal

/’w,?V ~ Business Computing and Operations Research WI NFOR 700
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7.5 Analyzing the Ford-Fulkerson algorithm

In what follows, we analyze the complexity of the
introduced Ford-Fulkerson algorithm

First of all, we will see that the correctness of the
algorithm is limited to integer and rational
capacity values

However, in case of irrational capacity values,
even termination and correctness of the
procedure are not guaranteed anymore

This result is somehow surprising since the
procedure seems to be finite as every previously
introduced algorithm

f’“/?} ~ Business Computing and Operations Research WI N FOR 701

The pitfall — irrational case

= However, when the capacities are irrational, one
can show that the method does not only fail to
compute the optimal result but also converges to a
flow strictly less than optimal

In what follows, we shall introduce and illustrate an
example originally given by Ford and Fulkerson
(1962) and depicted in Papadimitriou and Steiglitz
(1982)

Edmonds and Karp (1972) proposed a modified
labeling procedure and proved that this algorithm
requires no more than (n3-n)/4 augmentation
iterations, regardless of the capacity values

;M;%’ - Business Computing and Operations Research WINFOR 703

7.5.1 Correctness

= |f capacities are integers, the termination of the
algorithm follows directly from the fact that the
flow is increased by at least one unit in each
iteration

Since, if the optimal flow has the total amount of
fopts Topt It€Fations (augmentations) are at most
necessary

= Analogously, if all capacities are rational, we may
put them over a common denominator D, scale
by D, and apply the same argument.

Hence, if the optimal flow has the total amount of
fop fopt D iterations (augmentations) are at most
necessary (see Papadimitriou and Steiglitz
(1982) pp.124)

//’w,?& - Business Computing and Operations Research WI NFOR 702

Analyzing the problem in detail

I cannot believe that there
are irrational examples where
the Ford-Fulkerson algorithm
is not able to provide an
optimal solution

This can actually
happen!

T will show you a very

simple example

/’w,?f? - Business Computing and Operations Research WI NFOR 704
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The irrational case — the network

Capacity S

— specialarcs ——— nonspecial arcs

: ,/,W%r - Business Computing and Operations Research WI N FOR 705

The capacities of the special arcs

7.5.1.1 Lemma:

It holds that: Vn>0:Vie({1,..,n}:a, =0

Proof:

We prove the proposition by induction:
i=0:0,=0,=1=0°=0"

J5-1 L
= =0=0

i al 2

i>1:a,=a,_,—-qa _[ﬁ_l]’2—[“/5_1ji1_[‘/§_1]i2.[1_‘/§‘1j
i i-2 i-1 2 2 2

] (g 2

: ,/,W% ~ Business Computing and Operations Research WI N FOR 707

The irrational case — capacities

= Special arcs
= These are the arcs A, A,, Az, and A,
= Capacity is a, for A, a, for A,, a, for A;, and a, for A,
= Nonspecial arcs
= All other arcs are nonspecial arcs, i.e., all arcs (s,x;),
Vi Y, 0 X)), 06, ), or (y;, t) with i#
= Capacity is S

= We define
a.,=4a,—-0a,,
5-1 5-1 1
a,=1,0,=0= Vs <1, Vs ~0.618033989, and S=——
2 2 1-o

;W,%} - Business Computing and Operations Research WI NFOR 706

Proof of Lemma 7.5.1.1

= Since it holds that
o _[ﬁl]z :(\671].[\@71]:5724\E+126724\E:37\@

2 2 2 4 4 2

= we obtain

| 52 P

i>l:a,=a,_,-a,,= . = .

2 2 2 2
o
=|——| =0
2

= This completes the proof

;W,g} Business Computing and Operations Research WINFOR 708
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Consequence

7.5.1.2 Lemma:

It holds that

Vnzozlim"%ao+zn:(a +a,,)= ao+(az+aa)+(as+a4)+...=1i=$
=2 -0

Proof:
We conclude that:

n n n-1
vn>0:lim, __a,+ [a,,-d- a,, ]—Ilmn%ao+20,1—I|m"%ao+20,

i=2 P i=2 i=1
n-1 © ) 1
— i — ! — —
_Ilmnﬁmzar‘_ ZU —1 —=S
=0 i=0 -0
Geometric series with 0<o<1
,/,W% - Business Computing and Operations Research WI N FOR 709

