
Business Computing and Operations Research 848

9 Integer Programming

 In what follows, we consider a subset of Linear Programs

where solutions, i.e., the variables as well as the

parameters of the problem definition, are restricted to

integers

 Although this leads to a considerable reduction of the size

of the solution space, it complicates the solution process

significantly

 It turns out that these problems cannot be solved

efficiently, i.e., based on current knowledge, a solution of

these problems cannot be guaranteed in polynomial time

 However, by inspecting specific problems introduced and

analyzed above, it turns out that optimal solutions are

already integer

Business Computing and Operations Research 849

9.1 Well-solvable problems

 Already introduced representatives of well-

solvable problems are

 Transportation Problem

 Shortest Path Problem

 Max-Flow

 The interesting question at this point is

 “WHY, i.e., what makes these problems such

simple?”

Business Computing and Operations Research 850

And what follows?

What is so specific here …?

I conjecture that
there is a special

structure of matrix
A…. !

Business Computing and Operations Research 851

Unimodular matrices

9.1.1 Definition

A matrix is denoted as unimodular if and only if det 1.n nB IR B 

9.1.2 Definition

A matrix is denoted as totally unimodular, in the following

denoted as TUM, if and only if every square non-singular submatrix of

A is unimodular.

We know that each singular square matrix A h

m nB IR 

as a determinant equal to zero.

Hence, we can conclude that a matrix is denoted as totally

unimodular if and only if every square submatrix A has a determinant

equal to -1,0,+1.

m nB IR 

Business Computing and Operations Research 852

Examples

 Let us consider some examples

 However, consider the zero matrix
 Obviously, it is NOT unimodular since the determinant

has the value zero

 However, there is no non-singular sub-matrix. Thus,
nothing to fulfill wherefore the matrix is TUM

 

   

1 1 1 1
 since 1 1 1 1 1 1 2

1 1 1 1

1 1 0 1 1 0

0 1 1 since 0 1 1 1 1 0 1 0 1 0 2

1 0 1 1 0 1

det

det

     
            

    

    
    

           
    
    

Business Computing and Operations Research 853

Effect of unimodularity

 Consider the LP

 Furthermore, according to a basis B, let matrix AB

be totally unimodular

 Then, we can conclude that the corresponding

basic feasible solution (bfs) is an integer solution

Min , s.t. 0    Tc x A x b x

Business Computing and Operations Research 854

And what follows?

How do we know this…?

From Cramer’s rule

!

Business Computing and Operations Research 855

Cramer‘s rule

 Consider the adjoint matrix

 Note that AB(i|j) arises from AB by erasing the ith
row and jth column

 Then, we know that

 Since the entries of the adjoint matrix are
obviously integers, the inverted matrix has only
integer entries

      1
i j

B Bi , j
adj A det A i | j


  

 
 1 1

B B

B

A adj A
det A

  

Business Computing and Operations Research 856

The basic feasible solution

 Thus, we get

 as feasible integer solution

 Consequently, we can conclude the following

Theorem

   
 

 1 1
0 0B N B B

B

x ,x A b, adj A b,
det A


 

      
 

Business Computing and Operations Research 857

Main consequence

9.1.3 Theorem

A linear program Min , s.t. with a totally unimodular

matrix has only integer basic feasible solutions.

This is also true for problems Min , s.t.

and Max , s.t. .

T

T

T

c x A x b

A

c x A x b

c x A x b

  

  

  

Business Computing and Operations Research 858

Proof of Theorem 9.1.3

 The Theorem follows immediately out of the

following simple observations

 Owing to unimodularity, each basic feasible solution

becomes integer

 If we have a totally unimodular matrix A the combined

matrixes (E,A) and (-E,A) are also totally unimodular

 Thus, we always obtain basic feasible solutions

comprising only integer values

 In what follows, we are looking for simple criteria

that guarantee unimodularity for a given matrix

Business Computing and Operations Research 859

Criteria for unimodularity

9.1.4 Proposition

A matrix A is totally unimodular if

 Matrix A has only -1, 0, +1 entries

 Each column comprises at most two non-zero

elements

 The rows of A can be partitioned into two subsets A1

and A2 (i.e., A1⋃A2={1,…,m}) such that two non-zero

elements in a column are either in the same set of

rows if they have different signs or they are in different

sets of rows if they have equal signs

Business Computing and Operations Research 860

Proof of Proposition 9.1.4

 We identify an arbitrary square submatrix B of the matrix
A

 Obviously, the given criteria also apply to this submatrix

 We show that det(B)={0,-1,1} by induction by the size n of
the submatrix B

 We commence with n=1: Here, the proposition is
obviously true

 Let us assume that the determinant of all submatrices
with size lower than n have value {0,-1,1}

 Now, we distinguish three cases
 Case 1: B has a zero column. Obviously, by generating the

determinant by this column, we obtain det(B)=0

 Case 2: B has a column with one value equal to 1 or -1. Then, by
generating the determinant by this column, we know that
det(B)=det(C) or det(B)=-det(C)

Business Computing and Operations Research 861

Proof of Proposition 9.1.4

 Case 3: All columns have exactly two values unequal to zero.

Then, the sets A1 and A2 provide us with a separation.

Specifically, we have

 I.e., the matrix is obviously singular and, therefore, we have

det(B)=0

 This completes the proof

 
1 2

1i , j i , j

i A i A

a a , j ,...,n
 

   

Business Computing and Operations Research 862

Direct consequences

 Transportation Problem
 What kind of matrix is it?

