9 Integer Programming

- In what follows, we consider a subset of Linear Programs where solutions, i.e., the variables as well as the parameters of the problem definition, are restricted to integers
- Although this leads to a considerable reduction of the size of the solution space, it complicates the solution process significantly
- It turns out that these problems cannot be solved efficiently, i.e., based on current knowledge, a solution of these problems cannot be guaranteed in polynomial time
- However, by inspecting specific problems introduced and analyzed above, it turns out that optimal solutions are already integer

Business Computing and Operations Research WINFOR 848

9.1 Well-solvable problems

- Already introduced representatives of wellsolvable problems are
 - Transportation Problem
 - Shortest Path Problem
 - Max-Flow

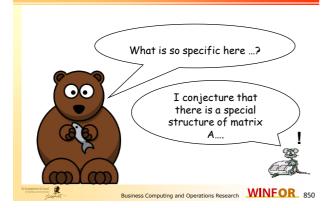
.

• The interesting question at this point is "WHY, i.e., what makes these problems such simple?"

er School

Business Computing and Operations Research WINFOR 849

And what follows?



Unimodular matrices

9.1.1 Definition

A matrix $B \in IR^{n \times n}$ is denoted as unimodular if and only if $|\det B| = 1$.

9.1.2 Definition

A matrix $B \in IR^{m \times n}$ is denoted as totally unimodular, in the following denoted as TUM, if and only if every square non-singular submatrix of A is unimodular.

We know that each singular square matrix A has a determinant equal to zero. Hence, we can conclude that a matrix $B \in IR^{m \times n}$ is denoted as totally unimodular if and only if every square submatrix A has a determinant equal to -1,0,+1. .

Business Computing and Operations Research WINFOR 851

Examples

· Let us consider some examples

$$\begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \text{ since } det \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} = +1 \cdot 1 - (-1) \cdot 1 = 1 + 1 = 2$$

$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix} \text{ since } det \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix} = 1 \cdot (1 - 0) - 1 \cdot (0 - 1) + 0 = 2$$

- However, consider the zero matrix
 - · Obviously, it is NOT unimodular since the determinant has the value zero
 - However, there is no non-singular sub-matrix. Thus, nothing to fulfill wherefore the matrix is TUM

2

Business Computing and Operations Research WINFOR 852

Effect of unimodularity

Consider the LP

.

 $\operatorname{Min} c^T \cdot x, \, \text{s.t.} \, A \cdot x = b \wedge x \ge 0$

- Furthermore, according to a basis *B*, let matrix *A*_B be totally unimodular
- Then, we can conclude that the corresponding basic feasible solution (bfs) is an integer solution

And what follows?

Cramer's rule

Consider the adjoint matrix

$$adj(A_B)_{i,j} = (-1)^{i+j} \cdot det(A_B(i/j))$$

- Note that A_B(*i*|*j*) arises from A_B by erasing the *i*th row and *j*th column
- Then, we know that

$$A_{B}^{-1} = \frac{1}{det(A_{B})} \cdot adj(A_{B})$$

 Since the entries of the adjoint matrix are obviously integers, the inverted matrix has only integer entries

ichool

Business Computing and Operations Research WINFOR 855

The basic feasible solution

- Thus, we get

$$\left(x_{B}, x_{N}\right) = \left(A_{B}^{-1} \cdot b, 0\right) = \left(\frac{1}{det(A_{B})} \cdot adj(A_{B}) \cdot b, 0\right)$$

as feasible integer solution

 Consequently, we can conclude the following Theorem

Main consequence

9.1.3 Theorem

A linear program Min $c^T \cdot x$, s.t. $A \cdot x = b$ with a totally unimodular matrix A has only integer basic feasible solutions.

This is also true for problems Min $c^T \cdot x$, s.t. $A \cdot x \ge b$ and Max $c^T \cdot x$, s.t. $A \cdot x \le b$.

eter School 👷

Business Computing and Operations Research WINFOR 857

Proof of Theorem 9.1.3

- The Theorem follows immediately out of the following simple observations
 - Owing to unimodularity, each basic feasible solution becomes integer
 - If we have a totally unimodular matrix A the combined matrixes (E,A) and (-E,A) are also totally unimodular
 - Thus, we always obtain basic feasible solutions comprising only integer values
- In what follows, we are looking for simple criteria that guarantee unimodularity for a given matrix

er School

Business Computing and Operations Research WINFOR 858

Criteria for unimodularity

9.1.4 Proposition

- A matrix A is totally unimodular if
- Matrix A has only -1, 0, +1 entries
- Each column comprises at most two non-zero elements
- The rows of A can be partitioned into two subsets A₁ and A₂ (i.e., A₁uA₂={1,...,m}) such that two non-zero elements in a column are either in the same set of rows if they have different signs or they are in different sets of rows if they have equal signs

Proof of Proposition 9.1.4

- We identify an arbitrary square submatrix B of the matrix А
- · Obviously, the given criteria also apply to this submatrix • We show that det(B)={0,-1,1} by induction by the size n of the submatrix B
- We commence with n=1: Here, the proposition is obviously true
- · Let us assume that the determinant of all submatrices with size lower than n have value {0,-1,1}
- Now, we distinguish three cases

 - Case 1: B has a zero column. Obviously, by generating the determinant by this column, we obtain det(B)=0
 Case 2: B has a column with one value equal to 1 or -1. Then, by generating the determinant by this column, we know that det(B)=det(C) or det(B)=-det(C)

Business Computing and Operations Research WINFOR 860

Proof of Proposition 9.1.4

· Case 3: All columns have exactly two values unequal to zero. Then, the sets A_1 and A_2 provide us with a separation. Specifically, we have

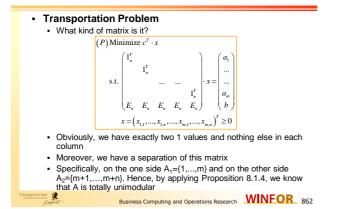
$$\sum_{i \in A_1} a_{i,j} = \sum_{i \in A_2} a_{i,j}, \forall j \in \{1, ..., n\}$$

· I.e., the matrix is obviously singular and, therefore, we have det(B)=0

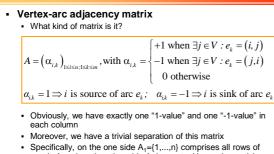
· This completes the proof

. Business Computing and Operations Research WINFOR 861

Direct consequences



Direct consequences



 Specifically, on the one side A₁={1,...,n} comprises all rows of matrix A and on the other side A₂ is empty. Hence, by applying Proposition 8.1.4, we know that A is totally unimodular

Business Computing and Operations Research WINFOR 863

Criteria for total unimodularity

9.1.5 Corollary

2

- A matrix A is totally unimodular if and only if
- the transpose matrix A^T is totally unimodular
- the matrix (A,E) is totally unimodular

The Proof follows directly out of Proposition 9.1.4

Business Computing and Operations Research

And what follows?



