8 Transportation Problem — Alpha-Beta

= Now, we introduce an additional algorithm for the
Hitchcock Transportation problem, which was
already introduced before

= This is the Alpha-Beta Algorithm

= |t completes the list of solution approaches for
solving this well-known problem

= The Alpha-Beta Algorithm is a primal-dual
solution algorithm

= Owing to the simplicity of the dual problem, this
procedure Is capable of using significant insights
Into the problem structure
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8.1 Problem definition and analysis

Refresh: The primal problem...

C;; - Delivery costs for each product unit that is transported from supplier i to customer |
a . Totalsupplyofi=1..,m

b, : Totaldemandof j=1,...,n

X; ; - Quantity that supplier i =1,...,m delivers to the customer j =1,...,n

(P)Minimize ¢’ -

1 &
1T
S.t. X =
i a,
E E E E E b

.
X = (x11 X jyeees X poeees Xigyeees X oo X gseens xm’n) >0
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and the corresponding dual

(D) Maximize Zm:ai T +Zn:bj T, :iai -a +Zn:bj -p, st
=1 j=1 i=1 j=1

1 E, (c,, 1 E ) Ciy
1 = 1 E
a
En 77:£ Ci,l e En (ﬂ)g Ci,l ,
E E,
1, E,  Con L 1, E, Con

.e.,
Vie{l,.,n}:Vje{l..m}:q + B <¢q;
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Direct Observation

= The dual considers a somewhat modified problem

= This may be interpreted as follows

= There is a third party that offers transportation service between
the plants and the consumers

= For this service, both sides have to pay an individual fee.
Specifically, the ith supplier pays a; and the jth consumer £,

= Obviously, it is not possible to charge more than c;; for the
respective combination

= Otherwise, since it possesses a more efficient alternative, the
company would not make use of this alternative

= Thus, the difference ¢;- o- §; is denoted as a speculative gain of
the considered company

= Consequently, whenever this difference is negative, the primal
problem is hold to introduce (i,)) in the basis. Otherwise, we better
keep it out.

2
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The first row of the primal tableau

If we consider the first row of the primal tableau,
we directly obtain

— -1 T T
Cl,J:CLJ_CB.AB .A:CLJ_E .A:CLJ_A /A

=G % _:Bj

If we have C;; <0, the dual variables are not feasible
and outsourcing Is not reasonable.
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Feasible dual solutions

Obviously, since ¢;; >0, we have 7 =0"" as

a trivial initial solution.

This trivial solution can be directly improved by
p;=min{c |i=1..m}

AO; = min{ci’j - b |j:1,...,n}
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Consider an example

a'=(3 5 6)Ab"=(2 3 6 3)ac={1 2 2 3

p—

Generating an initial solution :
p=01 2 1 2) =
(min{3-1,3-21-1,2-2}) (min{210,0}) (0
o=| min{l-1,2-22-13-2}|=| min{0,011} |=| 0
\min{4-15-2,6-13-2{) (min{3351}) (1,
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Example

With ao=(0 0 1) Ap=(0 2 1 2),weget

/ﬁT\

C—(a o a o)-|p"
.

S
(3 31 2)(00O00) (1212
=11 2 2 3|-|0 0|—1 2
4 56 3111111212
(2 1 0 0)
=0 0 1 1|>0. Thus, the solution Is obviously feasible
2 2 4 0
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Preparing the Primal-Dual Algorithm

In order to prepare the Primal-Dual Algorithm, we introduce:
1J = {(l Do +p, = ci,j}. Thus, we obtain the reduced primal (RP)

a

Minimize 1" - x

x® a
(E ,A(”))- —|“lacIR" belR"
(n+m) X(IJ) b

AX2>0AxM >0
< Minimize ) ', st.,
i=1
X'+ > a % =a,vie{l..m}
ili.7)e1d
J+m+(z): a; % =b, Vie{l..,nfAX® >0Ax") >0
i|(i,])eld
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Preparing the Primal-Dual Algorithm

N

n+m

Minimize »" x,
=1

S.t.,
X'+ > %, =a,vie{l..m}
il(i,])el
A+ Y X =b, Vie{l..,n}
i(i, )19

Ax2>0A x>0
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8.2 Analyzing the

