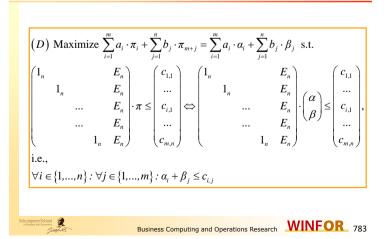
8 Transportation Problem – Alpha-Beta

- Now, we introduce an additional algorithm for the Hitchcock Transportation problem, which was already introduced before
- This is the Alpha-Beta Algorithm
- It completes the list of solution approaches for solving this well-known problem
- The Alpha-Beta Algorithm is a primal-dual solution algorithm
- Owing to the simplicity of the dual problem, this procedure is capable of using significant insights into the problem structure

peter School

Business Computing and Operations Research WINFOR 781

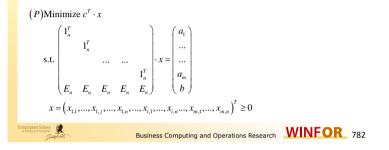
and the corresponding dual



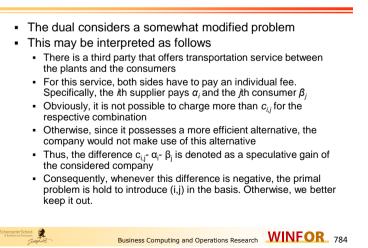
8.1 Problem definition and analysis

Refresh: The primal problem...

- $c_{i,j}$: Delivery costs for each product unit that is transported from supplier i to customer j
- a_i : Total supply of i = 1, ..., m
- b_i : Total demand of j = 1, ..., n
- $x_{i,j}$: Quantity that supplier i = 1, ..., m delivers to the customer j = 1, ..., n



Direct Observation



The first row of the primal tableau

If we consider the first row of the primal tableau, we directly obtain

$$\overline{c}_{i,j} = c_{i,j} - c_B \cdot A_B^{-1} \cdot A = c_{i,j} - \pi^T \cdot A = c_{i,j} - A^T \cdot \pi$$
$$= c_{i,j} - \alpha_i - \beta_j$$

2

If we have $\overline{c}_{i,j} < 0$, the dual variables are not feasible and outsourcing is not reasonable.

Business Computing and Operations Research WINFOR 785

Consider an example

$$a^{T} = \begin{pmatrix} 3 & 5 & 6 \end{pmatrix} \land b^{T} = \begin{pmatrix} 2 & 3 & 6 & 3 \end{pmatrix} \land c = \begin{pmatrix} 3 & 3 & 1 & 2 \\ 1 & 2 & 2 & 3 \\ 4 & 5 & 6 & 3 \end{pmatrix}$$

$$\Rightarrow$$
Generating an initial solution :

$$\beta = \begin{pmatrix} 1 & 2 & 1 & 2 \end{pmatrix}^{T} \Rightarrow$$

$$\alpha = \begin{pmatrix} \min\{3-1,3-2,1-1,2-2\} \\ \min\{1-1,2-2,2-1,3-2\} \\ \min\{4-1,5-2,6-1,3-2\} \end{pmatrix} = \begin{pmatrix} \min\{2,1,0,0\} \\ \min\{0,0,1,1\} \\ \min\{3,3,5,1\} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

$$T = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

Feasible dual solutions

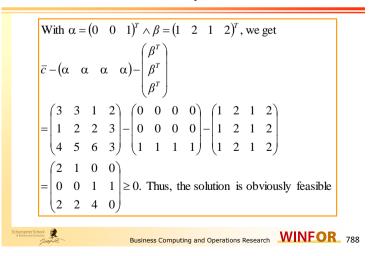
Obviously, since $c_{i,j} \ge 0$, we have $\pi = 0^{n+m}$ as a trivial initial solution.