 Obviously, we have exactly two 1 values and nothing else in each

column

 Moreover, we have a separation of this matrix

 Specifically, on the one side A1={1,...,m} and on the other side
A2={m+1,…,m+n}. Hence, by applying Proposition 8.1.4, we know
that A is totally unimodular

 

 

1

1,1 1, ,1 ,

Minimize

1

...1

s.t.

1

,..., ,..., ,..., 0

T

T

n

T

n

T
mn

n n n n n

T

n m m n

P c x

a

x

a

bE E E E E

x x x x x



   
   
   
    
   
   

  
  

 

Business Computing and Operations Research 863

Direct consequences

 Vertex-arc adjacency matrix
 What kind of matrix is it?

 Obviously, we have exactly one “1-value” and one “-1-value” in
each column

 Moreover, we have a trivial separation of this matrix

 Specifically, on the one side A1={1,...,n} comprises all rows of
matrix A and on the other side A2 is empty. Hence, by applying
Proposition 8.1.4, we know that A is totally unimodular

 
 

 
1 1

1 when

with 1 when

0 otherwise

1 is source of arc 1 is sink of arc

k

i ,k i ,k ki n; k m

i,k k i,k k

j V : e i, j

A , j V : e j,i

α i e ; α i e

   

   


       



    

Business Computing and Operations Research 864

Criteria for total unimodularity

9.1.5 Corollary

A matrix A is totally unimodular if and only if

 the transpose matrix AT is totally unimodular

 the matrix (A,E) is totally unimodular

The Proof follows directly out of Proposition 9.1.4

Business Computing and Operations Research 865

And what follows?

Nice structure of matrix A:
Now, it is obvious why these

problems are simple.

But in general,
the situation is

significantly worse.

Business Computing and Operations Research 866

In general …

 Linear Integer Programs are unfortunately NP hard

 I.e., out of current knowledge, we assume that it is not

possible to solve this problem with an algorithm whose

running time is polynomially bounded

 Unfortunately, since those problems are of significant

interest, we have to provide new techniques

 that find best integer solutions

 but cannot avoid exponential running times for specific worst case

scenarios

 This is addressed in the following sections

Business Computing and Operations Research 867

9.2 Cutting Plane Method

 The basic idea goes back to Gomory (1958)

 By optimally solving the continuous problem (i.e.,
the so-called LP-relaxation), we may face two
different constellations
 The found solution is already integer, i.e., an optimal

solution is also found for the integer variant of the
continuous problem

 Otherwise, the found optimal solution comprises some
entries that are not integers

 The second case is handled as follows
 Integrate an additional restriction that excludes the

optimal non-integer solution, but

 keeps all integer solutions

Business Computing and Operations Research 868

We consider an example

 Therefore, we obtain for the LP-relaxation

1 2

1 2

1 2

1 2

1 2

Maximize 1 1

s.t. 6 8 3

2 2 1

0

 are integers

x x

x x

x x

x ,x

x ,x

  

    

   



 

 

 

 

0 1 1 0 0 0 1 1 0 0 0 1 1 0 0

3 6 8 1 0 3 6 8 1 0 3 6 8 1 0

1 2 2 0 1 1 2 2 0 1 1 11 1 0
2 2

1 10 2 01 1 1 10 2 0 0 2 0 2 22 2 2 2
313 6 8 1 0 6 0 2 1 3 3 0 1

2 2
1 1 1 11 1 0 1 1 0 1 11 1 02 2 2 2 2 2

     

    

  

 

   

  

Business Computing and Operations Research 869

And obtain finally

 as follows

 We obtain the solution x=(3,7/2)

 Obviously, this solution is not integer

13 71 1 1 10 2 0 0 2 0 0 0 1
2 2 2 2 2 2

3 3 31 1 13 0 1 3 0 1 3 0 1
2 2 2 2 2 2

1 1 7 71 11 1 0 1 0 2 1 0 2
2 2 2 2 2 2

 

 



Business Computing and Operations Research 870

Let us consider the final tableau

 It holds:

 First row

 The rest

 By setting

 we may write restriction (1)

 I.e., the left-hand side always represents a combination of

a basic variable and non-basic variables

 It is fulfilled by all feasible solutions of the LP

0

T

N Nz z c x  

1

B N N B B N Nb x A x x A A x      

   
0

000 0
 and

T

i , j Bi m; j n

z c
y y x z

b A   

 
    

 

     0 0 1i , i , j jB i
j N

y x y x , i ,...,m


    

Business Computing and Operations Research 871

Conclusions

 Since we know xN≥0, we conclude

 Let us now assume that we have an integer

solution, i.e., x and z are integer vectors

 In that case, the left-hand side becomes integer, i.e.,

we have only summation and multiplication operations

with integers

 Thus, we directly obtain as restriction (2)

   0 0i , i , j jB i
j N

y x y x , i ,...,m


      

     0 0 2i , i , j jB i
j N

y x y x , i ,...,m


          

Business Computing and Operations Research 872

Observation

 While (1) applies to all feasible solutions, (2) is

fulfilled only if xB is integer

 Note that this follows directly from the fact that

 And if xB(i) is not integer, we obtain

 

 

   

0

0

0

0

0 2

i ,B i

i , i , j jB i
j N

x y

y x y x , i ,...,m






 

