
1

Business Computing and Operations Research 629

7 Max-Flow Problems

Business Computing and Operations Research 630

7.1 Max-Flow Problems

 In what follows, we consider a somewhat
modified problem constellation

 Instead of costs of transmission, vector c now
indicates a maximum capacity that has to be
obeyed

 Again, we consider a network with two
specifically assigned vertices s and t

 The objective is to find a maximum flow from
source s to sink t

 E.g., this flow may be a transport of materials
from an origin to a destination of consumption

Business Computing and Operations Research 631

Flow – Inflow and outflow

7.1.1 Definition
 

   

   

  
 : ,

Outflow from node

Assuming a network , , is given as above. A mapping

: 0, is denoted as an flow if and only if the following

attributes apply:

1. 0 ,

2. ,
j V i j E

i

N V E c

f E s,t

f e c e e E

 f i j
 



 

   

   
 

  
 

: ,

Inflow of node

,

, , :

, is denoted as the amount of flow. is denoted

as the maximum flow if and only if is maximally chosen.

j V j i E

i

s i E

f j i i V i s i t

f f s i f

f

 



     







Business Computing and Operations Research 632

Observation

 We can transform the equalities (2), which are

itemized above, as follows

  
 

  
 

   

  .0 Then, .
~

, ofmatrix

adjacency arc- vertex the and
~

Let

otherwise 0

,,

0

00

 node of Inflow

,:

 node from Outflow

,:

fffAEV

At,s,eeEE

tif

sif

ijfjif

m

i

EijVj

i

EjiVj

















 
 

2

Business Computing and Operations Research 633

Conclusions

 For what follows, we renumber the arcs,

beginning with 1, i.e., we obtain n arcs with the

numbering 1,2,3,…,n

 Note that this includes the artificial arc 0 (now 1),

connecting terminal t with source s

 We know that

       

     

 

 

1 1 0 1 1 0 1 1 0

0 1 1 0 1 1 0

1 1 0 0 0, since, otherwise,

1 1 0

0 0 0 0

         

          

        

  

           

,..., A ,..., A f ,..., A f

A f ,..., A f ,..., A f

,..., A f f A f

,..., A f

A f A f A f A f

Business Computing and Operations Research 634

Max-Flow Problem

   

1

1

: 1 :

Maximum inflow to Maximum outflow from 1

Maximize , s.t., 0 0.

0

I.e., , min 1, , ,

0
   



      

   
     

      
          

 

m

n

j V j i V i nn

n n ts

f A f f c f

A

E f c c c j c i n

E

Business Computing and Operations Research 635

The dual of Max-Flow

 

     

 

1 1 1

1

1

Now, we consider with

 and

Minimize s.t., 0

m n n

n
T

l l

l

π π,γ,δ ,

π π ,...,π ,γ γ ,...,γ , δ δ ,...,δ

c γ , A π γ δ e π,γ,δ




  

      

Business Computing and Operations Research 636

Interpreting the dual

 This time, the dual is given in standard form, i.e., the
Simplex Algorithm can be directly applied to it

 Thus, we want to analyze it beforehand

 Let us consider the equalities that have to be fulfilled

 Then, we can transform as follows

 
   

     

1

1 1 1

Minimize s.t.,

1 if

0 if

0 0 and 0





  
    

    



     


n

l l

l

k

i j k k

k k

m n n

c γ ,

e t,s E
π π γ δ

e i, j E e t ,s E

π π ,...,π ,γ γ ,...,γ , δ δ ,...,δ

3

Business Computing and Operations Research 637

The dual tableau

 Obviously, by conducting the calculation of the Primal

Simplex, we obtain a tableau as follows…

nBnB

T

BB

TTTTTT

nBnB

T

BB

nB

T

BB

T

B

TT

B

T

BB

T

B

nn

T

T

EAEAAAeA

ffcAfef

EAEAAAeA

EAcAccAAceAc

EEAe

c



















11111

1

11111

11111

1

000

000

Business Computing and Operations Research 638

Applying the simplex

 The top row of the dual tableau provides comprehensive information
about the current state of the calculation

 Specifically, it allows a direct link to the corresponding primal problem
which has to be solved originally

 More precisely, we have the following data in the row

 

1

1 1 1 1 1

1

1

with:

 Objective function value of

 Flow balance in the vertices, i.e., is 0 for feasible

 Remaining capacity of the ar

T T T T T T

T

B B B n B n

T

T T

T T

f e f A c f f

A e A A A E A E

f e f : P

f A : f

c f :

   

    


    

   

  



 

cs

 Current corresponding solution to Tf : P

Business Computing and Operations Research 639

A simple example

1

2

4

3

2 5

1

6

4 3



























































3

5

1

4

2

6

110001

101100

011010

000111

c

A

Business Computing and Operations Research 640

Applying the Simplex – Step 1.1

10000010000011000

01000001000010100

00100000100001100

00010000010001010

00001000001000110

00000100000110011

00000035142600000













4

Business Computing and Operations Research 641

Applying the Simplex – Step 1.2

10000010000011000

01000001000010100

00100000100001100

00010000010001010

00001000001000110

00000100000110011

35142600000022406















Business Computing and Operations Research 642

Applying the Simplex – Step 2.1

 

 

10000010000011000

01000001000010100

00100000100001100

00010000010001010

00001000001000110

00000100000110011

35142600000022406















Business Computing and Operations Research 643

Applying the Simplex – Step 2.2

10000010000011000

01100001100011000

00100000100001100

00010000010001010

00101000101001010

00000100000110011

35342600400022006















Business Computing and Operations Research 644

Applying the Simplex – Step 3.1

 

 

10000010000011000

01100001100011000

00100000100001100

00010000010001010

00101000101001010

00000100000110011

35342600400022006















5

Business Computing and Operations Research 645

Applying the Simplex – Step 3.2

11100011100000000

01100001100011000

01000001000010100

01110001110010010

01001001001010010

00000100000110011

33142602200000006















Business Computing and Operations Research 646

Applying the Simplex – Step 4.1

 

 

11100011100000000

01100001100011000

01000001000010100

01110001110010010

01001001001010010

00000100000110011

33142602200000006















Business Computing and Operations Research 647

Applying the Simplex – Step 4.2

6 1 0 0 1 0 0 1 1 3 0 6 2 3 0 2 3

1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0

0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0

0 1 0 0 1 0 0 1 1 1 0 0 0 1 1 1 0

0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 1 0

0 1 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0

0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1

 

 

  

   

 

 

  

Business Computing and Operations Research 648

Applying the Simplex – Step 5.1

 
 

6 1 0 0 1 0 0 1 1 3 0 6 2 3 0 2 3

1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0

0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0

0 1 0 0 1 0 0 1 1 1 0 0 0 1 1 1 0

0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 1 0

0 1 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0

0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1

 

 

  

   

 

 

  

6

Business Computing and Operations Research 649

Applying the Simplex – Step 5.2

 

   

   

5 0 0 0 0 0 0 1 1 3 0 5 2 3 0 2 3

1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0

1 0 0 0 0 0 1 0 0 1 0 1 1 0 0 1 0

1 0 0 0 0 0 0 1 1 1 0 1 0 1 1 1 0

1 1 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0

0 1 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0

1 0 0 0 0 1 0 1 0 0 1 1 0 1 0 0 1

5 2 3 0 2 3

0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 , i.e.,

0 1 0 1 0 1 0 0 0 1

f , , , , ,

π π,γ,δ

π γ



 

  

   

  

 

  

 

 

     0 0 0 1 0 0δ 

Business Computing and Operations Research 650

7.2 Min-Cut Problems

7.2.1 Definition:

 

 
 

Assuming , , , , is a network with two labeled nodes

 and . A partition is denoted as an cut if and only

if and . is denoted as the capacity

of the

c

c

c

i, j E with i W j W

N V E c s t

s t V W W s - t

s W t W c i, j
   



 

  

   
 

cut.