This trivial solution can be directly improved by

$$\beta_j = \min \left\{ c_{i,j} \mid i = 1, \dots, m \right\}$$
$$\land \alpha_i = \min \left\{ c_{i,j} - \beta_j \mid j = 1, \dots, m \right\}$$

Business Computing and Operations Research WINFOR 786

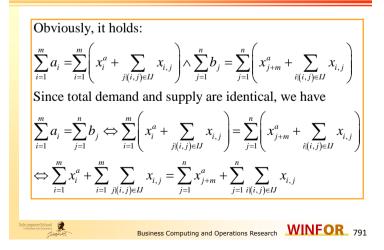
Example



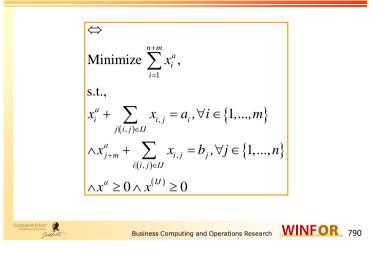
Preparing the Primal-Dual Algorithm

In order to prepare the Primal-Dual Algorithm, we introduce: $IJ = \left\{ (i, j) / a_i + \beta_j = c_{i,j} \right\}.$ Thus, we obtain the reduced primal *(RP)* Minimize $1^T \cdot x^a$, s.t., $\left(E_{(n+m)}, A^{(II)} \right) \cdot \begin{pmatrix} x^a \\ x^{(II)} \end{pmatrix} = \begin{pmatrix} a \\ b \end{pmatrix}, a \in IR^m, b \in IR^n$ $\wedge x^a \ge 0 \wedge x^{(II)} \ge 0$ \Leftrightarrow Minimize $\sum_{i=1}^{n+m} x_i^a$, s.t., $x_i^a + \sum_{j(i,j)\in II} a_{i,j} \cdot x_{i,j} = a_i, \forall i \in \{1,...,m\}$ $\wedge x_{j+m}^a + \sum_{i(i,j)\in II} a_{i,j} \cdot x_{i,j} = b_j, ,\forall j \in \{1,...,n\} \wedge x^a \ge 0 \wedge x^{(II)} \ge 0$ WINFOR 789

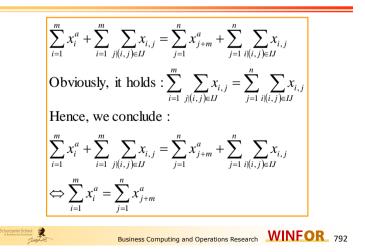
8.2 Analyzing the reduced primal (RP)

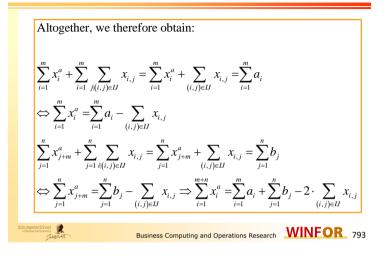


Preparing the Primal-Dual Algorithm

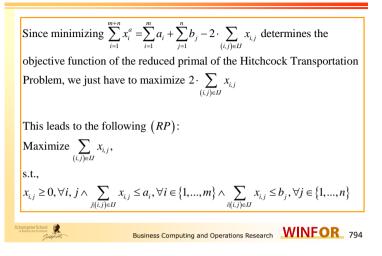


Analyzing (RP)

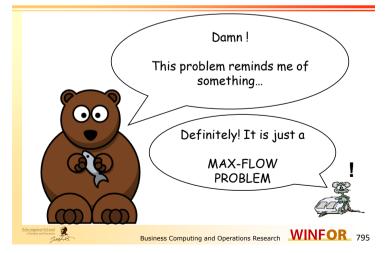




Consequences



Analyzing the problem in detail



The RP is a specific Flow Problem

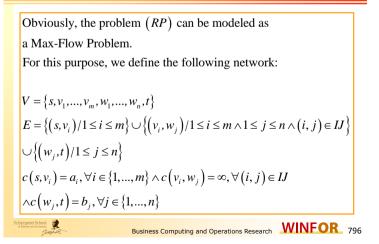
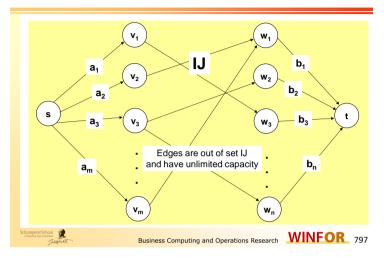
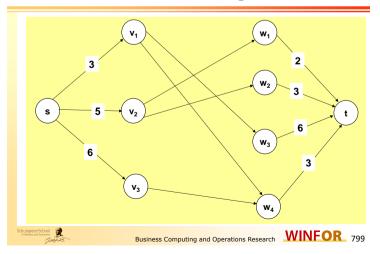


