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7 Max-Flow Problems 
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7.1 Max-Flow Problems  

 In what follows, we consider a somewhat 
modified problem constellation 

 Instead of costs of transmission, vector c now 
indicates a maximum capacity that has to be 
obeyed 

 Again, we consider a network with two 
specifically assigned vertices s and t 

 The objective is to find a maximum flow from 
source s to sink t 

 E.g., this flow may be a transport of materials 
from an origin to a destination of consumption 
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Flow – Inflow and outflow 

7.1.1 Definition 
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Assuming a network , ,  is given as above.  A mapping 

: 0,  is denoted as an  flow if and only if the following 
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Observation 

 We can transform the equalities (2), which are 

itemized above, as follows 
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Conclusions 

 For what follows, we renumber the arcs, 

beginning with 1, i.e., we obtain n arcs with the 

numbering 1,2,3,…,n 

 Note that this includes the artificial arc 0 (now 1), 

connecting terminal t with source s 

 We know that 
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Max-Flow Problem 

   
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The dual of Max-Flow 

 

     
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Now, we consider  with 
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Interpreting the dual 

 This time, the dual is given in standard form, i.e., the 
Simplex Algorithm can be directly applied to it 

 Thus, we want to analyze it beforehand  

 Let us consider the equalities that have to be fulfilled 

 Then, we can transform as follows 
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The dual tableau 

 Obviously, by conducting the calculation of the Primal 

Simplex, we obtain a tableau as follows… 
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Applying the simplex 

 The top row of the dual tableau provides comprehensive information 
about the current state of the calculation 

 Specifically, it allows a direct link to the corresponding primal problem 
which has to be solved originally 

 More precisely, we have the following data in the row 
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A simple example 
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Applying the Simplex – Step 1.1 
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Applying the Simplex – Step 1.2 
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Applying the Simplex – Step 2.1 

 

 
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Applying the Simplex – Step 2.2  
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Applying the Simplex – Step 3.1  
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Applying the Simplex – Step 3.2  
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Applying the Simplex – Step 4.1  

 
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Applying the Simplex – Step 4.2  
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Applying the Simplex – Step 5.1  

 
 

6 1 0 0 1 0 0 1 1 3 0 6 2 3 0 2 3
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Applying the Simplex – Step 5.2  
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7.2 Min-Cut Problems 

7.2.1 Definition: 

 

 
 

Assuming , , , ,  is a network with two labeled nodes 

 and .  A partition  is denoted as an  cut if and only 

if  and .   is denoted as the capacity 

of the 
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Illustration 
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Problem definition 

 
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 
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i j i j

n

k k

k

k i j k t s

n
T

l l

l

W π π π π

c γ

e i j t s E π π π π

c γ A π γ e π,γ,δ





       



          



      





 





7 

Business Computing and Operations Research 653 

Observation 

 The Min-Cut Problem corresponds to the dual of 
the Max-Flow Problem 

 Thus, there is a direct connection between Min-
Cut and Max-Flow 

 Clearly, since it is required that s and t belong to 
different parts of the cut, the Max-Flow is identical 
to the Min-Cut 

 This becomes directly conceivable by the fact 
that the Min-Cut is somehow the bottleneck for 
the Max-Flow that may run through the entire 
network 
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Consequence 

7.2.2 Lemma: 

 

 

To every  cut , there exists a feasible solution to

the dual of the Max-Flow Problem with the objective 

function value 

c

c

s - t W,W

c W,W
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Proof of Lemma 7.2.2 

 Consider the following solution to the dual 
problem that has been generated according to a 
given s-t cut 

 

   
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

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Proof of Lemma 7.2.2 

 

   
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0                                   otherwise
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 us consider the possible arcs of the network. Specifically, we have to 
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1.  1 0 0 0 1

2.   with 1 0 0 1 0

3.   with 
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c
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The objective function value 

 We calculate the total weight of arcs crossing 

the cut from W to W
c 

 Thus, we may conclude 

   
 

 
 

 



Ee

kk

,i,je

k

WjW,ii,je

k

c

kkk
c

k

ecececW,Wc
1

Business Computing and Operations Research 658 

Direct consequences 

 In what follows, our primal problem is… 

 1

1

Minimize   s.t., 0
n

T

l l

l

c γ , A π γ δ e π,γ,δ


      

 …and the corresponding dual… 

1Maximize   s.t., 0 0f , A f f c f     
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Max-Flow-Min-Cut Theorem 

7.2.3 Theorem: 

 

 

 

1.  For each feasible flow  and each feasible  cut 

it holds: 

2.  A feasible flow  is maximal and the  cut  that is 

constructed as defined in the Proof of Lemma 7.2.2 is 

c

c

c

s - t - f s - t W,W

f c W,W

s - t - f s - t W,W



 

 

 

 

minimal if 

0  if ,
it holds:  

  if ,

3.  To a feasible Max-Flow ,  there exists a Min-Cut  

with 

c
k

k c
k k

c

c

e i j i W j W
f

c e i j i W j W

f W,W

f c W,W

     
 

    


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Proof of Theorem 7.2.3 – Part 1 

Since the objective function value of each dual solution (Max-Flow) 

is a lower bound to each feasible solution to the primal problem

(Min-Cut), the proposition 1 follows immediately.



9 

Business Computing and Operations Research 661 

Proof of Theorem 7.2.3 – Part 2 

In order to prove the proposition 2, we make use of the Theorem 

of the complementary slackness, i.e., Theorem 5.1. Specifically, 

we have to analyze the rows where the dual program leaves no 

slack at all.  

For this purpose, let us consider the following calculations

Since f is assumed to be feasible, we know by the results 

obtained in Section 7.1 that 0.

Consequently, the corresponding primal var

 A f

iables, i.e., ,  may be 

defined arbitrarily.  

π
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Proof of Theorem 7.2.3 – Part 2 

 
 

 

Let us now consider 

 if 

0  if 

Corresponding variables are . These variables are defined accordingly, 

1  if 
i.e., 

0  otherw
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ise

Thus, whenever there is no gap in the dual (this is the case if ), the 

one-value of the primal does not disturb. Other way round, if there is a 

gap in the dual (this is the case if 0), t









k k

k

f c

f he primal fixes it by zero-values.
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Proof of Theorem 7.2.3 – Part 2 

 

 

 

Finally, we consider 

 if ,
0 0,

0  if ,

Corresponding variables are . These variables are defined just reversely, 

1  if ,
i.e., 

0  o

     
          

    

    


c

k k

n k k k c

k

c

k

k

c e i j i W j W
E f f e E f

e i j i W j W

e i j i W j W




therwise

Thus, whenever there is no gap in the dual (this is now the case 0(!)),

the one-value of the primal does not disturb.  

Other way round, if there is a gap in the dual (this is now the case





kf

 (!)), 

the primal fixes it by zero-values.

k kf c
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Proof of Theorem 7.2.3 – Part 3 

 This proof is temporarily postponed until we have 

introduced the algorithm of Ford and Fulkerson 

that generates a Min-Cut according to a given 

Max-Flow 

 This is provided in Section 7.4 
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7.3 A Primal-Dual Algorithm 

 We commence with the dual problem  

 Obviously, an initial feasible solution is f=0 

1

0

Maximize ,  s.t., 0 0,  i.e., 

0

A

f A f f c f E f c

-E

   
   

           
   
   

      

By using a feasible dual solution, we get the set  that comprises 

three groups of indices. Specifically, we have:  ,

| 0 , | , | 0

Since 0 for all feasible ,  we obtain

π γ δ

π γ k k δ ki

J

J J J J

J i A f J k f c J k f

A f f

  

      

    1, 2,3,...,πJ m
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The reduced primal (RP) 

 

   
    

 

 

 

 

1

Minimize 1  s.t., 

0 0 0 0

Note that

 is generated out of matrix  by erasing all columns that do not 

belong to set 

 is generated out of 

γ

γ γ
γ

γ

T
n

J JT

J J
J

J

J

n

γ

J

α,

α

π
α ,π ,γ ,δ E,A ,E , E e .γ

δ

E E

J

E









 
 