          

 

 

 

 

 
0

0

0

0

0

0

0

i , B i

i ,B i

i , B i

i , i , j jB i
j N

y x

x y

y x

y x y x , i ,...,m


 



 

   

          

Business Computing and Operations Research 873

Generating a new restriction

 In order to obtain the desired new restriction, we have to get
rid of xB(i). We just subtract (1) from (2)

 Adding the last restriction (cut) to the Simplex tableau, we
exclude the fractional solution xB but do not loose any
integer solution. In fact, the restriction is designed such that
at least one integer solution is on its hyperplane

 IPs are still difficult! We don’t know how many cuts to add

     

     

     

0

0

0 0

0 1

0 2

 2 1

i , i , j jB i
j N

i , i , j jB i
j N

i , i , i , j i , j j

j N

y x y x , i ,...,m

y x y x , i ,...,m

y y y y x







    

         

          







 0 0 1 1with as a new slack variablei , i , i , j i , j j n n

j N

y y y y x x x 



         

Business Computing and Operations Research 874

Resume with our example

 Note that the first row has led to the first cut

 Obviously, the resulting solution is not feasible since x5<0

 However, owing to the fact that we introduce an additional

dual variable, the dual solution obviously stays feasible

 Hence, we apply the Dual Simplex Algorithm

13 70 0 1 0
2 213 70 0 1

2 2 313 0 1 0
2 2313 0 1

2 2 7 11 0 2 0
2 27 11 0 2

2 2 1 10 0 0 1
2 2



 

   0 0 0 0 0 0 5 3 4 5

4 5

13 13 7 7
+ 1 1

2 2 2 2

1 1

2 2

, , , j , j j

j N

y y y y x x x x x

x x



    
                       

    

    



Business Computing and Operations Research 875

First cut

2 1

1

x1

2

3

3

x2
first cut

2 1x x

first LP

solution
second LP

solution

IP solution

4

 4 1 2 2 1

2nd restriction

1 1 1 1 2 2
2 2 2

x x x x x           

Business Computing and Operations Research 876

Applying the Dual Simplex Algorithm

 We obtain the second optimal LP solution xT =(3/2,3/2,0,1,0)

 This solution is not integer and we introduce a second cut:

 

13 70 0 1 0 3 0 0 1 0 72 2

31 3 13 0 1 0 0 1 0 32 2 2 2

7 1 3 11 0 2 0 1 0 0 42 2 2 2

1 0 0 0 1 21 10 0 0 1
2 2



  
 

   1 0 1 0 1 1 6 3 5 6

3 6

3 3 1 1
+ + 3 3

2 2 2 2

1 1

2 2

, , , j , j j

j N

y y y y x x x x x

x x



    
                      

    

    



Business Computing and Operations Research 877

Second cut

2 1

1

x1

2

3

3

x2
first cut

2 1x x
second cut

2 1
3 1

4 4
x x  

first LP

solution
second LP

solution

IP solution

third LP solution

4

 3 2 1 2 1

1st restriction

31 1 1 13 8 6
2 2 2 4 4

x x x x x             

Business Computing and Operations Research 878

Additional constraint

 

3 0 0 1 0 7 0
2 0 0 0 0 7 23 0 0 1 0 7 3 10 1 0 3 0

2 2 1 0 1 0 0 3 13 10 1 0 3
2 2 3 11 0 0 4 0 1 1 0 0 0 4 12 23 11 0 0 4

1 0 0 0 1 2 02 2 1 0 0 0 1 2 0
1 0 0 0 1 2 1 0 0 1 0 0 21 10 0 0 0 1

2 2

 


   

 

 We obtain the third optimal LP solution xT=(1,1,1,1,0,0)

 Thus, we obtain the optimal IP solution xT=(1,1)

Business Computing and Operations Research 879

Gomory’s Cutting Plane Method

   0

0 1 1

1 Solve the LP relaxation with the Simplex Algorithm to optimality.

Let be the th column with 0 1 of the optimal tableau and

hence, 1

2. If the LP

j

T T
j j j

m j m

.

j j , ,...,n

z ,b ,...,b c ,a ,...,a , j ,...,n.

 

    

0

0 1

0

0

 solution space is unbounded, terminate since the ILP is unbounded

3. If , terminate since the integer solution is optimal to the ILP.

4 Select the row with the smallest index with and

a

m

i. i

 

 

 
0 0 0 0

0 0

1

dd the following Gomory cut to the optimal tableau:

5. Apply the lexicographic version of the Dual Simplex Algorithm.

6 Go to 2.

Note that the lexicographic version

j j

i i i i j n

j N

x x

.





            

 of the Dual Simplex Algorithm prevents !cycling

Business Computing and Operations Research 880

Finiteness of the algorithm

Works really nice. Step by
step we isolate the integer

solutions…

But does it always
work … I mean

ALWAYS, i.e., in
general?

Business Computing and Operations Research 881

Finiteness of the algorithm

 In what follows, we consider the question whether

the algorithm will always terminate if the original

problem has an finite upper bound

 Therefore, in order to provide an understandable

structure of pivoting, we first introduce the so-

called lexicographic order

 This order allows us to attain significant insight

into the structure of the resulting tableaus after

each iteration

Business Computing and Operations Research 882

Lexicographic order

9.2.1 Definition (lexicographically positive)

9.2.2 Definition (lexicographical order)

 0

 is denoted as lexicographically positive if and only if

the lowest numbered non-zero entry of is positive. I.e., if

and only if it holds: 0 If it holds that 0 we

say is lex-ze

i

n

min i|x

x IR

x

x . x ,

x





 

ro.

 has an earlier position than in the

lexicographical order if and only if is

lexicographically positive. We write

n n

n

L

x IR y IR

x y IR

x y.