Illustration of the network



We obtain the following network

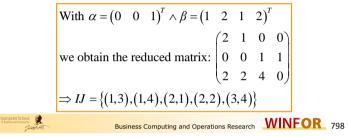


Resuming with our example

• In the example introduced above, we generated the following initial solution

$\alpha = (0)$	0	$1)^T$	$\wedge \beta = (1$	2	1	$2)^{T}$	
$\alpha - (0)$	U	1)	(p - (1))	4	1	-	

• Thus, we can derive



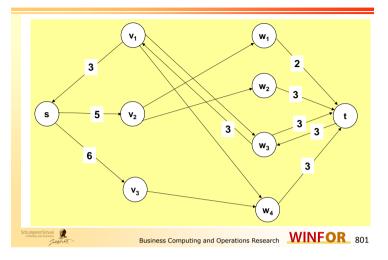
Augmenting the flow

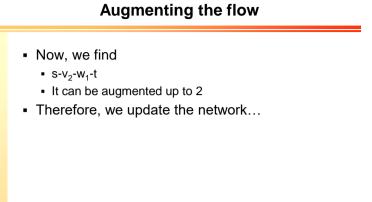
- At first, we find the flow
 - s-v₁-w₃-t

2

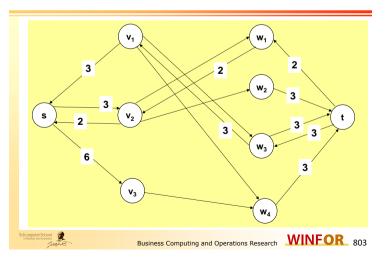
- It can be augmented up to 3
- Therefore, we update the network...

We obtain the modified network





Illustration



Augmenting the flow

- Now, we find
 - s-v₂-w₂-t

2

- It can be augmented up to 3
- Therefore, we update the network...

Business Computing and Operations Research WINFOR 804

Business Computing and Operations Research WINFOR 802

<image><image>

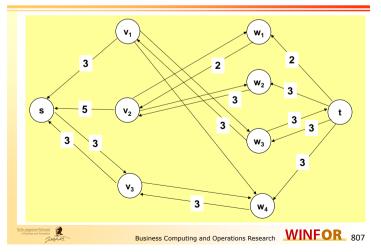
Augmenting again the flow

- Now, we find
 - S-V₃-W₄-t

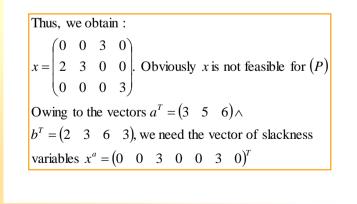
2

- It can be augmented up to 3
- Therefore, we update the network...

And the network is adjusted to



Solution to the reduced primal problem



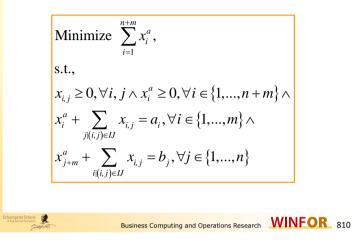
Business Computing and Operations Research WINFOR 808

Updating the dual solution

- Obviously, we can optimally solve (RP) by making use of an efficient Max-Flow Algorithm
- Unfortunately, this does not provide a mechanism for updating the dual solution yet
- In order to do so, we have to analyze the dual of the reduced primal (DRP)

Business Computing and Operations Research WINFOR 809

Modified Reduced Primal (RP₁)

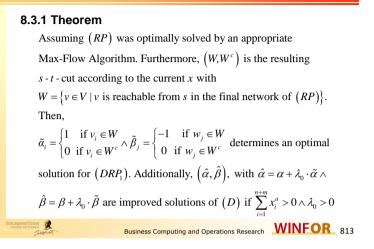


Modified Reduced Primal (RP₁)