Step 0 - consequences

= Augmentation value is a,
= This is true since

=\/§_1<1 and olo=o-”=1<5=i
2 l-o

= Hence, the residual capacities in the special arcs
amount to

(ao _00101102'02):(0'01’02'02)

,/,W% ~ Business Computing and Operations Research WI N FOR 711

Step 0 —augmentation path (s,x;,y;,t)

Capacity S ° Arc A, with capacity a,

~\ Capacity S
Arc >With Ca pacnya1

(=] s >
)
Arc Ag capacny a,

/P ‘ Az With capacny

— specialarcs —>—— nonspecial arcs

Ya

//’w,g& - Business Computing and Operations Research WI NFOR 710

Step n21 — assumptions

= Due to the preceding steps, we have the
following remaining capacities on the special arcs

0,a,,a anda,,,

1
Note that we order now the special arcs such that,
after this step, we have the arcs A;, A, A;,

and A, with the remaining capacities (0,a,,a,,,,0,,,)-
Order the connected nodes x;, x;,x;, and x; as well

asy.,y.,y., and y,, accordingly.
= Note that step 0 has provided such a situation

//’w,%/ ~ Business Computing and Operations Research WI NFOR 712
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Step n21 — augmentation path (5,X},v;,X;,¥5,t)

Capacity S 2\ ArcA; with rem. capacity

— specialarcs ——— nonspecial arcs

(/M,%r ~ Business Computing and Operations Research WI N FOR 713

Second augmentation path (s,x},y,,v:,X;,¥5, X5, Vs, t)

Arc A, with rem. capacity O

Capacity S

Arc A, with capacity a,,;
— specialarcs = —— nonspecial arcs

’/M,g} ~ Business Computing and Operations Research WI N FOR 715

Step n21 — consequences

The chosen augmentation path increased the total flow by

a,., units since we used the special arcs A, and A, in forward

direction. Sincea ., =c"" <a =", dueto o<1, a
n+1 n ’ 4

is the

n+l

bottleneck on the chosen path

Note that the inner nonspecial arcs are somehow symmetric,

i.e., we have always arcs with capacity S in both directions

from x to y and vice versa.

After using this augmentation path, we obtain the following

residual capacities on the special arcs:

0,0 —a

n n+l7
—

a

n+1 T

Gn+2

g
I

a

n+1 'an+1 = (O' an+2 ’ O' an+1 )

Business Computing and Operations Research WI N F OR 714

Second augmentation — consequences

The chosen augmentation path increased the total flow by

a

n+2

units since we used the special arc A}, in forward direction

and the special arc A} and A} in backward direction . Since

n

_ n+2 _ n+l
a,,=0""<a,,=0"",dueto o<l,qa

is the

n+2

bottleneck on the chosen path

Note again that the inner nonspecial arcs are somehow symmetric,

i.e., we have always arcs with capacity S in both directions

from x to y and vice versa.

After using this augmentation path, we obtain the following

residual capacities on the special arcs: (0+a a

= (an+2 '0'an+2 'an+1)

g
I

n+22Y%42 an+2 ’ 0 + an+2 ’ an+1 )

Business Computing and Operations Research WI N F OR 716
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Consequences of step n>1

= Step n ends with residual capacities appropriate
for conducting the succeeding step n+1

= Hence, each step augments the total flow by
an+1+an+2

It holds that: a,,, =a,-a,,, ©a

n n+1 n+2

+da,.,=4a

n

= Therefore, the flow is augmented by a,

All'in all, after n steps, we therefore obtain the total flow Zal
i=0

Consequently, there is always an improvement possible and the

. . - 1
algorithm does not terminate and the total flow approaches 20[ =1— =S
=) -0
,/,W%r - Business Computing and Operations Research WI N FOR 717

Worth to mention

Really amazing this example !
No termination and even the
value that is approached is
wrong !

However, the example
is NOT really fair !

‘ ,/,W%F ~ Business Computing and Operations Research WI N FOR 719

No termination and ...