A cut is denoted as a minimum cut if

is minimal.

c

c

i, j E with i W j W

W,W c i, j
   



Business Computing and Operations Research 651

Illustration

s t

j1

j2

j4

j5

j3

W
W

c

i1

i2

i3

i4

Business Computing and Operations Research 652

Problem definition

 

 
 

1

1

1 if
We introduce , with

0 if

1 if ,
and , with

0 otherwise

Since 0 1 1 and

c

T

m i

c

T k

n k

c

i j i j

c

i W
π π ,...,π π

i W

e i j i W j W
γ γ ,...,γ

i W j W π π π π

i W j

 
  



     
  



          

 



    

 

1

1

1

1

1 0 1, we obtain

the following problem:

Minimize , s.t.,

, , : 0 1

Minimize , s.t., 0

i j i j

n

k k

k

k i j k t s

n
T

l l

l

W π π π π

c γ

e i j t s E π π π π

c γ A π γ e π,γ,δ





       



          



      





 



7

Business Computing and Operations Research 653

Observation

 The Min-Cut Problem corresponds to the dual of
the Max-Flow Problem

 Thus, there is a direct connection between Min-
Cut and Max-Flow

 Clearly, since it is required that s and t belong to
different parts of the cut, the Max-Flow is identical
to the Min-Cut

 This becomes directly conceivable by the fact
that the Min-Cut is somehow the bottleneck for
the Max-Flow that may run through the entire
network

Business Computing and Operations Research 654

Consequence

7.2.2 Lemma:

 

 

To every cut , there exists a feasible solution to

the dual of the Max-Flow Problem with the objective

function value

c

c

s - t W,W

c W,W

Business Computing and Operations Research 655

Proof of Lemma 7.2.2

 Consider the following solution to the dual
problem that has been generated according to a
given s-t cut

 

   

0 if

1 if

1 if

0 otherwise

1 if

0


 



     
  



     
 

i c

c

k

k

c

k

k

 i W
π

 i W

 e i, j i W j W

 e i, j t ,s i W j W

 otherwise





Business Computing and Operations Research 656

Proof of Lemma 7.2.2

 

   

0 if

1 if

1 if

0 otherwise

1 if

0 otherwise

Let

i c

c

k

k

c

k

k

 i W
π

 i W

 e i, j i W j W

 e i, j t ,s i W j W


 



     
  



      
  



 

   

 

1 1

 us consider the possible arcs of the network. Specifically, we have to

distinguish

1. 1 0 0 0 1

2. with 1 0 0 1 0

3. with

k t s

c

k i j k k

c

k i j k

e t ,s π π γ δ

e i, j t ,s , i W j W π π γ δ

e i, j , i W j W π π γ

         

             

      

 

 

0 1 1 0 0

4. with 0 0 0 0 0

5. with 1 1 0 0 0

k

k i j k k

c c

k i j k k

δ

e i, j , i W j W π π γ δ

e i, j , i W j W π π γ δ

     

            

            

8

Business Computing and Operations Research 657

The objective function value

 We calculate the total weight of arcs crossing

the cut from W to W
c

 Thus, we may conclude

   
 

 
 

 



Ee

kk

,i,je

k

WjW,ii,je

k

c

kkk
c

k

ecececW,Wc
1

Business Computing and Operations Research 658

Direct consequences

 In what follows, our primal problem is…

 1

1

Minimize s.t., 0
n

T

l l

l

c γ , A π γ δ e π,γ,δ


      

 …and the corresponding dual…

1Maximize s.t., 0 0f , A f f c f     

Business Computing and Operations Research 659

Max-Flow-Min-Cut Theorem

7.2.3 Theorem:

 

 

 

1. For each feasible flow and each feasible cut

it holds:

2. A feasible flow is maximal and the cut that is

constructed as defined in the Proof of Lemma 7.2.2 is

c

c

c

s - t - f s - t W,W

f c W,W

s - t - f s - t W,W



 

 

 

 

minimal if

0 if ,
it holds:

 if ,

3. To a feasible Max-Flow , there exists a Min-Cut

with

c
k

k c
k k

c

c

e i j i W j W
f

c e i j i W j W

f W,W

f c W,W

     
 

    



Business Computing and Operations Research 660

Proof of Theorem 7.2.3 – Part 1

Since the objective function value of each dual solution (Max-Flow)

is a lower bound to each feasible solution to the primal problem

(Min-Cut), the proposition 1 follows immediately.

9

Business Computing and Operations Research 661

Proof of Theorem 7.2.3 – Part 2

In order to prove the proposition 2, we make use of the Theorem

of the complementary slackness, i.e., Theorem 5.1. Specifically,

we have to analyze the rows where the dual program leaves no

slack at all.

For this purpose, let us consider the following calculations

Since f is assumed to be feasible, we know by the results

obtained in Section 7.1 that 0.

Consequently, the corresponding primal var

 A f

iables, i.e., , may be

defined arbitrarily.

π

Business Computing and Operations Research 662

Proof of Theorem 7.2.3 – Part 2

 
 

 

Let us now consider

 if

0 if

Corresponding variables are . These variables are defined accordingly,

1 if
i.e.,

0 otherw

     
        

    



    
 

c

k k

n k k k k c

k

c

k

k

c e i, j i W j W
E f c f c , e E f

e i, j i W j W

e i, j i W j W

ise

Thus, whenever there is no gap in the dual (this is the case if), the

one-value of the primal does not disturb. Other way round, if there is a

gap in the dual (this is the case if 0), t









k k

k

f c

f he primal fixes it by zero-values.

Business Computing and Operations Research 663

Proof of Theorem 7.2.3 – Part 2

 

 

 

Finally, we consider

 if ,
0 0,

0 if ,

Corresponding variables are . These variables are defined just reversely,

1 if ,
i.e.,

0 o

     
          

    

    


c

k k

n k k k c

k

c

k

k

c e i j i W j W
E f f e E f

e i j i W j W

e i j i W j W




therwise

Thus, whenever there is no gap in the dual (this is now the case 0(!)),

the one-value of the primal does not disturb.

Other way round, if there is a gap in the dual (this is now the case





kf

 (!)),

the primal fixes it by zero-values.

k kf c

Business Computing and Operations Research 664

Proof of Theorem 7.2.3 – Part 3

 This proof is temporarily postponed until we have

introduced the algorithm of Ford and Fulkerson

that generates a Min-Cut according to a given

Max-Flow

 This is provided in Section 7.4

10

Business Computing and Operations Research 665

7.3 A Primal-Dual Algorithm

 We commence with the dual problem

 Obviously, an initial feasible solution is f=0

1

0

Maximize , s.t., 0 0, i.e.,

0

A

f A f f c f E f c

-E

   
   

           
   
   

      

By using a feasible dual solution, we get the set that comprises

three groups of indices. Specifically, we have: ,

| 0 , | , | 0

Since 0 for all feasible , we obtain

π γ δ

π γ k k δ ki

J

J J J J

J i A f J k f c J k f

A f f

  

      

    1, 2,3,...,πJ m

Business Computing and Operations Research 666

The reduced primal (RP)

 

   
    

 

 

 

 

1

Minimize 1 s.t.,

0 0 0 0

Note that

 is generated out of matrix by erasing all columns that do not

belong to set

 is generated out of

γ

γ γ
γ

γ

T
n

J JT

J J
J

J

J

n

γ

J

α,

α

π
α ,π ,γ ,δ E,A ,E , E e .γ

δ

E E

J

E









 
 
 

        
 
 
 

matrix by erasing all columns that do not

belong to set

nE

J

Business Computing and Operations Research 667

The dual of the reduced primal (DRP)

  
  

1

1

0
Maximize , s.t., ,

0

0

i.e., 1 0 0, 0,

n

m

T
J

J

T J
J

i i

E

A

g gE

E

g A g g i J g i J







 

 
  
  
       
  
    

 

         

Business Computing and Operations Research 668

Updating f

 As provided by the design of primal-dual

algorithm, an optimal solution of DRP may either

indicate that f is already optimal or allow an

improvement of f

 Thus, we have to find an appropriate λ0 which

ensures an improved but still feasible dual

solution

 Specifically, …

 

0

... assuming as the optimal solution of , we

update by :new old

g DRP

f f f g  

11

Business Computing and Operations Research 669

Ensuring feasibility I

 

 

0

0 0 0

0 0

Since is feasible, 0

In order to ensure feasibility, we have to guarantee the following:

1. 0. We already know

0

0, for all 0

2.

old

old old

g A g

old

A f g

A f g A f A g A g

A g

f



  

 



 

   

           

    

   

0

0 0

0 0

Since 0 and feasible, this is always fulfilled

0

,

, 0 , 0

, 0

k k k

k k k k
k k

k k

f

k k
k

k

g c f g c k

c f c f
g g

g g

c f
g

g





 





      

 
     


  

Business Computing and Operations Research 670

Ensuring feasibility II

     

0~,~

0~,~0~,~

,0~0~1 3.