 

 



Business Computing and Operations Research 883

Examples

   

   

   

   

   

0,0,1,0 0,0,0,2

1,0,0,0 0,9,5,2

2,0,0,0 1,9,5,2

1,3,7,2 1,3,7,2,0,9,5,2

1,3,7,2 1,3,7,2,0, 9,5,2

L

L

L

L

L





  



 

It holds that:

Business Computing and Operations Research 884

Consequences

 >L is obviously a complete ordering of the

elements in IRn

 Now, we have to define how the lexicographical

version of the Dual Simplex Algorithm works in

detail

 In this procedure, in order to break ties, the

largest lexicographical column is always taken to

improve the current dual solution

Business Computing and Operations Research 885

The Lexicographical Dual Simplex

9.2.3 Theorem

 

0

0 1

We consider the Simplex tableau defined by

0
, with 0 : 0

Thus, we may apply the Dual Simplex Algorithm. Moreover, are the

columns of the tableau. We assume that all thes

T

N T

N i

NB

n

z c
c i b

b E A

, ,...,


  

  

 

1

1

e columns (starting with column 1),

i.e., the columns , are lexicographically positive

if not, we introduce an additional restriction 1

Then, the Dual Simplex Algorithm terminates a

n

T

n

,...,

x x M .

 

  

0

0

0 0

0

0

fter conducting a finite number of

steps complying with the following rules

1. Select an arbitrary fulfilling 0

2. Determine by 0

i

t j
j

it jj
i i

i a

t lex min | a
a a



   
   

   

Business Computing and Operations Research 886

Proof of Theorem 9.2.3

 During the execution of each application of the

dual simplex it holds that

 All columns 1,…,n stay lex-positive throughout the

computation

 Column zero strictly lex-decreases

 This results from the following facts

  

   

0

0 0 0 0

0

0

0

0

1 stays lex-positive after pivoting. The th row becomes

, with 0 is lex-positive since is lex negative

due to 0.

The column becomes 0,...,0,1,0,...,0 .

i

i t

i i i it

i

i

Tt

i n i

t




   







 

  





Business Computing and Operations Research 887

Proof of Theorem 9.2.3

  0

0

0 0 0

0

0

We consider the th column and compute

Note that if 0 holds we have and the proposition follows. Hence, we have

0 and consider

t r r t
i ir r r i i

i i it r t

i i i

r r r

i i i

r

i

r r t
   

  
  

  



 
      

 
 

 

  

 

0 0

the first non-zero element max , . Since both columns are lex-positive,

we have at this lowest numbered row : 0, 0 and max , 0. We additionally

assume that 0. Due to 0, we co

r t

i i

r t r t

i i i i

r t

i i

i

 

   

 

  

 

0

0

0 0

nclude 0 and is lex-positive. Now, we

assume 0.Due to the choice of column , we know that the column with the entry

 at row is lex-positive since the first

r r

i

r

i

r t
r i i
i r t

i i

t

i

 



 


 





 
  
 
 

0

0 0 0 0 0 0

0 0

 non-zero element coincides

with 0 and we have 0.

Consequently, we obtain for the first non-zero pos

t r

Lt r
i i

r t t r t t

j j j j j j r

ir t t r t t

i i i i i i

j i

 

 

     


     


 



     
           

             

0

0 0

ition: 0.

r t

j jr r

j i r t

i i

 
 

 

 
    

 
 

Business Computing and Operations Research 888

Proof of Theorem 9.2.3

0

0 0

0

0

0 0 0

0 0

We consider the column zero and compute

. We know that 0 and 0.

Clearly, if it holds that 0 we have .

We consider the lowest numbered row with 0. Since

t

i i t

i i i it

i

t

i i i

t

ii

 
   



  

 


   

 



0

0

0

0 0

 is lex-positive,

we conclude 0 and, due to 0, we conclude .

Hence, the column zero lex-decreases in each iteration of the dual simplex algorithm.

t

t

i it

i i it

i

 
  




  

Business Computing and Operations Research 889

Finiteness of the algorithm

Nice proof…
Due to the decrease in each

step we do not have a
cycling

However, we are
not through with it

yet. There are
several restarts of

the procedure

Business Computing and Operations Research 890

Proof of Theorem 9.2.3

1 2 3

0 0 0 0

Let be the th column of the tableau matrix after the th execution

of the dual simplex algorithm. Due to the aforementioned attributes, we

conclude that ...

k

i

L L L L l

A i k

A A A A   

 Clearly, between two applications of the dual simplex

algorithm an additional row is added to the tableau

 This additional restriction reduces the set of feasible

solutions

 Moreover, in each step of the dual simplex the column

zero strictly lex-decreases

Business Computing and Operations Research 891

Proof of Theorem 9.2.3

0,0 0,0

0,0 0,0 0,0

We have assumed that the problem is bounded. Therefore, the first

component converges towards some number with the following

definition:

After a finite number of iterations

a w

w w f   

0,0 0,0

0,0 0,0 0,0 0,0

0,0 0,

 a falls below 1, and for some

 we can write

, with 1

Consequently, this row provides the next cut

-

We then apply the dual simplex and choose

k k k

k k

j j

j B

w

k

a w f f

f f x s


   

    

   

0,1

0,0 0,0 0,0

0,

column to enter the basis.