= However, the max flow in our pathological
example is obviously 4-S

= So the Ford-Fulkerson algorithm approaches
one-fourth the optimal flow value

= Therefore, the algorithm is not correct

;'W,g} - Business Computing and Operations Research WI NFOR 718

In the sense of fairness

= The raised question of finiteness of the Ford
Fulkerson algorithm is in a sense a mathematical
but not a practical one, since computers always
work with rational numbers

= Hence, it is reasonable to assume that data can
be represented by a finite number of bits

= A practical question, which is however related to
that of finiteness, will ask how many steps may
be required by a computation as a function of the
total number of bits in the data

;'W,%} ~ Business Computing and Operations Research WI NFOR 720
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7.5.2 Complexity analysis

In what follows, we analyze the complexity of the Ford-
Fulkerson algorithm for integral capacity values
Unfortunately, it turns out that — depending on the given
capacity values of the considered instance — this labeling
procedure may require in the worst case an exponential
amount of time

Fortunately, there exists an efficient algorithm for the max
flow problem, which is, in fact, a rather simple modification
of the labeling algorithm

In order to analyze the labeling procedure and to prepare a
modified version of it, we first examine a fundamental graph
algorithm called search(v)

Such a procedure is required in both algorithms

f’“/?} ~ Business Computing and Operations Research WI N FOR 721

Graph representations

= Adjacency lists: For each node v € V A(v) gives an
ordered list of successors, i.e., we have A(v) =

[v1, 02, o Vi(ay) | with (v,v) € B, vi € {1, ..., [(A))}
= Example

@ (2 A1) = [2,4],4(2) = [1,34],

9“9 A(3) = [2,4], A(4) = [1,2,3,5], A(5) = [4]
(5

= In what follows, we assume that the graph
G = (V,E) is connected, i.e., there are no isolated
nodes

l/',%/%( ~ Business Computing and Operations Research WI N FOR 723

Graph representations

= Agraph G = (V, E) can be represented in many
alternative ways
= Adjacency matrix:

» Amatrix A = [a; ] with binary entries such that

1<ig|v]1sjs|v]’
= a;; = 1lifarc (i,j) € E and a;; = 0 otherwise

= However, in case of graphs that are sparse in that the number
of their arcs is far less than 0 ((|‘2/|)> =0(|v|?), this

representation is the most economical one. E.g., if we have
100 nodes and 500 edges, an representation with 10,000 (!)
binary entries has to be stored

/’w,?f? - Business Computing and Operations Research WI NFOR 722

Algorithm search(v)

Input: A graph G, defined by adjacency lists and a node v
Output: The graph with the nodes reachable by path from the node v marked

Q={v}
while Q = & do

let u be any element of Q

remove u from Q

mark u

forallu’e A(u) do

if u’ is not marked then insert u’ into Q

end while

/’w,?f? - Business Computing and Operations Research WI NFOR 724
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Complexity

7.5.2.1 Theorem:

The algorithm search(v) marks all nodes of ¢
connected to v in O(|E]) time.

Proof:

Correctness: We assume that a node u is
connected to node v by a path p. Clearly, it can be
shown by induction on the path length that u will be
marked. If, otherwise, node u is not connected to
node v, u will not be marked since this would lead
to the contradictory conclusion that there is a path
from node v to node u

f"‘/?} - Business Computing and Operations Research WI N FOR 725

Applied data types

= Add vto Q:
= last=last +1
= Q[last]=v

= Remove:
= first = first+1
= v =Q[first]

first =2 last =7
T :

V3

HEEEEEE

Vs | Vg | Va | V;

The contents of @, in order of arrival

l/'M/?} ~ Business Computing and Operations Research WI N FOR 727

Proof of Theorem 7.5.2.1

Time bound:

= In order to estimate the running time of search(v),
we have to consider three components:

1. Initialization: this takes constant time

2. Maintaining the set Q: We store the set Q as a queue
with a first and last pointer (variables) in order to
enable insertion and deletion in constant time (see the
next slide for a brief illustration). The pointers
(variables) first and last are initialized to zero while Q
is stored as a simple array with |V| entries. Array Q is
empty if and only if it holds first = last. We remove
from top and add at the tail of the queue (FIFO
principle).

