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9 Integer Programming 

 In what follows, we consider a subset of Linear Programs 

where solutions, i.e., the variables as well as the 

parameters of the problem definition, are restricted to 

integers 

 Although this leads to a considerable reduction of the size 

of the solution space, it complicates the solution process 

significantly 

 It turns out that these problems cannot be solved 

efficiently, i.e., based on current knowledge, a solution of 

these problems cannot be guaranteed in polynomial time 

 However, by inspecting specific problems introduced and 

analyzed above, it turns out that optimal solutions are 

already integer 
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9.1 Well-solvable problems 

 Already introduced representatives of well-

solvable problems are 

 Transportation Problem 

 Shortest Path Problem 

 Max-Flow 

 

 The interesting question at this point is 

 “WHY, i.e., what makes these problems such 

simple?” 
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And what follows? 

 
What is so specific here …? 

I conjecture that  
there is a special 

structure of matrix 
A…. ! 
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Unimodular matrices 

9.1.1 Definition 

A matrix  is denoted as unimodular if and only if det  1.n nB IR B 

9.1.2 Definition 

A matrix  is denoted as totally unimodular, in the following 

denoted as TUM, if and only if every square non-singular submatrix of 

A is unimodular.  

We know that each singular square matrix A h

m nB IR 

as a determinant equal to zero.

Hence, we can conclude that a matrix  is denoted as totally 

unimodular if and only if every square submatrix A has a determinant 

equal to -1,0,+1.

m nB IR 
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Examples 

 Let us consider some examples 

 

 

 

 

 

 However, consider the zero matrix 
 Obviously, it is NOT unimodular since the determinant 

has the value zero 

 However, there is no non-singular sub-matrix. Thus, 
nothing to fulfill wherefore the matrix is TUM 

 

   

1 1 1 1
 since 1 1 1 1 1 1 2

1 1 1 1

1 1 0 1 1 0

0 1 1  since 0 1 1 1 1 0 1 0 1 0 2

1 0 1 1 0 1

det

det

     
            

    

    
    

           
    
    
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Effect of unimodularity 

 Consider the LP  

 

 Furthermore, according to a basis B, let matrix AB 

be totally unimodular 

 Then, we can conclude that the corresponding 

basic feasible solution (bfs) is an integer solution 

Min , s.t. 0    Tc x A x b x
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And what follows? 

 
How do we know this…? 

From Cramer’s rule 

! 
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Cramer‘s rule 

 Consider the adjoint matrix 

 

 

 Note that AB(i|j) arises from AB by erasing the ith 
row and jth column 

 Then, we know that 

 

 

 Since the entries of the adjoint matrix are 
obviously integers, the inverted matrix has only 
integer entries 

      1
i j

B Bi , j
adj A det A i | j


  

 
 1 1

B B

B

A adj A
det A

  
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The basic feasible solution 

 Thus, we get 

 

 

 

 as feasible integer solution 

 Consequently, we can conclude the following 

Theorem 

   
 

 1 1
0 0B N B B

B

x ,x A b, adj A b,
det A


 

      
 
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Main consequence 

9.1.3 Theorem 

A linear program Min , s.t.  with a totally unimodular 

matrix  has only integer basic feasible solutions.

This is also true for problems Min , s.t. 

and Max , s.t. .

T

T

T

c x A x b

A

c x A x b

c x A x b

  

  

  
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Proof of Theorem 9.1.3 

 The Theorem follows immediately out of the 

following simple observations 

 Owing to unimodularity, each basic feasible solution 

becomes integer 

 If we have a totally unimodular matrix A the combined 

matrixes (E,A) and (-E,A) are also totally unimodular 

 Thus, we always obtain basic feasible solutions 

comprising only integer values 

 In what follows, we are looking for simple criteria 

that guarantee unimodularity for a given matrix 
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Criteria for unimodularity 

9.1.4 Proposition  

A matrix A is totally unimodular if  

 Matrix A has only -1, 0, +1 entries 

 Each column comprises at most two non-zero 

elements 

 The rows of A can be partitioned into two subsets A1 

and A2 (i.e., A1⋃A2={1,…,m}) such that two non-zero 

elements in a column are either in the same set of 

rows if they have different signs or they are in different 

sets of rows if they have equal signs 
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Proof of Proposition 9.1.4 

 We identify an arbitrary square submatrix B of the matrix 
A 

 Obviously, the given criteria also apply to this submatrix 

 We show that det(B)={0,-1,1} by induction by the size n of 
the submatrix B 

 We commence with n=1: Here, the proposition is 
obviously true 

 Let us assume that the determinant of all submatrices 
with size lower than n have value {0,-1,1} 

 Now, we distinguish three cases 
 Case 1: B has a zero column. Obviously, by generating the 

determinant by this column, we obtain det(B)=0 

 Case 2: B has a column with one value equal to 1 or -1. Then, by 
generating the determinant by this column, we know that 
det(B)=det(C) or det(B)=-det(C) 
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Proof of Proposition 9.1.4 

 Case 3: All columns have exactly two values unequal to zero. 

Then, the sets A1 and A2 provide us with a separation. 

Specifically, we have 

 

 

 

 I.e., the matrix is obviously singular and, therefore, we have 

det(B)=0 

 This completes the proof 

 
1 2

1i , j i , j

i A i A

a a , j ,...,n
 

   
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Direct consequences 

 Transportation Problem 
 What kind of matrix is it? 