:following theguarantee tohave wefinally, And

0

0

 fulfilled always is thisfeasible, and 0 Since

0

00

0


















k

k

k

k

k

k

f

k

k

k

kkold

g
g

f

g
g

f
g

g

f

kgfgf









  

Business Computing and Operations Research 671

Interpreting DRP

 Obviously, DRP can be interpreted as a
specifically defined accessibility problem, i.e., a
path is searched in a reduced graph

 This reduced graph restricts the searching
process as follows
 Arcs that are already used up to capacity may only be

used in backward direction, i.e., the flow is reduced

 Arcs that are unused, i.e., fk=0, may only be used in
forward direction

 All other arcs can be used in any direction

 All induced flows are restricted by 1, i.e., a flow of
maximum capacity 1 is sought

Business Computing and Operations Research 672

Augmenting the flow

 Obviously, by solving DRP, we are aspiring an
augmenting path

 Hence, it is not feasible to augment an already
saturated flow or to decrease a zero flow along
some edge

 Consequently, if there is an augmentation
possible, we are able to generate a flow f that
induces only 1, -1, or 0 values at the respective
edges

 This considerably simplifies the updating of the
dual solution in the Primal-Dual Algorithm

12

Business Computing and Operations Research 673

Ensuring feasibility with g=1,0,-1

 

 

   

0 0

0 0 0

0 0 0

0

In order to ensure feasibility, we have to guarantee the

following:

1. 0 is fulfilled for all 0

2. , 1

3. 1 0 , 1

m

old

k k
old k k k

k

k
old k k

k

A f g

c f
f g c g c f

g

f
f g g f

g

 

  

  



    


        

          


      in min | 1 , min | 1k k k k kc f g f g   

Business Computing and Operations Research 674

7.4 Ford-Fulkerson Algorithm

 This algorithm is a modified primal-dual solution

procedure

 The DRP is directly solved, however, that is why

no Simplex procedure is necessary for this step

 On the other side, this has considerable

consequences according to the termination of the

solution procedure

 This will be discussed thoroughly later

Business Computing and Operations Research 675

A reduced network

7.4.1 Definition:

 

    

    

Assuming is an -network and

a feasible flow. Then, we introduce

, with

, | , and

, | , 0 .

 denotes the set of forward arcs w

f b

f f f

f

f k k k k

b

f k k k

f

f

N V,E,c,s,t s - t f

s - t -

E E E

E e i j e i j E f c

E e i j e j i E f

E



 

      

      

 

hile defines

the backward arcs. Then, we denote as

the corresponding reduced network.

b

f

f

E

V,E ,c,s,t

Business Computing and Operations Research 676

Interpretation

 Forward arcs

 are used by the current flow f, but they are not used up
to capacity

 I.e., they are not saturated by now

 Backward arcs

 are not used by the current flow f, but the inverted arc
is used by flow f

 Consequently, these arcs are used in opposite
direction by the current flow f

 Consequently,

 forward arcs are candidates for augmenting the flow in
the current direction (since they offer remaining
capacities)

 backward arcs are candidates for reducing the flow
(since the opposite direction transfers something)

13

Business Computing and Operations Research 677

Observation

7.4.2 Lemma:

   

 

0 0 1A path ,..., with 1, , and ,

indicates an optimal solution to .

  k k l l fi i i i n i i E

DRP

Business Computing and Operations Research 678

Proof of Lemma 7.4.2

 

       

     

0

1

1

Based on the path ,..., , we define as follows:

1 if , , , for 1,..., or if ,1

1 if , , , for 1,...,

0 otherwise





  

    

     

k

k l l k

k k l l

p i s i t

e i j i i E l k e n

g e i j i i E l k

Since is a path, each visited node is reached and left by arcs once.

If this is done according to arc directions, we use 1, otherwise

w







k

p

g

 

   

e have 1. Since the 1 and 1 values in A are changed

accordingly, we obtain in both cases for the respective row : 0.

In addition, it holds:

1 0 0 0 . Thus,

 i

  

 

          

k

i

i γ k k i δ k

g

i A g

g g ,i J k | f c g ,i J k | f

g  1s feasible. Since 1, it is also an optimal solution to .g DRP

Business Computing and Operations Research 679

Conclusions

    1 1

Let us assume that such a path between and cannot be established

in the reduced network.

We define for this constellation:

and additionally...

0 if

c

k l l f

i

s t

W i V | p s i ,...,i i : i ,i E W V \W

 i
π

        


 

   

1 if

1 if 0 otherwise

1 if
and finally

0

c

k

kc

c

k

k

W e i, j i W j W
, ,

 i W

 e i, j t ,s i W j W

      
  

 

     
 

 otherwise





Business Computing and Operations Research 680

The s-t-cut

   
 

 
 

 

 

   

maximal. thereforeis and

 augmented becannot addition,In .

 know we

 ly,Consequent . flowby capacity toup used are cut the

 bridging arcs all reachable,not were of nodes all Since

:obtain We

1

1

fW,Wcecff

fW,W

W

ecececW,Wc

c

Ee

kk

c

c

Ee

kk

,i,je

k

WjW,ii,je

k

c

k

kkk
c

k













14

Business Computing and Operations Research 681

Maximum augmentation

 The maximum augmentation δ that is possible for

the current flow, is determined by

 

 

arcs of path

arcs of path

min | is forward arc ,
min

min | is backward arc

p k k k

p k k

c f e
δ

f e

  
  

  

Business Computing and Operations Research 682

 In what follows, we introduce the description

provided by Papadimitriou and Steiglitz (1982)

p.123

Ford-Fulkerson Algorithm

Business Computing and Operations Research 683

Ford-Fulkerson Algorithm

 Input: Network N=(s,t,V,E,c)

 Output: Max-Flow f

 Set f=0, Ef=E;

 While an augmenting s-t-path with min capacity
value δ > 0 can be found in the reduced network
Ef:
 Set f = f + δ;

 Update reduced network Ef (decrease capacities in path direction
by value δ and increase capacities in opposite direction by value δ
for all edges on the augmenting path)

 End while

An augmenting path can be found with the labeling

algorithm on the next slide.

Business Computing and Operations Research 684

Labeling Algorithm

 We try to label every node with one possible

predecessor on a path from s until we reach t:

 LIST={s};

 While LIST not empty and t not in LIST:

 Scan x: Remove x from LIST. Label not all labeled yet

adjacent nodes to x in Ef with x as predecessor and

put them on LIST.

 End while

 If t is labeled, we can create the augmenting path

by considering the predecessors in the labels.

15

Business Computing and Operations Research 685

An example

1

4

6

3

2

5

e1,c1=4

e2,c2=3

e3,c3=5

e4,c4=3

e6,c6=1

e7,c7=4

e8,c8=3

e5,c5=1

e9,c9=7

Business Computing and Operations Research 686

1. Iteration

 We commence our search with f=0

 All labels are zero

 LIST={1}

 scan 1

 Updating LIST

 LIST={2,3}, and scan 2

 LIST={3,4,5}, and scan 3

 LIST={4,5}, and scan 4

 LIST={5,6} and stop since 6=t is labeled already

 We have labeled node 6=t. Path is therefore 1-2-4-6.

 Thus, we now can augment our current flow f by δ=min{4,5,4}=4

Business Computing and Operations Research 687

Current flow

Edge Current Flow Found path

1 0+4=4 1

2 0 0

3 0+4=4 1

4 0 0

5 0 0

6 0 0

7 0+4=4 1

8 0 0

9 0+4=4 1

Business Computing and Operations Research 688

Updated reduced network

1

4

6

3

2

5

e1,c1=4

e2,c2=3

e3,c3=1

e4,c4=3

e6,c6=1

e7,c7=4

e8,c8=3

e5,c5=1

e9,c9=7

e3,c3=4

16

Business Computing and Operations Research 689

2. Iteration

 We commence our search with f

 All labels are zero

 LIST={1}

 scan 1

 Updating LIST

 LIST={3}, and scan 3

 LIST={4,5}, and scan 4

 LIST={5,2}, and scan 5

 LIST={6} and stop since 6=t is labeled already

 We have labeled node 6=t. Path is therefore 1-3-5-6.

 Thus, we now can augment our current flow f by δ=min{3,1,3}=1

Business Computing and Operations Research 690

Current flow

Edge Current Flow Found path

1 4 0

2 0+1=1 1

3 4 0

4 0 0

5 0 0

6 0+1=1 1

7 4 0

8 0+1=1 1

9 5 1

Business Computing and Operations Research 691

Updated reduced network

1

4

6

3

2

5

e1,c1=4

e2,c2=2

e3,c3=1

e4,c4=3

e6,c6=1

e7,c7=4

e8,c8=2 e5,c5=1

e9,c9=7

e3,c3=4

e2,c2=1 e8,c8=1

Business Computing and Operations Research 692

3. Iteration

 We commence our search with f

 All labels are zero

 LIST={1}

 scan 1

 Updating LIST

 LIST={3}, and scan 3

 LIST={1,4}. Since 1 is labeled, LIST={4}, and scan 4

 LIST={2}, and scan 2

 LIST={1,4,5} Since 1,4 are labeled, LIST={5}, and scan 5

 LIST={6} and stop since 6=t is labeled already

 We have labeled node 6=t. Path is therefore 1-3-4-2-5-6.

 Thus, we now can augment our current flow f by δ=min{2,1,4,3,2}=1

17

Business Computing and Operations Research 693

Current flow

Edge Current Flow Found path

1 4 0

2 1+1=2 1

3 4-1=3 -1

4 0+1=1 1

5 0+1=1 1

6 1 0

7 4 0

8 1+1=2 1

9 5+1=6 1

Business Computing and Operations Research 694

1

4

6

3

2

5

e1,c1=4

e2,c2=1

e3,c3=2

e6,c6=0

e7,c7=4

e8,c8=1 e5,c5=1

e9,c9=7

e3,c3=3

e2,c2=2 e8,c8=2

e4,c4=2

e4,c4=1

Updated reduced network

Business Computing and Operations Research 695

4. Iteration

 We commence our search with f

 All labels are zero

 LIST={1}

 scan 1

 Updating LIST
 LIST={3}, and scan 3

 LIST={1}. Since 1 is labeled, LIST={}, and terminate

 Thus, we obtain the s-t cut
 W={1,3} and Wc={2,4,5,6}

 The cut has total costs c1+c5+c6=4+1+1=6

Business Computing and Operations Research 696

Maximal flow

Edge Flow

1 4

2 2

3 3

4 1

5 1

6 1

7 4

8 2

9 6

18

Business Computing and Operations Research 697

1

4

6

3

2

5

e1,c1=4

e2,c2=3

e3,c3=5

e4,c4=3

e6,c6=1

e7,c7=4

e8,c8=3

e5,c5=1

e9,c9=7

f1=4

f2=2

f3=3

f4=1

f6=1

f5=1

f7=4

f8=2

f9=6

Updated reduced network

Business Computing and Operations Research 698

 Clearly, the optimality of the procedure depicted
above may be directly derived from the Primal-
Dual Algorithm design

 There are, however, some specific interesting
attributes coming along with the procedure of
Ford and Fulkerson that are worth mentioning

 In what follows, we briefly discuss or just
mention them

Optimality

Business Computing and Operations Research 699

7.4.3 Lemma:

When the Ford and Fulkerson labeling algorithm

terminates, it does so at optimal flow.