//w;,gw - Business Computing and Operations Research WI NFOR 726

Proof of Theorem 7.5.2.1 — Time bound

3. Searching the adjacency lists: we have constant
time for each element of the lists. Since the total
number of these elements is 2 - |E|, the time
required is O(|E])

Therefore, we have a total asymptotic running time
of O(]E]). This completes the proof

/’w,?V ~ Business Computing and Operations Research WI NFOR 728
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LIFO queue (i.e., a stack) Selecting rules applied to Q

* Add vto Q: = The procedure search(v) was not completely
= last =last +1 specified
* Q[last] =v

= We have not defined yet exactly how the next
element v is chosen from Q in the while loop

= Remove:
« v = Q[last] = There are many possibilities
* last =last =1 = Two best known are ...
= FIFO: The node that waited longest is chosen (breadth
last = 5 first search (BFS))
vs | v | vq | ve vi ‘ ‘ ‘ ‘ ‘ ‘ D = LIFO: The node that was lastly inserted is chosen
(depth first search (DFS))

The contents of @, in order of arrival. Q is empty if and only if last = 0

(/,W% Business Computing and Operations Research WINFOR 729 //'W,?V Business Computing and Operations Research WINFOR 730
Directed graphs Example
= The procedure search(v) can be applied to » We apply BFS and DFS to the digraph below
directed graphs (i.e., so-called digraphs) without = The resulting numbers (BFS/DFS) give the indices of the
any changes step at that the respective node is labeled

= Starting node is node 1

?(1/1) ?3/7) @5/6)

,/,W% ~ Business Computing and Operations Research WI N FOR 731 //'W,?V - Business Computing and Operations Research WI NFOR 732



Algorithm findpath(v) Algorithm path(v)

Input: A digraph G = (V, E), defined by adjacency lists and two subsets S, T of V
Output: A path in G from anode in S to a node in T if this path exists
forallvesS do label[v]=0

if veT then return(v); break;

Input: For all nodes u eV :label [u] generated by procedure findpath
Output: Path fromanodeinStoveT

Q=S if label [v] =0
while Q # & do
let u be any element of Q then return(v); break;
remove u from Q else return( path(label [v]))|(v); break;
for allu’e A(u) do qif
if u’ is not labeled then begin enat
label[u']l=u
if U eT then return path(u’); break; elseinsert u” into Q H stands for concatenation of paths
end (begin)
end (do) Note that the procedure is recursive!
end while
return“no S-T path available in G"
: ;.W?Z - Business Computing and Operations Research WI N FOR 733 h //;W,VL,@‘H Business Computing and Operations Research WI NFOR 734

Example — Path reconstruction

Example

= We apply the procedure findpath(S,T) with FIFO queue (bfs) and = We apply path(9) and obtain
obtain the labels (resulting in a path with a minimum number of arcs)
path(9)

- path(8)(9) = patn(6)|(8,9) = patn(5)|(6.8,9)
= path(3)](5.,6,8,9)=(3,5,6,8,9)

Business Computing and Operations Research WI N FOR 735 : //;W}«r‘ Business Computing and Operations Research WI N F OR 736
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Complexity of the Ford Fulkerson procedure

= We now analyze the complexity of the Ford-
Fulkerson algorithm more in detail
= We apply the algorithm to a network N = (s,t,V,E, c)
and observe the following
= The initialization step of the procedure takes time O(|E|)

= Each iteration step involves the scanning and labeling of
vertices. It can be stated that each edge (u,v) is
considered at most twice — once for scanning node u and
once for v. Moreover, we have to follow back the found
path that has a length of at most 0(|V|) steps

= Thus, each iteration takes time O(|V| + |E|)

‘ ,/,W%r - Business Computing and Operations Research WI N FOR 737

Worth to mention

I fear that you may know an
example that comes along
with a very large number of
augmentation steps!

That is true! And it is
a tiny onel

‘ ,/,W%F ~ Business Computing and Operations Research WI N FOR 739

Complexity of the Ford Fulkerson procedure

= Allin all, in case of integral capacities, if v is the
value of the max flow and S is the number of
conducted augmentation steps of the applied
Ford-Fulkerson algorithm, we have S < v and a
total asymptotic running time complexity of
o((IVI+1E) -S) = O(IE| - S)

= In order to define the running time by the input
data of a given instance, we obtain the
asymptotic running time

ol Z0)

;'W,g} - Business Computing and Operations Research WI NFOR 738

Worst case example

= Consider the following network with total capacity
of 4,001

= We will see that the Ford Fulkerson algorithm
requires 2,000 iterations to generate an optimal
solution

;'W,%} ~ Business Computing and Operations Research WI NFOR 740
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Worst case example — Optimal solution

* The maximum flow obviously amounts to 2000
= |llustration of the optimal solution