 

 

 

 

 

 

 

 
 Obviously, we have exactly two 1 values and nothing else in each 

column  

 Moreover, we have a separation of this matrix  

 Specifically, on the one side A1={1,...,m} and on the other side 
A2={m+1,…,m+n}. Hence, by applying Proposition 8.1.4, we know 
that A is totally unimodular 

 

 

1

1,1 1, ,1 ,

Minimize 

1

...1

s.t. ...... ...

1

,..., ,..., ,..., 0

T

T

n

T

n

T
mn

n n n n n

T

n m m n

P c x

a

x

a

bE E E E E

x x x x x



   
   
   
    
   
   

  
  

 
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Direct consequences 

 Vertex-arc adjacency matrix 
 What kind of matrix is it? 

 

 

 

 

 

 

 

 Obviously, we have exactly one “1-value” and one “-1-value” in 
each column  

 Moreover, we have a trivial separation of this matrix  

 Specifically, on the one side A1={1,...,n} comprises all rows of 
matrix A and on the other side A2 is empty. Hence, by applying 
Proposition 8.1.4, we know that A is totally unimodular 

 
 

 
1 1

1 when 

with 1 when 

0 otherwise                 

1  is source of arc    1  is sink of arc 

k

i ,k i ,k ki n; k m

i,k k i,k k

j V : e i, j

A , j V : e j,i

α i e ; α i e

   

   


       



    
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Criteria for total unimodularity 

9.1.5 Corollary  

A matrix A is totally unimodular if and only if  

 the transpose matrix AT is totally unimodular  

 the matrix (A,E) is totally unimodular 

 

The Proof follows directly out of Proposition 9.1.4 
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And what follows? 

Nice structure of matrix A: 
Now, it is obvious why these 

problems are simple. 

But in general, 
the situation is 

significantly worse. 
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In general … 

 Linear Integer Programs are unfortunately NP hard  

 I.e., out of current knowledge, we assume that it is not 

possible to solve this problem with an algorithm whose 

running time is polynomially bounded 

 Unfortunately, since those problems are of significant 

interest, we have to provide new techniques  

 that find best integer solutions 

 but cannot avoid exponential running times for specific worst case 

scenarios 

 This is addressed in the following sections 
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9.2 Cutting Plane Method 

 The basic idea goes back to Gomory (1958) 

 By optimally solving the continuous problem (i.e., 
the so-called LP-relaxation), we may face two 
different constellations 
 The found solution is already integer, i.e., an optimal 

solution is also found for the integer variant of the 
continuous problem 

 Otherwise, the found optimal solution comprises some 
entries that are not integers 

 The second case is handled as follows 
 Integrate an additional restriction that excludes the 

optimal non-integer solution, but 

 keeps all integer solutions 
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We consider an example 

 

 

 

 

 Therefore, we obtain for the LP-relaxation 

1 2

1 2

1 2

1 2

1 2

Maximize 1 1

s.t. 6 8 3

2 2 1

0

 are integers

x x

x x

x x

x ,x

x ,x

  

    

   



 

 

 

 

0 1 1 0 0 0 1 1 0 0 0 1 1 0 0

3 6 8 1 0 3 6 8 1 0 3 6 8 1 0

1 2 2 0 1 1 2 2 0 1 1 11 1 0
2 2

1 10 2 01 1 1 10 2 0 0 2 0 2 22 2 2 2
313 6 8 1 0 6 0 2 1 3 3 0 1

2 2
1 1 1 11 1 0 1 1 0 1 11 1 02 2 2 2 2 2

     

    

  

 

   

  
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And obtain finally 

 as follows 

 

 

 

 

 We obtain the solution x=(3,7/2) 

 Obviously, this solution is not integer 

 

13 71 1 1 10 2 0 0 2 0 0 0 1
2 2 2 2 2 2

3 3 31 1 13 0 1 3 0 1 3 0 1
2 2 2 2 2 2

1 1 7 71 11 1 0 1 0 2 1 0 2
2 2 2 2 2 2

 

 


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Let us consider the final tableau 

 It holds: 

 First row 

 The rest 

 By setting 

 

 

 we may write restriction (1) 

 

 

 I.e., the left-hand side always represents a combination of 

a basic variable and non-basic variables 

 It is fulfilled by all feasible solutions of the LP 

0

T

N Nz z c x  

1

B N N B B N Nb x A x x A A x      

   
0

000 0
 and 

T

i , j Bi m; j n

z c
y y x z

b A   

 
    

 

     0 0      1i , i , j jB i
j N

y x y x , i ,...,m


    
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Conclusions 

 Since we know xN≥0, we conclude 

 

 

 Let us now assume that we have an integer 

solution, i.e., x and z are integer vectors 

 In that case, the left-hand side becomes integer, i.e., 

we have only summation and multiplication operations 

with integers 

 Thus, we directly obtain as restriction (2) 

   0 0i , i , j jB i
j N

y x y x , i ,...,m


      

     0 0       2i , i , j jB i
j N

y x y x , i ,...,m


          
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Observation 

 While (1) applies to all feasible solutions, (2) is 

fulfilled only if xB is integer 

 Note that this follows directly from the fact that  

 

 

 

 And if xB(i) is not integer, we obtain  

 

 

   