After this pivot we obtain:

k

pk k k

k

p

p

a
a a f

f

   

Business Computing and Operations Research 892

Proof of Theorem 9.2.3

 

 

 

0,

0, 0,

0, 0,1

0,0 0,0 0,0 0,0 0,0

0, 0,

Now, at an optimal tableau of the dual simplex we have

1 0

and therefore it is larger than its fractional part

2

Hence, it holds that:

3

k

p

k k

p p

k k

p pk k k k

k k

p p

a

a f

a a
a a f a f

f a







      0,0 0,0 0,0 0,0

0,0 0,0

0,0 0,0

Due to the convergence of the sequence to , this shows that from

this point on is an integer.

k k k k k

l

k k

a f a w

a w

a w

         

   

Business Computing and Operations Research 893

Proof of Theorem 9.2.3

0The vectors are lex-decreasing, and we have shown that after some point

the first component becomes fixed at an integer. Consequently, the second

component is monotonically non-increasing. It is l

lA

 

1,

1,

0,0

ower bounded by zero.

The argument above can then be repeated for .

However, we need to show that 0 so that the steps following step 2 go

through. This follows because remains fixed, wh

l

p

k

p

k

a

a

a



0,

1,

1,0

ich implies that 0.

This implies 0 because 0.

Hence, becomes integer after a finite number of steps.

We can continue in this way down column zero, showing that all components

even

k

p

k k L

p p

l

a

a A

a



 

tually reach integer values, at which point the algorithm terminates. The

only other possible termination occurs when the dual simplex algorithm finds

that the dual is unbounded, and hence that the original ILP is infeasible.

Business Computing and Operations Research 894

Proof of Theorem 9.2.3

 Moreover, an indefinite number of rows and columns is

avoided by dropping a slack variable of a cut if it becomes

fractional and is associated with a new Gomory cut (by

entering the basis)

 Consequently, we have always at most n rows and at

most n-m additional cuts

 Since it was shown that the first column is strictly lex-

decreasing during the computation, the number of

considered constellations is bounded by an exponential

function

 Consequently, the procedure terminates after a finite

number of steps

Business Computing and Operations Research 895

Optimally solving Integer Programs (IPs)

Great!
All IPs can be solved to

optimality in a
systematic way

However, we have no
integer solutions

before not attaining
an optimal one. Due
to an exponential

running time, this is
not that nice.

Business Computing and Operations Research 896

Example

We obtain for the LP-relaxation of the IP:

2

1 2

1 2

1 2 1 2

Maximize

s.t. 3 2 6

3 2 0

0

x

x x

x x

x ,x x ,x

   

    

  

 
 

3 1 13 1 0 00 0 0 2 4 40 0 1 0 0 2 2
1 16 3 2 1 0 6 6 0 1 1 1 1 0

6 6
0 3 2 0 1 3 10 1 0 3 1 10 12 2 2 4 4



  

 

Business Computing and Operations Research 897

Example (lexicographic algorithm)

 
 

 
 

     

0

0 3

3

3

3

4

4

3

3 4 3 4

3 4 3 4

3 3 3 3

3 1 10 0 0
2 4 43 1 10 0

2 4 4 1 11 1 0 0
6 61 11 1 0

6 6 3 1 10 1 0
2 4 43 1 10 1

2 4 4 1 1 10 0 1
2 4 4

13
2

1 1 1 1
4 6 4 4 21 1 1

31
4

1 1 1 1
4 6 4 4 21 1 1

31
4

2 2 41 1 1 1 1 1 0 0 0 0
3 3 3

Thus we

T

T

T

T

T T T
L

Cut

i a

a

a

a a a a

,


 

   

   


  



 
   



   
          

   

resume with the fourth column

Business Computing and Operations Research 898

Example

 We obtain the optimal LP solution xT

=(4/3,1,0,2,0)

 Consequently, we add an additional restriction

resulting from the second row

 

3 1 10 0 0
2 4 4 1 0 0 0 0 1

1 11 1 0 0 4 1 21 0 06 6 3 3 3
3 1 10 1 0 1 0 1 0 0 12 4 4

2 0 0 1 1 41 1 10 0 1
2 4 4

 



  

Business Computing and Operations Research 899

Example

 
 

 
 

     

0

0 4

3

3

4

5

5

4

5 3 5

5 3 5

4 4 4

1 0 0 0 0 1 0
1 0 0 0 0 1

4 1 21 0 0 0
3 3 34 1 21 0 0

3 3 3 1 0 1 0 0 1 0
1 0 1 0 0 1

2 0 0 1 1 4 0
2 0 0 1 1 4

1 1 10 0 0 1
3 3 3

14
3

1 10 0 1
3 3 0 1 0 3 1

1
3

2 11 1 4
3 3 3 2 3 12 1

1
3

3 2 3 12 1 0 1 0 3 1 3 3 3 15 0

T

T

T

T

T T T

Cut

i a

a

a

a a a









   

   


  



  
    



  
            

  

3

3

4

Thus we resume with the third column

L

a

,





Business Computing and Operations Research 900

Example

 

 

1 0 0 0 0 1 0
1 0 0 0 0 1 0

4 1 21 0 0 0 1 1 0 0 0 1 13 3 3

1 0 1 0 0 1 0 1 0 1 0 0 1 0

2 0 0 1 1 4 0 1 0 0 0 1 5 3

1 1 1 1 0 0 1 0 1 30 0 0 1
3 3 3

The optimal solution to the original integer problem is = 1 1Tx ,

 



 

  

Business Computing and Operations Research 901

Optimally solving Integer Programs (IPs)

What about systematically
bounding variables that are not

integer if we do not see
adequate cuts?