 

        
 
 
 

matrix  by erasing all columns that do not 

belong to set 

nE

J
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The dual of the reduced primal (DRP) 

  
  

1

1

0
Maximize   ,  s.t., ,

0

0

i.e., 1 0 0, 0,

n

m

T
J

J

T J
J

i i

E

A

g gE

E

g A g g i J g i J







 

 
  
  
       
  
    

 

         
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Updating f 

 As provided by the design of primal-dual 

algorithm, an optimal solution of DRP may either 

indicate that f is already optimal or allow an 

improvement of f 

 Thus, we have to find an appropriate λ0 which 

ensures an improved but still feasible dual 

solution 

 Specifically, … 

 

0

... assuming   as the optimal solution of ,  we 

update  by :new old

g DRP

f f f g  
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Ensuring feasibility I 

 

 

0

0 0 0

0 0

Since  is feasible, 0

In order to ensure feasibility, we have to guarantee the following:

1. 0. We already know

0

0,  for all 0

2.  

old

old old

g A g

old

A f g

A f g A f A g A g

A g

f



  

 



 

   

           

    

   

0

0 0

0 0

Since 0 and  feasible, this is always fulfilled

0

,

, 0 , 0

, 0

k k k

k k k k
k k

k k

f

k k
k

k

g c f g c k

c f c f
g g

g g

c f
g

g





 





      

 
     


  
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Ensuring feasibility II 

     

0~,~

0~,~0~,~

,0~0~1  3.

:following  theguarantee  tohave  wefinally, And

0

0

 fulfilled always is  thisfeasible,  and 0 Since

0

00

0


















k

k

k

k

k

k

f

k

k

k

kkold

g
g

f

g
g

f
g

g

f

kgfgf









  
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Interpreting DRP 

 Obviously, DRP can be interpreted as a 
specifically defined accessibility problem, i.e., a 
path is searched in a reduced graph 

 This reduced graph restricts the searching 
process as follows 
 Arcs that are already used up to capacity may only be 

used in backward direction, i.e., the flow is reduced 

 Arcs that are unused, i.e., fk=0, may only be used in 
forward direction 

 All other arcs can be used in any direction 

 All induced flows are restricted by 1, i.e., a flow of 
maximum capacity 1 is sought 
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Augmenting the flow 

 Obviously, by solving DRP, we are aspiring an 
augmenting path 

 Hence, it is not feasible to augment an already 
saturated flow or to decrease a zero flow along 
some edge 

 Consequently, if there is an augmentation 
possible, we are able to generate a flow f that 
induces only 1, -1, or 0 values at the respective 
edges 

 This considerably simplifies the updating of the 
dual solution in the Primal-Dual Algorithm 
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Ensuring feasibility with g=1,0,-1 

 

 

   

0 0

0 0 0

0 0 0

0

In order to ensure feasibility, we have to guarantee the 

following:

1. 0 is fulfilled for all 0

2.  , 1

3.  1 0 , 1

m

old

k k
old k k k

k

k
old k k

k

A f g

c f
f g c g c f

g

f
f g g f

g

 

  

  



    


        

          


      in min | 1 , min | 1k k k k kc f g f g   
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7.4 Ford-Fulkerson Algorithm 

 This algorithm is a modified primal-dual solution 

procedure 

 The DRP is directly solved, however, that is why 

no Simplex procedure is necessary for this step 

 On the other side, this has considerable 

consequences according to the termination of the 

solution procedure 

 This will be discussed thoroughly later 
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A reduced network 

7.4.1 Definition: 

 

    

    

Assuming   is an -network and  

a feasible flow. Then, we introduce 

,  with

, | ,  and

, | , 0 .   

 denotes the set of forward arcs w

f b

f f f

f

f k k k k

b

f k k k

f

f

N V,E,c,s,t s - t f

s - t -

E E E

E e i j e i j E f c

E e i j e j i E f

E



 

      

      

 

hile  defines 

the backward arcs. Then, we denote  as 

the corresponding reduced network.  

b

f

f

E

V,E ,c,s,t
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Interpretation 

 Forward arcs 

 are used by the current flow f, but they are not used up 
to capacity 

 I.e., they are not saturated by now 

 Backward arcs 

 are not used by the current flow f, but the inverted arc 
is used by flow f 

 Consequently, these arcs are used in opposite 
direction by the current flow f 

 Consequently,  

 forward arcs are candidates for augmenting the flow in 
the current direction (since they offer remaining 
capacities)  

 backward arcs are candidates for reducing the flow 
(since the opposite direction transfers something) 



13 

Business Computing and Operations Research 677 

Observation 

7.4.2 Lemma: 

   

 

0 0 1A path ,...,  with 1, ,  and ,  

indicates an optimal solution to .  

  k k l l fi i i i n i i E

DRP
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Proof of Lemma 7.4.2 

 

       

     

0

1

1

Based on the path ,..., ,  we define as follows:

1  if , , ,  for 1,...,  or if ,1  

1                       if , , ,  for 1,...,

0         otherwise            





  

    

     

k

k l l k

k k l l

p i s i t

e i j i i E l k e n

g e i j i i E l k

                                                      

Since  is a path, each visited node is reached and left by arcs once.  

If this is done according to arc directions, we use 1,  otherwise 

w







k

p

g

 

   

e have 1. Since the 1 and 1 values in A are changed 

accordingly, we obtain in both cases for the respective row : 0.  

In addition, it holds: 

1 0 0 0 . Thus, 

 i

  

 

          

k

i

i γ k k i δ k

g

i A g

g g ,i J k | f c g ,i J k | f

g  1s feasible. Since 1,  it is also an optimal solution to .g DRP
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Conclusions 

    1 1

Let us assume that such a path between  and  cannot be established 

in the reduced network.  

We define for this constellation:

and additionally...

0      if

c

k l l f

i

s t

W i V | p s i ,...,i i : i ,i E W V \W

 i
π

        


 

   

1                   if
 

1    if 0                                               otherwise

1     if
and finally  

0                                  

c

k

kc

c

k

k

W  e i, j i W j W
, ,

 i W

 e i, j t ,s i W j W

      
  

 

     
 

          otherwise




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The s-t-cut 

   
 

 
 

 

 

   

maximal.  thereforeis and

 augmented becannot   addition,In   .

 know we

 ly,Consequent  . flowby capacity   toup used are cut  the

 bridging arcs all reachable,not   were of nodes all Since

:obtain We

1

1

fW,Wcecff

fW,W

W

ecececW,Wc

c

Ee

kk

c

c

Ee

kk

,i,je

k

WjW,ii,je

k

c

k

kkk
c

k












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Maximum augmentation 

 The maximum augmentation δ that is possible for 

the current flow, is determined by 

 

 

arcs of path 

arcs of path 

min |  is forward arc ,
min

min |  is backward arc

p k k k

p k k

c f e
δ

f e

  
  

  

Business Computing and Operations Research 682 

 In what follows, we introduce the description 

provided by Papadimitriou and Steiglitz (1982) 

p.123 

 

Ford-Fulkerson Algorithm 
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Ford-Fulkerson Algorithm 

 Input: Network N=(s,t,V,E,c) 

 Output: Max-Flow f 

 Set f=0, Ef=E; 

 While an augmenting s-t-path with min capacity 
value δ > 0 can be found in the reduced network 
Ef:  
 Set f = f + δ; 

 Update reduced network Ef (decrease capacities in path direction 
by value δ and increase capacities in opposite direction by value δ 
for all edges on the augmenting path) 

 End while 

An augmenting path can be found with the labeling 

algorithm on the next slide. 
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Labeling Algorithm 

 We try to label every node with one possible 

predecessor on a path from s until we reach t: 

 LIST={s}; 

 While LIST not empty and t not in LIST: 

 Scan x: Remove x from LIST. Label not all labeled yet 

adjacent nodes to x in Ef  with x as predecessor and 

put them on LIST. 