Correctness of the procedure

Business Computing and Operations Research 700

Proof of Lemma 7.4.3

 When the algorithm of Ford and Fulkerson
terminates, there are some nodes that are
already labeled while others are still unlabeled.
We define W and Wc as above

 Consequently, all arcs that are running from W to
Wc are saturated now

 Additionally, arcs running in the opposite direction
have flow zero

 Therefore, by Theorem 7.2.3, the s-t-cut (W,Wc)
and flow f are optimal

19

Business Computing and Operations Research 701

7.5 Analyzing the Ford-Fulkerson algorithm

 In what follows, we analyze the complexity of the

introduced Ford-Fulkerson algorithm

 First of all, we will see that the correctness of the

algorithm is limited to integer and rational

capacity values

 However, in case of irrational capacity values,

even termination and correctness of the

procedure are not guaranteed anymore

 This result is somehow surprising since the

procedure seems to be finite as every previously

introduced algorithm

Business Computing and Operations Research 702

7.5.1 Correctness

 If capacities are integers, the termination of the
algorithm follows directly from the fact that the
flow is increased by at least one unit in each
iteration

 Since, if the optimal flow has the total amount of
fopt, fopt iterations (augmentations) are at most
necessary

 Analogously, if all capacities are rational, we may
put them over a common denominator D, scale
by D, and apply the same argument.

 Hence, if the optimal flow has the total amount of
fopt, fopt

.D iterations (augmentations) are at most
necessary (see Papadimitriou and Steiglitz
(1982) pp.124)

Business Computing and Operations Research 703

The pitfall – irrational case

 However, when the capacities are irrational, one

can show that the method does not only fail to

compute the optimal result but also converges to a

flow strictly less than optimal

 In what follows, we shall introduce and illustrate an

example originally given by Ford and Fulkerson

(1962) and depicted in Papadimitriou and Steiglitz

(1982)

 Edmonds and Karp (1972) proposed a modified

labeling procedure and proved that this algorithm

requires no more than (n3-n)/4 augmentation

iterations, regardless of the capacity values

Business Computing and Operations Research 704

Analyzing the problem in detail

I cannot believe that there
are irrational examples where
the Ford-Fulkerson algorithm

is not able to provide an
optimal solution

This can actually
happen!

I will show you a very
simple example !

20

Business Computing and Operations Research 705

The irrational case – the network

s

x1

x2

x3

x4

y1

y2

y3

y4

t

Arc A1 with capacity a0

Arc A2 with capacity a1

Arc A3 with capacity a2

Arc A4 with capacity a2

Capacity S

Capacity S

Capacity S

special arcs nonspecial arcs

Business Computing and Operations Research 706

The irrational case – capacities

 Special arcs

 These are the arcs A1, A2, A3, and A4

 Capacity is a0 for A1, a1 for A2, a2 for A3, and a2 for A4

 Nonspecial arcs

 All other arcs are nonspecial arcs, i.e., all arcs (s,xi),

(yi, yj), (yi, xj), (xi, yj), or (yi, t) with i≠j

 Capacity is S

 We define




  

 
     



2 1

0 1

5 1 5 1 1
1, 1, 0.618033989, and

2 2 1

n n na a a

a a S

Business Computing and Operations Research 707

The capacities of the special arcs

7.5.1.1 Lemma:

It holds that:

Proof:

We prove the proposition by induction:
0

0

1
1

2 1 2

2 1

2 2

0 : 1

5 1
1:

2

5 1 5 1 5 1 5 1
1: 1

2 2 2 2

5 1 2 5 1 5 1 3 5

2 2 2 2

i
i

i
i

i i i

i i i

i i

i a a

i a a

i a a a

 

  

  

 

 

    


     

          
                     

       

           
                 
       

 0 : 1,..., : i
in i n a     

Business Computing and Operations Research 708

Proof of Lemma 7.5.1.1

 Since it holds that

 we obtain

 This completes the proof

2

2 5 1 5 1 5 1 5 2 5 1 6 2 5 3 5

2 2 2 4 4 2


             
               
     

2 2 2

2 1

5 1 3 5 5 1 5 1
1:

2 2 2 2

5 1

2

i i

i i i

i

i

i a a a



 

 

          
                    

       

 
   
 

21

Business Computing and Operations Research 709

Consequence

7.5.1.2 Lemma:

It holds that

Proof:

     0 1 0 2 3 3 4
2

1
0 : lim ...

1

n

n i i
i

n a a a a a a a a S


 



           




1

1

0 1 0 1 0
2 2 1

1

0 0

Geometric series with 0< <1

We conclude that:

0 : lim lim lim

1
lim

1

i i

n n n

n i i n i n i
i i ia a

n
i

n i
i i

n a a a a a a a

a S










    

   

 



 

 
        
 
 

   


  

 

Business Computing and Operations Research 710

Step 0 – augmentation path (s,x1,y1,t)

s

x1

x2

x3

x4

y1

y2

y3

y4

t

Arc A1 with capacity a0

Arc A2 with capacity a1

Arc A3 with capacity a2

Arc A4 with capacity a2

Capacity S

Capacity S

Capacity S

special arcs nonspecial arcs

Business Computing and Operations Research 711

Step 0 - consequences

 Augmentation value is a0

 This is true since

 Hence, the residual capacities in the special arcs

amount to

0
0

5 1 1
1 and 1

2 1
a S 




     



   0 0 1 2 2 1 2 2, , , 0, , ,a a a a a a a a 

Business Computing and Operations Research 712

Step n≥1 – assumptions

 Due to the preceding steps, we have the

following remaining capacities on the special arcs

 Note that step 0 has provided such a situation

 

 

 

  





1 1

1 2 3

4 1 1

1

0, , , and

Note that we order now the special arcs such that,

after this step, we have the arcs , , ,

and with the remaining capacities 0, , , .

Order the connected nodes ,

n n n

n n n

a a a

A A A

A a a a

x   

   

2 3 4

1 2 3 4

, , and as well

as , , , and , accordingly.

x x x

y y y y

22

Business Computing and Operations Research 713

 Step n≥1 – augmentation path

s

x'1

x'2

x'3

x'4

y'1

y'2

y'3

y'4

t

Arc A’1 with rem. capacity 0

Arc A’2 with rem. capacity an

Arc A’3 with rem. capacity an+1

Arc A’4 with rem. capacity an+1

Capacity S

Capacity S

Capacity S

special arcs nonspecial arcs

 2 2 3 3, , , , ,s x y x y t   

Business Computing and Operations Research 714

Step n≥1 – consequences

1 2 3

1
1 1

The chosen augmentation path increased the total flow by

 units since we used the special arcs A and A in forward

direction. Since , due to <1, is the

bottleneck on the ch

n

n n
n n n

a

a a a  





 

 

  

osen path

Note that the inner nonspecial arcs are somehow symmetric,

i.e., we have always arcs with capacity in both directions

from to and vice versa.

After using this augmentation path, we obta

S

x y

 
2

1 1 1 1 2 1

in the following

residual capacities on the special arcs:

0, , , 0, ,0,

n

n n n n n n n

a

a a a a a a a



     

 
   
 
 

Business Computing and Operations Research 715

Second augmentation path

s

x'1

x'2

x'3

x'4

y’1

y'2

y'3

y'4

t

Arc A1 with rem. capacity 0

Arc A2 with rem. capacity an+2

Arc A3 with rem. capacity 0

Arc A4 with capacity an+1

Capacity S

Capacity S

Capacity S

special arcs nonspecial arcs

 2 2 1 1 3 3 4, , , , , , , ,s x y y x y x y t      

Business Computing and Operations Research 716

Second augmentation – consequences

2 2

1 3

2
2 1

The chosen augmentation path increased the total flow by

 units since we used the special arc A in forward direction

and the special arc A and A in backward direction . Since
n

n
n n

a

a a





 



 

   1
2, due to <1, is the

bottleneck on the chosen path

Note again that the inner nonspecial arcs are somehow symmetric,

i.e., we have always arcs with capacity in both directions

from to and

n
na

S

x y

 



 

 
2 2 2 2 1

2 2 1

 vice versa.