In general ...

- Linear Integer Programs are unfortunately NP hard
- I.e., out of current knowledge, we assume that it is not possible to solve this problem with an algorithm whose running time is polynomially bounded
- Unfortunately, since those problems are of significant interest, we have to provide new techniques
 - that find best integer solutions
 - but cannot avoid exponential running times for specific worst case scenarios
- · This is addressed in the following sections

Business Computing and Operations Research WINFOR 866

9.2 Cutting Plane Method

- The basic idea goes back to Gomory (1958)
- By optimally solving the continuous problem (i.e., the so-called LP-relaxation), we may face two different constellations
 - The found solution is already integer, i.e., an optimal solution is also found for the integer variant of the continuous problem
 - Otherwise, the found optimal solution comprises some entries that are not integers
- The second case is handled as follows
 - · Integrate an additional restriction that excludes the
 - optimal non-integer solution, but
 - keeps all integer solutions

thool 👷

Business Computing and Operations Research WINFOR 867

We consider an example

Maximize $1 \cdot x_1 + 1 \cdot x_2$
$\text{s.t.} - 6 \cdot x_1 + 8 \cdot x_2 \le 3$
$2 \cdot x_1 - 2 \cdot x_2 \le 1$
$x_1, x_2 \ge 0$
x_1, x_2 are integers
 Therefore, we obtain for the LP-relaxation
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\frac{1}{2}$ 0 -2 0 $\frac{1}{2}$ $\frac{1}{2}$ 0 [-2] 0 $\frac{1}{2}$ $\frac{1}{2}$ 0 -2 0 $\frac{1}{2}$
$\Rightarrow \overline{3} -6 8 1 0 \Rightarrow \overline{6} 0 (2) 1 3 \Rightarrow \overline{3} 0 1 \frac{1}{2} \frac{3}{2}$
$ \Rightarrow \frac{72}{3} \frac{72}{-6} \frac{72}{8} \frac{72}{6} \frac{72}{6} \frac{72}{2} \frac{72}{3} \Rightarrow \frac{72}{3} \Rightarrow \frac{72}{3} \frac{72}{3} \Rightarrow \frac{72}{3} \frac{72}{2} \frac{72}$
Business Computing and Operations Research WINFOR 868

And obtain finally

as follows

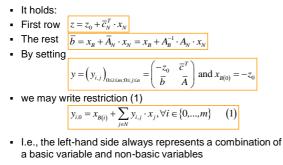
2

1/2	0	-2	0	$\frac{1}{2}$	1/2	0	-2	0	$\frac{1}{2}$	$\Rightarrow \frac{\frac{13}{2}}{3}$	0	0	1	7/2
3	0	1	1/2	3/2=	> 3	0	1	1/2	3/2=	⇒ 3	0	1	1/2	$\frac{3}{2}$
$\frac{1}{2}$	1	-1	0	$\frac{1}{2}$	$\frac{7}{2}$	1	0	$\frac{1}{2}$	2	7/2	1	0	$\frac{1}{2}$	2

- We obtain the solution x=(3,7/2)
- Obviously, this solution is not integer

Business Computing and Operations Research WINFOR 869

Let us consider the final tableau



· It is fulfilled by all feasible solutions of the LP

Business Computing and Operations Research WINFOR 870

Conclusions

• Since we know $x_N \ge 0$, we conclude

$$y_{i,0} \ge x_{B(i)} + \sum_{i \in \mathbb{N}} \lfloor y_{i,j} \rfloor \cdot x_j, \forall i \in \{0, ..., m\}$$

- Let us now assume that we have an integer solution, i.e., x and z are integer vectors
 - In that case, the left-hand side becomes integer, i.e., we have only summation and multiplication operations with integers
 - Thus, we directly obtain as restriction (2)

$$\lfloor y_{i,0} \rfloor \ge x_{B(i)} + \sum_{j \in \mathbb{N}} \lfloor y_{i,j} \rfloor \cdot x_j, \forall i \in \{0, \dots, m\}$$
(2)

Business Computing and Operations Research WINFOR 871

)

Observation

- While (1) applies to all feasible solutions, (2) is fulfilled only if x_B is integer
- Note that this follows directly from the fact that

$$\lfloor y_{i,0} \rfloor \geq x_{B(i)} + \sum_{j \in N} \lfloor y_{i,j} \rfloor \cdot x_j, \forall i \in \{0, ..., m\}$$

• And if $\mathbf{x}_{\mathsf{B}(i)}$ is not integer, we obtain $\underbrace{ \left\lfloor y_{i,0} \right\rfloor \ge x_{\mathcal{B}(i)} + \sum_{i \neq v} \left\lfloor y_{i,j} \right\rfloor \cdot x_j, \forall i \in \{0,...,m\} }_{i \neq v}$

E

 $\underbrace{\underbrace{\begin{array}{c} \overset{(y_{i,0}=x_{B(i)})}{=x_{B(i)}=y_{i,0}}}_{=x_{B(i)}=y_{i,0}} \\ \overset{(y_{i,0}=x_{B(i)})}{=x_{B(i)}=y_{i,0}} \\ \overset{(y_{i,0}=x_{B(i)})}{=x_{B(i)}=y_{i,0}} \\ \end{array}}$

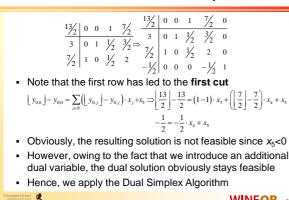
Business Computing and Operations Research WINFOR 872

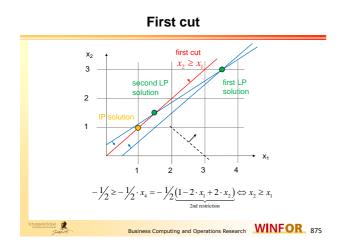
(2)

Generating a new restriction

 In order to obtain the desired new restriction, we have to get rid of x_{B(i)}. We just subtract (1) from (2) y_{i,0} = x_{B(i)} + ∑_{j∈N} y_{i,j} · x_j, ∀i ∈ {0,...,m} (1) | y_{i,0}]≥ x_{B(i)} + ∑_{j∈N} [y_{i,j}] · x_j, ∀i ∈ {0,...,m} (2) ⇒ [y_{i,0}] - y_{i,0} ≥ ∑_{j∈N} [(y_{i,j}] - y_{i,j}) · x_j (2) - (1)
 [y_{i,0}] - y_{i,0} = ∑_{j∈N} ([y_{i,j}] - y_{i,j}) · x_j + x_{n+1} with x_{n+1} as a new slack variable
 Adding the last restriction (cut) to the Simplex tableau, we exclude the fractional solution x_B but do not loose any integer solution. In fact, the restriction is designed such that at least one integer solution is on its hyperplane
 IPs are still difficult! We don't know how many cuts to add