Obviously, it holds:

m m \
> 4, =Z£xf‘+ > X
i1 i1 i)y )

reduced primal (RP)

i(i,])eld

Since total demand and su

(x .
i,

+Zm:2x

i=1 j|(i,j)el

m n m

2320

m
<:>Zx

a
I

Tl Business Com

2, X

i,j)eld

oply are identical, we have

i(i,)eld

n

2

=L

a
J+m

J

ijmZ 2 %,

—1|| I j eIJ
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Analyzing (RP)

ZX.""+Z ZXIJ ij+m+_ __in,J

i= i=1 j(i,j)eld i=Li|(i,j)eld

Obviously, it holds : X =D > X,
i=1 j|(i,])el j=1i|(i, j)el

Hence, we conclude :

m m n n
2x,a+z Zx,j: Xm Y DX
i= i=1 j|(i,j)eld j=1 j=Lil(i, j)eld
m
S X = Zx‘}‘+m
i=1 j=1
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Direct conclusion

Altogether, we therefore obtain:

Zx,a+z > X Zx;’"gz X; :Zai

i= i=1 jl(i,j)eld i=1 (i,j)eld i=1

<:>Zm:xla —Zm:a, - > X
i= i= (i,j)eld

Zn:X;mJ“ ” Xj=ZX?+m+ Xij = ” b,

j=1 j=1il(i,j)eld j=1 (i,j)eld j=1

<:>Zn:xj.‘+m:n b — > X, :>mfx —Za +Zb -2- > X
J=1 j=1 (i,j)eN (i,j)eld
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Consequences

Since minimizing » x* =) a +>» b, —2- > x . determines the
i=1 i=1 j=1 (i.j)eld

objective function of the reduced primal of the Hitchcock Transportation
Problem, we just have to maximize 2- > X,

(i,j)eld
This leads to the following (RP):
Maximize > X,
(i,j)eld
S.t.,
Xij 2 0,Vi, | A (Z) X j < a,Vvie {1,...,m}/\ (Z): X j < bj,Vj = {1,...,n}
il(i,j)eld il(i,j)eld
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Analyzing the problem in detall

Damn |

This problem reminds me of
something...

Definitely! It is just a

MAX-FLOW |
PROBLEM '

Schumpeter School a I
of Business and Economics
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The RP Is a specific Flow Problem

Obviously, the problem (RP) can be modeled as

a Max-Flow Problem.
For this purpose, we define the following network:

Of(w; t)[1< j<n}

g Business Computing and Operations Research WI N FOR 796



lllustration of the network

O s
/
a,
@

Edges are out of set |J _
a. _and have unlimited capacity b,

NN
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Resuming with our example

= In the example introduced above, we generated
the following initial solution

a=(0 0 1) Ap=(1 2 1 2)

= Thus, we can derive

Withz=(0 0 1) Af=(1 2 1 2)
(2 1 0 0)
we obtain the reduced matrix; |0 0 1 1

2 2 4 0)
=13 ={(13),(14),(21).(2.2),(3.4);
2
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We obtain the following network




Augmenting the flow

= At first, we find the flow
= S-V;-W,-t
= |t can be augmented up to 3
= Therefore, we update the network...
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We obtain the modified network




Augmenting the flow

= Now, we find
= S-V,-W,-t
= |t can be augmented up to 2
= Therefore, we update the network...
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lllustration




Augmenting the flow

= Now, we find
= S-V,-W,-t
= [t can be augmented up to 3
= Therefore, we update the network...
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Modifying our network again




Augmenting again the flow

= Now, we find
= S-V3-W,-t
= [t can be augmented up to 3
= Therefore, we update the network...
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And the network Is adjusted to

AN
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Solution to the reduced primal problem

Thus, we obtain :

‘0 0 3 0
x=[2 3 0 0/ Obviously xis not feasible for (P)

0 0 0 3,

Owing to the vectorsa’ =(3 5 6)a
b" =(2 3 6 3) weneed the vector of slackness

variables x*=(0 0 3 0 0 3 0)
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Updating the dual solution

= Obviously, we can optimally solve (RP) by
making use of an efficient Max-Flow Algorithm

= Unfortunately, this does not provide a mechanism
for updating the dual solution yet

= |n order to do so, we have to analyze the dual of
the reduced primal (DRP)
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Modified Reduced Primal (RP,)

n+m

Minimize ) x?,
=1

S.t.,
X =0,V A X' >0,Vi e{l,...,n+m}/\

X'+ > X =a,Vie{l..mja

il(i.j)eld
XX+ Y. X, =b;,Vje{l..n}
il(i, )19
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Modified Reduced Primal (RP,)