After using this augmentation path, we obtain the following

residual capacities on the special arcs: 0 , ,0 ,

,0, ,

n n n n n

n n n

a a a a a

a a a

    

  

  



23

Business Computing and Operations Research 717

Consequences of step n≥1

 Step n ends with residual capacities appropriate

for conducting the succeeding step n+1

 Hence, each step augments the total flow by

an+1+an+2

 Therefore, the flow is augmented by an

2 1 2 1It holds that: n n n n n na a a a a a       

0

0

All in all, after steps, we therefore obtain the total flow

Consequently, there is always an improvement possible and the

1
algorithm does not terminate and the total flow approaches

1

n

i
i

i
i

n a

a











 S





Business Computing and Operations Research 718

No termination and …

 However, the max flow in our pathological

example is obviously 4.S

 So the Ford-Fulkerson algorithm approaches

one-fourth the optimal flow value

 Therefore, the algorithm is not correct

Business Computing and Operations Research 719

Worth to mention

Really amazing this example !
No termination and even the
value that is approached is

wrong !

However, the example

is NOT really fair ! !

Business Computing and Operations Research 720

In the sense of fairness

 The raised question of finiteness of the Ford

Fulkerson algorithm is in a sense a mathematical

but not a practical one, since computers always

work with rational numbers

 Hence, it is reasonable to assume that data can

be represented by a finite number of bits

 A practical question, which is however related to

that of finiteness, will ask how many steps may

be required by a computation as a function of the

total number of bits in the data

24

Business Computing and Operations Research 721

7.5.2 Complexity analysis

 In what follows, we analyze the complexity of the Ford-

Fulkerson algorithm for integral capacity values

 Unfortunately, it turns out that – depending on the given

capacity values of the considered instance – this labeling

procedure may require in the worst case an exponential

amount of time

 Fortunately, there exists an efficient algorithm for the max

flow problem, which is, in fact, a rather simple modification

of the labeling algorithm

 In order to analyze the labeling procedure and to prepare a

modified version of it, we first examine a fundamental graph

algorithm called 𝑠𝑒𝑎𝑟𝑐ℎ 𝑣

 Such a procedure is required in both algorithms

Business Computing and Operations Research 722

Graph representations

 A graph 𝐺 = 𝑉, 𝐸 can be represented in many

alternative ways

 Adjacency matrix:

 A matrix 𝐴𝐺 = 𝑎𝑖,𝑗 1≤𝑖≤ 𝑉 ,1≤𝑗≤ 𝑉
, with binary entries such that

 𝑎𝑖,𝑗 = 1 if arc 𝑖, 𝑗 ∈ 𝐸 and 𝑎𝑖,𝑗 = 0 otherwise

 However, in case of graphs that are sparse in that the number

of their arcs is far less than 𝑂
𝑉
2

= 𝑂 𝑉 2 , this

representation is the most economical one. E.g., if we have

100 nodes and 500 edges, an representation with 10,000 (!)

binary entries has to be stored

Business Computing and Operations Research 723

Graph representations

 Adjacency lists: For each node 𝑣 ∈ 𝑉 𝐴(𝑣) gives an

ordered list of successors, i.e., we have 𝐴 𝑣 =

𝑣1, 𝑣2, … , 𝑣𝑙 𝐴 𝑣 , with 𝑣, 𝑣𝑖 ∈ 𝐸, ∀𝑖 ∈ 1, … , 𝑙 𝐴 𝑣

 Example

 𝐴 1 = 2,4 , 𝐴 2 = 1,3,4 ,

 𝐴 3 = 2,4 , 𝐴 4 = 1,2,3,5 , 𝐴 5 = 4

 In what follows, we assume that the graph

𝐺 = 𝑉, 𝐸 is connected, i.e., there are no isolated

nodes

1 2

3 4

5

Business Computing and Operations Research 724

Algorithm 𝑠𝑒𝑎𝑟𝑐ℎ(𝑣)

 

: A graph , defined by adjacency lists and a node

: The graph with the nodes reachable by path from the node marked

 let be any element of

 remove from

 mark

 f

G v

v

Q v

Q

u Q

u Q

u



 

Input

Output

while do

 or all do

 is not marked insert into

u A u

u u Q



 if then

end while

25

Business Computing and Operations Research 725

Complexity

7.5.2.1 Theorem:

The algorithm 𝑠𝑒𝑎𝑟𝑐ℎ(𝑣) marks all nodes of 𝐺

connected to 𝑣 in 𝑂(|𝐸|) time.

Proof:

Correctness: We assume that a node 𝑢 is

connected to node 𝑣 by a path 𝑝. Clearly, it can be

shown by induction on the path length that 𝑢 will be

marked. If, otherwise, node 𝑢 is not connected to

node 𝑣, 𝑢 will not be marked since this would lead

to the contradictory conclusion that there is a path

from node 𝑣 to node 𝑢

Business Computing and Operations Research 726

Proof of Theorem 7.5.2.1

Time bound:

 In order to estimate the running time of 𝑠𝑒𝑎𝑟𝑐ℎ(𝑣),
we have to consider three components:

1. Initialization: this takes constant time

2. Maintaining the set 𝑄: We store the set Q as a queue

with a 𝑓𝑖𝑟𝑠𝑡 and 𝑙𝑎𝑠𝑡 pointer (variables) in order to

enable insertion and deletion in constant time (see the

next slide for a brief illustration). The pointers

(variables) 𝑓𝑖𝑟𝑠𝑡 and 𝑙𝑎𝑠𝑡 are initialized to zero while 𝑄

is stored as a simple array with 𝑉 entries. Array 𝑄 is

empty if and only if it holds 𝑓𝑖𝑟𝑠𝑡 = 𝑙𝑎𝑠𝑡. We remove

from top and add at the tail of the queue (FIFO

principle).

Business Computing and Operations Research 727

Applied data types

 Add 𝑣 to 𝑄:

 𝑙𝑎𝑠𝑡=𝑙𝑎𝑠𝑡 + 1

 𝑄[𝑙𝑎𝑠𝑡] = 𝑣

 Remove:

 𝑓𝑖𝑟𝑠𝑡 = 𝑓𝑖𝑟𝑠𝑡 + 1

 𝑣 = 𝑄[𝑓𝑖𝑟𝑠𝑡]

v3 v5 v8 v2 v4

𝑓𝑖𝑟𝑠𝑡 = 2 𝑙𝑎𝑠𝑡 = 7

The contents of 𝑄, in order of arrival

Business Computing and Operations Research 728

Proof of Theorem 7.5.2.1 – Time bound

3. Searching the adjacency lists: we have constant

time for each element of the lists. Since the total

number of these elements is 2 ∙ 𝐸 , the time

required is 𝑂 𝐸

Therefore, we have a total asymptotic running time

of 𝑂 𝐸 . This completes the proof

26

Business Computing and Operations Research 729

LIFO queue (i.e., a stack)

 Add 𝑣 to 𝑄:

 𝑙𝑎𝑠𝑡 = 𝑙𝑎𝑠𝑡 + 1

 𝑄[𝑙𝑎𝑠𝑡] = 𝑣

 Remove:

 𝑣 = 𝑄[𝑙𝑎𝑠𝑡]

 𝑙𝑎𝑠𝑡 = 𝑙𝑎𝑠𝑡 − 1

v3 v5 v8 v2 v4

𝑙𝑎𝑠𝑡 = 5

The contents of 𝑄, in order of arrival. 𝑄 is empty if and only if 𝑙𝑎𝑠𝑡 = 0

Business Computing and Operations Research 730

Selecting rules applied to 𝑄

 The procedure 𝑠𝑒𝑎𝑟𝑐ℎ(𝑣) was not completely

specified

 We have not defined yet exactly how the next

element 𝑣 is chosen from 𝑄 in the while loop

 There are many possibilities

 Two best known are …

 FIFO: The node that waited longest is chosen (breadth

first search (BFS))

 LIFO: The node that was lastly inserted is chosen

(depth first search (DFS))

Business Computing and Operations Research 731

Directed graphs

 The procedure 𝑠𝑒𝑎𝑟𝑐ℎ(𝑣) can be applied to

directed graphs (i.e., so-called digraphs) without

any changes

Business Computing and Operations Research 732

Example

 We apply BFS and DFS to the digraph below

 The resulting numbers (BFS/DFS) give the indices of the

step at that the respective node is labeled

 Starting node is node 1

1 6

7 2 4

3

5
(1/1)

(2,2) (4/3)

(3/7)

(6/4)

(7/5)

(5/6)

27

Business Computing and Operations Research 733

Algorithm 𝑓𝑖𝑛𝑑𝑝𝑎𝑡ℎ(𝑣)

 

 

: A digraph , , defined by adjacency lists and two subsets , of

: A path in from a node in to a node in if this path exists

for all do [] 0

 return ; ;

G V E S T V

G S T

v S label v

v T v

Q



 





Input

Output

if then break

 

 

 let be any element of

 remove from

 all

 is not labeled

[]

 return ; ; insert into

S

Q

u Q

u Q

u A u

u

label u u

u T path u u Q

 





 

  

while do

for do

if then begin

if then break else

 en

"no S-T path available in G"

d (begin)

 end (do)

end while

return

Business Computing and Operations Research 734

Algorithm 𝑝𝑎𝑡ℎ 𝑣

 

 

 

     

: For all nodes : generated by procedure

: Path from a node in to

 0

 return ; ;

 ; ;

 stands for concatenation

u V label u findpath

S v T

label v

v

path label v v







Input

Output

if

then break

else return break

end if

 of paths

Note that the procedure is recursive!