Resume with our example



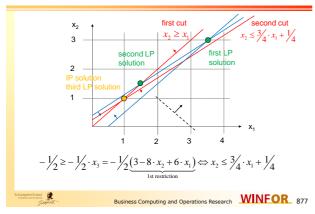


Applying the Dual Simplex Algorithm

- We obtain the second optimal LP solution $x^{T} = (3/2, 3/2, 0, 1, 0)$
- This solution is not integer and we introduce a **second cut**: $\sum_{n=1}^{\infty} |a_n| = \sum_{n=1}^{\infty} |a_n|^2 |a_$

$$\begin{bmatrix} y_{10} \end{bmatrix} - y_{10} = \sum_{j \in \mathcal{N}} \left(\begin{bmatrix} y_{1,j} \end{bmatrix} - y_{1,j} \right) \cdot x_j + x_6 \Longrightarrow \left[\frac{1}{2} \end{bmatrix} - \frac{1}{2} = \left[\left\lfloor \frac{1}{2} \right\rfloor - \frac{1}{2} \right] \cdot x_3 + (3-3) \cdot x_5 + x_6$$
$$-\frac{1}{2} = -\frac{1}{2} \cdot x_3 + x_6$$

Second cut



Additional constraint

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
• We obtain the third optimal LP solution x^{T} =(1,1,1,1,0,0)											
 Thus, we obtain the optimal IP solution x^T=(1,1) 											
of Ranses and Conservat	Business Computing an	d Operations Research	WINFOR 878								

Gomory's Cutting Plane Method

- 1. Solve the LP relaxation with the Simplex Algorithm to optimality. Let α^{j} be the *j*th column with j = 0, 1, ..., n of the optimal tableau and hence, $\alpha^{0} = (\overline{z}_{0}, \overline{b}_{1}, ..., \overline{b}_{m})^{T} \land \alpha^{j} = (\overline{c}_{j}, \overline{a}_{1}^{j}, ..., \overline{a}_{m}^{j})^{T}, j = 1, ..., n$.
- 2. If the LP solution space is unbounded, terminate since the ILP is unbounded
- 3. If $\alpha^0 \in \mathbb{Z}^{m+1}$, terminate since the integer solution is optimal to the ILP.
- Select the row with the smallest index i₀ with α⁰_{i0} ∉ Z and add the following Gomory cut to the optimal tableau: [α⁰_{i0}] − α⁰_{i0} = ∑_i ([α^j_{i0}] − α^j_{i0}) ⋅ x_j + x_{n+1}
- 5. Apply the lexicographic version of the Dual Simplex Algorithm.
- 6. Go to 2.

Note that the lexicographic version of the Dual Simplex Algorithm prevents **cycling**!

Finiteness of the algorithm

Finiteness of the algorithm

- In what follows, we consider the question whether the algorithm will always terminate if the original problem has an finite upper bound
- Therefore, in order to provide an understandable structure of pivoting, we first introduce the socalled lexicographic order
- This order allows us to attain significant insight into the structure of the resulting tableaus after each iteration

Business Computing and Operations Research WINFOR 881

Lexicographic order

9.2.1 Definition (lexicographically positive)

 $x \in IR^n$ is denoted as lexicographically positive if and only if the lowest numbered non-zero entry of x is positive. I.e., if and only if it holds: $x_{\min\{i|x_i\neq 0\}} > 0$. If it holds that x = 0, we say x is lex-zero.

9.2.2 Definition (lexicographical order)

 $x \in IR^n$ has an earlier position than $y \in IR^n$ in the lexicographical order if and only if $x - y \in IR^n$ is lexicographically positive. We write $x > L^n$.

Business Computing and Operations Research WINFOR 882

Examples

It holds that:

2

$$\begin{split} & (0,0,1,0) >^{L} (0,0,0,2) \\ & (1,0,0,0) >^{L} (0,9,5,2) \\ & (-2,0,0,0) <^{L} (-1,9,5,2) \\ & (1,3,7,2) <^{L} (1,3,7,2,0,9,5,2) \\ & (1,3,7,2) >^{L} (1,3,7,2,0,-9,5,2) \end{split}$$

Consequences

- >^L is obviously a complete ordering of the elements in IRⁿ
- Now, we have to define how the lexicographical version of the Dual Simplex Algorithm works in detail
- In this procedure, in order to break ties, the largest lexicographical column is always taken to improve the current dual solution

peter School

Business Computing and Operations Research WINFOR 884

The Lexicographical Dual Simplex

9.2.3 Theorem

We consider the Simplex tableau defined by

 $\begin{array}{c|c} -z_0 & 0 & \overline{c}_N^T \\ \hline \overline{b} & E_{(B)} & \overline{A}_N \end{array}, \text{ with } \overline{c}_N^T \ge 0 \land \exists i: \overline{b}_i < 0 \\ \end{array}$

Thus, we may apply the Dual Simplex Algorithm. Moreover, $\alpha^0, \alpha^1, ..., \alpha^n$ are the columns of the tableau. We assume that all these columns (starting with column 1), i.e., the columns $\alpha^1, ..., \alpha^n$, are lexicographically positive

(if not, we introduce an additional restriction $1^T \cdot x + x_{n+1} \leq M$).