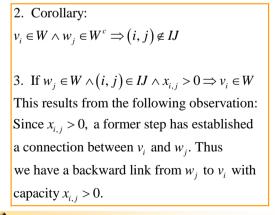
Since it holds $\sum_{i=1}^{m} \left(x_i^a + \sum_{j(i,j)\in U} x_{i,j} \right) = \sum_{i=1}^{m} a_i = \sum_{j=1}^{n} b_j = \sum_{j=1}^{n} \left(x_{j+m}^a + \sum_{i(i,j)\in U} x_{i,j} \right)$ $\Leftrightarrow \sum_{i=1}^{m} x_i^a + \sum_{i=1}^{m} \sum_{j(i,j)\in U} x_{i,j} = \sum_{j=1}^{n} x_{j+m}^a + \sum_{j=1}^{n} \sum_{i(i,j)\in U} x_{i,j}$ $\Leftrightarrow \sum_{i=1}^{m} x_i^a + \sum_{(i,j)\in U} x_{i,j} = \sum_{j=1}^{n} x_{j+m}^a \sum_{(i,j)\in U} x_{i,j} \Leftrightarrow \sum_{i=1}^{m} x_i^a = \sum_{j=1}^{n} x_{j+m}^a \Leftrightarrow 2 \cdot \sum_{i=1}^{m} x_i^a = \sum_{i=1}^{m} x_i^a$ Thus, we obtain the equivalent problem: Minimize $\sum_{i=1}^{m} x_i^a$, s.t., $x_{i,j} \ge 0, \forall i, j \land x_i^a \ge 0, \forall i \in \{1, ..., n+m\} \land$ $x_i^a + \sum_{j(i,j)\in U} x_{i,j} = a_i, \forall i \in \{1, ..., m\} \land x_{j+m}^a + \sum_{i(i,j)\in U} x_{i,j} = b_j, \forall j \in \{1, ..., n\}$

...and its dual counterpart (DRP₁)

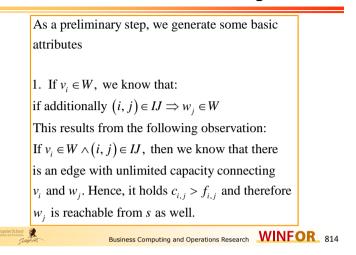
8.3 Solving the DRP



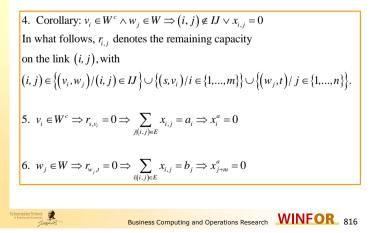
Proof of the Theorem – Basic cognitions

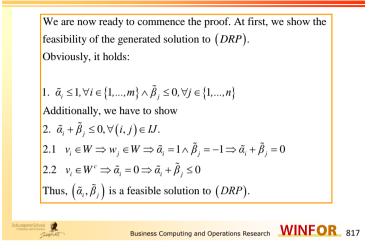


Proof of the Theorem – Basic cognitions

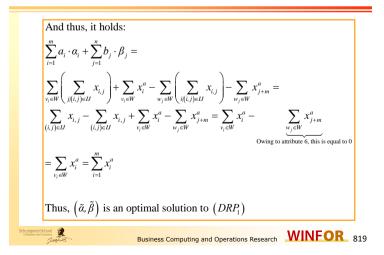


Proof of the Theorem – Basic cognitions

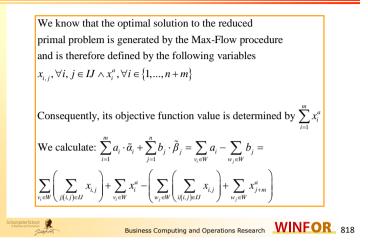




RP and DRP have identical objective values



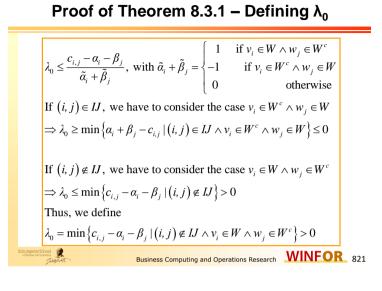
Proof of Theorem 8.3.1 – Optimality



Feasibility of the updated dual solution

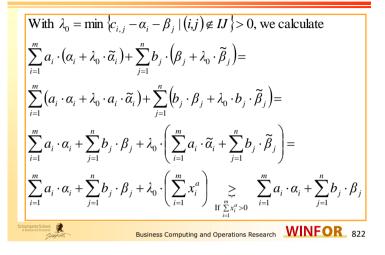
We calculate
$$(\hat{a}, \hat{\beta}) = (a, \beta) + \lambda_0 \cdot (\tilde{a}, \tilde{\beta})$$