0

0

0

0

0       2

i ,B i

i , i , j jB i
j N

x y

y x y x , i ,...,m






 

          

 

 

 

 

 
0

0

0

0

0

0

0

i , B i

i ,B i

i , B i

i , i , j jB i
j N

y x

x y

y x

y x y x , i ,...,m


 



 

   

          
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Generating a new restriction 

 In order to obtain the desired new restriction, we have to get 
rid of xB(i). We just subtract (1) from (2) 

 

 

 

 

 

 

 

 Adding the last restriction (cut) to the Simplex tableau, we 
exclude the fractional solution xB but do not loose any 
integer solution. In fact, the restriction is designed such that 
at least one integer solution is on its hyperplane 

 IPs are still difficult! We don’t know how many cuts to add  

     

     

     

0

0

0 0

0 1

0 2

      2 1

i , i , j jB i
j N

i , i , j jB i
j N

i , i , i , j i , j j

j N

y x y x , i ,...,m

y x y x , i ,...,m

y y y y x







    

         

          







 0 0 1 1with  as a new slack variablei , i , i , j i , j j n n

j N

y y y y x x x 



         
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Resume with our example 

 Note that the first row has led to the first cut 

 

 

 

 Obviously, the resulting solution is not feasible since x5<0 

 However, owing to the fact that we introduce an additional 

dual variable, the dual solution obviously stays feasible 

 Hence, we apply the Dual Simplex Algorithm 

13 70 0 1 0
2 213 70 0 1

2 2 313 0 1 0
2 2313 0 1

2 2 7 11 0 2 0
2 27 11 0 2

2 2 1 10 0 0 1
2 2



 

   0 0 0 0 0 0 5 3 4 5

4 5

13 13 7 7
+ 1 1

2 2 2 2

1 1

2 2

, , , j , j j

j N

y y y y x x x x x

x x



    
                       

    

    


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First cut 

2 1 

1 

x1 

2 

3 

3 

x2 
first cut 

2 1x x

first LP 

solution 
second LP 

solution 

IP solution 

4 

 4 1 2 2 1

2nd restriction

1 1 1 1 2 2
2 2 2

x x x x x           
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Applying the Dual Simplex Algorithm 

 We obtain the second optimal LP solution xT =(3/2,3/2,0,1,0) 

 This solution is not integer and we introduce a second cut: 

 

13 70 0 1 0 3 0 0 1 0 72 2

31 3 13 0 1 0 0 1 0 32 2 2 2

7 1 3 11 0 2 0 1 0 0 42 2 2 2

1 0 0 0 1 21 10 0 0 1
2 2



  
 

   1 0 1 0 1 1 6 3 5 6

3 6

3 3 1 1
+ + 3 3

2 2 2 2

1 1

2 2

, , , j , j j

j N

y y y y x x x x x

x x



    
                      

    

    


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Second cut 

2 1 

1 

x1 

2 

3 

3 

x2 
first cut 

2 1x x
second cut 

2 1
3 1

4 4
x x  

first LP 

solution 
second LP 

solution 

IP solution 

third LP solution 

4 

 3 2 1 2 1

1st restriction

31 1 1 13 8 6
2 2 2 4 4

x x x x x             
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Additional constraint 

 

3 0 0 1 0 7 0
2 0 0 0 0 7 23 0 0 1 0 7 3 10 1 0 3 0

2 2 1 0 1 0 0 3 13 10 1 0 3
2 2 3 11 0 0 4 0 1 1 0 0 0 4 12 23 11 0 0 4

1 0 0 0 1 2 02 2 1 0 0 0 1 2 0
1 0 0 0 1 2 1 0 0 1 0 0 21 10 0 0 0 1

2 2

 


   

 

 We obtain the third optimal LP solution xT=(1,1,1,1,0,0) 

 Thus, we obtain the optimal IP solution xT=(1,1) 
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Gomory’s Cutting Plane Method 

   0

0 1 1

1 Solve the LP relaxation with the Simplex Algorithm to optimality.

Let  be the th column with 0 1  of the optimal tableau and 

hence, 1

2. If the LP

j

T T
j j j

m j m

.

j j , ,...,n

z ,b ,...,b c ,a ,...,a , j ,...,n.

 

    

0

0 1

0

0

 solution space is unbounded, terminate since the ILP is unbounded

3. If , terminate since the integer solution is optimal to the ILP.

4 Select the row with the smallest index  with  and 

a

m

i. i

 

 

 
0 0 0 0

0 0

1

dd the following Gomory cut to the optimal tableau: 

5. Apply the lexicographic version of the Dual Simplex Algorithm.

6 Go to 2.

Note that the lexicographic version

j j

i i i i j n

j N

x x

.





            

 of the Dual Simplex Algorithm prevents !cycling
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Finiteness of the algorithm 

Works really nice. Step by 
step we isolate the integer 

solutions… 

But does it always 
work … I mean 

ALWAYS, i.e., in 
general? 
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Finiteness of the algorithm 

 In what follows, we consider the question whether 

the algorithm will always terminate if the original 

problem has an finite upper bound 

 Therefore, in order to provide an understandable 

structure of pivoting, we first introduce the so-

called lexicographic order 

 This order allows us to attain significant insight 

into the structure of the resulting tableaus after 

each iteration 
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Lexicographic order 

9.2.1 Definition (lexicographically positive) 

 

 

 

 

 

9.2.2 Definition (lexicographical order) 

 

 0

 is denoted as lexicographically positive if and only if 

the lowest numbered non-zero entry of  is positive. I.e., if 

and only if it holds: 0  If it holds that 0  we 

say  is lex-ze

i

n

min i|x

x IR

x

x . x ,

x





 

ro. 

 has an earlier position than  in the 

lexicographical order if and only if  is 

lexicographically positive. We write 

n n

n

L

x IR y IR

x y IR

x y.