Business Computing and Operations Research 735

Example

 We apply the procedure 𝑓𝑖𝑛𝑑𝑝𝑎𝑡ℎ 𝑆, 𝑇 with FIFO queue (bfs) and

obtain the labels (resulting in a path with a minimum number of arcs)

1 4

5 2

3

10 8

6 9

7

S

T

1 4

5 2

3

10 8

6 9

7 0

0

0

3

5

5

6

8

8

Business Computing and Operations Research 736

Example – Path reconstruction

 We apply 𝑝𝑎𝑡ℎ 9 and obtain

1 4

5 2

3

10 8

6 9

7 0

0

0

3

5

6

8

8

 

           

     

9

8 9 6 8,9 5 6,8,9

3 5,6,8,9 3,5,6,8,9

path

path path path

path

  

 

28

Business Computing and Operations Research 737

Complexity of the Ford Fulkerson procedure

 We now analyze the complexity of the Ford-

Fulkerson algorithm more in detail

 We apply the algorithm to a network 𝑁 = 𝑠, 𝑡, 𝑉, 𝐸, 𝑐

and observe the following

 The initialization step of the procedure takes time 𝑂 𝐸

 Each iteration step involves the scanning and labeling of

vertices. It can be stated that each edge 𝑢, 𝑣 is

considered at most twice – once for scanning node 𝑢 and

once for 𝑣. Moreover, we have to follow back the found

path that has a length of at most 𝑂 𝑉 steps

 Thus, each iteration takes time 𝑂 𝑉 + 𝐸

Business Computing and Operations Research 738

Complexity of the Ford Fulkerson procedure

 All in all, in case of integral capacities, if 𝑣 is the

value of the max flow and 𝑆 is the number of

conducted augmentation steps of the applied

Ford-Fulkerson algorithm, we have 𝑆 ≤ 𝑣 and a

total asymptotic running time complexity of

𝑂 𝑉 + 𝐸 ∙ 𝑆 = 𝑂 𝐸 ∙ 𝑆

 In order to define the running time by the input

data of a given instance, we obtain the

asymptotic running time

 
 ,

,
x y E

O E c x y


  
    
  


Business Computing and Operations Research 739

Worth to mention

I fear that you may know an
example that comes along

with a very large number of
augmentation steps!

That is true! And it is

a tiny one! !

Business Computing and Operations Research 740

Worst case example

 Consider the following network with total capacity

of 4,001

 We will see that the Ford Fulkerson algorithm

requires 2,000 iterations to generate an optimal

solution

s t

u

v

1000

1000

1000

1000

1

29

Business Computing and Operations Research 741

Worst case example – Optimal solution

 The maximum flow obviously amounts to 2000

 Illustration of the optimal solution

s t

u

v

1000 / 1000

1

1000 / 1000

1000 / 1000

1000 / 1000

Business Computing and Operations Research 742

Worst case example

 In what follows, we apply the labeling algorithm

starting from the initial zero flow

 We commence with the zero flow on each edge

s t

u

v

1000 / 0

1 / 0

1000 / 0 1000 / 0

1000 / 0

Business Computing and Operations Research 743

Solving the worst case example 1

 We start with the initial flow 𝑠, 𝑢, 𝑣, 𝑡 with flow 1

 We obtain the following updated network

s t

u

v

1000 / 1

1000 / 0

1000 / 0

1000 / 1

1 / 1

Business Computing and Operations Research 744

Solving the worst case example 2

 We start with the initial flow 𝑠, 𝑣, 𝑢, 𝑡 with flow 1

 We obtain the following updated network

s t

u

v

1000 / 1

1000 / 1

1000 / 1

1000 / 1

1 / 0

30

Business Computing and Operations Research 745

Solving the worst case example 3

 We start with the initial flow 𝑠, 𝑢, 𝑣, 𝑡 with flow 1

 We obtain the following updated network

s t

u

v

1000 / 1

1000

1000

1000 / 1

1 / 1

Business Computing and Operations Research 746

After two augmentation steps, we have

 A total flow of 2

 Hence, there exists a sequence of 1,000 iterations,

each comprising two augmentation steps with the

paths 𝑠, 𝑢, 𝑣, 𝑡 and 𝑠, 𝑣, 𝑢, 𝑡 , that generates the

optimal solution with total flow 2,000

 Therefore, the asymptotic runtime bound

 is actually tight since we can replace the 1,000

values by an arbitrarily large M-value

 
 ,

,
x y E

O E c x y


  
    
  


Business Computing and Operations Research 747

Exponential running time

 If 𝑀 = 𝑐 𝑉 holds (with 𝑐 ≥ 2), the Ford-Fulkerson

algorithm executes

 steps

 Hence, we have an exponential running time

 
V

O E c

Business Computing and Operations Research 748

Towards a new max flow algorithm

 Suppose that we wish to apply the labeling routine to a

network 𝑁 = (𝑠, 𝑡, 𝑉, 𝐸, 𝑐) with initial zero flow 𝑓 = 0

 We need not examining capacities and flows in this case;

it is a priori certain that all arcs in A are forward, and that

there are no backward arcs.

 Consequently, our task of labeling the network in order to

discover an augmenting path is done by applying

procedure 𝑓𝑖𝑛𝑑𝑝𝑎𝑡ℎ to 𝑁 = (𝑠, 𝑡, 𝑉, 𝐸, 𝑐) with 𝑆 = 𝑠 and

𝑇 = 𝑡

 Subsequently, we augment the current flow by applying

𝑓𝑖𝑛𝑑𝑝𝑎𝑡ℎ to a modified network 𝑁 𝑓 = (𝑠, 𝑡, 𝑉, 𝐸 𝑓 , 𝑎𝑐)
that results from the current flow 𝑓

 This modified network is defined next

31

Business Computing and Operations Research 749

A flow-oriented network definition

7.5.2.2 Definition

Given a network 𝑁 = 𝑠, 𝑡, 𝑉, 𝐸, 𝑐 and a feasible flow

𝑓 of 𝑁. Then, we define the network 𝑁 𝑓 =
(𝑠, 𝑡, 𝑉, 𝐸 𝑓 , 𝑎𝑐) with 𝐸 𝑓 comprising the arcs

1. If 𝑢, 𝑣 ∈ 𝐸 and 𝑓 𝑢, 𝑣 < 𝑐 𝑢, 𝑣 , then 𝑢, 𝑣 ∈
𝐸 𝑓 and 𝑎𝑐 𝑢, 𝑣 = 𝑐 𝑢, 𝑣 − 𝑓 𝑢, 𝑣

2. If 𝑢, 𝑣 ∈ 𝐸 and 𝑓 𝑢, 𝑣 > 0, then 𝑣, 𝑢 ∈ 𝐸 𝑓

and 𝑎𝑐 𝑣, 𝑢 = 𝑓 𝑣, 𝑢

The value 𝑎𝑐 𝑢, 𝑣 is denoted as the augmenting

capacity of arc 𝑢, 𝑣 ∈ 𝐸 𝑓

Business Computing and Operations Research 750

Avoiding multiple copies of arcs in 𝐸 𝑓

 If 𝐸 contains both arcs 𝑢, 𝑣 ∈ 𝐸 and 𝑣, 𝑢 ∈ 𝐸,

then 𝐸 𝑓 may have multiple copies of these

arcs. However, in this case we may replace one

arc 𝑢, 𝑣 ∈ 𝐸 by a new node 𝑤 and two

additional arcs 𝑢, 𝑤 , 𝑤, 𝑣 ∈ 𝐸 with identical

capacity, i.e., it holds that 𝑐 𝑢,𝑤 = 𝑐 𝑤, 𝑣 =
𝑐 𝑢, 𝑣

 Therefore, we can assume that 𝐸 𝑓 has no

multiple arcs

Business Computing and Operations Research 751

Interesting attributes of 𝑁 𝑓

 Take any s-t cut 𝑊, 𝑊 of 𝑁 𝑓

 The value of this cut is the sum of the augmenting

capacities of all arcs of 𝑁 𝑓 going from 𝑊 to 𝑊

 Such an arc 𝑢, 𝑣 ∈ 𝐸 𝑓 may be either a forward arc

(case 1 in Definition 7.5.2.2, i.e., 𝑎𝑐 𝑢, 𝑣 = 𝑐 𝑢, 𝑣 −
𝑓 𝑢, 𝑣) or a backward arc (case 2 in Definition 7.5.2.2,

i.e., 𝑎𝑐 𝑢, 𝑣 = 𝑓 𝑣, 𝑢)