1000/ 1000

1000/ 1000

1000/ 1000

1000/ 1000

f"‘/?} - Business Computing and Operations Research WI N FOR 741

Solving the worst case example 1

= We start with the initial flow (s, u, v, t) with flow 1
= We obtain the following updated network

1000/1
1000/0

1000/0
1000/1

l/'M/?} ~ Business Computing and Operations Research WI N FOR 743

Worst case example

= In what follows, we apply the labeling algorithm
starting from the initial zero flow

= We commence with the zero flow on each edge

1000/0 1000/0

1000/0 1000/0

/’w,?V - Business Computing and Operations Research WI NFOR 742

Solving the worst case example 2

= We start with the initial flow (s, v, u, t) with flow 1
= We obtain the following updated network

1000/1

1000/1

/’w,?V ~ Business Computing and Operations Research WI NFOR 744
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Solving the worst case example 3 After two augmentation steps, we have

= We start with the initial flow (s, u, v, t) with flow 1 = A total flow of 2
= We obtain the following updated network = Hence, there exists a sequence of 1,000 iterations,

1000/1

1000/ 1

f"‘/?} - Business Computing and Operations Research WI N FOR 745

Exponential running time

If M = c!VI holds (with ¢ > 2), the Ford-Fulkerson
algorithm executes

OGELCM)

steps
Hence, we have an exponential running time

l/'M/?} ~ Business Computing and Operations Research WI N FOR 747

each comprising two augmentation steps with the
paths (s,u, v, t) and (s, v, u, t), that generates the
optimal solution with total flow 2,000

Therefore, the asymptotic runtime bound

oflef 0

is actually tight since we can replace the 1,000
values by an arbitrarily large M-value

//w;,gw - Business Computing and Operations Research WI NFOR 746

Towards a new max flow algorithm

Suppose that we wish to apply the labeling routine to a
network N = (s,t,V, E, ¢) with initial zero flow f =0

We need not examining capacities and flows in this case;
it is a priori certain that all arcs in A are forward, and that
there are no backward arcs.

Consequently, our task of labeling the network in order to
discover an augmenting path is done by applying
procedure findpathto N = (s,t,V,E,c) with S = {s} and
T = {t}

Subsequently, we augment the current flow by applying
findpath to a modified network N(f) = (s,t,V, E(f), ac)
that results from the current flow f

This modified network is defined next

//w;,;gé/ ~ Business Computing and Operations Research WI NFOR 748
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A flow-oriented network definition

7.5.2.2 Definition

Given a network N = (s,t,V,E, ¢) and a feasible flow
f of N. Then, we define the network N(f) =
(s,t,V,E(f),ac) with E(f) comprising the arcs

1. If (u,v) €E and f(u,v) < c(u,v), then (u,v) €

Avoiding multiple copies of arcs in E(f)

= If E contains both arcs (u,v) € E and (v,u) € E,

then E(f) may have multiple copies of these
arcs. However, in this case we may replace one
arc (u,v) € E by a new node w and two
additional arcs (u, w), (w, v) € E with identical

E(f) and ac(u,v) = c(u,v) — f(u,v)
If (u,v) € E and f(u,v) > 0, then (v,u) € E(f)
and ac(v,u) = f(v,u)

The value ac(u, v) is denoted as the augmenting
capacity of arc (u,v) € E(f)

f"‘/?} - Business Computing and Operations Research WI N FOR 749

Interesting attributes of N(f)

Take any s-t cut (W, W) of N(f)

The value of this cut is the sum of the augmenting
capacities of all arcs of N(f) going from W to W

Such an arc (u,v) € E(f) may be either a forward arc
(case 1 in Definition 7.5.2.2, i.e., ac(u,v) = c(u,v) —
f(u,v)) or a backward arc (case 2 in Definition 7.5.2.2,
i.e., ac(u,v) = f(v,u))

Thus, all in all, if we directly compare the value of (W, W)
in N(f) with the value of (W, W) of N, we see that the first
one is equal to the second one minus the forward flow of
f across the cut plus the backward flow of f against the
cut
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capacity, i.e., it holds that c(u,w) = c(w,v) =
c(u, v)

= Therefore, we can assume that E(f) has no
multiple arcs
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Interesting attributes of N(f)

Clearly, the size of f along the cut minus the size of f against
the cut is just |f| and therefore the last two terms together
amount to -|f|
But for every cut (W, W) and flow f we know that the flow of
f over forward arcs minus the flow of f (<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>