Yes. You are right. This
is considered next:

Branch&Bound! We can
even combine that

Branch&Bound
technique with the
generation of cuts

Business Computing and Operations Research 902

9.3 Branch&Bound

 In what follows, we consider a second technique optimally solving
general integer linear programs with a bounded solution space. Given
an integer Linear Program denoted as M0

 We consider a lower bound LM0 to M0 that is obtained from a

relaxation and has a larger solution space LP0P0. We solve the
relaxation to optimality and obtain its optimal solution x0

 For example, LM0 is the optimal objective function value of the LP-
relaxation to M0

 If x0 ∈P0, then the problem M0 is optimally solved.

 Otherwise: Branching (see next slide)

   0 0. .M Min z x s t x P

 0 0. .LM Min z x s t x LP 

Business Computing and Operations Research 903

Branching

We partition the solution space P0 by some branching rule and yield

k+1 subproblems M00…M0k

For example, if P0 is the LP-relaxation, we choose a variable xj
0 that is

not integer and yield two subproblems with

0 0 0 0

1
, 0,..., : :

k i i j

i
P P i j k i j P P


      

   00 0 0 01 0 00 0j j j jP x x P x x P x x P x x               

       00 01 0 0.k kM Min z x s t x P M Min z x s t x P 

Business Computing and Operations Research 904

Enumeration tree obtained from Branching

Applying the branching rule consecutively, we derive a

solution tree

Some solutions to the subproblems may be integer.

We stop if the solution tree is explored entirely, and thus

the best known integer solution is optimal to M0.

M0

M00 M01

M000 M001 M002

Business Computing and Operations Research 905

Size of the enumeration tree

Hmmm… Annoying is that its
size grows exponentially!

This can take ages to
compute…

But we can reduce
the size by
bounding… !

Business Computing and Operations Research 906

Bounding

There is always a global upper bound UM to the integer Linear Program

M0. Either UM= or UM is derived from a feasible solution to M0

We calculate a lower bound LM0i, which is easy to calculate, for each
subproblem M0i , and LM0i has a solution space LP0iP0i i=1,…,k.

A subproblem M0i does not need to be considered anymore (i.e., it is

pruned) if one of the following pruning criterions holds:

a) and the optimal solution x0i of LM0i is feasible to M0: We

found an improved upper bound to M0 , and we remember this

solution UM:= LM0i.

b) : The optimal solution to the subproblem M0i , and all

integer solutions derived from it cannot be better than the best

known feasible solution with UM.

c) : There exists no feasible solution to LM0i and none to M0i.

We stop if the solution tree is explored, and thus UM is optimal to M0.

0iLM UM

0iLM UM

0iLP 

Business Computing and Operations Research 907

Example

We commence with UM= and with the LP-relaxation LM0

 0

1 2

1 2

1 2

2

1 2

1 2

Minimize 2

s.t. 2 2 7

2 2 1

2 1

0

M x x

x x

x x

x

x ,x

x ,x

  

   

    

   





311 10 0 0
2 4 40 1 2 0 0 0

3 1 11 0 07 2 2 1 0 0 2 4 4

1 2 2 0 1 0 1 13 0 0 1
2 2

1 0 2 0 0 1
1 12 0 1 0

4 4

...

 


 



 

Business Computing and Operations Research 908

Consequences

 Obviously, -11/2 is a lower bound for the optimal solution

value of M0

 Since the solution is unfortunately not integer, we branch

and conduct a case statement. Either x1≤1 or x1≥2

 Starting from the original set of feasible solutions

 the simple branching step yields two subproblems

  0 2

1 2 0 1 2 1 2 22 2 7 2 2 1 2 1P x ,x IR | x x x x x              

  

  

00 2

1 2 0 1 2 1 2 2 1

01 2

1 2 0 1 2 1 2 2 1

2 2 7 2 2 1 2 1 1

2 2 7 2 2 1 2 1 2

P x ,x IR | x x x x x x

P x ,x IR | x x x x x x





                   

                  

Business Computing and Operations Research 909

First Level Branches

2 1

1

x1

2

3

3

x2

4

0M

00M
01M

Business Computing and Operations Research 910

Resulting problems

Consequently, we obtain the tableaus
00 01

3 311 1 11 10 0 0 0 0 0 0 0
2 4 4 2 4 4

3 31 1 1 11 0 0 0 1 0 0 0
2 4 4 2 4 4

 1 1 1 13 0 0 1 0 3 0 0 1 0
2 2 2 2

1 1 1 12 0 1 0 0 2 0 1 0 0
4 2 4 2

1 1 0 0 0 0 1 2 1 0 0 0 0 1

M M

 