 End while 

 If t is labeled, we can create the augmenting path 

by considering the predecessors in the labels. 
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An example 

1 

4 

6 

3 

2 

5 

e1,c1=4 

e2,c2=3 

e3,c3=5 

e4,c4=3 

e6,c6=1 

e7,c7=4 

e8,c8=3 

e5,c5=1 

e9,c9=7 
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1. Iteration 

 We commence our search with f=0 

 All labels are zero 

 LIST={1} 

 scan 1 

 Updating LIST 

 LIST={2,3}, and scan 2 

 LIST={3,4,5}, and scan 3 

 LIST={4,5}, and scan 4 

 LIST={5,6} and stop since 6=t is labeled already  

 We have labeled node 6=t. Path is therefore 1-2-4-6.   

 Thus, we now can augment our current flow f by δ=min{4,5,4}=4 
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Current flow 

Edge Current Flow Found path 

1 0+4=4 1 

2 0 0 

3 0+4=4 1 

4 0 0 

5 0 0 

6 0 0 

7 0+4=4 1 

8 0 0 

9 0+4=4 1 
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Updated reduced network 

1 

4 

6 

3 

2 

5 

e1,c1=4 

e2,c2=3 

e3,c3=1 

e4,c4=3 

e6,c6=1 

e7,c7=4 

e8,c8=3 

e5,c5=1 

e9,c9=7 

e3,c3=4 
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2. Iteration 

 We commence our search with f 

 All labels are zero 

 LIST={1} 

 scan 1 

 Updating LIST 

 LIST={3}, and scan 3 

 LIST={4,5}, and scan 4 

 LIST={5,2}, and scan 5 

 LIST={6} and stop since 6=t is labeled already  

 We have labeled node 6=t. Path is therefore 1-3-5-6.   

 Thus, we now can augment our current flow f by δ=min{3,1,3}=1 
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Current flow 

Edge Current Flow Found path 

1 4 0 

2 0+1=1 1 

3 4 0 

4 0 0 

5 0 0 

6 0+1=1 1 

7 4 0 

8 0+1=1 1 

9 5 1 
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Updated reduced network 

1 

4 

6 

3 

2 

5 

e1,c1=4 

e2,c2=2 

e3,c3=1 

e4,c4=3 

e6,c6=1 

e7,c7=4 

e8,c8=2 e5,c5=1 

e9,c9=7 

e3,c3=4 

e2,c2=1 e8,c8=1 
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3. Iteration 

 We commence our search with f 

 All labels are zero 

 LIST={1} 

 scan 1 

 Updating LIST 

 LIST={3}, and scan 3 

 LIST={1,4}. Since 1 is labeled, LIST={4}, and scan 4 

 LIST={2}, and scan 2 

 LIST={1,4,5} Since 1,4 are labeled, LIST={5}, and scan 5 

 LIST={6} and stop since 6=t is labeled already  

 We have labeled node 6=t. Path is therefore 1-3-4-2-5-6.   

 Thus, we now can augment our current flow f by δ=min{2,1,4,3,2}=1 
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Current flow 

Edge Current Flow Found path 

1 4 0 

2 1+1=2 1 

3 4-1=3 -1 

4 0+1=1 1 

5 0+1=1 1 

6 1 0 

7 4 0 

8 1+1=2 1 

9 5+1=6 1 
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1 

4 

6 

3 

2 

5 

e1,c1=4 

e2,c2=1 

e3,c3=2 

e6,c6=0 

e7,c7=4 

e8,c8=1 e5,c5=1 

e9,c9=7 

e3,c3=3 

e2,c2=2 e8,c8=2 

e4,c4=2 

e4,c4=1 

Updated reduced network 
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4. Iteration 

 We commence our search with f 

 All labels are zero 

 LIST={1} 

 scan 1 

 Updating LIST 
 LIST={3}, and scan 3 

 LIST={1}. Since 1 is labeled, LIST={}, and terminate 

 Thus, we obtain the s-t cut  
 W={1,3} and Wc={2,4,5,6} 

 The cut has total costs c1+c5+c6=4+1+1=6 
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Maximal flow 

Edge Flow 

1 4 

2 2 

3 3 

4 1 

5 1 

6 1 

7 4 

8 2 

9 6 
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1 

4 

6 

3 

2 

5 

e1,c1=4 

e2,c2=3 

e3,c3=5 

e4,c4=3 

e6,c6=1 

e7,c7=4 

e8,c8=3 

e5,c5=1 

e9,c9=7 

f1=4 

f2=2 

f3=3 

f4=1 

f6=1 

f5=1 

f7=4 

f8=2 

f9=6 

Updated reduced network 
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 Clearly, the optimality of the procedure depicted 
above may be directly derived from the Primal-
Dual Algorithm design 

 There are, however, some specific interesting 
attributes coming along with the procedure of 
Ford and Fulkerson that are worth mentioning 

 In what follows, we briefly discuss or just 
mention them 

Optimality 
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7.4.3 Lemma: 

When the Ford and Fulkerson labeling algorithm 

terminates, it does so at optimal flow.

Correctness of the procedure 
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Proof of Lemma 7.4.3 

 When the algorithm of Ford and Fulkerson 
terminates, there are some nodes that are 
already labeled while others are still unlabeled.  
We define W and Wc as above 

 Consequently, all arcs that are running from W to 
Wc are saturated now  

 Additionally, arcs running in the opposite direction 
have flow zero 

 Therefore, by Theorem 7.2.3, the s-t-cut (W,Wc) 
and flow f are optimal 
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7.5 Analyzing the Ford-Fulkerson algorithm 

 In what follows, we analyze the complexity of the 

introduced Ford-Fulkerson algorithm 

 First of all, we will see that the correctness of the 

algorithm is limited to integer and rational 

capacity values 

 However, in case of irrational capacity values, 

even termination and correctness of the 

procedure are not guaranteed anymore 

 This result is somehow surprising since the 

procedure seems to be finite as every previously 

introduced algorithm 
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7.5.1 Correctness 

 If capacities are integers, the termination of the 
algorithm follows directly from the fact that the 
flow is increased by at least one unit in each 
iteration 

 Since, if the optimal flow has the total amount of 
fopt, fopt iterations (augmentations) are at most 
necessary 

 Analogously, if all capacities are rational, we may 
put them over a common denominator D, scale 
by D, and apply the same argument.  

 Hence, if the optimal flow has the total amount of 
fopt, fopt

.D iterations (augmentations) are at most 
necessary (see Papadimitriou and Steiglitz 
(1982) pp.124) 
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The pitfall – irrational case 

 However, when the capacities are irrational, one 

can show that the method does not only fail to 

compute the optimal result but also converges to a 

flow strictly less than optimal 

 In what follows, we shall introduce and illustrate an 

example originally given by Ford and Fulkerson 

(1962) and depicted in Papadimitriou and Steiglitz 

(1982) 

 Edmonds and Karp (1972) proposed a modified 

labeling procedure and proved that this algorithm 

requires no more than (n3-n)/4 augmentation 

iterations, regardless of the capacity values 
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Analyzing the problem in detail 

I cannot believe that there 
are irrational examples where 
the Ford-Fulkerson algorithm 

is not able to provide an 
optimal solution 

This can actually 
happen! 