It has to be guaranteed
 $a_i + \lambda_0 \cdot \tilde{a}_i + \beta_j + \lambda_0 \cdot \tilde{\beta}_j \le c_{i,j} \Leftrightarrow a_i + \beta_j + \lambda_0 \cdot \tilde{a}_i + \lambda_0 \cdot \tilde{\beta}_j \le c_{i,j}$
 $\lambda_0 \cdot (\tilde{a}_i + \tilde{\beta}_j) \le c_{i,j} - a_i - \beta_j \Leftrightarrow \lambda_0 \le \frac{c_{i,j} - a_i - \beta_j}{\tilde{a}_i + \tilde{\beta}_j}$
 $\tilde{a}_i + \tilde{\beta}_j = \begin{cases} 0 & \text{if } v_i \in W \land w_j \in W \\ 0 & \text{if } v_i \in W^c \land w_j \in W^c \\ -1 & \text{if } v_i \in W \land w_j \in W^c \end{cases} = \begin{cases} 1 & \text{if } v_i \in W \land w_j \in W^c \\ -1 & \text{if } v_i \in W \land w_j \in W \\ 0 & \text{otherwise} \end{cases}$



And what follows?

Quality of the new dual solution

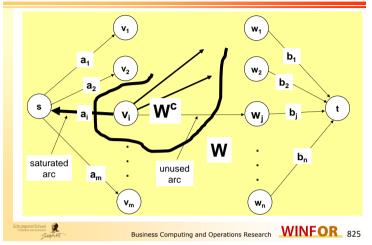


Important observation – Part 1

We consider the resulting constellation after applying the Max-Flow procedure. Addionally, we analyze the generated flow $x_{i,j}$. First of all, we consider arcs that vanish in the next iteration. This may happen only if $(i, j) \in IJ$ in the current iteration, but in the next one it holds $(i, j) \notin IJ$. This case is characterized that originally $\alpha_i + \beta_j = c_{i,j}$ applies, but subsequently $\hat{\alpha}_i + \hat{\beta}_j < c_{i,j}$ holds. Note that this is only possible if $\tilde{\alpha}_i + \tilde{\beta}_j < 0 \Rightarrow \tilde{\alpha}_i + \tilde{\beta}_j = -1$. This is the constellation $v_i \in W^c \land w_j \in W$. It is illustrated on the next slide. Here, we directly conclude that the arc $(i, j) \in IJ$ was not used by the generated flow at all. Hence, we obtain $x_{i,j} = 0$.

Business Computing and Operations Research WINFOR 824

Illustration of this constellation



Observations II

Now we consider arcs $(i, j) \in IJ$ with $x_{i, j} > 0$. We know that it holds $\hat{\alpha}_i + \hat{\beta}_i = c_{i,j} \implies \tilde{\alpha}_i + \tilde{\beta}_i = 0.$ Therefore, the flow $x_{i,j} > 0$ can be kept on these arcs.

Anyhow, the resulting flow $x_{i,i}$ can be kept for the next iteration of solving (*RP*) that arises after updating α and β . Note that this update may cause additional arcs between the v_i – and w_i – nodes.