Then, the Dual Simplex Algorithm terminates after conducting a finite number of steps complying with the following rules

1. Select an arbitrary i_0 fulfilling $a_{i_0}^0 < 0$

2.	Determine t by	$\frac{\alpha^t}{-a_{i_0}^t} = lex$	$-\min_{j}\left\{\frac{\alpha^{j}}{-a_{i_{0}}^{j}}/a_{i_{0}}^{j}<\right.$	< 0 }
	Crhool C			

Business Computing and Operations Research WINFOR 885

Proof of Theorem 9.2.3

- During the execution of each application of the dual simplex it holds that
 - All columns 1,...,n stay lex-positive throughout the computation
 - Column zero strictly lex-decreases
- · This results from the following facts

 $\begin{aligned} &\alpha_i \left(1 \leq i \leq n\right) \text{ stays lex-positive after pivoting. The } i_0 \text{th row becomes} \\ &\tilde{\alpha}_{i_0} = \frac{\alpha_{i_0}}{\alpha_{i_0}'}, \text{ with } \alpha_{i_0}' < 0 \Rightarrow \tilde{\alpha}_{i_0} \text{ is lex-positive since } \alpha_{i_0} \text{ is lex negative} \\ &\text{due to } \alpha_{i_0}^0 < 0. \end{aligned}$ The column $t \left(=\tilde{\alpha}'\right)$ becomes $\left(0,...,0,1,0,...,0\right)^T$.

ter School

Proof of Theorem 9.2.3

We consider the *r*th column $(r \neq t)$ and compute $\tilde{\alpha}'_i = \alpha'_i - \frac{\alpha'_i \cdot \alpha'_b}{\alpha'_b} = \alpha'_b \cdot \left(\frac{\alpha'_i}{\alpha'_b} - \frac{\alpha'_i}{\alpha'_b}\right)$ Note that if $\alpha'_b = 0$ holds we have $\tilde{\alpha}'_i = \alpha'_i$ and the proposition follows. Hence, we have $\alpha'_b \neq 0$ and consider the first non-zero element max $\{\alpha'_i, \alpha'_i\}$. Since both columns are lex-positive, we have at this lowest numbered row *i*: $\alpha'_i \geq 0$ and $\max\{\alpha'_i, \alpha'_i\}$ but columns are lex-positive, we have at this lowest numbered row *i*: $\alpha'_i \geq 0$ and $\max\{\alpha'_i, \alpha'_i\}$ but columns are lex-positive, we have at this lowest numbered row *i*: $\alpha'_i \geq 0$ and $\max\{\alpha'_i, \alpha'_i\}$ but columns are lex-positive. Now, we assume $\alpha'_b < 0$. Due to $\alpha'_b < 0$, we conclude $\tilde{\alpha}'_i > 0$ and $\tilde{\alpha}'$ is lex-positive. Now, we assume $\alpha'_b < 0$. Due to the choice of column *t*, we know that the column with the entry $\alpha'_b \cdot \left(\frac{\alpha'_i}{\alpha'_b} - \frac{\alpha'_i}{\alpha'_b}\right)$ at row *i* is lex-positive since the first non-zero element $j \geq i$ coincides

 $\begin{array}{l} \left(a_{i_b} & a_{b} \right) \\ \text{with} \left(\frac{a_{j'}}{a_{i_b}'} - \frac{a_{j}'}{a_{b}'} \right) = \left(\frac{a_{j'}}{-a_{i_b}'} - \frac{a_{j'}}{-a_{i_b}'} \right) \\ \frac{a_{j'}}{-a_{i_b}'} + \frac{a_{j'}}{-a_{i_b}'} - \frac{a_{j'}}{-a_{i_b}'} \right) = 0 \text{ and we have } a_{i_b}' < 0. \end{array}$

Consequently, we obtain for the first non-zero position: $\tilde{\alpha}_{j}^{r} = \alpha_{t_{0}}^{r} \cdot \left(\frac{\alpha_{j}^{r}}{\alpha_{t_{0}}^{r}} - \frac{\alpha_{j}^{r}}{\alpha_{t_{0}}^{r}} \right) > 0.$

Business Computing and Operations Research WINFOR 887

Proof of Theorem 9.2.3

We consider the column zero and compute $\tilde{\alpha}_i^0 = \alpha_i^0 - \frac{\alpha_i' \cdot \alpha_{l_0}^0}{\alpha_{l_0}'}$. We know that $\alpha_{l_0}^0 < 0$ and $\alpha_{l_0}' < 0$. Clearly, if it holds that $\alpha_i' = 0$ we have $\tilde{\alpha}_i^0 = \alpha_i^0$. We consider the lowest numbered row *i* with $\alpha_i' \neq 0$. Since α' is lex-positive, we conclude $\alpha_i' > 0$ and, due to $\frac{\alpha_i' \cdot \alpha_{l_0}^0}{\alpha_{l_0}'} > 0$, we conclude $\tilde{\alpha}_i^0 < \alpha_i^0$. Hence, the column zero lex-decreases in each iteration of the dual simplex algorithm.

peter School

Business Computing and Operations Research WINFOR 888

Finiteness of the algorithm

Proof of Theorem 9.2.3

- Clearly, between two applications of the dual simplex algorithm an additional row is added to the tableau
- This additional restriction reduces the set of feasible solutions
- Moreover, in each step of the dual simplex the column zero strictly lex-decreases

Let A_i^k be the *i*th column of the tableau matrix after the *k*th execution of the dual simplex algorithm. Due to the aforementioned attributes, we conclude that $A_0^1 >^L A_0^2 >^L A_0^3 >^L ... >^L A_0^1$

eter School 👷

Business Computing and Operations Research WINFOR 890

Proof of Theorem 9.2.3

We have assumed that the problem is bounded. Therefore, the first component $a_{0,0}$ converges towards some number $w_{0,0}$ with the following definition: $w_{0,0} = \lfloor w_{0,0} \rfloor + f_{0,0}$ After a finite number of iterations $a_{0,0}$ falls below $\mid w_{0,0} \mid +1$, and for some

k we can write

 $a_{0,0}^k = \lfloor w_{0,0} \rfloor + f_{0,0}^k$, with $f_{0,0}^k < 1$ Consequently, this row provides the next cut

 $-f_{0,0}^{k} = -\sum_{j \notin B} f_{0,j}^{k} \cdot x_{j} + s$

We then apply the dual simplex and choose column p to enter the basis.

After this pivot we obtain:
$$a_{0,0}^{k+1} = a_{0,0}^k - \frac{a_{0,p}^k}{f_{0,p}^k} \cdot f_{0,0}^k$$

ster School

Business Computing and Operations Research WINFOR 891

Proof of Theorem 9.2.3

Now, at an optimal tableau of the dual simplex we have (1) $a_{0,p}^{k} \ge 0$ and therefore it is larger than its fractional part (2) $a_{0,p}^{k} \ge f_{0,p}^{k}$ Hence, it holds that: (3) $a_{0,0}^{k+1} = a_{0,0}^{k} - \frac{a_{0,p}^{k}}{f_{0,p}^{k}} \cdot f_{0,0}^{k} = a_{0,0}^{k} - f_{0,0}^{k} = \lfloor a_{0,0}^{k} \rfloor = \lfloor w_{0,0}^{k} \rfloor$ Due to the convergence of the sequence $a_{0,0}^{l}$ to $w_{0,0}$, this shows that from this point on $a_{0,0}^{k} = \lfloor w_{0,0}^{k} \rfloor$ is an integer.

hool

Proof of Theorem 9.2.3

The vectors A_0^t are lex-decreasing, and we have shown that after some point the first component becomes fixed at an integer. Consequently, the second component is monotonically non-increasing. It is lower bounded by zero. The argument above can then be repeated for $a_{1,p}^t$.