 Thus, all in all, if we directly compare the value of 𝑊, 𝑊

in 𝑁 𝑓 with the value of 𝑊, 𝑊 of 𝑁, we see that the first

one is equal to the second one minus the forward flow of

𝑓 across the cut plus the backward flow of 𝑓 against the

cut

Business Computing and Operations Research 752

Interesting attributes of 𝑁 𝑓

 Clearly, the size of f along the cut minus the size of f against

the cut is just |f| and therefore the last two terms together

amount to -|f|

 But for every cut 𝑊, 𝑊 and flow 𝑓 we know that the flow of

𝑓 over forward arcs minus the flow of 𝑓 (i.e., 𝑓) over

backward arcs coincides with the total flow of 𝑓 that leaves

source 𝑠

 We define

 Consequently, we conclude that the value of 𝑊, 𝑊 in 𝑁 𝑓

coincides with the value of 𝑊, 𝑊 of 𝑁 minus the total flow

𝑓 of flow 𝑓

 Hence, this proves the following Lemma 7.5.2.3 since in

both networks the value of the minimum cut equals the value

of the maximum flow

 
 ,

,
s v E

f f s v


 

32

Business Computing and Operations Research 753

Consequence

7.5.2.3 Lemma

If 𝑓 is the value of the maximum flow in network 𝑁,

then the value of the maximum flow in 𝑁 𝑓 is

𝑓 − 𝑓

Business Computing and Operations Research 754

Layered network

7.5.2.4 Definition

A layered network 𝐿 = 𝑠, 𝑡, 𝑈, 𝐴, 𝑏 with 𝑑 + 1 layers

is a network with vertex set 𝑈 = 𝑈0 ∪ ⋯ ∪ 𝑈𝑑, while

∀𝑗 ∈ 1, … , 𝑑 : 𝑈𝑗−1 ∩ 𝑈𝑗 = ∅, 𝑈0 = 𝑠 , and 𝑈𝑑 = 𝑡 .

The set of arcs 𝐴 is defined by

 1

1

d

j j

j

A U U



 

Business Computing and Operations Research 755

Maximal flows

7.5.2.5 Definition

Let 𝑁 = 𝑠, 𝑡, 𝑈, 𝐴, 𝑏 be a layered network. An

augmenting path in 𝑁 with respect to some flow 𝑔 is

denoted as forward if it uses no backward arc. A flow

𝑔 of 𝑁 is called maximal (not necessarily maximum)

if there is no forward augmenting path in 𝑁 with

respect to 𝑔

Business Computing and Operations Research 756

Maximum, maximal flow

7.5.2.6 Conclusion

All maximum flows are maximal. However, not all

maximal flows are maximum flows.

Proof:

If 𝑓 is a maximum flow it cannot be augmented.

Hence, it is maximal. The second part is proven by

the following example: 1

s t

3 4

2

1, g=1

3, g=0
1, g=1

1, g=1

4, g=0
1, g=0

2, g=0

Maximum flow amounts to 2

However, 𝑔 is maximal but

𝑔 =1

33

Business Computing and Operations Research 757

Auxiliary network 𝐴𝑁 𝑓

 We introduce the auxiliary network 𝐴𝑁 𝑓 as a layered

network to a network 𝑁 𝑓 with a flow 𝑓

 We create 𝐴𝑁 𝑓 by carrying out a breadth-first search on

𝑁(𝑓) while copying only the arcs in 𝐴𝑁 𝑓 that lead us to

new nodes and only the nodes that are at lower levels than

node 𝑡

 If a node is added all incoming arcs from previously added

nodes are integrated. However, there is no backward arc

 Hence, 𝐴𝑁 𝑓 is generated out of 𝑁 𝑓 in time 𝑂 𝐸 𝑓 =
𝑂 𝐸

 Using the auxiliary network, we can easily find the shortest

augmenting path (with a minimal number of edges) with

respect to the current flow.

Business Computing and Operations Research 758

7.6 An efficient max flow algorithm

 In what follows, we introduce a polynomial max

flow approach

 It has an asymptotic running time of 𝑂 𝑉 3

Basic structure of the max flow procedure

 It operates in stages

 At each stage – depending on the current flow 𝑓 – it

constructs the network 𝑁 𝑓 and, according to it, it

generates the auxiliary network 𝐴𝑁 𝑓

 Then, we find a maximum flow 𝑔 in the auxiliary network

𝐴𝑁 𝑓 and add this flow 𝑔 to flow 𝑓

Business Computing and Operations Research 759

Basic structure of the max flow procedure

 Adding 𝑔 to 𝑓 entails adding 𝑔(𝑢, 𝑣) to 𝑓(𝑢, 𝑣) if arc

(𝑢, 𝑣) is a forward arc in 𝐴𝑁 𝑓 and subtracting 𝑔(𝑢, 𝑣)
from 𝑓(𝑢, 𝑣) if arc (𝑢, 𝑣) is a backward arc in 𝐴𝑁 𝑓

 The procedure terminates when s and t are

disconnected in 𝑁 𝑓

 This proves that 𝑓 is optimal

Business Computing and Operations Research 760

7.6.1 Pseudo code of the procedure

Input: A network 𝑁 = 𝑠, 𝑡, 𝑉, 𝐸, 𝑐

Output: The maximum flow 𝑓 of 𝑁

 𝑓 = 0; 𝑑𝑜𝑛𝑒 = 𝑓𝑎𝑙𝑠𝑒;

 while (NOT 𝑑𝑜𝑛𝑒) do

 𝑔 = 0;

 construct the auxiliary network 𝐴𝑁 𝑓 = (𝑠, 𝑡, 𝑈, 𝐹, 𝑎𝑐);

 if 𝑡 is NOT reachable from 𝑠 in 𝐴𝑁 𝑓 then 𝑑𝑜𝑛𝑒 = 𝑡𝑟𝑢𝑒;

 else repeat

 while there is a node with 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 𝑣 = 0 do

 if 𝑣 = 𝑠 OR 𝑣 = 𝑡 then go to incr

 else delete 𝑣 and all incident arcs from 𝐴𝑁 𝑓

 end while

 let 𝑣 be the node in 𝐴𝑁 𝑓 with minimal nonzero 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡[𝑣];
 𝑝𝑢𝑠ℎ 𝑣, 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡[𝑣] ;

 𝑝𝑢𝑙𝑙 𝑣, 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡[𝑣] ;

 end repeat;

 incr: 𝑓 = 𝑓 + 𝑔 Comment: End of the current stage

 end while

34

Business Computing and Operations Research 761

Pseudo code of 𝑝𝑢𝑠ℎ 𝑦, ℎ

Comment: Increases the flow 𝑔 by ℎ units pushed from 𝑦 to 𝑡

𝑄 = 𝑦 Comment: 𝑄 is organized as a queue

for all 𝑢 ∈ 𝑈 − 𝑦 do 𝑟𝑒𝑞 𝑢 = 0;

𝑟𝑒𝑞 𝑦 = ℎ Comment: 𝑟𝑒𝑞 𝑢 defines how many units have to be pushed out of 𝑢

while 𝑄 ≠ ∅ do

 let 𝑣 be an element of Q

 remove 𝑣 from Q

 for all 𝑢 such that 𝑣, 𝑢 ∈ 𝐹 and until 𝑟𝑒𝑞 𝑣 = 0 do

 𝑚 = min 𝑎𝑐 𝑣, 𝑢 , 𝑟𝑒𝑞 𝑣 ;

 𝑎𝑐 𝑣, 𝑢 = 𝑎𝑐 𝑣, 𝑢 − 𝑚;

 if 𝑎𝑐 𝑣, 𝑢 = 0 then remove arc 𝑣, 𝑢 from 𝐹

 𝑟𝑒𝑞 𝑣 = 𝑟𝑒𝑞 𝑣 − 𝑚;

 𝑟𝑒𝑞 𝑢 = 𝑟𝑒𝑞 𝑢 + 𝑚;

 add 𝑢 to 𝑄

 𝑔 𝑣, 𝑢 = 𝑔 𝑣, 𝑢 + 𝑚;

 end until

end while

Business Computing and Operations Research 762

Pseudo code of 𝑝𝑢𝑙𝑙 𝑦, ℎ

Comment: Increases the flow 𝑔 by ℎ units pull from 𝑦 to 𝑠

𝑄 = 𝑦 Comment: 𝑄 is organized as a queue

for all 𝑢 ∈ 𝑈 − 𝑦 do 𝑟𝑒𝑞 𝑢 = 0;

𝑟𝑒𝑞 𝑦 = ℎ Comment: 𝑟𝑒𝑞 𝑢 defines how many units have to be pulled out of 𝑢

while 𝑄 ≠ ∅ do

 let 𝑣 be an element of Q

 remove 𝑣 from Q

 for all 𝑢 such that 𝑢, 𝑣 ∈ 𝐹 and until 𝑟𝑒𝑞 𝑣 = 0 do

 𝑚 = min 𝑎𝑐 𝑢, 𝑣 , 𝑟𝑒𝑞 𝑣 ;

 𝑎𝑐 𝑢, 𝑣 = 𝑎𝑐 𝑢, 𝑣 − 𝑚;

 if 𝑎𝑐 𝑢, 𝑣 = 0 then remove arc 𝑢, 𝑣 from 𝐹

 𝑟𝑒𝑞 𝑣 = 𝑟𝑒𝑞 𝑣 − 𝑚;

 𝑟𝑒𝑞 𝑢 = 𝑟𝑒𝑞 𝑢 + 𝑚;

 add 𝑢 to 𝑄

 𝑔 𝑢, 𝑣 = 𝑔 𝑢, 𝑣 + 𝑚;

 end until

end while

Business Computing and Operations Research 763

7.6.2 Analysis of the algorithm

7.6.2.1 Lemma

An arc 𝑎 of 𝐴𝑁 𝑓 is removed from 𝐹 at some stage

only if there is no forward augmenting path with

respect to flow 𝑔 in 𝐴𝑁 𝑓 that passes through 𝑎.