 

 


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Examples 

   

   

   

   

   

0,0,1,0 0,0,0,2

1,0,0,0 0,9,5,2

2,0,0,0 1,9,5,2

1,3,7,2 1,3,7,2,0,9,5,2

1,3,7,2 1,3,7,2,0, 9,5,2

L

L

L

L

L





  



 

It holds that: 
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Consequences 

 >L is obviously a complete ordering of the 

elements in IRn 

 Now, we have to define how the lexicographical 

version of the Dual Simplex Algorithm works in 

detail 

 In this procedure, in order to break ties, the 

largest lexicographical column is always taken to 

improve the current dual solution 
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The Lexicographical Dual Simplex 

9.2.3 Theorem 

 

0

0 1

We consider the Simplex tableau defined by 

0
, with 0 : 0

Thus, we may apply the Dual Simplex Algorithm. Moreover,  are the 

columns of the tableau. We assume that all thes

T

N T

N i

NB

n

z c
c i b

b E A

, ,...,


  

  

 

1

1

e columns (starting with column 1), 

i.e., the columns , are lexicographically positive 

if not, we introduce an additional restriction 1

Then, the Dual Simplex Algorithm terminates a

n

T

n

,...,

x x M .

 

  

0

0

0 0

0

0

fter conducting a finite number of 

steps complying with the following rules

1.  Select an arbitrary  fulfilling 0

2.  Determine  by 0

i

t j
j

it jj
i i

i a

t lex min | a
a a



   
   

   
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Proof of Theorem 9.2.3 

 During the execution of each application of the 

dual simplex it holds that 

 All columns 1,…,n stay lex-positive throughout the  

computation 

 Column zero strictly lex-decreases 

 This results from the following facts 

  

   

0

0 0 0 0

0

0

0

0

1  stays lex-positive after pivoting. The th row becomes

,  with 0  is lex-positive since  is lex negative 

due to 0.

The column   becomes 0,...,0,1,0,...,0 . 

i

i t

i i i it

i

i

Tt

i n i

t




   







 

  




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Proof of Theorem 9.2.3 

  0

0

0 0 0

0

0

We consider the th column  and compute 

Note that if 0 holds we have  and the proposition follows. Hence, we have 

0 and consider 

t r r t
i ir r r i i

i i it r t

i i i

r r r

i i i

r

i

r r t
   

  
  

  



 
      

 
 

 

  

 

0 0

the first non-zero element max , . Since both columns are lex-positive, 

we have at this lowest numbered row : 0, 0 and max , 0. We additionally 

assume that 0. Due to 0, we co

r t

i i

r t r t

i i i i

r t

i i

i

 

   

 

  

 

0

0

0 0

nclude 0 and  is lex-positive. Now, we 

assume 0.Due to the choice of column , we know that the column with the entry 

 at row  is lex-positive since the first

r r

i

r

i

r t
r i i
i r t

i i

t

i

 



 


 





 
  
 
 

0

0 0 0 0 0 0

0 0

 non-zero element  coincides 

with 0 and we have 0.

Consequently, we obtain for the first non-zero pos

t r

Lt r
i i

r t t r t t

j j j j j j r

ir t t r t t

i i i i i i

j i

 

 

     


     


 



     
           

             

0

0 0

ition: 0.

r t

j jr r

j i r t

i i

 
 

 

 
    

 
 
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Proof of Theorem 9.2.3 

0

0 0

0

0

0 0 0

0 0

We consider the column zero and compute 

. We know that 0 and 0.

Clearly, if it holds that 0 we have .

We consider the lowest numbered row  with 0. Since 

t

i i t

i i i it

i

t

i i i

t

ii

 
   



  

 


   

 



0

0

0

0 0

 is lex-positive, 

we conclude 0 and, due to 0, we conclude .

Hence, the column zero lex-decreases in each iteration of the dual simplex algorithm.

t

t

i it

i i it

i

 
  




  
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Finiteness of the algorithm 

Nice proof… 
Due to the decrease in each 

step we do not have a 
cycling 

However, we are 
not through with it 

yet. There are 
several restarts of 

the procedure 
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Proof of Theorem 9.2.3 

1 2 3

0 0 0 0

Let  be the th column of the tableau matrix after the th execution 

of the dual simplex algorithm. Due to the aforementioned attributes, we 

conclude that ...

k

i

L L L L l

A i k

A A A A   

 Clearly, between two applications of the dual simplex 

algorithm an additional row is added to the tableau 

 This additional restriction reduces the set of feasible 

solutions 

 Moreover, in each step of the dual simplex the column 

zero strictly lex-decreases  
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Proof of Theorem 9.2.3 

0,0 0,0

0,0 0,0 0,0

We have assumed that the problem is bounded. Therefore, the first 

component  converges towards some number  with the following 

definition: 

After a finite number of iterations

a w

w w f   

0,0 0,0

0,0 0,0 0,0 0,0

0,0 0,

 a  falls below 1,  and for some 

 we can write

,  with  1

Consequently, this row provides the next cut

-

We then apply the dual simplex and choose 

k k k

k k

j j

j B

w

k

a w f f

f f x s


   

    

   

0,1

0,0 0,0 0,0

0,

column  to enter the basis. 