However, we need to show that $a_{1,p}^k \ge 0$ so that the steps following step (2) go through. This follows because $a_{0,p}^k$ remains fixed, which implies that $a_{0,p}^k = 0$. This implies $a_{1,p}^k \ge 0$ because $A_p^k >^L 0$.

Hence, $a_{1,0}^{l}$ becomes integer after a finite number of steps.

We can continue in this way down column zero, showing that all components eventually reach integer values, at which point the algorithm terminates. The only other possible termination occurs when the dual simplex algorithm finds that the dual is unbounded, and hence that the original ILP is infeasible.

Business Computing and Operations Research WINEOR 893

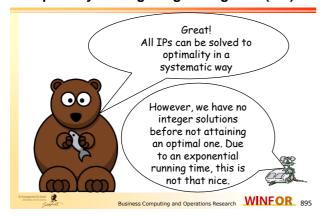
Proof of Theorem 9.2.3

- Moreover, an indefinite number of rows and columns is avoided by dropping a slack variable of a cut if it becomes fractional and is associated with a new Gomory cut (by entering the basis)
- Consequently, we have always at most n rows and at most n-m additional cuts
- Since it was shown that the first column is strictly lexdecreasing during the computation, the number of considered constellations is bounded by an exponential function
- Consequently, the procedure terminates after a finite number of steps

r School 👷

Business Computing and Operations Research WINFOR 894

Optimally solving Integer Programs (IPs)



Example

 $\begin{aligned} & \text{Maximize } x_2 \\ & \text{s.t. } 3 \cdot x_1 + 2 \cdot x_2 \leq 6 \\ & -3 \cdot x_1 + 2 \cdot x_2 \leq 0 \\ & x_1, x_2 \geq 0 \land x_1, x_2 \in \mathbb{N} \end{aligned}$

We obtain for the LP-relaxation of the IP:

	0 6 0	0 3 -3	-1 2 [2]	0 1 0	$\frac{0}{0} = 1$	$0 \rightarrow 6 0$	$\begin{vmatrix} -\frac{3}{2} \\ \hline 6 \\ -\frac{3}{2} \\ \hline 2 \end{vmatrix}$	0	0 1 0	$\frac{1/2}{-1} = \frac{1/2}{1/2}$	$\Rightarrow \frac{\frac{3}{2}}{\frac{3}{2}}$ $\frac{3}{2}$	0 1 0	0 1	$\frac{\frac{l_4}{l_4}}{\frac{l_6}{l_4}}$	$\frac{\frac{1}{4}}{\frac{-1}{6}}$			
numpeter School Honnes and Economic J	and a	r				Bu	isiness (Comp	outing	g and C	peratio	ons F	Resea	arch	WI	NF	OR	896

Example (lexicographic algorithm)

 $\frac{\frac{3}{2}}{1} \begin{vmatrix} 0 & 0 & \frac{1}{4} & \frac{1}{4} \\ 1 & 0 & \frac{1}{6} & -\frac{1}{6} \\ \frac{3}{2} \begin{vmatrix} 0 & 0 & \frac{1}{4} & \frac{1}{4} & 0 \\ 1 & 1 & 0 & \frac{1}{6} & -\frac{1}{6} \\ 0 & 0 & \frac{1}{4} & \frac{1}{4} & 0 \\ 0 & 1 & \frac{1}{4} & \frac{1}{4} & 0 \\ 0 & 0 & -\frac{1}{4} & -\frac{1}{4} & 1 \\ 0 & 0 & -\frac{1}{4} & -\frac{1}{4} \\ 1 & \leftarrow Cut \\ i_0 = 3 \land a_3^0 = -\frac{1}{2} \\ \frac{\alpha^3}{-a_3^3} = \frac{\left(\frac{1}{4} & \frac{1}{6} & \frac{1}{4} & -\frac{1}{4}\right)^T}{\frac{1}{4}} = \left(1 & \frac{2}{3} & 1 & -1\right)^T \\ \frac{\alpha^4}{-a_3^4} = \frac{\left(\frac{1}{4} & -\frac{1}{6} & \frac{1}{4} & -\frac{1}{4}\right)^T}{\frac{1}{4}} = \left(1 & -\frac{2}{3} & 1 & -1\right)^T \\ \Rightarrow \frac{\alpha^3}{-a_3^3} - \frac{\alpha^4}{-a_3^4} = \left(1 & \frac{2}{3} & 1 & -1\right)^T - \left(1 & -\frac{2}{3} & 1 & -1\right)^T = \left(0 & \frac{4}{3} & 0 & 0\right)^T > 0 \Rightarrow \frac{\alpha^3}{-a_3^3} >^{\frac{1}{2}} \frac{\alpha^4}{-a_3^4} \\ \text{Thus, we resume with the fourth column} \end{cases}$

Example

$\frac{3}{2}$	0	0	$\frac{1}{4}$	$\frac{\frac{1}{4}}{-\frac{1}{6}}$ $\frac{1}{4}$ $(-\frac{1}{4})$	0	1	0	0	0	0	1
1	1	0	$\frac{1}{6}$	-1/6	0	4/3	1	0	1/3	0	-2/3
$\frac{3}{2}$	0	1	$\frac{1}{4}$	$\frac{1}{4}$	0	1	0	1	0	0	1
$-\frac{1}{2}$	0	0	$-\frac{1}{4}$	$(-\frac{1}{4})$	1	2	0	0	1	1	-4

- We obtain the optimal LP solution x^{T} =(4/3,1,0,2,0)
- Consequently, we add an additional restriction resulting from the second row

peter School

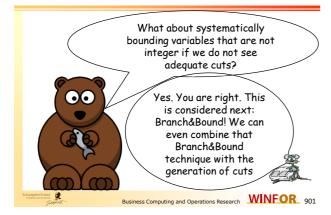
Example

Example

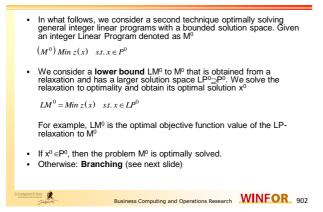
1	0	0	0	0	1	0	1	0	0	0	0	1	0
$\frac{4}{3}$	1	0	1/3	0	$-\frac{2}{3}$	0	1	1	0	0	0	-1	1
1	0	1	0	0	1	0 =	⇒1	0	1	0	0	1	0
2	0	0	1	1	-4	0	1	0	0	0	1	-5	3
$-\frac{1}{3}$	0	0	$ \begin{array}{c} 0 \\ \frac{1_{3}}{0} \\ 1 \\ \left(-\frac{1_{3}}{3}\right) \end{array} $	0	$-\frac{1}{3}$	1	1	0	0	1	0	1	-3
The optimal solution to the original integer problem is $x^{T} = (1,1)$													