Since it holds

i=1 jl(i,j)eld i=1 j=1 j=1 il(i,])e
m m n n
a _ a
SOREONDISTEDREEI NPT
i=1 i=1 ji(i,j)eld j=1 j=Lil(i,j)el
n m n m m-+n
a _ a a __ a a __ a
D IR TED D IR TETD N 3 FESES ) 3
i=1 (i,j)el j=1 (i,j)el i=1 j=1 i=1 i=1

XF+ Y x;=a,Vie{l.,miaxi, + > x,=b,Vje{l..n}

jl(i,j)en J+m il(i,j)el]
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...and its dual counterpart (DRP,)

m n
Maximize » a;-o,+ Y b, - B,
i—1 i=1

S.t.,
o+ P <0V (ij)el]
a <1, Vie {1,...,m}/\,6j <0,Vje {1,...,71}

e
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8.3 Solving the DRP

8.3.1 Theorem

Assuming (RP) was optimally solved by an appropriate

Max-Flow Algorithm. Furthermore, (W,W*) is the resulting
S-t-cut according to the current x with

W ={veV |v is reachable from s in the final network of (RP)}.
Then,
1 ifveWw . [-1 ifw ew
. /\IB = i c
0 ifv,ew® *' |0 ifw,eW

a; =

determines an optimal

solution for ( DRP,). Additionally, (aﬁ) with a =a+4,-a

n+m

=B+ A, are improved solutions of (D) if Y x*>0A 4, >0
i=1
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Proof of the Theorem — Basic cognitions

As a preliminary step, we generate some basic
attributes

1. Ifv. eW, we know that:

if additionally (i, j)e 13 =>w, eW

This results from the following observation:

If v, eW A(i, j) € 13, then we know that there

IS an edge with unlimited capacity connecting
v; and w;. Hence, it holds ¢; ; > f; ; and therefore

W, IS reachable from s as well.
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Proof of the Theorem — Basic cognitions

2. Corollary:
v, eW AW, eW* :>(i, j)gz N

3. fw, eWA(i,j)e I Ax,>0=Vv, eW
This results from the following observation:
Since x; ; >0, a former step has established

a connection between v; and w;. Thus
we have a backward link from w; to v; with
capacity x; ; > 0.

2

%a,/%;@\ Business Computing and Operations Research WI N FOR 815



Proof of the Theorem — Basic cognitions

4. Corollary: v, eW° Aw; eW = (i, j)g D vx ;=0

In what follows, r. . denotes the remaining capacity

1|J

on the link (i, j),with

(i.3) {(viow; )1(i.3) e W o {(sv) i e {Lombpof(wit)] e {L....n}.

. v,eW*=r, =0= Z X =a = Xx*=0

6. w,eW=r, =0= X =b; = xj,, =0
i(i.)

m
m
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Proof of Theorem 8.3.1 — Feasibility

We are now ready to commence the proof. At first, we show the
feasibility of the generated solution to (DRP).
Obviously, it holds:

1. @ Sl,‘v’ie{l,...,m}/\,gj SO,‘v’je{l ..... n}
Additionally, we have to show

2. @+p,<0,(i,j)ell.

21 v,eW=w, eW =@ =1Af, =-1=4+5,=0
22 V,eW =g =0=4+f, <0

Thus, (&i,ﬁj) is a feasible solution to (DRP).

2
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Proof of Theorem 8.3.1 — Optimality

We know that the optimal solution to the reduced
primal problem is generated by the Max-Flow procedure
and Is therefore defined by the following variables

Vi, je D AX, Vie{l,...,n+m|

Ij’

Consequently, its objective function value is determined by Z X

i=1
We calculate: Za @, +Zb =Y a—- )Y b=

v; eW W; eW

5| ¥ jz(z[ » }zj
vieW \ jl(i,j)eld v; eW w; eW il(i,j)eld w;eW
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RP and DRP have identical objective values

And thus, 1t holds:

o2z Em) B

v, eW i,j)el vV, eW wieW \ il(i,j)el w; W
a a a a
PIRTEIDIETED I IS G PP 2 X
(i,j)eIJ (i,j)eIJ v; eW WjeW Vv, eW WJ-EW
%/_/

Owing to attribute 6, this is equal to 0

m
_ Z Xia _ Z Xia
i=1

Vi csW

Thus, (&,,5’) IS an optimal solution to (DRQ)
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Feasibility of the updated dual solution

We calculate (aﬂ) =(a, B)+ 7 -(d,,é)
It has to be guaranteed
o+ A4y + B+ 4, ,B- ot A 0c+/1,B <c

(0 ifv,eWaw, eW
0 ifv,eW" Aw, eW®
-1 ifv,eW" Aw, eW
1 ifveWaw, eW” .