Business Computing and Operations Research 911

Transformation of the tableaus

 In order to directly conduct the Dual Simplex, we

need to transform the problem

 Specifically, we subtract the first row from the

fourth one or vice versa

 Thus, we obtain

3 311 1 11 10 0 0 0 0 0 0 0
2 4 4 2 4 4

3 31 1 1 11 0 0 0 1 0 0 0
2 4 4 2 4 4

1 1 1 1 3 0 0 1 0 3 0 0 1 0
2 2 2 2

1 1 1 12 0 1 0 0 2 0 1 0 0
4 2 4 2

1 1 1 1 1 10 0 0 1 0 0 0 1
2 4 4 2 4 4

 

   

Business Computing and Operations Research 912

Finally, it turns out…

   

3 311 1 11 10 0 0 0 0 0 0 0
2 4 4 2 4 4

3 31 1 1 11 0 0 0 1 0 0 0
2 4 4 2 4 4

1 1 1 13 0 0 1 0 3 0 0 1 0 2 2 2 2

1 1 1 12 0 1 0 0 2 0 1 0 0
4 4 4 4

1 1 1 1 1 10 0 0 1 0 0 0 1
2 4 4 2 4 4

4 0 0 0 1 0 3 5 0 0 1 0 0 1

1 1 0 0 0 0 1 2 1 0 0 0 0 1

2 0 0 0 1 1 2 2

3 10 1 0 0 1
2 2

2 0 0 1 1 0 4

 

      
   



 

0 0 1 0 1 2

3 10 1 0 0 1
2 2

2 0 0 1 1 0 4 

Business Computing and Operations Research 913

Conclusions

 Unfortunately, both solutions are still not integer

 Thus, we have to resume with the next branching

step

 This time, we obtain altogether four constellations

 M001 and M011 are infeasible (case c)

 Thus, we resume with M000 and M010

  

  

  

 

000 2

1 2 0 1 2 1 2 2 1 2

001 2

1 2 0 1 2 1 2 2 1 2

010 2

1 2 0 1 2 1 2 2 1 2

011 2

1 2 0

2 2 7 2 2 1 2 1 1 1

2 2 7 2 2 1 2 1 1 2

2 2 7 2 2 1 2 1 2 1

M x ,x IR | x x x x x x x

M x ,x IR | x x x x x x x

M x ,x IR | x x x x x x x

M x ,x IR |









                     

                     

                     

  1 2 1 2 2 1 22 2 7 2 2 1 2 1 2 2x x x x x x x                  

Business Computing and Operations Research 914

Second Level Branches

2 1

1

x1

2

3

3

x2

4

000M

00M 01M

010M

001M 011M

IP

Solution

Business Computing and Operations Research 915

Resulting problems

000 010

4 0 0 0 1 0 3 0 5 0 0 1 0 0 1 0

1 1 0 0 0 0 1 0 2 1 0 0 0 0 1 0

2 0 0 0 1 1 2 0 2 0 0 1 0 1 2 0

3 31 10 1 0 0 1 0 0 1 0 0 1 0
2 2 2 2

2 0 0 1 1 0 4 0 2 0 0 1 1 0 4 0

1 0 1 0 0 0 0 1 1 0 1 0 0 0 0 1

4 0 0 0 1 0

M M



   

   

3 0 5 0 0 1 0 0 1 0

1 1 0 0 0 0 1 0 2 1 0 0 0 0 1 0

2 0 0 0 1 1 2 0 2 0 0 1 0 1 2 0

 3 1 3 10 1 0 0 1 0 0 1 0 0 1 02 2 2 2

2 0 0 1 1 0 4 0 2 0 0 1 1 0 4 0

1 1 1 10 0 0 0 1 1 0 0 0 0 1 1
2 2 2 2



   

     

Business Computing and Operations Research 916

Resulting problems

   

4 0 0 0 1 0 3 0 5 0 0 1 0 0 1 0

1 1 0 0 0 0 1 0 2 1 0 0 0 0 1 0

2 0 0 0 1 1 2 0 2 0 0 1 0 1 2 0

 3 31 10 1 0 0 1 0 0 1 0 0 1 0
2 2 2 2

2 0 0 1 1 0 4 0 2 0 0 1 1 0 4 0

1 1 1 10 0 0 0 1 1 0 0 0 0 1 1
2 2 2 2

3 0 0 0 0 0 1 2

1 1 0 0 0 0 1 0

1 0 0 0 0 1 0 2

1 0 1 0 0 0 0 1

3 0 0 1 0 0 2 2

1 0 0 0 1 0 2 2



   

        
   

 



9 10 0 0 0 0 1
2 2

5 11 0 0 0 0 1
2 2

1 0 0 0 0 1 0 2

1 0 1 0 0 0 0 1

4 0 0 1 1 0 0 4

1 10 0 0 0 1 1
2 2







Business Computing and Operations Research 917

M000 and M010
 – Results

 Obviously, the problems are optimally solved

 Thus, we obtain an integer solution with objective

function value -3 from M000 and we set UM:=-3

(case a)

 Since the lower bound of the remaining problem

M010 is -9/2, we have to resume with this problem

 Here, we obtain the new problems

   

  

0100 2

1 2 0 1 2 1 2 2 1 2 1

0101 2

1 2 0 1 2 1 2 2 1 2 1

2 2 7 2 2 1 2 1 2 1 2

2 2 7 2 2 1 2 1 2 1 3

M x ,x IR | x x x x x x x x

M x ,x IR | x x x x x x x x





                       