2

Optimally solving Integer Programs (IPs)



9.3 Branch&Bound



Branching

We partition the solution space P^0 by some branching rule and yield k+1 subproblems $M^{00}\dots M^{0k}$

 $P^0 = \bigcup\nolimits_{i=1}^k P^{0i} \quad \land \quad \forall i,j=0,...,k: i \neq j: P^{0i} \cap P^{0j} = \varnothing$

 (M^{00}) Min z(x) s.t. $x \in P^{01}$... (M^{0k}) Min z(x) s.t. $x \in P^{0k}$

For example, if P⁰ is the LP-relaxation, we choose a variable x_j^0 that is **not** integer and yield two subproblems with

 $P^{00} = \left\{ x \ge 0 | x \in P^0 \land x_j \ge \left\lceil x_j^0 \right\rceil \right\} \qquad P^{01} = \left\{ x \ge 0 | x \in P^0 \land x_j \le \left\lfloor x_j^0 \right\rfloor \right\}$

eter School

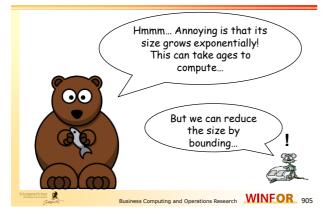
Business Computing and Operations Research WINFOR 903

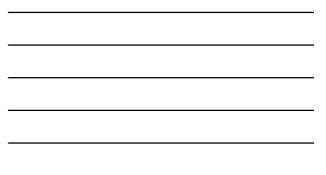
Enumeration tree obtained from Branching

Applying the branching rule consecutively, we derive a solution tree

Some solutions to the subproblems may be integer. We stop if the solution tree is explored entirely, and thus the best known integer solution is optimal to M⁰.

Size of the enumeration tree





Bounding

There is always a **global upper bound** UM to the integer Linear Program M^0 . Either $UM_{=\infty}$ or UM is derived from a feasible solution to M^0 . We calculate a lower bound LM^{0i} , which is easy to calculate, for each subproblem M^{0i} , and LM^{0i} has a solution space $LP^{0i} \supseteq P^{0i} \forall i=1,..,k$. A subproblem M^{0i} does not need to be considered anymore (i.e., it is pruned) if **one** of the following **pruning criterions** holds:

- a) LM⁰ⁱ < UM and the optimal solution x⁰ⁱ of LM⁰ⁱ is feasible to M⁰: We found an improved upper bound to M⁰, and we remember this solution UM:= LM⁰ⁱ.
- b) LM⁽⁰⁾ ≥ UM : The optimal solution to the subproblem M⁰ⁱ , and all integer solutions derived from it cannot be better than the best known feasible solution with UM.
- c) $LP^{0i} = \emptyset$: There exists no feasible solution to LM⁰ⁱ and none to M⁰ⁱ.

We stop if the solution tree is explored, and thus UM is optimal to M⁰.

peter School

Business Computing and Operations Research WINFOR 906

907

Example

(M^0) Minimize $-x$	$x_1 - 2 \cdot x_2$
s.t. $2 \cdot x_1 + 2 \cdot x_2 \le$	7
$-2 \cdot x_1 + 2 \cdot x_2$	≤ 1
$-2 \cdot x_2 \leq -1$	
$x_1, x_2 \ge 0$	
$x_1, x_2 \in \mathbb{Z}$	
We commence with	h UM= ∞ and with the LP-relaxation LM ^{0}
$0 \mid -1 \mid -2 \mid 0 \mid 0 \mid$	$0 \qquad \frac{11}{2} 0 0 \frac{3}{4} \frac{1}{4} 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{3}{0}$ $\frac{3}{2}$ 1 0 $\frac{1}{4}$ $-\frac{1}{4}$ 0
1 -2 2 0 1	$0 \xrightarrow{\Rightarrow} \dots \xrightarrow{\Rightarrow} 3 0 0 \frac{1}{2} \frac{1}{2} 1$
$-1 \mid 0 -2 0 0$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
charles an longing	Business Computing and Operations Research

Consequences

- Obviously, -11/2 is a lower bound for the optimal solution value of M⁰
- Since the solution is unfortunately not integer, we branch and conduct a case statement. Either $x_1 \le 1$ or $x_1 \ge 2$
- Starting from the original set of feasible solutions

 $P^{0} = \left\{ \left(x_{1}, x_{2} \right) \in IR_{\geq 0}^{2} \, / \, 2 \cdot x_{1} + 2 \cdot x_{2} \leq 7 \wedge -2 \cdot x_{1} + 2 \cdot x_{2} \leq 1 \wedge -2 \cdot x_{2} \leq -1 \right\}$

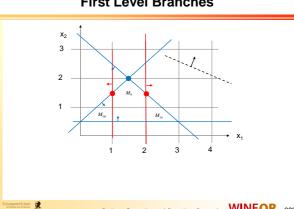
the simple branching step yields two subproblems

 $P^{00} = \left\{ \left(x_1, x_2 \right) \in IR_{\geq 0}^2 \, / \, 2 \cdot x_1 + 2 \cdot x_2 \le 7 \, \land -2 \cdot x_1 + 2 \cdot x_2 \le 1 \, \land -2 \cdot x_2 \le -1 \, \land \, x_1 \le 1 \right\} \, \land$

```
P^{01} = \left\{ \left( x_1, x_2 \right) \in IR_{\geq 0}^2 / 2 \cdot x_1 + 2 \cdot x_2 \le 7 \land -2 \cdot x_1 + 2 \cdot x_2 \le 1 \land -2 \cdot x_2 \le -1 \land x_1 \ge 2 \right\}
```

.