~

1 ifv,eWAaw, eW®
=s-1ifv eWC/\Wj eW
0 otherwise

R
_|_
S
|l
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Proof of Theorem 8.3.1 — Defining A,

e

1 ifv,eWaw, eW®

L — O . ~

Ay < — =, with ¢, + f, =< -1 ifv, eWAw, eW
_|_

0 otherwise

.

If (i, j) € 13, we have to consider the case v, eW® Aw; eW

N+

:>/102min{0ci+,8j—ci,j [(Lj)elJ AV, eW° AW, EW}SO

If (i, j) ¢ 13, we have to consider the case v, eW Aw; eW*
= Jy<min{c,;—a;— B, 1(i.j) & LT} >0
Thus, we define

. :min{ci’j —o; =P j)e T Av,eW Aw, eW°}>O
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Quality of the new dual solution

With 2, =min ¢, ; —a; — B, | (i.j) & 13 { > 0, we calculate

J

izi:ai.(ai+zo.ai)+§ B+ B )=
g(ai-aimo-ai-aiﬁg(bj-ﬁjmo-bj.ﬁj):
izml:ai.aﬁjzn;bj-,Bj+/10-[izm1:ai-&i+j2n;‘bj-Ej)z
iai-ai+ibj-ﬂj+io-(_zm:xiaj > iai-ai+zn:bj-,8j
= = = it $xes0 =t

i=1
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And what follows?

Great! That is all we
need to optimally solve the
problem...

However, we may
simplify the formula
considerably...

Schumpeter School a
of Business and Economics
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Important observation — Part 1

We consider the resulting constellation after applying the Max-Flow
procedure. Addionally, we analyze the generated flow X; ;. First of

all, we consider arcs that vanish in the next iteration. This may
happen only if (i, j) e 1J in the current iteration, but in the next one

It holds (i, j) ¢ 1J. This case Is characterized that originally

o; + B; = ¢;; applies, but subsequently ¢ +,§j <¢; holds. Note
that this is only possible if & + 8, <0=>d, + B, =—1. This is
the constellation v, eW* Aw; eW. It is illustrated on the next

slide. Here, we directly conclude that the arc (i, j) € 1J was not used
by the generated flow at all. Hence, we obtain x; ; = 0.

2
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lllustration of this constellation

o

oW
b, \
W ) bn

saturated .
unused
arc m arc @/
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Conseqguence

= |f we erase the edge (i,)) in the subsequent
iteration, I.e., the solving of the modified (RP),
this has no impact on the current flow x;;

= Note that the current flow does not make use of
this arc

= Conseqguently, this arc Is dispensable
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Observations Il

Now we consider arcs (i, j) € IJ with x;, >0. We

know that it holds ¢, + 5, =¢,; = @ +f; =0.

Therefore, the flow x; ; >0 can be kept on these arcs.

Anyhow, the resulting flow x; ; can be kept for the next

iteration of solving (RP) that arises after updating o and

f. Note that this update may cause additional arcs between
the v, — and w; —nodes.
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Calculating A,

Ay = min{ci,j —o; =B 1. j)e T Av,eW Aw, EWC}
Thus, we can label all rows I in the reduced matrix
(¢,; — oy — B, ) with v, e . Additionally, we label all

columns J withw, eW.
Then 4, is determined by the minimum unlabeled value.