I will show you a very 
simple example ! 
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The irrational case – the network  

s 

x1 

x2 

x3 

x4 

y1 

y2 

y3 

y4 

t 

Arc A1 with capacity a0 

Arc A2 with capacity a1 

Arc A3 with capacity a2 

Arc A4 with capacity a2 

Capacity S 

Capacity S 

Capacity S 

special arcs nonspecial arcs 
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The irrational case – capacities  

 Special arcs 

 These are the arcs A1, A2, A3, and A4 

 Capacity is a0 for A1, a1 for A2, a2 for A3, and a2 for A4 

 Nonspecial arcs 

 All other arcs are nonspecial arcs, i.e., all arcs (s,xi), 

(yi, yj), (yi, xj), (xi, yj), or (yi, t) with i≠j 

 Capacity is S 

 We define 




  

 
     



2 1

0 1

5 1 5 1 1
1, 1,  0.618033989, and 

2 2 1

n n na a a

a a S
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The capacities of the special arcs 

7.5.1.1 Lemma: 

It holds that:  

Proof: 

We prove the proposition by induction: 
0

0

1
1

2 1 2

2 1

2 2

0 : 1

5 1
1:

2

5 1 5 1 5 1 5 1
1: 1

2 2 2 2

5 1 2 5 1 5 1 3 5

2 2 2 2

i
i

i
i

i i i

i i i

i i

i a a

i a a

i a a a

 

  

  

 

 

    


     

          
                     

       

           
                 
       

 0 : 1,..., : i
in i n a     
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Proof of Lemma 7.5.1.1 

 Since it holds that 

 

 

 we obtain 

 

 

 

 

 This completes the proof 

2

2 5 1 5 1 5 1 5 2 5 1 6 2 5 3 5

2 2 2 4 4 2


             
               
     

2 2 2

2 1

5 1 3 5 5 1 5 1
1:

2 2 2 2

5 1

2

i i

i i i

i

i

i a a a



 

 

          
                    

       

 
   
 
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Consequence 

7.5.1.2 Lemma: 

It holds that  

 

 

Proof: 

     0 1 0 2 3 3 4
2

1
0 : lim ...

1

n

n i i
i

n a a a a a a a a S


 



           




1

1

0 1 0 1 0
2 2 1

1

0 0

Geometric series with 0< <1

We conclude that:

0 : lim lim lim

1
lim

1

i i

n n n

n i i n i n i
i i ia a

n
i

n i
i i

n a a a a a a a

a S










    

   

 



 

 
        
 
 

   


  

 
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Step 0 – augmentation path (s,x1,y1,t) 

s 

x1 

x2 

x3 

x4 

y1 

y2 

y3 

y4 

t 

Arc A1 with capacity a0 

Arc A2 with capacity a1 

Arc A3 with capacity a2 

Arc A4 with capacity a2 

Capacity S 

Capacity S 

Capacity S 

special arcs nonspecial arcs 

Business Computing and Operations Research 711 

Step 0 - consequences 

 Augmentation value is a0 

 This is true since  

 

 

 Hence, the residual capacities in the special arcs 

amount to  

 

0
0

5 1 1
1 and 1

2 1
a S 




     



   0 0 1 2 2 1 2 2, , , 0, , ,a a a a a a a a 
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Step n≥1 – assumptions  

 Due to the preceding steps, we have the 

following remaining capacities on the special arcs 

 

 

 

 

 

 

 

 Note that step 0 has provided such a situation 

 

 

 

  





1 1

1 2 3

4 1 1

1

0, , ,  and 

Note that we order now the special arcs such that, 

after this step, we have the arcs , , ,  

and  with the remaining capacities 0, , , .

Order the connected nodes ,

n n n

n n n

a a a

A A A

A a a a

x   

   

2 3 4

1 2 3 4

, ,  and  as well 

as , , ,  and , accordingly.

x x x

y y y y
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 Step n≥1 – augmentation path  

s 

x'1 

x'2 

x'3 

x'4 

y'1 

y'2 

y'3 

y'4 

t 

Arc A’1 with rem. capacity 0 

Arc A’2 with rem. capacity an 

Arc A’3 with rem. capacity an+1 

Arc A’4 with rem. capacity an+1 

Capacity S 

Capacity S 

Capacity S 

special arcs nonspecial arcs 

 2 2 3 3, , , , ,s x y x y t   
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Step n≥1 – consequences 

1 2 3

1
1 1

The chosen augmentation path increased the total flow by 

 units since we used the special arcs A  and A  in forward 

direction. Since ,  due to <1,  is the 

bottleneck on the ch

n

n n
n n n

a

a a a  





 

 

  

osen path

Note that the inner nonspecial arcs are somehow symmetric, 

i.e., we have always arcs with capacity  in both directions 

from  to  and vice versa. 

After using this augmentation path, we obta

S

x y

 
2

1 1 1 1 2 1

in the following 

residual capacities on the special arcs:

0, , , 0, ,0,

n

n n n n n n n

a

a a a a a a a



     

 
   
 
 
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Second augmentation path 

s 

x'1 

x'2 

x'3 

x'4 

y’1 

y'2 

y'3 

y'4 

t 

Arc A1 with rem. capacity 0 

Arc A2 with rem. capacity an+2 

Arc A3 with rem. capacity 0 

Arc A4 with capacity an+1 

Capacity S 

Capacity S 

Capacity S 

special arcs nonspecial arcs 

 2 2 1 1 3 3 4, , , , , , , ,s x y y x y x y t      

Business Computing and Operations Research 716 

Second augmentation – consequences 

2 2

1 3

2
2 1

The chosen augmentation path increased the total flow by 

 units since we used the special arc A  in forward direction 

and the special arc A  and A  in backward direction . Since 
n

n
n n

a

a a





 



 

   1
2,  due to <1,  is the 

bottleneck on the chosen path

Note again that the inner nonspecial arcs are somehow symmetric, 

i.e., we have always arcs with capacity  in both directions 

from  to  and

n
na

S

x y

 



 

 
2 2 2 2 1

2 2 1

 vice versa. 

After using this augmentation path, we obtain the following 

residual capacities on the special arcs: 0 , ,0 ,

,0, ,

n n n n n

n n n

a a a a a

a a a

    

  

  


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Consequences of step n≥1 

 Step n ends with residual capacities appropriate 

for conducting the succeeding step n+1 

 Hence, each step augments the total flow by 

an+1+an+2 

 

 

 Therefore, the flow is augmented by an 

2 1 2 1It holds that: n n n n n na a a a a a       

0

0

All in all, after  steps, we therefore obtain the total flow 

Consequently, there is always an improvement possible and the 

1
algorithm does not terminate and the total flow approaches 

1

n

i
i

i
i

n a

a











 S




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No termination and … 

 However, the max flow in our pathological 

example is obviously 4.S 

 So the Ford-Fulkerson algorithm approaches 

one-fourth the optimal flow value 

 Therefore, the algorithm is not correct 
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Worth to mention 

Really amazing this example ! 
No termination and even the 
value that is approached is 

wrong ! 

 
However, the example 

is NOT really fair ! ! 
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In the sense of fairness 

 The raised question of finiteness of the Ford 

Fulkerson algorithm is in a sense a mathematical 

but not a practical one, since computers always 

work with rational numbers 

 Hence, it is reasonable to assume that data can 

be represented by a finite number of bits 

 A practical question, which is however related to 

that of finiteness, will ask how many steps may 

be required by a computation as a function of the 

total number of bits in the data 
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7.5.2 Complexity analysis 

 In what follows, we analyze the complexity of the Ford-

Fulkerson algorithm for integral capacity values 

 Unfortunately, it turns out that – depending on the given 

capacity values of the considered instance – this labeling 

procedure may require in the worst case an exponential 

amount of time 

 Fortunately, there exists an efficient algorithm for the max 

flow problem, which is, in fact, a rather simple modification 

of the labeling algorithm 

 In order to analyze the labeling procedure and to prepare a 

modified version of it, we first examine a fundamental graph 

algorithm called 𝑠𝑒𝑎𝑟𝑐ℎ 𝑣  

 Such a procedure is required in both algorithms 
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Graph representations 

 A graph 𝐺 = 𝑉, 𝐸  can be represented in many 

alternative ways 

 Adjacency matrix: 