Business Computing and Operations Research 908



First Level Branches

Resulting problems

Cor	Consequently, we obtain the tableaus												
M^{00}							M^{01}						
$\frac{11}{2}$	0	0	3⁄4	$\frac{1}{4}$	0	0	$\frac{11}{2}$	0	0	3/4	$\frac{1}{4}$	0	0
				$-\frac{1}{4}$			$\frac{3}{2}$	1	0	$\frac{1}{4}$	-1/4	0	0
3	0	0	$\frac{1}{2}$	$\frac{1}{2}$	1	0	3	0	0	$\frac{1}{2}$	$\frac{1}{2}$	1	0
2	0	1	$\frac{1}{4}$	$\frac{1}{2}$	0	0	2	0	1	$\frac{1}{4}$	$\frac{1}{2}$	0	0
1	1	0	0	0	0	1	2	1	0	0	0	0	-1

2

Transformation of the tableaus

- In order to directly conduct the Dual Simplex, we need to transform the problem
- Specifically, we subtract the first row from the fourth one or vice versa
- Thus, we obtain

$\frac{11}{2}$	0	0	3/4	$\frac{1}{4}$	0	0		$\frac{11}{2}$	0	0	3/4	$\frac{1}{4}$	0	0	
$\frac{3}{2}$	1	0	$\frac{1}{4}$	-1/4	0	0		$\frac{3}{2}$	1	0	$\frac{1}{4}$	$-\frac{1}{4}$	0	0	
3	0	0	$\frac{1}{2}$	$\frac{1}{2}$	1	0		3	0	0	$\frac{1}{2}$	$\frac{1}{2}$	1	0	
2	0	1	$\frac{1}{4}$	$\frac{1}{2}$	0	0		2	0	1	$\frac{1}{4}$	$\frac{1}{2}$	0	0	
$-\frac{1}{2}$	0	0	$-\frac{1}{4}$	$\frac{1}{4}$	0	1		$-\frac{1}{2}$	0	0	$\frac{1}{4}$	$-\frac{1}{4}$	0	1	
mpeter School				Business	Con	nputir	ng and	d Operatio	ons R	esea	rch	WINF	0	R	911

Finally, it turns out...

3/2 1 0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$-\frac{1}{4}$ 0 0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 -1
$\begin{array}{ccccccc} 4 & 0 & 0 & 0 \\ \hline 1 & 1 & 0 & 0 \\ 2 & 0 & 0 & 0 \\ \hline 3'_2 & 0 & 1 & 0 \\ 2 & 0 & 0 & 1 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 2 0 1
2 0 0 1	-1 0 -4	2 0 0 -1 1	0 -4
of Ballion and Economia	Business Computin	g and Operations Research	WINFOR 912

Conclusions

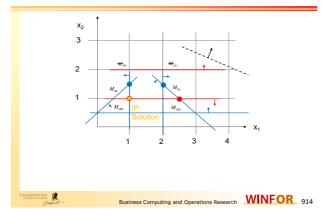
- Unfortunately, both solutions are still not integer
- Thus, we have to resume with the next branching step
- This time, we obtain altogether four constellations

$$\begin{split} M^{000} &= \left\{ \begin{pmatrix} x_1, x_2 \end{pmatrix} \in IR^2_{x0}/2 \cdot x_1 + 2 \cdot x_2 \leq 7 \wedge -2 \cdot x_1 + 2 \cdot x_2 \leq 1 \wedge -2 \cdot x_2 \leq -1 \wedge x_1 \leq 1 \wedge x_2 \leq 1 \right\} \land \\ M^{001} &= \left\{ \begin{pmatrix} x_1, x_2 \end{pmatrix} \in IR^2_{x0}/2 \cdot x_1 + 2 \cdot x_2 \leq 7 \wedge -2 \cdot x_1 + 2 \cdot x_2 \leq 1 \wedge -2 \cdot x_2 \leq -1 \wedge x_1 \leq 1 \wedge x_2 \geq 2 \right\} \land \\ M^{010} &= \left\{ \begin{pmatrix} x_1, x_2 \end{pmatrix} \in IR^2_{x0}/2 \cdot x_1 + 2 \cdot x_2 \leq 7 \wedge -2 \cdot x_1 + 2 \cdot x_2 \leq 1 \wedge -2 \cdot x_2 \leq -1 \wedge x_1 \geq 2 \wedge x_2 \leq 1 \right\} \land \\ M^{011} &= \left\{ \begin{pmatrix} x_1, x_2 \end{pmatrix} \in IR^2_{x0}/2 \cdot x_1 + 2 \cdot x_2 \leq 7 \wedge -2 \cdot x_1 + 2 \cdot x_2 \leq 1 \wedge -2 \cdot x_2 \leq -1 \wedge x_1 \geq 2 \wedge x_2 \leq 1 \right\} \land \\ M^{011} &= \left\{ \begin{pmatrix} x_1, x_2 \end{pmatrix} \in IR^2_{x0}/2 \cdot x_1 + 2 \cdot x_2 \leq 7 \wedge -2 \cdot x_1 + 2 \cdot x_2 \leq 1 \wedge -2 \cdot x_2 \leq -1 \wedge x_1 \geq 2 \wedge x_2 \leq 2 \right\} \end{split}$$

- M⁰⁰¹ and M⁰¹¹ are infeasible (case c)
- Thus, we resume with M⁰⁰⁰ and M⁰¹⁰

ichool

Second Level Branches



Resulting problems

M 000	M^{010}
4 0 0 0 1 0	3 0 5 0 0 1 0 0 1 0
1 1 0 0 0 0	1 0 2 1 0 0 0 0 -1 0
2 0 0 0 1 1	2 0 2 0 0 1 0 1 2 0
$\frac{3}{2}$ 0 1 0 $\frac{1}{2}$ 0	1 0 $\frac{3}{2}$ 0 1 $\frac{1}{2}$ 0 0 1 0
2 0 0 1 -1 0	-4 0 2 0 0 -1 1 0 -4 0
1 0 1 0 0 0	0 1 1 0 1 0 0 0 0 1
	Ι
4 0 0 0 1	0 3 0 5 0 0 1 0 0 1 0
1 1 0 0 0	0 1 0 2 1 0 0 0 0 -1 0
2 0 0 0 1	1 2 0 2 0 0 1 0 1 2 0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$0 \ 1 \ 0 \ \frac{3}{2} \ 0 \ 1 \ \frac{1}{2} \ 0 \ 0 \ 1 \ 0$
2 0 0 1 -1	0 -4 0 2 0 0 -1 1 0 -4 0
$-\frac{1}{2}$ 0 0 0 $(-\frac{1}{2})$	$) 0 -1 1 -\frac{1}{2} 0 0 -\frac{1}{2} 0 0 (-1) 1$
Schumpeter School	Business Computing and Operations Research WINFOR 915