After this pivot we obtain: 

k

pk k k

k

p

p

a
a a f

f

   



Business Computing and Operations Research 892 

Proof of Theorem 9.2.3 

 

 

 

0,

0, 0,

0, 0,1

0,0 0,0 0,0 0,0 0,0

0, 0,

Now, at an optimal tableau of the dual simplex we have 

1 0

and therefore it is larger than its fractional part

2

Hence, it holds that:

3

k

p

k k

p p

k k

p pk k k k

k k

p p

a

a f

a a
a a f a f

f a







      0,0 0,0 0,0 0,0

0,0 0,0

0,0 0,0

Due to the convergence of the sequence  to , this shows that from 

this point on  is an integer.

k k k k k

l

k k

a f a w

a w

a w

         

   
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Proof of Theorem 9.2.3 

0The vectors  are lex-decreasing, and we have shown that after some point 

the first component becomes fixed at an integer. Consequently, the second 

component is monotonically non-increasing. It is l

lA

 

1,

1,

0,0

ower bounded by zero. 

The argument above can then be repeated for .

However, we need to show that 0 so that the steps following step 2  go

through. This follows because  remains fixed, wh

l

p

k

p

k

a

a

a



0,

1,

1,0

ich implies that 0.

This implies 0 because 0.

Hence,  becomes integer after a finite number of steps. 

We can continue in this way down column zero, showing that all components 

even

k

p

k k L

p p

l

a

a A

a



 

tually reach integer values, at which point the algorithm terminates. The 

only other possible termination occurs when the dual simplex algorithm finds 

that the dual is unbounded, and hence that the original ILP is infeasible. 
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Proof of Theorem 9.2.3 

 Moreover, an indefinite number of rows and columns is 

avoided by dropping a slack variable of a cut if it becomes 

fractional and is associated with a new Gomory cut (by 

entering the basis) 

 Consequently, we have always at most n rows and at 

most n-m additional cuts 

 Since it was shown that the first column is strictly lex-

decreasing during the computation, the number of 

considered constellations is bounded by an exponential 

function 

 Consequently, the procedure terminates after a finite 

number of steps 
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Optimally solving Integer Programs (IPs) 

Great! 
All IPs can be solved to 

optimality in a 
systematic way 

However, we have no 
integer solutions 

before not attaining 
an optimal one. Due 
to an exponential 

running time, this is 
not that nice. 
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Example 

We obtain for the LP-relaxation of the IP: 

2

1 2

1 2

1 2 1 2

Maximize 

s.t. 3 2 6

3 2 0

0

x

x x

x x

x ,x x ,x

   

    

  

 
 

3 1 13 1 0 00 0 0 2 4 40 0 1 0 0 2 2
1 16 3 2 1 0 6 6 0 1 1 1 1 0

6 6
0 3 2 0 1 3 10 1 0 3 1 10 12 2 2 4 4



  

 
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Example (lexicographic algorithm) 

 
 

 
 

     

0

0 3

3

3

3

4

4

3

3 4 3 4

3 4 3 4

3 3 3 3

3 1 10 0 0
2 4 43 1 10 0

2 4 4 1 11 1 0 0
6 61 11 1 0

6 6 3 1 10 1 0
2 4 43 1 10 1

2 4 4 1 1 10 0 1
2 4 4

13
2

1 1 1 1
4 6 4 4 21 1 1

31
4

1 1 1 1
4 6 4 4 21 1 1

31
4

2 2 41 1 1 1 1 1 0 0 0 0
3 3 3

Thus  we 

T

T

T

T

T T T
L

Cut

i a

a

a

a a a a

,


 

   

   


  



 
   



   
          

   

resume with the fourth column
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Example 

 We obtain the optimal LP solution xT 

=(4/3,1,0,2,0) 

 Consequently, we add an additional restriction 

resulting from the second row 

 

3 1 10 0 0
2 4 4 1 0 0 0 0 1

1 11 1 0 0 4 1 21 0 06 6 3 3 3
3 1 10 1 0 1 0 1 0 0 12 4 4

2 0 0 1 1 41 1 10 0 1
2 4 4

 



  
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Example 

 
 

 
 

     

0

0 4

3

3

4

5

5

4

5 3 5

5 3 5

4 4 4

1 0 0 0 0 1 0
1 0 0 0 0 1

4 1 21 0 0 0
3 3 34 1 21 0 0

3 3 3 1 0 1 0 0 1 0
1 0 1 0 0 1

2 0 0 1 1 4 0
2 0 0 1 1 4

1 1 10 0 0 1
3 3 3

14
3

1 10 0 1
3 3 0 1 0 3 1

1
3

2 11 1 4
3 3 3 2 3 12 1

1
3

3 2 3 12 1 0 1 0 3 1 3 3 3 15 0

T

T

T

T

T T T

Cut

i a

a

a

a a a









   

   


  



  
    



  
            

  

3

3

4

Thus  we resume with the third column

L

a

,




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Example 

 

 

1 0 0 0 0 1 0
1 0 0 0 0 1 0

4 1 21 0 0 0 1 1 0 0 0 1 13 3 3

1 0 1 0 0 1 0 1 0 1 0 0 1 0

2 0 0 1 1 4 0 1 0 0 0 1 5 3

1 1 1 1 0 0 1 0 1 30 0 0 1
3 3 3

The optimal solution to the original integer problem is = 1 1Tx ,

 



 

  
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Optimally solving Integer Programs (IPs) 

What about systematically 
bounding variables that are not 

integer if we do not see 
adequate cuts? 