 A matrix 𝐴𝐺 = 𝑎𝑖,𝑗 1≤𝑖≤ 𝑉 ,1≤𝑗≤ 𝑉
, with binary entries such that 

 𝑎𝑖,𝑗 = 1 if arc 𝑖, 𝑗 ∈ 𝐸 and 𝑎𝑖,𝑗 = 0 otherwise 

 However, in case of graphs that are sparse in that the number 

of their arcs is far less than 𝑂
𝑉
2

= 𝑂 𝑉 2 , this 

representation is the most economical one. E.g., if we have 

100 nodes and 500 edges, an representation with 10,000 (!) 

binary entries has to be stored 

Business Computing and Operations Research 723 

Graph representations 

 Adjacency lists: For each node 𝑣 ∈ 𝑉 𝐴(𝑣) gives an 

ordered list of successors, i.e., we have 𝐴 𝑣 =

𝑣1, 𝑣2, … , 𝑣𝑙 𝐴 𝑣 , with 𝑣, 𝑣𝑖 ∈ 𝐸, ∀𝑖 ∈ 1, … , 𝑙 𝐴 𝑣  

 Example 

   𝐴 1 = 2,4 , 𝐴 2 = 1,3,4 ,  

   𝐴 3 = 2,4 , 𝐴 4 = 1,2,3,5 , 𝐴 5 = 4  

 

 

 In what follows, we assume that the graph 

𝐺 = 𝑉, 𝐸  is connected, i.e., there are no isolated 

nodes 

 

1 2 

3 4 

5 
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Algorithm 𝑠𝑒𝑎𝑟𝑐ℎ(𝑣) 

 

: A graph , defined by adjacency lists and a node 

: The graph with the nodes reachable by path from the node  marked

  

  let  be any element of 

  remove  from 

  mark 

  f

G v

v

Q v

Q

u Q

u Q

u



 

Input

Output

while do

 or all  do

      is not marked  insert  into 

u A u

u u Q



 if then

end while
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Complexity 

7.5.2.1 Theorem: 

The algorithm 𝑠𝑒𝑎𝑟𝑐ℎ(𝑣) marks all nodes of 𝐺 

connected to 𝑣 in 𝑂(|𝐸|) time. 

Proof: 

Correctness: We assume that a node 𝑢 is 

connected to node 𝑣 by a path 𝑝. Clearly, it can be 

shown by induction on the path length that 𝑢 will be 

marked. If, otherwise, node 𝑢 is not connected to 

node 𝑣, 𝑢 will not be marked since this would lead 

to the contradictory conclusion that there is a path 

from node 𝑣 to node 𝑢 
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Proof of Theorem 7.5.2.1 

Time bound: 

 In order to estimate the running time of 𝑠𝑒𝑎𝑟𝑐ℎ(𝑣), 
we have to consider three components: 

1. Initialization: this takes constant time 

2. Maintaining the set 𝑄: We store the set Q as a queue 

with a 𝑓𝑖𝑟𝑠𝑡 and 𝑙𝑎𝑠𝑡 pointer (variables) in order to 

enable insertion and deletion in constant time (see the 

next slide for a brief illustration). The pointers 

(variables) 𝑓𝑖𝑟𝑠𝑡 and 𝑙𝑎𝑠𝑡 are initialized to zero while 𝑄 

is stored as a simple array with 𝑉  entries. Array 𝑄 is 

empty if and only if it holds 𝑓𝑖𝑟𝑠𝑡 = 𝑙𝑎𝑠𝑡. We remove 

from top and add at the tail of the queue (FIFO 

principle).  
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Applied data types 

 Add 𝑣 to 𝑄: 

 𝑙𝑎𝑠𝑡=𝑙𝑎𝑠𝑡 + 1 

 𝑄[𝑙𝑎𝑠𝑡] = 𝑣 

 

 Remove: 

 𝑓𝑖𝑟𝑠𝑡 = 𝑓𝑖𝑟𝑠𝑡 + 1 

 𝑣 = 𝑄[𝑓𝑖𝑟𝑠𝑡] 

v3 v5 v8 v2 v4 

𝑓𝑖𝑟𝑠𝑡 = 2 𝑙𝑎𝑠𝑡 = 7 

The contents of 𝑄, in order of arrival 
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Proof of Theorem 7.5.2.1 – Time bound 

3. Searching the adjacency lists: we have constant 

time for each element of the lists. Since the total 

number of these elements is 2 ∙ 𝐸 , the time 

required is 𝑂 𝐸  

 

Therefore, we have a total asymptotic running time 

of 𝑂 𝐸 . This completes the proof 
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LIFO queue (i.e., a stack) 

 Add 𝑣 to 𝑄: 

 𝑙𝑎𝑠𝑡 = 𝑙𝑎𝑠𝑡 + 1 

 𝑄[𝑙𝑎𝑠𝑡] = 𝑣 

 

 Remove: 

 𝑣 = 𝑄[𝑙𝑎𝑠𝑡] 

 𝑙𝑎𝑠𝑡 = 𝑙𝑎𝑠𝑡 − 1 

v3 v5 v8 v2 v4 

𝑙𝑎𝑠𝑡 = 5 

The contents of 𝑄, in order of arrival. 𝑄 is empty if and only if 𝑙𝑎𝑠𝑡 = 0 
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Selecting rules applied to 𝑄 

 The procedure 𝑠𝑒𝑎𝑟𝑐ℎ(𝑣) was not completely 

specified 

 We have not defined yet exactly how the next 

element 𝑣 is chosen from 𝑄 in the while loop 

 There are many possibilities 

 Two best known are … 

 FIFO: The node that waited longest is chosen (breadth 

first search (BFS)) 

 LIFO: The node that was lastly inserted is chosen 

(depth first search (DFS)) 
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Directed graphs 

 The procedure 𝑠𝑒𝑎𝑟𝑐ℎ(𝑣) can be applied to 

directed graphs (i.e., so-called digraphs) without 

any changes  
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Example 

 We apply BFS and DFS to the digraph below 

 The resulting numbers (BFS/DFS) give the indices of the 

step at that the respective node is labeled 

 Starting node is node 1  

1 6 

7 2 4 

3 

5 
(1/1) 

(2,2) (4/3) 

(3/7) 

(6/4) 

(7/5) 

(5/6) 
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Algorithm 𝑓𝑖𝑛𝑑𝑝𝑎𝑡ℎ(𝑣) 

 

 

: A digraph , , defined by adjacency lists and two subsets ,  of 

: A path in  from a node in  to a node in  if this path exists

for all  do [ ] 0

   return ; ;

G V E S T V

G S T

v S label v

v T v

Q



 





Input

Output

if then break

 

 

  

  let  be any element of 

  remove  from 

   all  

      is not labeled 

[ ]

           return ; ; insert  into 

S

Q

u Q

u Q

u A u

u

label u u

u T path u u Q

 





 

  

while do

for do

if then begin 

        

if then break else 

    en

"no S-T path available in G"

d (begin)

  end (do)

end while

return 
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Algorithm 𝑝𝑎𝑡ℎ 𝑣  

 

 

 

     

: For all nodes :  generated by procedure 

: Path from a node in  to 

 0 

     return ; ;

     ; ;

 stands for concatenation

u V label u findpath

S v T

label v

v

path label v v







Input

Output

if

then break

else return break

end if

 of paths

Note that the procedure is recursive!
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Example 

 We apply the procedure 𝑓𝑖𝑛𝑑𝑝𝑎𝑡ℎ 𝑆, 𝑇  with FIFO queue (bfs) and 

obtain the labels (resulting in a path with a minimum number of arcs) 

1 4 

5 2 

3 

10 8 

6 9 

7 

S 

T 

1 4 

5 2 

3 

10 8 

6 9 

7 0 

0 

0 

3 

5 

5 

6 

8 

8 
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Example – Path reconstruction 

 

 

 

 

 We apply 𝑝𝑎𝑡ℎ 9  and obtain 

 

1 4 

5 2 

3 

10 8 

6 9 

7 0 

0 

0 

3 

5 

6 

8 

8 

 

           

     

9

8 9 6 8,9 5 6,8,9

3 5,6,8,9 3,5,6,8,9

path

path path path

path

  