Proof:

Arc 𝑎 is deleted at a stage for two reasons

1. It may either be that 𝑔 𝑎 = 𝑐 𝑎 or

2. 𝑎 = 𝑣, 𝑢 with 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 𝑣 = 0 or

𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 𝑢 = 0

Business Computing and Operations Research 764

Proof of Lemma 7.6.2.1

 Suppose that 𝑔 𝑎 = 𝑐 𝑎

 This means that arc 𝑎 is now saturated and may

appear in an augmenting path in 𝐴𝑁 𝑓 with

respect to g only as a backward arc. Hence, the

proposition follows

 Let us now consider the case when 𝑣 or 𝑢 has

throughput zero

 Then, no input or output by another arc exists at

the arc 𝑎 and, therefore, 𝑎 = (𝑣, 𝑢) cannot be

used in any forward path

 This completes the proof

35

Business Computing and Operations Research 765

Result of each stage

7.6.2.2 Lemma

At the end of each stage, 𝑔 is a maximal flow in

𝐴𝑁 𝑓 .

Proof:

 By Lemma 7.6.2.1, an arc is deleted only if it

cannot belong to a forward augmenting path

 This never changes again since capacities are

only reduced and arcs and nodes are deleted

 However, a stage ends only when node 𝑠 or node

𝑡 is deleted due to a zero throughput

Business Computing and Operations Research 766

Proof of Lemma 7.6.2.2

 Therefore, due to Lemma 7.6.2.1 and zero

throughput in 𝑠 or 𝑡, after completing a stage,

there are no forward augmenting paths at all, and

hence 𝑔 is maximal

 This completes the proof

Business Computing and Operations Research 767

Improvement

7.6.2.3 Lemma

The 𝑠-𝑡 distance in 𝐴𝑁 𝑓 + 𝑔 at some stage is strictly

greater than the 𝑠-𝑡 distance in 𝐴𝑁 𝑓 at the previous

stage.

Proof:

 The auxiliary network 𝐴𝑁 𝑓 + 𝑔 coincides with the

auxiliary network of 𝐴𝑁 𝑓 with respect to flow 𝑔

 Since 𝑔 is maximal (Lemma 7.6.2.2), there is no

forward augmenting path in 𝐴𝑁 𝑓 with respect to 𝑔

Business Computing and Operations Research 768

Proof of Lemma 7.6.2.3

 Hence, all augmenting paths have length greater

than the 𝑠-𝑡 distance in 𝐴𝑁 𝑓 (that is the length

of 𝑔)

 We conclude that the 𝑠-𝑡 distance in 𝐴𝑁 𝑓 + 𝑔 is

strictly greater than the 𝑠-𝑡 distance in 𝐴𝑁 𝑓

 This completes the proof

36

Business Computing and Operations Research 769

Correctness and complexity

7.6.2.4 Theorem

The max flow algorithm (with pseudo code given

under 7.6.1) correctly solves the max-flow problem

for a network 𝑁 = 𝑠, 𝑡, 𝑉, 𝐸, 𝑐 in asymptotic time

𝑂 𝑉 3 .

Proof:

Correctness:

After performing the last stage, we have s and t

being disconnected. Hence, the total augmentation

flow in network 𝑁 𝑓 is zero.

Business Computing and Operations Research 770

Proof of Theorem 7.6.2.4

 By Lemma 7.5.2.3, we know that the total size 𝑔

of the maximum flow 𝑔 in network 𝑁 𝑓 amounts to

𝑔 = 𝑓 − 𝑓 , while 𝑓 is the total size of the

maximum flow in the original network 𝑁

 Thus, we obtain 𝑔 = 𝑓 − 𝑓 = 0 and, therefore,

𝑓 = 𝑓

 This proves the optimality of the current flow 𝑓

Time bound

 Due to Lemma 7.6.2.3, we have at most 𝑉 stages,

since the s-t distance increases monotonously

Business Computing and Operations Research 771

Proof of Theorem 7.6.2.4

 At each stage at most each node is chosen to

transfer its minimal throughput

 Moreover, at most each arc is used completely

only one time (afterwards, it is deleted)

 However, an arc may be also used partially and

this can happen many times

 But, push and pull operations are initiated by

each node at most once (afterwards, the node is

deleted since its throughput is now zero)

Each push and pull operation contains at most 𝑉 steps

by enumerating the nodes systematically

Business Computing and Operations Research 772

Proof of Theorem 7.6.2.4

 All in all, we have

 At most 𝑉 stages

 At each stage

 At most 𝑉 2 steps that use an arc partially

 At most 𝐸 steps that use an arc completely

 Thus, the total asymptotic running time amounts to

       2 2 3
O V V E O V V O V    

37

Business Computing and Operations Research 773

Example

1

4

2
5

s t

3

8

9 6

7

10

7

3

3 2

1

3
3

3 2

3

4

2

4

3
4

3 2

2

1

4

2
5

s t

3

8

9 6

7

10

7

3

3 2

1

3
3

3 2

3

4

2

4

3
4

3 2

2

Minimal throughput 3

Business Computing and Operations Research 774

Example – stage 1: first node

1

4

2
5

s t

3

8

9 6

7

10

7, g=3

3

3

2, g=2

1, g=1

3
3

3 2

3

4

2, g=2

4, g=1

3, g=3
4, g=3

3 2

2

After push and pull

1

4

2
5

s t

3

8

9 6

7

10

4

3

3

3
3

3 2

3

4

3

1

3 2

2

Next auxiliary network

Business Computing and Operations Research 775

Example – stage 1: second node

1

4

2
5

s t

3

8

9 6

7

10

4

3

3

3
3

3 2

3

4

4

1

3 2

2

Minimal throughput 1

4

2
5

s t

8

9

7

10

3, h=1

3
3

3, h=1 2

3

4, h=1

1, h=1

3 2

2, h=1

After push and pull

Deletion (zero throughput)

Business Computing and Operations Research 776

Example – stage 1: third node

1

4

2
5

s t

8

9

7

10

4

2

3
3

2 2

3

3

3 2

1

Next auxiliary network

4

2
5

s t

8

9

7

10

2

3
3

2 2

3

3

3 2

1

Minimum throughput 2 Deletion (zero throughput)

38

Business Computing and Operations Research 777

Example

4

2
5

s t

8

7

10

2, i=2

3
3

2, i=2 2

3

3, i=2

3, i=2
2, i=2

After push and pull

4

2
5

s t

8

7

10 3
3

2

3

1

1

Next auxiliary network

𝑡 is not reachable from 𝑠 anymore

Business Computing and Operations Research 778

Example – termination

 Since 𝑡 is not reachable from 𝑠 in 𝐴𝑁 𝑔 + ℎ + 𝑖 ,

the procedure terminates

 The maximal flow is given through 𝑔 + ℎ + 𝑖 and

has a total size of 6

1

4

2
5

s t

3

8

9 6

7

10

7, f=3

3, f=3

3

2, f=2

1, f=1

3
3

3, f=3 2

3

4, f=3

2, f=2

4, f=1

3, f=3
4, f=4

3, f=2
2, f=2

2, f=1

Business Computing and Operations Research 779

Additional literature to Section 7

 Edmonds, J.; Karp, R.M. (1972): Theoretical Improvement

m Algorithmic Efficiency for Network Flow Problems.

Journal of the ACM, vol. 19, no. 2 (April 1972), pp. 248-

264.

 Ford, L.R. JR., and Fulkerson, D.R. (1962): Flows in

Networks, Princeton University Press, Princeton, N.J.,

1962.

The efficient max flow algorithm was originally proposed in

 Karzanov, A.V. (1974): Determining the Maximal Flow in a

Network with the Method of Preflows. Soviet

mathematics Doklady, 15 (1974), pp. 434-437.

Business Computing and Operations Research 780

Additional literature to Section 7

The efficient max flow algorithm was considerably simplified

in:

 Malhotra, V.M.; Kumar, M.P., and Maueshwari, S.N.

(1978): An 𝑂 𝑉 3 Algorithm for Finding Maximum Flows

in Networks," Inf. Proc. Letters, 7 (no. 6) (October 1978),

pp. 277-278.

 Tarjan, R.E. (1983): Data structures and network

algorithms. In SIAM CBMS-NSF Regional Conference

Series in Applied Mathematics 44, Philadelphia, 1983.

SIAM.