Yes. You are right. This 
is considered next: 

Branch&Bound! We can 
even combine that 

Branch&Bound 
technique with the 
generation of cuts 
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9.3 Branch&Bound 

 In what follows, we consider a second technique optimally solving 
general integer linear programs with a bounded solution space. Given 
an integer Linear Program denoted as M0 

 

 
 We consider a lower bound LM0 to M0 that is obtained from a 

relaxation and has a larger solution space LP0P0. We solve the 
relaxation to optimality and obtain its optimal solution x0 

 

 

  

 For example, LM0 is the optimal objective function value of the LP-
relaxation to M0 

 

 If x0 ∈P0, then the problem M0 is optimally solved. 

 Otherwise: Branching (see next slide) 

   0 0. .M Min z x s t x P

 0 0. .LM Min z x s t x LP 



Business Computing and Operations Research 903 

Branching 

We partition the solution space P0 by some branching rule and yield 

k+1 subproblems M00…M0k 

 

 

 

 

For example, if P0 is the LP-relaxation, we choose a variable xj
0 that is 

not integer and yield two subproblems with 

 

 

0 0 0 0

1
, 0,..., : :

k i i j

i
P P i j k i j P P


      

   00 0 0 01 0 00 0j j j jP x x P x x P x x P x x               

       00 01 0 0. . ... . .k kM Min z x s t x P M Min z x s t x P 
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Enumeration tree obtained from Branching 

Applying the branching rule consecutively, we derive a 

solution tree 

 

 

 

 

 

Some solutions to the subproblems may be integer. 

We stop if the solution tree is explored entirely, and thus 

the best known integer solution is optimal to M0. 

 

M0 

M00 M01 

M000 M001 M002 
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Size of the enumeration tree 

Hmmm… Annoying is that its 
size grows exponentially! 

This can take ages to 
compute… 

But we can reduce 
the size by 
bounding…  ! 



Business Computing and Operations Research 906 

Bounding 

There is always a global upper bound UM to the integer Linear Program 

M0. Either UM= or UM is derived from a feasible solution to M0 

We calculate a lower bound LM0i, which is easy to calculate, for each 
subproblem M0i , and LM0i has a solution space LP0iP0i i=1,…,k. 

A subproblem M0i does not need to be considered anymore (i.e., it is 

pruned) if one of the following pruning criterions holds: 

a)                    and the optimal solution x0i of LM0i is feasible to M0: We 

found an improved upper bound to M0 , and we remember this 

solution UM:= LM0i. 

b)                    : The optimal solution to the subproblem M0i , and all 

integer solutions derived from it cannot be better than the best 

known feasible solution with UM. 

c)                 : There exists no feasible solution to LM0i and none to M0i. 
 

We stop if the solution tree is explored, and thus UM is optimal to M0. 

0iLM UM

0iLM UM

0iLP 



Business Computing and Operations Research 907 

Example 

 

 

 

 

 

 

We commence with UM= and with the LP-relaxation LM0 

 0

1 2

1 2

1 2

2

1 2

1 2

Minimize 2  

s.t. 2 2 7

2 2 1

2 1

0

M x x

x x

x x

x

x ,x

x ,x

  

   

    

   





311 10 0 0
2 4 40 1 2 0 0 0

3 1 11 0 07 2 2 1 0 0 2 4 4

1 2 2 0 1 0 1 13 0 0 1
2 2

1 0 2 0 0 1
1 12 0 1 0

4 4

...

 


 



 
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Consequences 

 Obviously, -11/2 is a lower bound for the optimal solution 

value of M0 

 Since the solution is unfortunately not integer, we branch 

and conduct a case statement. Either x1≤1 or x1≥2 

 Starting from the original set of feasible solutions 

 

 

 the simple branching step yields two subproblems 

  0 2

1 2 0 1 2 1 2 22 2 7 2 2 1 2 1P x ,x IR | x x x x x              

  

  

00 2

1 2 0 1 2 1 2 2 1

01 2

1 2 0 1 2 1 2 2 1

2 2 7 2 2 1 2 1 1

2 2 7 2 2 1 2 1 2

P x ,x IR | x x x x x x

P x ,x IR | x x x x x x





                   

                  
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First Level Branches 

2 1 

1 

x1 

2 

3 

3 

x2 

4 

0M

00M
01M
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Resulting problems 

Consequently, we obtain the tableaus 
00 01

3 311 1 11 10 0 0 0 0 0 0 0
2 4 4 2 4 4

3 31 1 1 11 0 0 0 1 0 0 0
2 4 4 2 4 4

        1 1 1 13 0 0 1 0 3 0 0 1 0
2 2 2 2

1 1 1 12 0 1 0 0 2 0 1 0 0
4 2 4 2

1 1 0 0 0 0 1 2 1 0 0 0 0 1

M M

 