 
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Complexity of the Ford Fulkerson procedure 

 We now analyze the complexity of the Ford-

Fulkerson algorithm more in detail 

 We apply the algorithm to a network 𝑁 = 𝑠, 𝑡, 𝑉, 𝐸, 𝑐  

and observe the following 

 The initialization step of the procedure takes time 𝑂 𝐸  

 Each iteration step involves the scanning and labeling of 

vertices. It can be stated that each edge 𝑢, 𝑣  is 

considered at most twice – once for scanning node 𝑢 and 

once for 𝑣. Moreover, we have to follow back the found 

path that has a length of at most 𝑂 𝑉  steps 

 Thus, each iteration takes time 𝑂 𝑉 + 𝐸  
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Complexity of the Ford Fulkerson procedure 

 All in all, in case of integral capacities, if 𝑣 is the 

value of the max flow and 𝑆 is the number of 

conducted augmentation steps of the applied 

Ford-Fulkerson algorithm, we have 𝑆 ≤ 𝑣 and a 

total asymptotic running time complexity of 

𝑂 𝑉 + 𝐸 ∙ 𝑆 = 𝑂 𝐸 ∙ 𝑆  

 In order to define the running time by the input 

data of a given instance, we obtain the 

asymptotic running time  

 
 ,

,
x y E

O E c x y


  
    
  

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Worth to mention 

I fear that you may know an 
example that comes along 

with a very large number of 
augmentation steps! 

 
That is true! And it is 

a tiny one! ! 
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Worst case example 

 Consider the following network with total capacity 

of 4,001 

 We will see that the Ford Fulkerson algorithm 

requires 2,000 iterations to generate an optimal 

solution 

s t 

u 

v 

1000 

1000 

1000 

1000 

1 
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Worst case example – Optimal solution 

 The maximum flow obviously amounts to 2000 

 Illustration of the optimal solution 

s t 

u 

v 

1000 / 1000 

1 

1000 / 1000 

1000 / 1000 

1000 / 1000 

Business Computing and Operations Research 742 

Worst case example 

 In what follows, we apply the labeling algorithm 

starting from the initial zero flow 

 We commence with the zero flow on each edge 

s t 

u 

v 

1000 / 0 

1 / 0 

1000 / 0 1000 / 0 

1000 / 0 
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Solving the worst case example 1 

 We start with the initial flow 𝑠, 𝑢, 𝑣, 𝑡  with flow 1 

 We obtain the following updated network 

s t 

u 

v 

1000 / 1 

1000 / 0 

1000 / 0 

1000 / 1 

1 / 1 

Business Computing and Operations Research 744 

Solving the worst case example 2 

 We start with the initial flow 𝑠, 𝑣, 𝑢, 𝑡  with flow 1 

 We obtain the following updated network 

s t 

u 

v 

1000 / 1 

1000 / 1 

1000 / 1 

1000 / 1 

1 / 0 
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Solving the worst case example 3 

 We start with the initial flow 𝑠, 𝑢, 𝑣, 𝑡  with flow 1 

 We obtain the following updated network 

s t 

u 

v 

1000 / 1 

1000 

1000 

1000 / 1 

1 / 1 
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After two augmentation steps, we have 

 A total flow of 2 

 Hence, there exists a sequence of 1,000 iterations, 

each comprising two augmentation steps with the 

paths 𝑠, 𝑢, 𝑣, 𝑡  and 𝑠, 𝑣, 𝑢, 𝑡 , that generates the 

optimal solution with total flow 2,000 

 Therefore, the asymptotic runtime bound  

 

 

 

 is actually tight since we can replace the 1,000 

values by an arbitrarily large M-value 

 
 ,

,
x y E

O E c x y


  
    
  

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Exponential running time 

 If 𝑀 = 𝑐 𝑉  holds (with 𝑐 ≥ 2), the Ford-Fulkerson 

algorithm executes 

 

 

 steps 

 Hence, we have an exponential running time   

 
V

O E c
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Towards a new max flow algorithm 

 Suppose that we wish to apply the labeling routine to a 

network 𝑁 = (𝑠, 𝑡, 𝑉, 𝐸, 𝑐) with initial zero flow 𝑓 = 0 

 We need not examining capacities and flows in this case; 

it is a priori certain that all arcs in A are forward, and that 

there are no backward arcs.  

 Consequently, our task of labeling the network in order to 

discover an augmenting path is done by applying 

procedure 𝑓𝑖𝑛𝑑𝑝𝑎𝑡ℎ to 𝑁 = (𝑠, 𝑡, 𝑉, 𝐸, 𝑐) with 𝑆 = 𝑠  and 

𝑇 = 𝑡  

 Subsequently, we augment the current flow by applying 

𝑓𝑖𝑛𝑑𝑝𝑎𝑡ℎ to a modified network 𝑁 𝑓 = (𝑠, 𝑡, 𝑉, 𝐸 𝑓 , 𝑎𝑐) 
that results from the current flow 𝑓 

 This modified network is defined next 
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A flow-oriented network definition 

7.5.2.2 Definition 

Given a network 𝑁 = 𝑠, 𝑡, 𝑉, 𝐸, 𝑐  and a feasible flow 

𝑓 of 𝑁. Then, we define the network 𝑁 𝑓 =
(𝑠, 𝑡, 𝑉, 𝐸 𝑓 , 𝑎𝑐) with 𝐸 𝑓  comprising the arcs 

1. If 𝑢, 𝑣 ∈ 𝐸 and 𝑓 𝑢, 𝑣 < 𝑐 𝑢, 𝑣 , then 𝑢, 𝑣 ∈
𝐸 𝑓  and 𝑎𝑐 𝑢, 𝑣 = 𝑐 𝑢, 𝑣 − 𝑓 𝑢, 𝑣  

2. If 𝑢, 𝑣 ∈ 𝐸 and 𝑓 𝑢, 𝑣 > 0, then 𝑣, 𝑢 ∈ 𝐸 𝑓  

and 𝑎𝑐 𝑣, 𝑢 = 𝑓 𝑣, 𝑢  

The value 𝑎𝑐 𝑢, 𝑣  is denoted as the augmenting 

capacity of arc 𝑢, 𝑣 ∈ 𝐸 𝑓  
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Avoiding multiple copies of arcs in 𝐸 𝑓  

 If 𝐸 contains both arcs 𝑢, 𝑣 ∈ 𝐸 and 𝑣, 𝑢 ∈ 𝐸, 

then 𝐸 𝑓  may have multiple copies of these 

arcs. However, in this case we may replace one 

arc 𝑢, 𝑣 ∈ 𝐸 by a new node 𝑤 and two 

additional arcs 𝑢, 𝑤 , 𝑤, 𝑣 ∈ 𝐸 with identical 

capacity, i.e., it holds that 𝑐 𝑢,𝑤 = 𝑐 𝑤, 𝑣 =
𝑐 𝑢, 𝑣  

 Therefore, we can assume that 𝐸 𝑓  has no 

multiple arcs 
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Interesting attributes of 𝑁 𝑓  

 Take any s-t cut 𝑊, 𝑊  of 𝑁 𝑓  

 The value of this cut is the sum of the augmenting 

capacities of all arcs of 𝑁 𝑓  going from 𝑊 to 𝑊  

 Such an arc 𝑢, 𝑣 ∈ 𝐸 𝑓  may be either a forward arc 

(case 1 in Definition 7.5.2.2, i.e., 𝑎𝑐 𝑢, 𝑣 = 𝑐 𝑢, 𝑣 −
𝑓 𝑢, 𝑣 ) or a backward arc (case 2 in Definition 7.5.2.2, 

i.e., 𝑎𝑐 𝑢, 𝑣 = 𝑓 𝑣, 𝑢 ) 

 Thus, all in all, if we directly compare the value of 𝑊, 𝑊  

in 𝑁 𝑓  with the value of 𝑊, 𝑊  of 𝑁, we see that the first 

one is equal to the second one minus the forward flow of 

𝑓 across the cut plus the backward flow of 𝑓 against the 

cut 
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Interesting attributes of 𝑁 𝑓  