                      

Business Computing and Operations Research 918

Third Level Branches

2 1

1

x1

2

3

3

x2

4

010M

0100M
0101M

opt. IP

Solution

Business Computing and Operations Research 919

M010 – Results

0100 0101

9 91 10 0 0 0 0 1 0 0 0 0 0 0 1 0
2 2 2 2

5 51 11 0 0 0 0 1 0 1 0 0 0 0 1 0
2 2 2 2

1 0 0 0 0 1 0 2 0 1 0 0 0 0 1 0 2 0

 1 0 1 0 0 0 0 1 0 1 0 1 0 0 0 0 1 0

4 0 0 1 1 0 0 4 0 4 0

1 10 0 0 0 1 1 0
2 2

2 1 0 0 0 0 0 0 1

M M

 





0 1 1 0 0 4 0

1 10 0 0 0 1 1 0
2 2

3 1 0 0 0 0 0 0 1

9 91 10 0 0 0 0 1 0 0 0 0 0 0 1 0
2 2 2 2

5 51 11 0 0 0 0 1 0 1 0 0 0 0 1 0
2 2 2 2

1 0 0 0 0 1 0 2 0 1 0 0 0 0 1 0 2 0

 1 0 1 0 0 0 0 1 0 1 0 1 0 0 0 0 1 0

4 0 0 1 1 0 0 4 0 4 0 0 1 1 0 0 4 0

1 1 1 10 0 0 0 1 1 0 0 0 0 0 1 1 0
2 2 2 2

1 1 1 10 0 0 0 0 1 1 0 0 0 0 0 1 1
2 2 2 2







 

 

 

   

Business Computing and Operations Research 920

And thus, we obtain

   

9 91 10 0 0 0 0 1 0 0 0 0 0 0 1 0
2 2 2 2

5 51 11 0 0 0 0 1 0 1 0 0 0 0 1 0
2 2 2 2

1 0 0 0 0 1 0 2 0 1 0 0 0 0 1 0 2 0

1 0 1 0 0 0 0 1 0 1 0 1 0 0 0 0 1 0

4 0 0 1 1 0 0 4 0 4 0 0 1 1 0 0 4 0

1 1 1 10 0 0 0 1 1 0 0 0 0 0 1 1 0
2 2 2 2

1 1 1 10 0 0 0 0 1 1 0 0 0 0 0 1 1
2 2 2 2

4 0 0 0 0 0 0 2 1

2 1 0 0 0 0 0 0 1

1 0 0 0 0 1 0

 

 

 

      
   

4 0 0 1 0 0 0 0 1

3 1 0 0 0 0 0 0 1

0 0 0 1 0 1 0 0 2
2 0

1 10 1 0 0 0 0 11 0 1 0 0 0 0 1 0 2 2

3 0 0 0 1 0 0 4 2 6 0 0 1 1 0 0 0 4

0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 1 0 1

1 0 0 1 0 0 0 2 2 1 10 0 0 0 0 1 1
2 2



   



 

Business Computing and Operations Research 921

M0100 and M0101
 – Results

 We obtained an improved second feasible

solution xT=(2,1) from M0100 and UM:=-4 (case a)

 The other alternative constellation M0101 still does

not provide any integer solution

 However, since the objective function value is -4,

this is a lower bound for all integer solutions

resulting from M0101 (case b)

 Thus, we explored the solution tree and stop our

procedure. The optimal solution is xT=(2,1) with

an objective function value of UM=-4

Business Computing and Operations Research 922

Example – Conducted exploration process

 00 004 1,3/ 2LM x  

 0 011/ 2 3/ 2,2LM x UM   

1 1x 

M0

M00 M01

M000 M001

1 2x 

 01 015 2,3/ 2LM x  

2 1x  2 2x  2 1x  2 2x 

M010 M011

011

)case c

P  
001

)case c

P   

000

000

000

3

1,1

)

: 3

LM

x

case a

LM UM UM

 



   

M0100 M0101

 

010

010

9 / 2

5/ 2,1

LM

x

 



1 2x  1 3x 

 

0100

0100

0100

4

2,1

)

: 4

LM

x

case a

LM UM UM

optimal solution

 



   

 

0101

0101

0101

4

3,1/ 2

)

LM

x

case b

LM UM

 





Business Computing and Operations Research 923

Branch&Bound Algorithm

1. Determine an upper bound UM either via a heuristic or set UM:=.

2. Solve a lower bound LMi of Mi and obtain its optimal solution xi .

3. If either LMiUM (case b) or Pi=Ø (case c) holds, then go to 7.

4. Otherwise (case b) or c) do not apply): If LMi<UM and xi is feasible to

M0 (case a), then set UM:=LMi. Check for each remaining candidate

problem Mk that is in the list whether it can be pruned by LMkUM

(case b). Remove all pruned problems Mk from the list. Go to 7.

5. Otherwise (case a) does not apply): LMi is a candidate problem and

is stored in a list.

6. Pick a candidate problem Mk from the list. Branch the problem Mk

and derive a subproblem Mki. If no subproblem is derived, then

remove Mk from the list. Proceed with Mi:=Mki and go to 2.

7. If there exists no candidate problem in the list, then terminate the

algorithm. The optimal solution is the corresponding solution to UM.

8. Otherwise (there exist candidate problems in the list): Go to 6.