We update (ci,j .y —ﬁj) by applying the following rules:
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Updating rules

We distinguish:

1. If (i,j) isunlabeled = v, eW Aw; eW*
— We subtract 4, from ¢;; —a; — B,

J

2. If (i, ]) is labeled twice = v, eW® Aw; €W

= o; +f;=-1. Weadd 4, to ¢;; —a; — B,

3. If (i,]) is labeled only by the ith row or the jth column
:>(Vi eW AW, eW)v(Vi eW*® AW, eWC):>0ci +p,=0

C;; —o; — B; 1s kept unchanged
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Continuation of the example

= Now, we resume our example which was
iIntroduced above

= Thus, first of all, we have to update the dual
solution

Witha=(0 0 1)) Ap=01 2 1 2)

(2 1 0 0)
Reduced matrix is therefore:]0 0 1 1
2 2 4 0
= 1J ={1,3),(1,4),(2,1),(2,2),(3,4)}
g Business Computing and Operations Research Wl N FOR 830
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lllustration of the calculation

- o\ PoN
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Updating the dual solution

—
W ={s,v, w,|}

W = {v|,V,, W, W, w,,t}

Witha=(0 0 1) Ap=(1 2 1 2)

2 1 0 0) (223164
(cj—o—B;)=|0 0 1 1|=|6———%
2 2 40) (2240,
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Updating the dual solution

(2 100y (2 1 0 0+2)
Jo=min{2,241=2=0 0 1 1|=| 0 0 1 142
2 2 4 0) (2-2 2-2 4-2 0

2 1.0 2
|00 1 3|=

0 0 2 0,

" =(0 0 DA =(1 2 1 2)
AT =(0 0 )Ag"=(0 0 0 -1)

= Thus, we get two new arcs (3,1) and (3,2) and lose one (1,4).

=13={(13),(21),(2,2),(31).(3 2).,(3,4)}
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lllustration
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Applying Max-Flow

Q\ ()

Business Computing and Operations Research



Results

Unfortunately, we are not able to augment the
flow

Thus, x Is kept as a maximum flow
However, we have changed the sets W and W
This Is considered in the following

C
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Applying Max-Flow




Updating the dual solution

—
W ={5,V,,Vy, Wy, W, W,|}

2 10 2) (4o

(cj——=p,)=|0 0 1 3|=[0 0 1
0020 (99249
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Updating the dual solution

Jo=min{2,1l=1=0 0 1 3|=|0 0 0 3

o =(0 0 3)Ap'=(1 2 1 0)

Ad'=(0 1 Dap =(-1 -1 0 -1)

=a =(0 1 Hap =(0 1 1 -1

= Thus, we get a new arcs (2,3).

=13 ={(1,3),(21),(2,2),(2,3)(31),(3,2),(3,4)}
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Modified network




We obtain the augmented flow

AN,



lllustration




The new decomposition




The modified primal solution

=W ={s} AW ={v,,V,,V,, W, W,, W,, W,,t}
Witha=(0 1 4) Ap=(0 1 1 -1)
‘0 0 3 0)
x=2 0 3 0
0 30 3

— Isfeasible fora" =(3 5 6)Ab'=(2 3 6 3)
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Proof of optimality

=W ={s} AW ={V,,V,, V5, W, W,, Wy, W, t}

= X" =0,Vie{l..,m+n} and it holds:
¢'-x=1-3+1-2+3-2+5-3+3-:3=35

a' -a+b' -f=3-0+51+6-4+2-0+3-1+6-1-3-1
=9+24+3+6-3=38-3=35

= x and (a, ) are optimal solutions!
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2.

Alpha-Beta-Algorithm

Construct a feasible dual solution to the TPP

= Set f;= min{Ci,- L =1,---,m} and o, = min{(:ij -S| ] =1,...,n}

= Calculate the matrix with the reduced costs C; =C; —¢, — f,
Prepare the network for the Max-Flow-Calculation

= Nodes: S,V,,..,V ,W,...,W ,t

= Arcs: (S’Vl)""'(s"’% with capacity E’,::”g:

(w,t),..., (W,
Furthermore: If and only if C; =0, the arc (v,,w;) exists with

Infinite capacity
Calculate the Maximum s-t-Flow Iin the network. LetW be

the set of nodes reachable from node s In the
corresponding s-t-Cut

While W ={s}, conduct the following steps (see next slide):
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Alpha-Beta-Algorithm (Dual Solution Update)

= IfveW=ga=Lv,eW*=, label the i-th row In the reduced
cost matrix.

= Ifw, eW = B, =-1=, label the j-th column in the reduced
COSt matrix.

= All other variables of the DRP-solution 55,,5 are set to 0.

= Set A, to the minimum value of the unlabeled entries in
the reduced cost matrix.

= Subtract 4,from every unlabeled entry and add it to every
entry labeled twice in the reduced cost matrix.

» Set B=L+ A fra=a+d

= Update the network as indicated by the new reduced cost
matrix.

= Try to augment the current flow and update the set W.
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