Resulting problems

4	0 0	0	1	0	3	0		5	i	0	0	1	0	0	1	0
1	1 0	0	0	0	1	0		2	2	1	0	0	0	0	$^{-1}$	0
		0	1			0		2	2	0	0	1	0	1	2	0
$\frac{3}{2}_{2}$	0 1	0	$\frac{1}{2}$	0	1	0		3/		0	1	$\frac{1}{2}$	0	0	1	0
2	0 0	1	$^{-1}$	0	-4	0		2	2	0	0	$^{-1}$	1	0	-4	0
$\begin{bmatrix} -\frac{1}{2} \end{bmatrix}$	0 0	0	$(-\frac{1}{2})$) 0				[-]/		0	0	-1/2	0	0	(-1)	1
3 0 0	0 (0 0	1	2				%	0	0	$\frac{1}{2}$	0	0 () 1	l	
1 1 0	0 (0 0	1	0				5/2	1	0	1/2	0	0 () –	1	
1 0 0	0 0	0 1	0	2				1	0	0	0	0	1 () 2	2	
1 0 1	0 (0 0	0	1				1	0	1	0	0	0 0) 1	l	
3 0 0	1 (0 0	-2	-2				4				1			4	
1 0 0	0	1 0	2	-2				$\frac{1}{2}$				0			1	
Schumpeter School				Busi	iness	Com	puting and C	peratio	ons R	lesea	arch	W	N	FO	R g	916

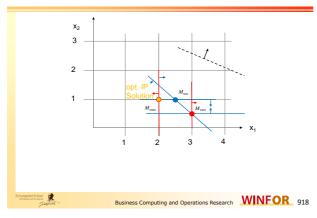
M⁰⁰⁰ and M⁰¹⁰ – Results

- Obviously, the problems are optimally solved
- Thus, we obtain an integer solution with objective function value -3 from M⁰⁰⁰ and we set UM:=-3 (case a)
- Since the lower bound of the remaining problem M^{010} is -9/2, we have to resume with this problem
- Here, we obtain the new problems

$$\begin{split} & \mathcal{M}^{0100} = \left\{ \left(x_{1}, x_{2} \right) \in IR_{\pm 0}^{2} / 2 \cdot x_{1} + 2 \cdot x_{2} \leq 7 \wedge -2 \cdot x_{1} + 2 \cdot x_{2} \leq 1 \wedge -2 \cdot x_{2} \leq -1 \wedge x_{1} \geq 2 \wedge x_{2} \leq 1 \wedge x_{1} \leq 2 \right\} \wedge \\ & \mathcal{M}^{0101} = \left\{ \left(x_{1}, x_{2} \right) \in IR_{\pm 0}^{2} / 2 \cdot x_{1} + 2 \cdot x_{2} \leq 7 \wedge -2 \cdot x_{1} + 2 \cdot x_{2} \leq 1 \wedge -2 \cdot x_{2} \leq -1 \wedge x_{1} \geq 2 \wedge x_{2} \leq 1 \wedge x_{1} \geq 3 \right\} \end{split}$$

eter School

Business Computing and Operations Research WINFOR 917



Third Level Branches

M⁰¹⁰ – Results

M ⁰¹⁰⁰	M ⁰¹⁰¹
$\frac{9}{2}$ 0 0 $\frac{1}{2}$ 0 0 0 1 0	<u>9/2</u> 0 0 1/2 0 0 0 1 0
5/ 1 0 1/ 0 0 0 -1 0	5/ 1 0 1/ 0 0 0 -1 0
1 0 0 0 0 1 0 2 0	1 0 0 0 0 1 0 2 0
1 0 1 0 0 0 0 1 0	1 0 1 0 0 0 0 1 0
4 0 0 1 1 0 0 -4 0	4 0 0 1 1 0 0 -4 0
$\frac{1}{2}$ 0 0 $\frac{1}{2}$ 0 0 1 -1 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
2 1 0 0 0 0 0 1	3 1 0 0 0 0 0 0 -1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\frac{5}{2}$ 1 0 $\frac{1}{2}$ 0 0 0 -1 0	5/2 1 0 1/2 0 0 0 -1 0
1 0 0 0 0 1 0 2 0	1 0 0 0 0 1 0 2 0
1 0 1 0 0 0 0 1 0	1 0 1 0 0 0 0 1 0
4 0 0 1 1 0 0 -4 0	4 0 0 1 1 0 0 -4 0
$\frac{1}{2}$ 0 0 $\frac{1}{2}$ 0 0 1 -1 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$-\frac{1}{2}$ 0 0 $-\frac{1}{2}$ 0 0 0 1 1	$-\frac{1}{2}$ 0 0 $\frac{1}{2}$ 0 0 0 -1 1
	ng and Operations Research WINFOR 919

And thus, we obtain

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 1 2 0 1 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Schumpeter School	Business Computing an	d Operations Research WINFOR 920

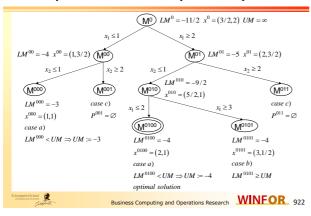
M⁰¹⁰⁰ and M⁰¹⁰¹ - Results

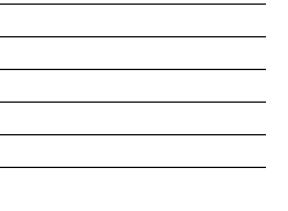
- We obtained an improved second feasible solution x^T=(2,1) from M⁰¹⁰⁰ and UM:=-4 (case a)
- The other alternative constellation M⁰¹⁰¹ still does not provide any integer solution However, since the objective function value is -4, this is a lower bound for all integer solutions resulting from M⁰¹⁰¹ (case b)
- Thus, we explored the solution tree and stop our procedure. The optimal solution is x^T=(2,1) with an objective function value of UM=-4

School 👷

Business Computing and Operations Research WINFOR 921

Example – Conducted exploration process





Branch&Bound Algorithm

- Determine an upper bound UM either via a heuristic or set UM:=∞. 1.
- Solve a lower bound LM^i of M^i and obtain its optimal solution x^i . 2.
- 3. If either $LM^{i\geq}UM$ (case b) or $P^{i}=\emptyset$ (case c) holds, then go to 7.
- 4. Otherwise (case b) or c) do not apply): If LMi<UM and xⁱ is feasible to Mº (case a), then set UM:=LMi. Check for each remaining candidate problem M^k that is in the list whether it can be pruned by $\mathsf{LM}^k{\geq}\mathsf{UM}$ (case b). Remove all pruned problems Mk from the list. Go to 7.
- 5. Otherwise (case a) does not apply): LMⁱ is a candidate problem and is stored in a list.
- 6. Pick a candidate problem M^k from the list. Branch the problem M^k and derive a subproblem Mki. If no subproblem is derived, then remove M^k from the list. Proceed with M^i := M^{ki} and go to 2.
- If there exists no candidate problem in the list, then terminate the 7. algorithm. The optimal solution is the corresponding solution to UM.
- 8. Otherwise (there exist candidate problems in the list): Go to 6. .