Business Computing and Operations Research WINFOR 827

2

Consequence

- If we erase the edge (i,j) in the subsequent iteration, i.e., the solving of the modified (RP), this has no impact on the current flow x_{i,i}
- Note that the current flow does not make use of this arc
- Consequently, this arc is dispensable

Business Computing and Operations Research WINFOR 826

Calculating λ_{o}

$$\lambda_{0} = \min \left\{ c_{i,j} - \alpha_{i} - \beta_{j} | (i,j) \notin IJ \land v_{i} \in W \land w_{j} \in W^{c} \right\}$$

Thus, we can label all rows *i* in the reduced matrix
 $(c_{i,j} - \alpha_{i} - \beta_{j})$ with $v_{i} \in W^{c}$. Additionally, we label all
columns *j* with $w_{j} \in W$.
Then λ_{0} is determined by the minimum unlabeled value.
We update $(c_{i,j} - \hat{\alpha}_{i} - \hat{\beta}_{j})$ by applying the following rules:

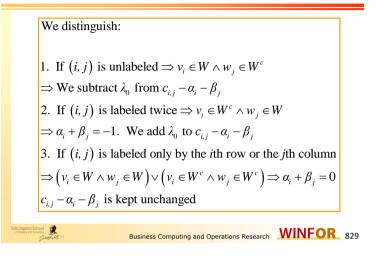
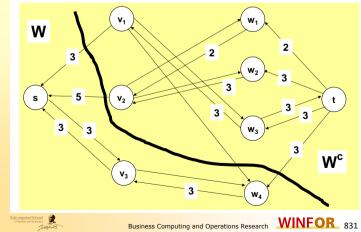
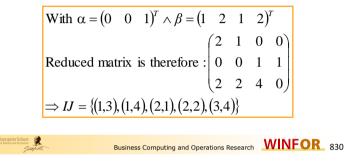


Illustration of the calculation

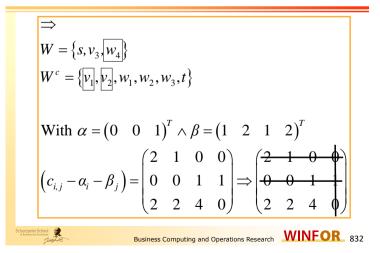


Continuation of the example

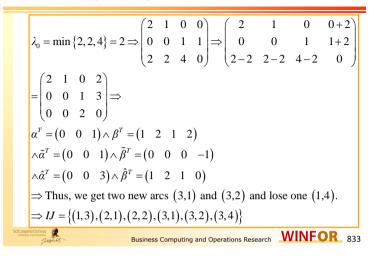
- Now, we resume our example which was introduced above
- Thus, first of all, we have to update the dual solution



Updating the dual solution



Updating the dual solution



V₁ W₁ 2 2 **W**₂ V₂ t 3 3 3 3 3 W₃ 3 3 V₃ w۸ Business Computing and Operations Research WINFOR 834

Illustration

Results

- Unfortunately, we are not able to augment the flow
- Thus, x is kept as a maximum flow
- However, we have changed the sets W and W^c
- This is considered in the following

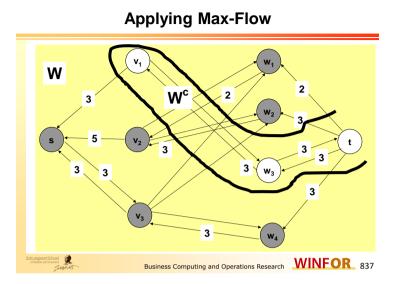
2

v₁ W₁ 2 2 W₂ V₂ t 3 3 3 3 W₃ 3 3 V₃ 2

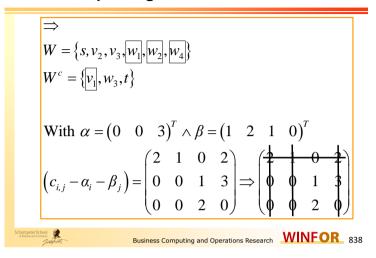
Business Computing and Operations Research WINFOR 835