 Clearly, the size of f along the cut minus the size of f against 

the cut is just |f| and therefore the last two terms together 

amount to -|f| 

 But for every cut 𝑊, 𝑊  and flow 𝑓 we know that the flow of 

𝑓 over forward arcs minus the flow of 𝑓 (i.e., 𝑓 ) over 

backward arcs coincides with the total flow of 𝑓 that leaves 

source 𝑠 

 We define 

 Consequently, we conclude that the value of 𝑊, 𝑊  in 𝑁 𝑓  

coincides with the value of 𝑊, 𝑊  of 𝑁 minus the total flow 

𝑓  of flow 𝑓 

 Hence, this proves the following Lemma 7.5.2.3 since in 

both networks the value of the minimum cut equals the value 

of the maximum flow 

 
 ,

,
s v E

f f s v


 
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Consequence 

7.5.2.3 Lemma 

If 𝑓  is the value of the maximum flow in network 𝑁, 

then the value of the maximum flow in 𝑁 𝑓  is 

𝑓 − 𝑓  
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Layered network 

7.5.2.4 Definition 

A layered network 𝐿 = 𝑠, 𝑡, 𝑈, 𝐴, 𝑏  with 𝑑 + 1 layers 

is a network with vertex set 𝑈 = 𝑈0 ∪ ⋯ ∪ 𝑈𝑑, while 

∀𝑗 ∈ 1, … , 𝑑 : 𝑈𝑗−1 ∩ 𝑈𝑗 = ∅, 𝑈0 = 𝑠 , and 𝑈𝑑 = 𝑡 . 

The set of arcs 𝐴 is defined by 

 1

1

d

j j

j

A U U



 
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Maximal flows 

7.5.2.5 Definition 

Let 𝑁 = 𝑠, 𝑡, 𝑈, 𝐴, 𝑏  be a layered network. An 

augmenting path in 𝑁 with respect to some flow 𝑔 is 

denoted as forward if it uses no backward arc. A flow 

𝑔 of 𝑁 is called maximal (not necessarily maximum) 

if there is no forward augmenting path in 𝑁 with 

respect to 𝑔 
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Maximum, maximal flow 

7.5.2.6 Conclusion 

All maximum flows are maximal. However, not all 

maximal flows are maximum flows. 

 

Proof: 

If 𝑓 is a maximum flow it cannot be augmented. 

Hence, it is maximal. The second part is proven by 

the following example: 1 

s t 

3 4 

2 

1, g=1 

3, g=0 
1, g=1 

1, g=1 

4, g=0 
1, g=0 

2, g=0 

Maximum flow amounts to 2 

However, 𝑔 is maximal but  

𝑔 =1 
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Auxiliary network 𝐴𝑁 𝑓  

 We introduce the auxiliary network 𝐴𝑁 𝑓  as a layered 

network to a network 𝑁 𝑓  with a flow 𝑓 

 We create 𝐴𝑁 𝑓  by carrying out a breadth-first search on 

𝑁(𝑓) while copying only the arcs in 𝐴𝑁 𝑓  that lead us to 

new nodes and only the nodes that are at lower levels than 

node 𝑡 

 If a node is added all incoming arcs from previously added 

nodes are integrated. However, there is no backward arc 

 Hence, 𝐴𝑁 𝑓  is generated out of 𝑁 𝑓  in time 𝑂 𝐸 𝑓 =
𝑂 𝐸  

 Using the auxiliary network, we can easily find the shortest 

augmenting path (with a minimal number of edges) with 

respect to the current flow. 
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7.6 An efficient max flow algorithm 

 In what follows, we introduce a polynomial max 

flow approach 

 It has an asymptotic running time of 𝑂 𝑉 3  

 

Basic structure of the max flow procedure 

 It operates in stages 

 At each stage – depending on the current flow 𝑓 – it 

constructs the network 𝑁 𝑓  and, according to it, it 

generates the auxiliary network 𝐴𝑁 𝑓  

 Then, we find a maximum flow 𝑔 in the auxiliary network 

𝐴𝑁 𝑓  and add this flow 𝑔 to flow 𝑓 
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Basic structure of the max flow procedure 

 Adding 𝑔 to 𝑓 entails adding 𝑔(𝑢, 𝑣) to 𝑓(𝑢, 𝑣) if arc 

(𝑢, 𝑣) is a forward arc in 𝐴𝑁 𝑓  and subtracting 𝑔(𝑢, 𝑣) 
from 𝑓(𝑢, 𝑣) if arc (𝑢, 𝑣) is a backward arc in 𝐴𝑁 𝑓  

 The procedure terminates when s and t are 

disconnected in 𝑁 𝑓  

 This proves that 𝑓 is optimal 
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7.6.1 Pseudo code of the procedure 

Input: A network 𝑁 = 𝑠, 𝑡, 𝑉, 𝐸, 𝑐  

Output: The maximum flow 𝑓 of 𝑁 

 𝑓 = 0; 𝑑𝑜𝑛𝑒 = 𝑓𝑎𝑙𝑠𝑒; 

 while (NOT 𝑑𝑜𝑛𝑒) do 

  𝑔 = 0; 

  construct the auxiliary network 𝐴𝑁 𝑓 = (𝑠, 𝑡, 𝑈, 𝐹, 𝑎𝑐); 

  if 𝑡 is NOT reachable from 𝑠 in 𝐴𝑁 𝑓  then 𝑑𝑜𝑛𝑒 = 𝑡𝑟𝑢𝑒; 

  else repeat  

   while there is a node with 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 𝑣 = 0 do 

    if 𝑣 = 𝑠 OR 𝑣 = 𝑡 then go to incr 

    else delete 𝑣 and all incident arcs from 𝐴𝑁 𝑓  

   end while 

   let 𝑣 be the node in 𝐴𝑁 𝑓  with minimal nonzero 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡[𝑣];
   𝑝𝑢𝑠ℎ 𝑣, 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡[𝑣] ; 

   𝑝𝑢𝑙𝑙 𝑣, 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡[𝑣] ; 

  end repeat; 

 incr: 𝑓 = 𝑓 + 𝑔 Comment: End of the current stage 

 end while 



34 

Business Computing and Operations Research 761 

Pseudo code of 𝑝𝑢𝑠ℎ 𝑦, ℎ  

Comment: Increases the flow 𝑔 by ℎ units pushed from 𝑦 to 𝑡 

𝑄 = 𝑦  Comment: 𝑄 is organized as a queue 

for all 𝑢 ∈ 𝑈 − 𝑦  do 𝑟𝑒𝑞 𝑢 = 0; 

𝑟𝑒𝑞 𝑦 = ℎ Comment: 𝑟𝑒𝑞 𝑢  defines how many units have to be pushed out of 𝑢 

while 𝑄 ≠ ∅ do 

 let 𝑣 be an element of Q 

 remove 𝑣 from Q 

 for all 𝑢 such that 𝑣, 𝑢 ∈ 𝐹 and until 𝑟𝑒𝑞 𝑣 = 0 do 

  𝑚 = min 𝑎𝑐 𝑣, 𝑢 , 𝑟𝑒𝑞 𝑣 ; 

  𝑎𝑐 𝑣, 𝑢 = 𝑎𝑐 𝑣, 𝑢 − 𝑚; 

  if 𝑎𝑐 𝑣, 𝑢 = 0 then remove arc 𝑣, 𝑢  from 𝐹 

  𝑟𝑒𝑞 𝑣 = 𝑟𝑒𝑞 𝑣 − 𝑚; 

  𝑟𝑒𝑞 𝑢 = 𝑟𝑒𝑞 𝑢 + 𝑚; 

  add 𝑢 to 𝑄 

  𝑔 𝑣, 𝑢 = 𝑔 𝑣, 𝑢 + 𝑚; 

 end until 

end while 
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Pseudo code of 𝑝𝑢𝑙𝑙 𝑦, ℎ  