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Transformation of the tableaus 

 In order to directly conduct the Dual Simplex, we 

need to transform the problem 

 Specifically, we subtract the first row from the 

fourth one or vice versa 

 Thus, we obtain 

3 311 1 11 10 0 0 0 0 0 0 0
2 4 4 2 4 4

3 31 1 1 11 0 0 0 1 0 0 0
2 4 4 2 4 4

1 1 1 1        3 0 0 1 0 3 0 0 1 0
2 2 2 2

1 1 1 12 0 1 0 0 2 0 1 0 0
4 2 4 2

1 1 1 1 1 10 0 0 1 0 0 0 1
2 4 4 2 4 4

 

   
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Finally, it turns out… 

   

3 311 1 11 10 0 0 0 0 0 0 0
2 4 4 2 4 4

3 31 1 1 11 0 0 0 1 0 0 0
2 4 4 2 4 4

1 1 1 13 0 0 1 0 3 0 0 1 0        2 2 2 2

1 1 1 12 0 1 0 0 2 0 1 0 0
4 4 4 4

1 1 1 1 1 10 0 0 1 0 0 0 1
2 4 4 2 4 4

4 0 0 0 1 0 3 5 0 0 1 0 0 1

1 1 0 0 0 0 1 2 1 0 0 0 0 1

2 0 0 0 1 1 2 2                         

3 10 1 0 0 1
2 2

2 0 0 1 1 0 4

 

      
   



 

0 0 1 0 1 2

3 10 1 0 0 1
2 2

2 0 0 1 1 0 4 
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Conclusions 

 Unfortunately, both solutions are still not integer 

 Thus, we have to resume with the next branching 

step 

 This time, we obtain altogether four constellations 

 

 

 

 

 M001 and M011 are infeasible (case c) 

 Thus, we resume with M000 and M010  

  

  

  

 

000 2

1 2 0 1 2 1 2 2 1 2

001 2

1 2 0 1 2 1 2 2 1 2

010 2

1 2 0 1 2 1 2 2 1 2

011 2

1 2 0

2 2 7 2 2 1 2 1 1 1

2 2 7 2 2 1 2 1 1 2

2 2 7 2 2 1 2 1 2 1

M x ,x IR | x x x x x x x

M x ,x IR | x x x x x x x

M x ,x IR | x x x x x x x

M x ,x IR |









                     

                     

                     

  1 2 1 2 2 1 22 2 7 2 2 1 2 1 2 2x x x x x x x                  
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Second Level Branches 

2 1 

1 

x1 

2 

3 

3 

x2 

4 

000M

00M 01M

010M

001M 011M

IP 

Solution 
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Resulting problems 

000 010                                                             

4 0 0 0 1 0 3 0 5 0 0 1 0 0 1 0

1 1 0 0 0 0 1 0 2 1 0 0 0 0 1 0

2 0 0 0 1 1 2 0 2 0 0 1 0 1 2 0
                    

3 31 10 1 0 0 1 0 0 1 0 0 1 0
2 2 2 2

2 0 0 1 1 0 4 0 2 0 0 1 1 0 4 0

1 0 1 0 0 0 0 1 1 0 1 0 0 0 0 1

4 0 0 0 1 0

M M



   

   

3 0 5 0 0 1 0 0 1 0

1 1 0 0 0 0 1 0 2 1 0 0 0 0 1 0

2 0 0 0 1 1 2 0 2 0 0 1 0 1 2 0

          3 1 3 10 1 0 0 1 0 0 1 0 0 1 02 2 2 2

2 0 0 1 1 0 4 0 2 0 0 1 1 0 4 0

1 1 1 10 0 0 0 1 1 0 0 0 0 1 1
2 2 2 2



   

     
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Resulting problems 

   

4 0 0 0 1 0 3 0 5 0 0 1 0 0 1 0

1 1 0 0 0 0 1 0 2 1 0 0 0 0 1 0

2 0 0 0 1 1 2 0 2 0 0 1 0 1 2 0

                    3 31 10 1 0 0 1 0 0 1 0 0 1 0
2 2 2 2

2 0 0 1 1 0 4 0 2 0 0 1 1 0 4 0

1 1 1 10 0 0 0 1 1 0 0 0 0 1 1
2 2 2 2

3 0 0 0 0 0 1 2

1 1 0 0 0 0 1 0

1 0 0 0 0 1 0 2
      

1 0 1 0 0 0 0 1

3 0 0 1 0 0 2 2

1 0 0 0 1 0 2 2



   

        
   

 



9 10 0 0 0 0 1
2 2

5 11 0 0 0 0 1
2 2

1 0 0 0 0 1 0 2
                             

1 0 1 0 0 0 0 1

4 0 0 1 1 0 0 4

1 10 0 0 0 1 1
2 2






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M000 and M010
 – Results  

 Obviously, the problems are optimally solved 

 Thus, we obtain an integer solution with objective 

function value -3 from M000 and we set UM:=-3 

(case a) 

 Since the lower bound of the remaining problem 

M010 is -9/2, we have to resume with this problem 

 Here, we obtain the new problems 

   

  

0100 2

1 2 0 1 2 1 2 2 1 2 1

0101 2

1 2 0 1 2 1 2 2 1 2 1

2 2 7 2 2 1 2 1 2 1 2

2 2 7 2 2 1 2 1 2 1 3

M x ,x IR | x x x x x x x x

M x ,x IR | x x x x x x x x





                       