Business Computing and Operations Research WINFOR 836

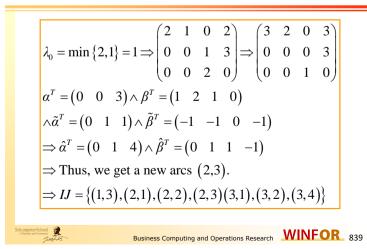
Applying Max-Flow



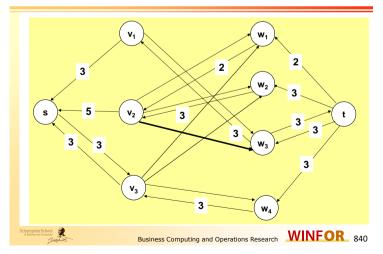
Updating the dual solution

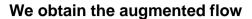


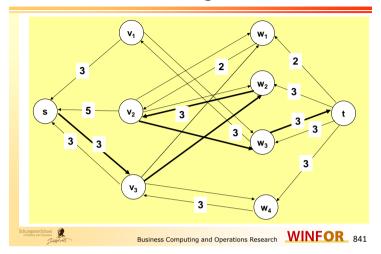
Updating the dual solution

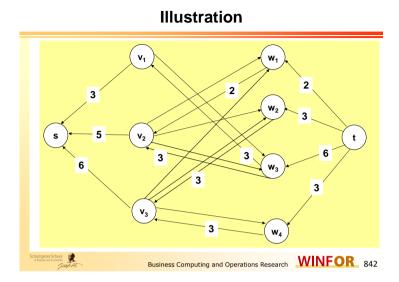


Modified network

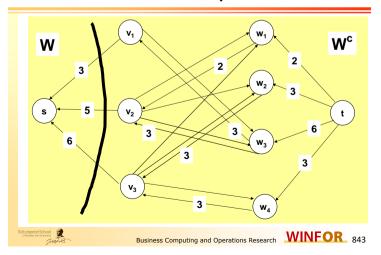








The new decomposition



The modified primal solution

$$\Rightarrow W = \{s,\} \land W^{c} = \{v_{1}, v_{2}, v_{3}, w_{1}, w_{2}, w_{3}, w_{4}, t\}$$

With $\alpha = (0 \ 1 \ 4)^{T} \land \beta = (0 \ 1 \ 1 \ -1)^{T}$
$$x = \begin{pmatrix} 0 & 0 & 3 & 0 \\ 2 & 0 & 3 & 0 \\ 0 & 3 & 0 & 3 \end{pmatrix}$$

$$\Rightarrow \text{ Is feasible for } a^{T} = (3 \ 5 \ 6) \land b^{T} = (2 \ 3 \ 6 \ 3)$$

Proof of optimality

$$\Rightarrow W = \{s,\} \land W^{c} = \{v_{1}, v_{2}, v_{3}, w_{1}, w_{2}, w_{3}, w_{4}, t\}$$

$$\Rightarrow x_{i}^{a} = 0, \forall i \in \{1, ..., m + n\} \text{ and it holds:}$$

$$c^{T} \cdot x = 1 \cdot 3 + 1 \cdot 2 + 3 \cdot 2 + 5 \cdot 3 + 3 \cdot 3 = 35$$

$$a^{T} \cdot a + b^{T} \cdot \beta = 3 \cdot 0 + 5 \cdot 1 + 6 \cdot 4 + 2 \cdot 0 + 3 \cdot 1 + 6 \cdot 1 - 3 \cdot 1$$

$$= 5 + 24 + 3 + 6 - 3 = 38 - 3 = 35$$

$$\Rightarrow x \text{ and } (a, \beta) \text{ are optimal solutions!}$$

WINFOR 845

Alpha-Beta-Algorithm (Dual Solution Update)

- If v_i ∈ W ⇒ α̃_i = 1; v_i ∈ W^c ⇒, label the *i*-th row in the reduced cost matrix.
- If w_j ∈ W ⇒ β̃_j = −1 ⇒, label the *j*-th column in the reduced cost matrix.
- All other variables of the DRP-solution $\tilde{\alpha}, \tilde{\beta}$ are set to 0.
- Set $\lambda_{\rm 0}$ to the minimum value of the unlabeled entries in the reduced cost matrix.
- Subtract λ₀ from every unlabeled entry and add it to every entry labeled twice in the reduced cost matrix.
- Set $\beta = \beta + \lambda_0 \tilde{\beta} \wedge \alpha = \alpha + \lambda_0 \tilde{\alpha}$

2

- Update the network as indicated by the new reduced cost matrix.
- Try to augment the current flow and update the set *W*.

Business Computing and Operations Research WINFOR 847