Comment: Increases the flow 𝑔 by ℎ units pull from 𝑦 to 𝑠 

𝑄 = 𝑦  Comment: 𝑄 is organized as a queue 

for all 𝑢 ∈ 𝑈 − 𝑦  do 𝑟𝑒𝑞 𝑢 = 0; 

𝑟𝑒𝑞 𝑦 = ℎ Comment: 𝑟𝑒𝑞 𝑢  defines how many units have to be pulled out of 𝑢 

while 𝑄 ≠ ∅ do 

 let 𝑣 be an element of Q 

 remove 𝑣 from Q 

 for all 𝑢 such that 𝑢, 𝑣 ∈ 𝐹 and until 𝑟𝑒𝑞 𝑣 = 0 do 

  𝑚 = min 𝑎𝑐 𝑢, 𝑣 , 𝑟𝑒𝑞 𝑣 ; 

  𝑎𝑐 𝑢, 𝑣 = 𝑎𝑐 𝑢, 𝑣 − 𝑚; 

  if 𝑎𝑐 𝑢, 𝑣 = 0 then remove arc 𝑢, 𝑣  from 𝐹 

  𝑟𝑒𝑞 𝑣 = 𝑟𝑒𝑞 𝑣 − 𝑚; 

  𝑟𝑒𝑞 𝑢 = 𝑟𝑒𝑞 𝑢 + 𝑚; 

  add 𝑢 to 𝑄 

  𝑔 𝑢, 𝑣 = 𝑔 𝑢, 𝑣 + 𝑚; 

 end until 

end while 
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7.6.2 Analysis of the algorithm 

7.6.2.1 Lemma 

An arc 𝑎 of 𝐴𝑁 𝑓  is removed from 𝐹 at some stage 

only if there is no forward augmenting path with 

respect to flow 𝑔 in 𝐴𝑁 𝑓  that passes through 𝑎.  

 

Proof: 

Arc 𝑎 is deleted at a stage for two reasons 

1. It may either be that 𝑔 𝑎 = 𝑐 𝑎  or  

2. 𝑎 = 𝑣, 𝑢  with 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 𝑣 = 0 or 

𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 𝑢 = 0  

Business Computing and Operations Research 764 

Proof of Lemma 7.6.2.1 

 Suppose that 𝑔 𝑎 = 𝑐 𝑎   

 This means that arc 𝑎 is now saturated and may 

appear in an augmenting path in 𝐴𝑁 𝑓  with 

respect to g only as a backward arc. Hence, the 

proposition follows 

 Let us now consider the case when 𝑣 or 𝑢 has 

throughput zero  

 Then, no input or output by another arc exists at 

the arc 𝑎 and, therefore, 𝑎 = (𝑣, 𝑢) cannot be 

used in any forward path 

 This completes the proof 
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Result of each stage 

7.6.2.2 Lemma 

At the end of each stage, 𝑔 is a maximal flow in 

𝐴𝑁 𝑓 .  

 

Proof: 

 By Lemma 7.6.2.1, an arc is deleted only if it 

cannot belong to a forward augmenting path  

 This never changes again since capacities are 

only reduced and arcs and nodes are deleted 

 However, a stage ends only when node 𝑠 or node 

𝑡 is deleted due to a zero throughput 
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Proof of Lemma 7.6.2.2 

 Therefore, due to Lemma 7.6.2.1 and zero 

throughput in 𝑠 or 𝑡, after completing a stage, 

there are no forward augmenting paths at all, and 

hence 𝑔 is maximal 

 This completes the proof 
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Improvement 

7.6.2.3 Lemma 

The 𝑠-𝑡 distance in 𝐴𝑁 𝑓 + 𝑔  at some stage is strictly 

greater than the 𝑠-𝑡 distance in 𝐴𝑁 𝑓  at the previous 

stage.  

 

Proof: 

 The auxiliary network 𝐴𝑁 𝑓 + 𝑔  coincides with the 

auxiliary network of 𝐴𝑁 𝑓  with respect to flow 𝑔  

 Since 𝑔 is maximal (Lemma 7.6.2.2), there is no 

forward augmenting path in 𝐴𝑁 𝑓  with respect to 𝑔 
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Proof of Lemma 7.6.2.3 

 Hence, all augmenting paths have length greater 

than the 𝑠-𝑡 distance in 𝐴𝑁 𝑓  (that is the length 

of 𝑔)  

 We conclude that the 𝑠-𝑡 distance in 𝐴𝑁 𝑓 + 𝑔  is 

strictly greater than the 𝑠-𝑡 distance in 𝐴𝑁 𝑓  

 This completes the proof 
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Correctness and complexity 

7.6.2.4 Theorem 

The max flow algorithm (with pseudo code given 

under 7.6.1) correctly solves the max-flow problem 

for a network 𝑁 = 𝑠, 𝑡, 𝑉, 𝐸, 𝑐  in asymptotic time 

𝑂 𝑉 3 . 

 

Proof: 

Correctness: 

After performing the last stage, we have s and t 

being disconnected. Hence, the total augmentation 

flow in network 𝑁 𝑓  is zero.  
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Proof of Theorem 7.6.2.4 

 By Lemma 7.5.2.3, we know that the total size 𝑔  

of the maximum flow 𝑔 in network 𝑁 𝑓  amounts to 

𝑔 = 𝑓 − 𝑓 , while 𝑓  is the total size of the 

maximum flow in the original network 𝑁 

 Thus, we obtain 𝑔 = 𝑓 − 𝑓 = 0 and, therefore, 

𝑓 = 𝑓  

 This proves the optimality of the current flow 𝑓 

 

Time bound 

 Due to Lemma 7.6.2.3, we have at most 𝑉  stages, 

since the s-t distance increases monotonously 
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Proof of Theorem 7.6.2.4 

 At each stage at most each node is chosen to 

transfer its minimal throughput 

 Moreover, at most each arc is used completely 

only one time (afterwards, it is deleted) 

 However, an arc may be also used partially and 

this can happen many times 

 But, push and pull operations are initiated by 

each node at most once (afterwards, the node is 

deleted since its throughput is now zero) 

Each push and pull operation contains at most 𝑉  steps 

by enumerating the nodes systematically 
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Proof of Theorem 7.6.2.4 

 All in all, we have 

 At most 𝑉  stages 

 At each stage  

 At most 𝑉 2 steps that use an arc partially 

 At most 𝐸  steps that use an arc completely 

 Thus, the total asymptotic running time amounts to  

       2 2 3
O V V E O V V O V    
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Example 
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Example – stage 1: first node 
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Example – stage 1: second node 
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Example – stage 1: third node 
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Example 
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𝑡 is not reachable from 𝑠 anymore 
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Example – termination  

 Since 𝑡 is not reachable from 𝑠 in 𝐴𝑁 𝑔 + ℎ + 𝑖 , 

the procedure terminates 

 The maximal flow is given through 𝑔 + ℎ + 𝑖 and 

has a total size of 6 
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Additional literature to Section 7 

 Edmonds, J.; Karp, R.M. (1972): Theoretical Improvement 

m Algorithmic Efficiency for Network Flow Problems. 

Journal of the ACM, vol. 19, no. 2 (April 1972), pp. 248-
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 Ford, L.R. JR., and Fulkerson, D.R. (1962): Flows in 
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Additional literature to Section 7 

The efficient max flow algorithm was considerably simplified 

in: 

 Malhotra, V.M.; Kumar, M.P., and Maueshwari, S.N. 

(1978): An 𝑂 𝑉 3  Algorithm for Finding Maximum Flows 

in Networks," Inf. Proc. Letters, 7 (no. 6) (October 1978), 

pp. 277-278. 

 Tarjan, R.E. (1983): Data structures and network 

algorithms. In SIAM CBMS-NSF Regional Conference 

Series in Applied Mathematics 44, Philadelphia, 1983. 
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