                      
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Third Level Branches 

2 1 

1 

x1 

2 

3 

3 

x2 

4 

010M

0100M
0101M

opt. IP 

Solution 
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M010 – Results 

0100 0101                                                            

9 91 10 0 0 0 0 1 0 0 0 0 0 0 1 0
2 2 2 2

5 51 11 0 0 0 0 1 0 1 0 0 0 0 1 0
2 2 2 2

1 0 0 0 0 1 0 2 0 1 0 0 0 0 1 0 2 0

               1 0 1 0 0 0 0 1 0 1 0 1 0 0 0 0 1 0

4 0 0 1 1 0 0 4 0 4 0

1 10 0 0 0 1 1 0
2 2

2 1 0 0 0 0 0 0 1

M M

 





0 1 1 0 0 4 0

1 10 0 0 0 1 1 0
2 2

3 1 0 0 0 0 0 0 1

9 91 10 0 0 0 0 1 0 0 0 0 0 0 1 0
2 2 2 2

5 51 11 0 0 0 0 1 0 1 0 0 0 0 1 0
2 2 2 2

1 0 0 0 0 1 0 2 0 1 0 0 0 0 1 0 2 0

               1 0 1 0 0 0 0 1 0 1 0 1 0 0 0 0 1 0

4 0 0 1 1 0 0 4 0 4 0 0 1 1 0 0 4 0

1 1 1 10 0 0 0 1 1 0 0 0 0 0 1 1 0
2 2 2 2

1 1 1 10 0 0 0 0 1 1 0 0 0 0 0 1 1
2 2 2 2







 

 

 

   
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And thus, we obtain 

   

9 91 10 0 0 0 0 1 0 0 0 0 0 0 1 0
2 2 2 2

5 51 11 0 0 0 0 1 0 1 0 0 0 0 1 0
2 2 2 2

1 0 0 0 0 1 0 2 0 1 0 0 0 0 1 0 2 0

1 0 1 0 0 0 0 1 0 1 0 1 0 0 0 0 1 0               

4 0 0 1 1 0 0 4 0 4 0 0 1 1 0 0 4 0

1 1 1 10 0 0 0 1 1 0 0 0 0 0 1 1 0
2 2 2 2

1 1 1 10 0 0 0 0 1 1 0 0 0 0 0 1 1
2 2 2 2

4 0 0 0 0 0 0 2 1

2 1 0 0 0 0 0 0 1

1 0 0 0 0 1 0

 

 

 

      
   

4 0 0 1 0 0 0 0 1

3 1 0 0 0 0 0 0 1

0 0 0 1 0 1 0 0 2
2 0

1 10 1 0 0 0 0 11 0 1 0 0 0 0 1 0                              2 2

3 0 0 0 1 0 0 4 2 6 0 0 1 1 0 0 0 4

0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 1 0 1

1 0 0 1 0 0 0 2 2 1 10 0 0 0 0 1 1
2 2



   



 
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M0100 and M0101
 – Results 

 We obtained an improved second feasible 

solution xT=(2,1) from M0100 and UM:=-4 (case a) 

 The other alternative constellation M0101 still does 

not provide any integer solution 

 However, since the objective function value is -4, 

this is a lower bound for all integer solutions 

resulting from M0101 (case b) 

 Thus, we explored the solution tree and stop our 

procedure. The optimal solution is xT=(2,1) with 

an objective function value of UM=-4 
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Example – Conducted exploration process 

 00 004 1,3/ 2LM x  

 0 011/ 2 3/ 2,2LM x UM   

1 1x 

M0 

M00 M01 

M000 M001 

1 2x 

 01 015 2,3/ 2LM x  

2 1x  2 2x  2 1x  2 2x 

M010 M011 

011

)case c

P  
001

)case c

P   

000

000

000

3

1,1

)

: 3

LM

x

case a

LM UM UM

 



   

M0100 M0101 

 

010

010

9 / 2

5/ 2,1

LM

x

 



1 2x  1 3x 

 

0100

0100

0100

4

2,1

)

: 4

LM

x

case a

LM UM UM

optimal solution

 



   

 

0101

0101

0101

4

3,1/ 2

)

LM

x

case b

LM UM

 




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Branch&Bound Algorithm 

1. Determine an upper bound UM either via a heuristic or set UM:=. 

2. Solve a lower bound LMi of Mi and obtain its optimal solution xi . 

3. If either LMiUM (case b) or Pi=Ø (case c) holds, then go to 7. 

4. Otherwise (case b) or c) do not apply): If LMi<UM and xi is feasible to 

M0 (case a), then set UM:=LMi. Check for each remaining candidate 

problem Mk that is in the list whether it can be pruned by LMkUM 

(case b). Remove all pruned problems Mk from the list. Go to 7. 

5. Otherwise (case a) does not apply): LMi is a candidate problem and 

is stored in a list. 

6. Pick a candidate problem Mk from the list. Branch the problem Mk 

and derive a subproblem Mki. If no subproblem is derived, then 

remove Mk from the list. Proceed with Mi:=Mki and go to 2. 

7. If there exists no candidate problem in the list, then terminate the 

algorithm. The optimal solution is the corresponding solution to UM. 

8. Otherwise (there exist candidate problems in the list): Go to 6. 


